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Summary. Subject-specific and marginal models have been developed for the analysis of longitudinal ordinal data. Subject-
specific models often lack a population-average interpretation of the model parameters due to the conditional formulation of
random intercepts and slopes. Marginal models frequently lack an underlying distribution for ordinal data, in particular when
generalized estimating equations are applied. To overcome these issues, latent variable models underneath the ordinal outcomes
with a multivariate logistic distribution can be applied. In this article, we extend the work of O’Brien and Dunson (2004), who
studied the multivariate t-distribution with marginal logistic distributions. We use maximum likelihood, instead of a Bayesian
approach, and incorporated covariates in the correlation structure, in addition to the mean model. We compared our method
with GEE and demonstrated that it performs better than GEE with respect to the fixed effect parameter estimation when the
latent variables have an approximately elliptical distribution, and at least as good as GEE for other types of latent variable
distributions.

Key words: Flexible correlation matrix; Generalized estimating equations; Latent variable models; Maximum likelihood;
Multivariate logistic distribution; Population-averaged (marginal) models; t-distribution.

1. Introduction
Longitudinal ordinal outcomes are often used to measure and
understand the well-being of groups of subjects in the pop-
ulation over time. Both subject-specific and marginal mod-
els can be used to analyze this type of data (Fitzmaurice
et al., 2009), but subject-specific models seem less suitable.
Subject-specific models treat some model parameters as ran-
dom variables to induce temporal correlations, but the in-
terpretation of the fixed parameters at the population level
is not straightforward due to the complication of integrating
out these random effects. The so-called bridge distribution
for random effects in combination with logit link functions
do provide marginal logistic distributions (Wang and Louis,
2003; Parzen et al., 2011), but they are more difficult to in-
terpret than normally distributed random effects and are not
yet available as an option in standard software packages. Fur-
thermore, penalized quasi-likelihood (Stiratelli et al., 1984),
marginal quasi-likelihood (Breslow and Clayton, 1993) and
marginalized subject-specific models (Heagerty, 1999, 2002;
Lee and Daniels, 2008) all provide population-averaged inter-
pretations, but they do not necessarily imply a marginal dis-
tribution for the longitudinal ordinal data in the population.

Marginal models model the mean levels and the associa-
tions of repeated ordinal outcomes at a population level, but
the parameters are predominantly estimated with generalized

estimating equations (GEE). An important limitation of GEE
is that it treats the associations between outcomes only as
nuisance parameters. Though it does provide some informa-
tion on the association, it is statistically weak. This limitation
can be overcome by specifying a set of equations for both the
fixed parameters and the association parameters (Heagerty
and Zeger, 1996), but it does not necessarily lead to a multi-
variate distribution for the ordinal outcomes and thus compli-
cates the interpretation of the association structure. Even if
such a distribution would exist (Chaganty and Joe, 2004), in-
terpretation of the association structure for ordinal outcomes
is still difficult. Indeed, the correlation between each pair of or-
dinal outcomes is evaluated via a matrix rather than a scalar
since each level of the ordinal outcome is represented by a
vector of binary elements (Clayton, 1992), which are all zero
except for one entry that connects to one level of the ordinal
outcome. Another drawback of GEE is that it may result in
biased estimates when missing data occur and the mechanism
is other than missing completely at random (MCAR), see
Molenberghs and Kenward (2007). This problem can be solved
by use of weighted GEE (Robins et al., 1995), doubly-robust
inverse probability weighting (Scharfstein et al., 1999) or a
combination of multiple imputation (MI) and GEE (Rubin,
1987). However, it is unknown which of these approaches is
best for ordinal outcomes.
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Alternatively, several joint distribution functions have been
developed to handle repeated ordinal outcomes. Molenberghs
and Lesaffre (1994) used joint probabilities via the extended
Dale model (Dale, 1986), i.e., the joint probabilities (cell prob-
abilities) are decomposed into main effects and higher or-
der associations using global odds ratios. Unfortunately, this
model is not easy to implement, unless the number of repeated
measurements is small (Agresti and Natarajan, 2001). An-
other approach is treating ordinal outcomes as manifest vari-
ables for one or more latent variables. This approach is widely
used in structural equation modeling, and frequently assume
that the latent variables follow multivariate normal distribu-
tions (Muthén, 1983, 1984; Kline, 2011). Such a distribution
for the latent variable underneath the ordinal outcomes was
also used by Li and Schafer (2008). These models result in
marginal multivariate distributions only when the link func-
tion is the probit. Therefore, an odds ratio interpretation,
like GEE, is not guaranteed with these models. On the other
hand, multivariate logistic distributions in combination with
a logit link function could be used instead. A widely known bi-
variate logistic distribution was introduced by Gumbel (1961)
and further extended to higher order dimensions by Malik and
Abraham (1973), (see also Kotz et al. 2000). This multivari-
ate distribution belongs to the class of Archimedean distri-
butions (Nelson, 2006), but they have just one parameter to
represent all correlations. Thus Gumbel distributions support
only the exchangeable correlation matrix. The (Generalized)
Farlie-Gumbel-Morgenstern distribution (Kotz et al., 2000)
does have an unstructured correlation matrix, but the corre-
lation coefficients are usually small due to the restrictions on
the parameters of the distribution. An alternative, more flexi-
ble, approach is the use of the t-copula to construct multivari-
ate distribution with marginal logistics (O’Brien and Dunson,
2004), which has been applied to longitudinal ordinal data us-
ing a Bayesian method to estimate the parameters.

