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Audio Surveillance of Roads: A System
for Detecting Anomalous Sounds

Pasquale Foggia, Nicolai Petkov, Alessia Saggese, Nicola Strisciuglio, and Mario Vento

Abstract—In the last decades, several systems based on video
analysis have been proposed for automatically detecting accidents
on roads to ensure a quick intervention of emergency teams.
However, in some situations, the visual information is not sufficient
or sufficiently reliable, whereas the use of microphones and audio
event detectors can significantly improve the overall reliability of
surveillance systems. In this paper, we propose a novel method for
detecting road accidents by analyzing audio streams to identify
hazardous situations such as tire skidding and car crashes. Our
method is based on a two-layer representation of an audio stream:
at a low level, the system extracts a set of features that is able to
capture the discriminant properties of the events of interest, and
at a high level, a representation based on a bag-of-words approach
is then exploited in order to detect both short and sustained
events. The deployment architecture for using the system in real
environments is discussed, together with an experimental analysis
carried out on a data set made publicly available for benchmark-
ing purposes. The obtained results confirm the effectiveness of the
proposed approach.

Index Terms—Hazard detection, accident detection, audio
events, audio detection, tire skidding, car crashes.

I. INTRODUCTION

IN the last years, a need for more security and safety in
public environments has risen due to the increasing number

of people and transportation vehicles that move around cities.
Road traffic monitoring involves, for instance, the detection of
accidents or road disruptions to quickly ensure the intervention
of emergency teams and to guarantee the safety of the people
[1]. In fact, it has been shown [2], [3] that the reduction of
the time between the moment in which an accident occurs
and the moment in which the emergency team is dispatched
substantially decreases the mortality rate (approximately by
6%). Within this context, cameras have been widely used to
control the behavior of vehicles by tracking their trajectories
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[4]–[7] near traffic lights or in proximity of road crosses in order
to detect abrupt maneuvers, or on motorways to monitor the
traffic flow and detect long queues [8], [9].

However, in certain cases, the visual information is not suffi-
cient to reliably understand the activity of vehicles or to detect
possibly hazardous situations. For instance, a tire skidding on
the road has a very distinctive acoustic signature that is not
detectable from video streams but can be an evidence of an
anomalous situation (an accident or a dangerous state of the
road) that requires human intervention to ensure safety. Fur-
thermore, the abnormal events can happen outside the field of
view of the camera, making it impossible to be detected both by
a human operator and by an automatic video analytics system.
In such cases, the use of microphones and the processing of the
audio stream as a complementary tool to the video analysis may
improve the detection abilities of security systems [10], [11]
and, in general, the reaction time of the emergency teams. As a
matter of fact, nowadays, IP cameras used for surveillance are
normally equipped with embedded microphones that facilitate
the deployment of audio analysis systems.

One of the main advantages of audio analysis systems is
that they do not have to deal with variations in illumination
conditions and can be equally employed during day and night.
However, the problem of detection of audio events in open
environments is very challenging: one of the main issues is that
the events of interest are superimposed to a significant level
with background noise; furthermore, it is difficult to model a
priori all the possible background sounds that may occur in road
environments. Think, for example, about a very busy highway
where an accident occurs: an audio event detector needs to be
able to separate the background noise due to the vehicle flow
from the car crash (the event of interest) potentially occurring
at a significant distance from the microphone. In such a case,
the signal to noise ratio (SNR) is very low, thus making the
recognition of such events a very complex task. Another typical
problem the audio analysis systems has to face is related to the
duration of the events of interest: a tire skidding, for instance,
is typically a sustained sound and may last several seconds,
while a car crash is an impulsive sound and its duration is very
limited in time.

In the last decades a large number of methods dealing with
the analysis of audio streams has been proposed, ranging from
speech recognition [12], [13] and scene classification [14], [15]
to speaker identification [16], [17]. More recently, a growing
interest for audio analysis has been also shown in surveillance
applications, in order to detect crimes for public transport
security [18]–[20], the maximum speed of vehicles for security
reasons [11], [21], [22] or accidents on the roads [2], [3], [23].

1524-9050 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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In this paper, we focus on the problem of road surveillance,
and we propose a system tailored for the automatic detection of
two hazardous situations, namely tire skidding and car crashes,
by analyzing the sound captured by microphones. A compre-
hensive review of the state of the art approaches focusing
on surveillance systems has been recently proposed in [29],
where it is highlighted that the detection of audio events can be
considered as a traditional pattern recognition problem. In fact,
the common idea is that the data to be analyzed is described
by means of a set of features, whose values are used to form
a vector representation of the pattern of interest. A feature is a
salient