Our goal is to generalize the approach of O’Brien and Dun-
son (2004) to be able to model the temporal correlations with
possible time-(in)variant covariates using existing software.
Instead of a Bayesian approach, we will apply maximum like-
lihood. Incomplete outcomes that satisfy MCAR or missing
at random (MAR) can then be handled easily without using
other methods like MI. We examine the performance of this
approach in terms of bias, mean squared error, and the cover-
age probability of Wald-type confidence intervals using simu-
lation studies. Ordinal outcomes are simulated via moderately
to highly correlated latent variables with different multivari-
ate distributions. Furthermore, our approach will be com-
pared with GEE and MI-GEE for full and incomplete data
sets, respectively.

A prospective cohort study (TRAILS: TRacking Adoles-
cents’ Individual Lives Survey) of Dutch adolescents using
bi- or triennial measurements on mental health from age 11
onward motivated our research. A depression subscale of men-
tal health is the Youth Self-Report (YSR) obtained at base-
line and two follow-ups. This subscale has good psychometric
properties (Achenbach and Rescorla, 2006) and consists of 13
items. Each item has three levels (0, 1, 2) and higher lev-
els indicate more depression. The sum scale of the 13 items
is categorized for boys and girls differently. A sum score of
[0; 5] or [0; 7] indicate a normal range for boys and girls,

respectively. A sum score of [6; 8] or [8; 11] indicate mild de-
pressive symptoms, while a sum score of [9; 11] or [12; 14] in-
dicate subthreshold depressive symptoms. A sum score above
12 and 15 suggest significant depressive symptoms and possi-
bly clinical depression for boys and girls, respectively. Age and
gender of adolescents, a history of parental internalizing and
externalizing problems, family structure, and social-economic
status of family were considered explanatory variables for de-
pression status. Additionally, different temporal correlations
in depression scores for boys and girls would indicate that
stability of depression symptoms is gender specific. This case
study shows the need for a population-averaged longitudinal
ordinal logistic regression model that could also address dif-
ferent temporal correlations for certain subpopulations. The
threshold values for the ordinal outcome should be consid-
ered constant across subpopulations since the ordinal scale is
already be corrected for subpopulations.

The rest of the article is organized as follows. Statistical
methods (i.e., models and estimation) are considered in Sec-
tion 2. Simulation studies and our case study are described
in Sections 3 and Section 4, respectively. Finally, Section 5
discusses the model and results.

2. Methods

Let Oij represent an ordinal outcome, having C levels, for
subject i (i = 1, . . . , N) at time point j (j = 1, . . . , J). Corre-
sponding to each subject i, let Xi be a J × p matrix containing
all time varying and time invariant covariates. The effect of
covariates on an ordinal outcome can be evaluated through
the proportional odds cumulative model, i.e.,

logit
{
P(Oij ≤ c|Xij = xij)

} = γc − x′
ijβββ (1)

with γc a threshold parameter for level c (c = 0, 1, . . . , C), such
that −∞ = γ0 < γ1 < . . . . < γC = ∞ and βββ a p-dimensional
vector of regression parameters (McCullagh, 1980). This
model may be viewed as a latent variable model in which an
unobservable continuous random variable Y lies underneath
the ordinal variable, such that it transforms the continuous
outcome into an ordinal outcome for each subject i at time j,
i.e. Oij = c if and only if γc−1 < Yij ≤ γc. To satisfy equation
(1) the latent variable Yij must have a logistic distribution
with mean parameter μμμij = x′

ijβββ and scale parameter 1. Thus,
the multivariate density function for Oi = (Oi1, Oi2, . . . , OiJ)
can be written by

g(ci|γ,βββ,XXXi,RRR) =
∫ γci1

γci1−1

∫ γci2

γci2−1

. . . .

∫ γciJ

γciJ −1

f (yyyi|XXXi,βββ,RRR)dyi

(2)

with ci = (ci1, . . . , ciJ) a vector of levels, f (.|X,βββ, R) a multi-
variate logistic density, Xi a matrix of p covariates, βββ a vector
of regression parameters, and R a correlation matrix.
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2.1. Multivariate Logit Model

The density function for the t-copula based multivariate dis-
tribution used by O’Brien and Dunson (2004) for subject i is
given by

f (zi|Xi,βββ, R) =
t

{
h(zi1), h(zi2), . . . , h(ziJ)|R

}
∏J

j=1
t1{h(zij)}

J∏
j=1

f1(zij),

(3)

with t and t1 the multivariate and univariate t-densities with ν

degrees of freedom, respectively, h(z) = T −1
1 {ez/(1 + ez)}, with

T1 the univariate t-distribution function with ν degrees of

freedom, f1(z) = exp(z)/
{
1 + exp(z)

}2
the univariate logistic

density, and zi = (yi1 − μi1, yi2 − μi2, . . . , yiJ − μiJ).
Albert and Chib (1993) showed that the univariate logis-

tic distribution, f1, can be approximated by a univariate t-
distribution with ν = 8 degrees of freedom. To make the dis-
tributions similar, a scale parameter π2(ν − 2)/3ν in the t-
distribution is needed. Using these approximations, equation
(3) becomes approximately

f (yi|Xi,βββ, R) ≈ t

{
h(zi1), h(zi2), . . . , h(ziJ)|R̃

}
, (4)

with R̃ = {π2(ν − 2)/3ν}R, and R the correlation matrix for
the continuous latent variables.

2.2. The Covariance Structure

To improve on this known model, we increase the complex-
ity by implementing covariates into the correlation matrix R.
This makes it possible to estimate correlation matrices sep-
arately for subgroups of subjects (categorical variables) and
for individuals (continuous variables). We re-parameterize all
elements of R with Fisher’s z-transformation, i.e.,

log

(
1 + ρjk

1 − ρjk

)
= α0jk + wijkαjk (5)

with ρjk the correlation coefficient of latent variable at time
j and k (j �= k), wijk a vector of covariates, α0jk an inter-
cept and αjk a slope. The structure is flexible in terms of
intercepts and slopes. When α0jk = αjk = 0, R is the iden-
tity matrix. When αjk = 0, no covariates influence the cor-
relation matrix, but the matrix can still attain several struc-
tures: the exchangeable structure (α0jk = α0 ∀j, k), the AR(1)
structure (α0jk = ln

{
1 + C (α)

} − ln
{
1 − C (α)

}
with C (α) =[{

exp (α) − 1
}

/
{
exp (α) + 1

}]|j−k|
), and the unstructured

form. When αjk �= 0, covariates in model (5) may explain vari-
ation in the temporal correlation coefficients.

In principle, any value in the range [−1, 1] can be
substituted for ρjk, but the correlation matrix must be
(semi)positive definite and it leads to constraints on ρjk’s.
These constrains have been discussed for three variables
(Olkin, 1981) and four variables (Budden et al., 2007). For
example, element ρjk in a three-dimensional correlation ma-

trix should be in the interval[
ρjsρks −

√
(1 − ρ2

js)(1 − ρ2
ks); ρjsρks +

√
(1 − ρ2

js)(1 − ρ2
ks)

]
,

(6)

for s �= j, k. (Semi)positive definiteness is fulfilled by maxi-
mizing the likelihood under these constraints. For higher di-
mensions, we can apply Higham’s algorithm (Higham, 1988)
to assure that positive definiteness of the correlation matrix
fulfills.

2.3. Parameter Estimation: Maximum Likelihood
Approach

Instead of a Bayesian approach (O’Brien and Dunson, 2004),
we applied maximum likelihood for estimation of the parame-
ters in equation (4). This choice of estimation is computation-
ally less expensive and estimation is easier when covariates
are implemented into the correlation matrix, since selecting
an appropriate prior on αjk is not required. However, comput-
ing a multivariate t-distribution with an arbitrary correlation
matrix is still computationally burdensome. To calculate the
t-density in (4), we applied the formulation (7) for the multi-
variate t-distribution introduced by Cornish (1954) in combi-
nation with the numerical method of Genz and Bretz (1999).
It is just a different form of the same t-density (Genz and
Bretz, 1999). The multivariate t-distribution is then given by

T (γci
|μ, R̃) = 21−ν/2

�(ν/2)

∫ ∞

0

qν−1 exp(−q2/2)	(
qγci√

ν
− μ|R̃)dq

(7)

with 	(ξ1, . . . , ξi|R̃) = (2π|R̃|)J/2
∫ ξ1

−∞ . . .
∫ ξi

−∞ exp(−q′R̃q/2)dq

the multivariate normal distribution. Genz and Bretz (2002)
showed that their numerical method computes the multivari-
ate t-distribution robustly and reliably up to 20 dimensions.
This function is implemented in R software, assuming that R̃

is a scale matrix (see the Web Appendix A).
To maximize the likelihood function based on the propor-

tional odds model (1) using density (2) with approximation
(4) in the form of (7), we used the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm (Shanno, 1970) with function
optim in R package, which is a quasi-Newton method, and
computes the optimum value for nonlinear functions. The
starting or initial values were selected using univariate propor-
tional odds logistic regression for the regression parameters
and polychoric correlations for the correlation coefficients.
Continuous covariates are standardized with the associ-
ated means and standard deviations and we implemented
γc = γc−1 + d2

c−1, similar to Li and Schafer (2008), to ensure
that the threshold parameters are ordered. To implement a
semi-positive definite correlation matrix for three dimensional
outcomes, we maximized the likelihood function under con-
straint (6) by putting the constraint in the likelihood function,
see the R codes that is available with this article at the Bio-
metrics website on Wiley Online Library. For higher dimen-
sions, we can implement Higham’s algorithm (Higham, 1988)
at the same place in the likelihood function using function
make.positive.definite in package corpor of R software. To ob-



256 Biometrics, March 2016

Table 1
Bias(MSE) and CP of estimated parameters for 1000 simulated data sets with t-logistic latent variables and 50 subjects. The

true correlation coefficients are indicated in the first row.

(0.45, 0.30, 0.70) (0.85, 0.85, 0.85)

ML GEE ML GEE

Parameter True value Bias(MSE) CPa Bias(MSE) CP Bias(MSE) CPb Bias(MSE) CP

γ1 −0.5 0.018 (0.099) 94.91 0.024 (0.101) 94.20 0.037 (0.146) 93.87 0.037 (0.146) 95.10
γ2 1 −0.017 (0.108) 95.33 −0.035 (0.110) 95.20 −0.019 (0.154) 94.86 −0.050 (0.158) 95.00
γ3 2 −0.044 (0.187) 94.29 −0.099 (0.199) 94.40 −0.041 (0.265) 95.62 −0.115 (0.289) 95.20
βS −1 0.017 (0.191) 95.33 −0.046 (0.209) 94.10 0.044 (0.291) 94.64 −0.068 (0.311) 94.40
βA −0.2 0.003 (0.049) 95.85 −0.014 (0.053) 93.5 0.010 (0.067) 95.84 −0.022 (0.073) 94.60
βT −0.1 −0.005 (0.018) 95.53 −0.001 (0.021) 95.2 −0.006 (0.006) 94.09 −0.003 (0.008) 95.40
ρ12 - 0.007 (0.026) 93.15 - - 0.003 (0.005) 91.03 - -
ρ13 - 0.005 (0.032) 92.21 - - 0.001 (0.005) 91.47 - -
ρ23 - 0.011 (0.014) 90.97 - - 0.005 (0.005) 90.48 - -

a 37 data sets are removed due to convergence issues in computing the standard errors.
b86 data sets are removed due to convergence issues in computing the standard errors.

tain standard errors, we applied numerical differentiation us-
ing function hessian, implemented in the package numDeriv in
R. Note that the first and second derivatives of the logarithm
of the likelihood function exist, but their computations are
cumbersome (see Web Appendix A). Finally, to address miss-
ing outcome data the full likelihood function is changed to the
same likelihood function with a lower dimension. For instance,
if subject i has data only for the first two time points, the full

likelihood function t

{
h (zi1) , h (zi2) , . . . , h (ziJ) |R̃

}
for a com-

plete set of outcomes is replaced by t

{
h (zi1) , h (zi2) |R̃12

}
,

with R̃12 the partition of R̃ corresponding to the (scaled)
correlation for the first two time points.

3. Simulation Studies

The aim of the simulation study is to investigate four aspects
of our approach. Firstly, we study the bias, mean squared er-
ror (MSE), and coverage probabilities of Wald-type confidence
intervals of the ML estimates when we simulate small sample
sizes and complete data from density (3). The performance is
compared with GEE. Furthermore, the likelihood ratio test
(LRT) is studied for selecting correlation structures. The sec-
ond part investigates the performance of our approach when
we implement covariate(s) in the correlation coefficients. The
LRT was used for testing their effects. The third part presents
results for latent variables with other multivariate (logistic)
distributions. Finally, the last part explores the performance
of our approach in the presence of missing outcomes. These
results are compared to GEE with multiple imputation (MI-
GEE) using predictive mean matching (PMM).

In all settings, we generated three covariates independently:
a Bernoulli random variable x1 with parameter 0.49, repre-
senting gender, a normally distributed random variable x2

from N(11, 0.52), representing age at baseline, time at base-
line x30 = 0, and follow-up times x31 and x32 with dis-
tributions N(2.5, 0.42) and N(5, 0.62), respectively. Three-
dimensional continuous latent variables (Z1, Z2, Z3,) were
generated via t-, Gumbel, or normal copula functions (Nelson,

2006). The latent variable Yij was then set to Yij = βSXi1 +
βAXi2 + βT Xi3j + Zij with (βS, βA, βT ) = (−1, −0.2, −0.1) or
(−1, −0.5, −0.5). The 4-level ordinal outcomes were produced
by fixing the threshold parameters such that about 50, 25, 15,
and 10% of the observations attain the first, second, third, and
fourth level, respectively. The cut-point values varied with the
distribution of the latent variables but they were fixed when
different correlation matrices were selected. We repeated sim-
ulations 1000 times in all settings.

3.1. Setting I: Accuracy of the Approximate t-Copula

Using the t-copula, we generated (ui1, ui2, ui3) simultaneously
having a marginal uniform distribution. We transformed uij

to zij using F−1
1 (uij), to obtain marginally logistic distributed

data (with F1 the standard univariate logistic distribution).
Note that this transformation led to the multivariate logis-
tic distribution with density (3). Three different correlation
matrices were simulated: (ρ12, ρ13, ρ23) is (0.45, 0.30, 0.70),
(0.85, 0.85, 0.85), and (0.80, 0.70, 0.90), respectively. Table 1
presents the results for (0.45, 0.30, 0.70) and (0.85, 0.85, 0.85),
but the results of (0.80, 0.70, 0.90) are not shown since they
were similar to the results of (0.85, 0.85, 0.85).

Bias in the ML-estimates is limited to 2% for correlation
coefficients and 7% for the regression parameters. A compar-
ison of ML and GEE demonstrates that ML has less absolute
bias. Additionally, GEE has a slightly higher MSE than ML
(Table 1). Coverage probabilities (CPs) are slightly liberal for
the correlation coefficients, but they are quite close to the 95%
nominal level for all other parameters. GEE and ML seem to
provide comparable coverages for the regression parameters.

Applying the likelihood ratio test for selecting the correla-
tion structure, we first investigated the type I error rate for the
setting with correlations (ρ12, ρ13, ρ23) = (0.85, 0.85, 0.85)
by comparing the exchangeable structure with unstructured.
The type I error rate was 0.05, equal to the significant level.
Comparing the same structures but now for setting (ρ12, ρ13,

ρ23) = (0.45, 0.30, 0.70) gave a power of 0.53, which is con-
sidered acceptable for a sample size of only 50 individuals.
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Table 2
Bias(MSE) and coverage probability (CP) of parameter estimates, considering the impact of covariate on the correlation over

time, from 1000 simulated data sets containing 50 individuals

Sex Age at baseline

True value (1.0, 0.5, 1.0, 0.5, 1.0, 0.5) (0.4, 0.3, 0.3, 0.1, 0.5, 0.1) (0.5, 0.07, 0.5, 0.07,0.5, 0.07)

Parameters Bias(MSE) CPa Bias(MSE) CP∗∗ Bias(MSE) CPb

α012 −0.009 (0.062) 96.21 0.009 (0.056) 95.75 −0.002 (0.001) 1.00
α12 −0.009 (0.100) 97.69 0.015 (0.110) 97.57 −0.001 (0.001) 99.49
α013 −0.013 (0.060) 97.20 0.022 (0.061) 93.45 0.002 (0.001) 1.00
α13 −0.013 (0.120) 96.87 −0.111 (0.137) 95.63 −0.002 (0.001) 99.49
α023 −0.016 (0.066) 96.05 0.009 (0.590) 95.87 0.002 (0.001) 1.00
α23 −0.002 (0.115) 95.88 0.012 (0.123) 97.45 −0.000 (0.001) 98.98

a 393 data sets are removed due to convergence issues in computing the standard errors.
�� 176 data sets are removed due to convergence issues in computing the standard errors.
b Only 196 data sets provide valid the standard errors.

3.2. Setting II: Heterogeneity of Subpopulations

The data were generated similar to the steps in setting I,
but now the correlations (ρ12, ρ12, ρ23) were generated us-
ing the equation (5). For the binary covariate (gender), we
selected α0jk = 1 and αjk = 0.5 for all j and k. This choice im-
poses an exchangeable correlation for males (ρ = 0.76) and
females (ρ = 0.90) separately. To simulate an unstructured
correlation matrix for two genders, we set (α012, α013, α023) =
(0.4, 0.3, 0.5) and (α12, α13, α23) = (0.3, 0.1, 0.1). Yet in an-
other simulation setting, we considered the continuous covari-
ate (age at baseline) in the correlation matrix, and introduced
an exchangeable form by selecting α0jk = 0.5 and αjk = 0.07,
for all j �= k. Due to a positive slope (αijk > 0), older individ-
uals at baseline have stronger correlations.

The absolute bias of the association parameters α’s is at
most 3% (Table 2). In these analyses we applied an unstruc-
tured association, even though we simulated exchangeable
correlations for two settings. The MSE for the association
parameters is comparable with the MSE results for settings
that do not include covariates in the correlation matrix. This
is also true for the bias and the MSE of the regression pa-
rameters (results not shown). The coverage probabilities on
the correlation coefficients is close to nominal or somewhat
conservative. It should be noted though, that not all data
sets provided appropriate standard errors due to eigenvalue
problems in the inverse of the Hessian matrix. This issue does
not happen with the regression parameters, but seems to be
a problem with the estimation of the correlation coefficients.
However, this issue appears less frequent when the sample size
is increased from 50 subjects to 100 subjects (results are not
shown).

The power of the likelihood ratio test was also examined
for covariates that were implemented in the correlation coef-
ficients. For the setting with age in the correlation structure,
the LRT detected an effect of age in the correlation matrix
with power 1 when we compared it with a model that used
an unstructured correlation without age. On the other hand,
when the binary covariate gender was used in the correlation
structure, the power of the LRT was about 0.50. The power is
still acceptable considering the sample size that was applied

in relation to the effect size. For a comparison of the indi-
vidual time related correlations between males and females,
the power would range from 0.094 to 0.257 (Graybill, 1961).
The type I error rate for testing the presence of covariates in
the correlation matrix was 0.06 when we simulated data with
correlation coefficients (ρ12, ρ13, ρ23,) = (0.45, 0.30, 0.70) in-
dependent of covariates.

3.3. Setting III: Sensitivity Analysis

The multivariate Gumbel distribution was generated via the
Gumbel copula, given by

CG (u1, . . . , uk) = exp

[
−

{∑
(− log ui)

θ
} 1

θ

]
, (8)

with θ the association parameter. We transformed uij to
zij = F−1

1 (uij) again to obtain marginally logistic distributed
latent variables, and selected θ equal to 2 and 5. These
choices generated a strong (
 0.70), and an extremely strong
(
 0.95) Pearson correlation coefficient, respectively (Nooraee
et al., 2014). Moreover, we generated multivariate normally
distributed random variables using the normal-copula, with
a standard deviation equal to 1.7 and correlation coefficients
(0.45, 0.30, 0.70). The value 1.7 makes the variance of the nor-
mal distribution close to the logistic distribution.

For the Gumbel distributed data with small sample sizes,
estimation of the model parameters using exchangeability in
our approach resulted into a bias for a few regression param-
eters (Table 3). Increasing the sample size reduced the bias,
although it did not completely disappear. On the other hand,
the bias was almost eliminated when the unstructured asso-
ciation matrix was applied, even for the small sample size
(Table 3). The observed bias with the exchangeable associa-
tion, might be the result of a difference in the Archimedean
copula of the Gumbel distribution and the elliptical copula of
the t-distribution. By choosing the unstructured association,
apparently the fit of the t-distribution seems to get closer to
the Gumbel distribution. However, a small bias in the asso-
ciation parameters seems to remain present, also for larger
sample sizes (data not shown). The coverage probabilities be-
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Table 3
Bias(MSE) and CP in the parameter estimates for 1000 simulated data sets from the Gumbel distribution with parameter

θ = 2, and 50 subjects

ML estimates fitting an

Exchangeable correlation Unstructured correlation GEE

Parameter True value Bias(MSE) CPa Bias(MSE) CPb Bias(MSE) CP

γ1 −0.5 −0.056 (0.090) 97.02 0.038 (0.110) 95.12 −0.027 (0.111) 95.00
γ2 0.75 −0.089 (0.164) 95.99 0.019 (0.121) 95.33 −0.032 (0.119) 95.70
γ3 2 −0.311 (1.310) 93.73 −0.100 (0.290) 94.29 −0.135 (0.305) 93.30
βS −1 −0.127 (0.161) 98.36 0.027 (0.233) 95.64 −0.055 (0.252) 95.70
βA 0.2 0.004 (0.054) 96.30 0.018 (0.056) 96.68 −0.024 (0.063) 95.10
βT −0.1 −0.003 (0.009) 95.48 0.000 (0.009) 93.98 −0.009 (0.011) 94.20
ρ12 0.7 −0.043 (0.013) 81.41 - -
ρ13 0.7 0.038 (0.009) 81.91 −0.051 (0.013) 80.48 - -
ρ23 0.7 −0.043 (0.013) 82.04 - -

}
a27 data sets are removed due to convergence issues in computing the standard errors.
b 37 data sets are removed due to convergence issues in computing the standard errors.

came slightly conservative (up to 98.4%) for the regression
parameters and substantially liberal for the correlation coef-
ficients. It should be noted though that the performance of
ML for the regression parameters is not worse than GEE for
the Gumbel distribution (Table 3).

For normally distributed latent variables, the bias and MSE
of the parameter estimates are comparable with the bias and
MSE of the parameter estimates for t-logistic distributed la-
tent variables. Similarly, results show smaller MSE with ML
than with GEE. While CPs for all the regression parameters
are close to or slightly above the nominal level for ML, they
are all below the nominal level when GEE was applied (Ta-
ble 4).

3.4. Setting IV: Incomplete Outcome Data

For the simulated data with the t-copula, we also simulated
missing indicators, Dij, using the following probability

logitP(Dij = 1|Xi, Zi1)

= (ψ0j + ψ1jxi1 + ψ2jxi2 + ψ3jxi3j + ψ4jZi1),

(9)

with (ψ0j, ψ1j, ψ2j, ψ3j, ψ4j) given by (−2.0, −2.0, 0.5, 1.0,
0.5), and (−0.8, −1.5, 1.5, −2.0, 1.5) for j = 2, and j = 3, re-
spectively, that results in approximately 9.5 and 18% missing-
ness at the second and third time points, respectively. Note
that we did not simulate any missingness at baseline. The
missingness fulfills MAR on the latent variable, but not nec-
essarily on the ordinal level. Generating missing data in this
way is more realistic since Zi1 represents the true ability or
liability of a subject at baseline.

Since GEE may lead to biased estimates under MAR
(Molenberghs and Kenward, 2007), we employed predictive
mean matching (PMM) multiple imputation. We conducted
20 imputations and pooled the results via Rubin’s rule
(Rubin, 1976) to obtain relative efficiency of at least 95%.

Biases in the regression parameters are limited to at most
2% in all settings (Table 5). However, some larger biases were
observed in the correlation coefficients for small sample sizes.
By increasing the sample size to 100 subjects, the bias dimin-
ishes to at most 4% for the correlation parameters. Both ML
and MI-GEE provide similar biases in parameter estimates,
however the ML approach indicates slightly better MSE’s and

Table 4
Bias(MSE) and CP of the estimated parameters for 1000 simulated data sets with multivariate normal latent variables

ML GEE

Parameter True value Bias(MSE) CPa Bias(MSE) CP

γ1 0 0.010 (0.089) 96.10 0.021 (0.186) 94.70
γ2 1 0.004 (0.107) 95.24 −0.014 (0.107) 94.40
γ3 2.5 −0.197 (0.351) 96.75 −0.798 (0.417) 93.90
βS −1 −0.016 (0.196) 96.86 −0.014 (0.214) 94.60
βA −0.2 −0.013 (0.048) 95.56 0.001 (0.056) 93.20
βT −0.1 0.004 (0.020) 95.13 −0.003 (0.024) 93.90
ρ12 0.45 0.016 (0.031) 91.99 - -
ρ13 0.30 0.013 (0.037) 92.42 - -
ρ23 0.70 0.015 (0.016) 91.61 - -

a 76 data sets are removed due to convergence issue in computing the standard errors.
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CP’s compared to the MI-GEE approach, particularly for the
regression coefficients.

4. Application: The TRAILS Analysis

The design, methods, and response rates and bases of our
prospective cohort study TRAILS has been described in detail
elsewhere (Ormel et al., 2012). Briefly, participants were se-
lected from five municipalities (urban and rural) in the North
of the Netherlands. Children born between October 1, 1989
and September 30, 1991 were eligible for inclusion. A total
of 2935 eligible children agreed to participate in the study.
Through extended efforts, 76% of these children and their
parents consented to participate (T1: n = 2230, mean age =
11.1 ± 0.6 years, 50.8% girls). Response rates at the first two
follow-ups are 96.4% (T2: n = 2149, mean age = 13.6 ± 0.5,
51.0% girls) and 81.4% (T3: n = 1816, mean age = 16.3 ± 0.7,
52.3% girls).

We investigated a gender specific model in the mean and
correlation of the latent variable underneath the ordinal de-
pression scale. As mentioned before, different correlations
would indicate that differential stability of depression symp-
toms are gender specific. In total 71 individuals were omit-
ted from the analysis due to the missingness in internalizing
and/or externalizing behavior of parents. Table 6 gives the
estimates of the regression parameters and correlation coeffi-
cients together with their 95% confidence intervals of our full
model.

These results cannot demonstrate dissimilarity between the
correlations for boys and girls. This was shown by the like-
lihood ratio test (LRT = 6.48; df = 3; P = 0.090). We also in-
vestigated whether boys and girls would have the same mean
model with respect to the selected variables. The likelihood
ratio test rejected this hypothesis (LRT = 40.6; df = 6; P <

0.001), indicating gender specific models on the regression
parameters for depression status. Results in Table 6 shows
that internalizing problems of parents influence significantly
on girls. This finding is in line with Bouma et al. (2008).

5. Discussion

We utilized and extended the multivariate logistic distribu-
tion, introduced by O’Brien and Dunson (2004), for analysis
of longitudinal ordinal data. This resulted in a population-
averaged interpretation for the odds ratios of the regression
parameters. We applied maximum likelihood instead of a
Bayesian approach and we provided the opportunity to in-
clude covariates in the time-related correlations. We simulated
different distributions for the latent variables underneath the
ordinal data via different copula functions to assess the per-
formance of our approach in terms of bias, MSE, and coverage
probabilities for Wald-type confidence intervals; and further
compared them with the results of GEE. The main focus of
this article was on small sample sizes (N = 50).

The results demonstrated ignorable bias, small MSEs and
nominal coverage probabilities when the multivariate distri-
bution of the latent variables has an elliptical shape, even
though the frequencies of ordinal outcomes were skewed. For
the exchangeable Gumbel copula with an Archimedean shape,
a bias in the regression parameters was obtained when an ex-
changeable correlation matrix was assumed in our approach.
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Table 6
Estimation and confidence intervals for the TRAILS data set.

boys girls

Regression Parameter

Intercept 0.506 [0.297; 0.715] -
Age −0.038 [−0.096; 0.021] −0.068 [−0.131; −0.006]
Externalizing 0.023 [−0.287; 0.333] −0.085 [−0.372; 0.202]
Internalizing 0.084 [−0.062; 0.230] 0.230 [0.094; 0.366]
Social-economic status −0.004 [−0.068; 0.059] 0.045 [−0.008; 0.098]
Structure of family 0.038 [−0.261; 0.337] 0.133 [−0.153; 0.420]
Follow-up time −0.134 [−0.168; −0.100] 0.019 [0.002; 0.037]
Correlation coefficient

ρ12 0.486 [0.417; 0.550] 0.522 [0.452; 0.585]
ρ13 0.393 [0.302; 0.478] 0.347 [0.252; 0.435]
ρ23 0.564 [0.448; 0.599] 0.488 [0.403; 0.564]

Using the unstructured correlation matrix, biases in the esti-
mates seem to become smaller and disappeared almost fully.
Unfortunately, coverage probabilities for the Wald-type con-
fidence intervals on the coefficients in the correlation matrix
were liberal, and in some settings substantially lower than
nominal. On the other hand, the coverage probabilities for the
regression parameters of the mean model were close to nomi-
nal, and the likelihood ratio test was able to detect different
correlation structures with reasonable power (considering the
effect and sample sizes). Furthermore, the type I error rate
for the likelihood ratio test was at the significance level. In all
our simulations, ML either performed better than GEE or it
performed similar.

The advantage of our approach is that it provides a similar
interpretation as GEE with an option to model the temporal
correlations with currently available software. Furthermore,
for incomplete outcome data that fulfills the MAR assump-
tion and for sample sizes that are not too small (say at least
100 individuals), our approach can be simply applied without
having to use additional analysis such as multiple imputa-
tion. It should be noted that when covariates are incomplete,
maximum likelihood methods alone is not satisfactory since
subjects with missing covariates are ignored in the analysis.
We believe that our approach is also more appropriate than
the method of Li and Schafer (2008). They considered the
multivariate normal distribution for the latent variable, but
this choice does not support an odds ratio interpretation of
the parameter estimates. Furthermore, fitting a normally dis-
tributed latent variable may lead to bias when the distribution
of the latent variables have a heavier tail. Although Tan et al
(1999) demonstrated robustness with respect to the normal
distribution assumption for correlated binary data via a sim-
ulation study, we are uncertain that this conclusion remains
true for ordinal outcomes. Molenberghs and Lesaffre (1994)
extended the Dale model, which provides a joint distribution
of the ordinal data, but our approach is simpler to apply and
can be extended to larger dimensions.

A limitation of our approach is that it is sensitive to strong
deviations from the multivariate t-distribution for the latent
variables, in particular for estimation of the correlation coef-
ficients. The Gumbel distribution seems to suggest this. An-

other limitation is that the standard errors of the estimators
of the correlation coefficients are underestimated in some set-
tings. A bootstrap approach may overcome this, but boot-
strapping on correlated data is not straightforward. Another
possible limitation is the difficulty in obtaining (semi-)positive
definite correlation matrices for the underlying latent vari-
ables when the number of repeated measures is substantial.
Although good approaches have been developed and imple-
mented in R software, we did not explore if high dimensions
lead to numerical issues. An alternative to these numerical ap-
proaches is the reparameterization of the correlation matrix
into partial autocorrelations to deal with the possible issues of
(semi-)positive definiteness (Daniels and Pourahmadi, 2009).
Additionally, we did not examine any other issues of the pro-
posed analysis for higher dimensions. We know from litera-
ture that the selected estimation method of the multivariate
t-distribution is stable and reliable up to 20 dimensions (Genz
and Bretz, 2002), but future studies are still needed.

To summarize, we used multivariate logistic distributed la-
tent variables to introduce a joint logistic distribution for lon-
gitudinal ordinal outcomes. The dependency between ordinal
outcomes can be measured via Pearson correlation coefficients
and we could model temporal correlations for different sub-
populations. The association of ordinal outcomes with covari-
ates can be modeled with parameters having a population-
averaged odds ratio interpretation. Simulation studies demon-
strate superiority of this approach over GEE in terms of bias,
MSE, and coverage probabilities for several settings. Finally,
implementation of this approach can be performed with ex-
isting packages in R due to an approximation (see Web Ap-
pendix A).

6. Supplementary Materials

Web Appendix A referenced in Sections 2.3 and 5 is available
with this article at the Biometrics website on Wiley Online
Library.
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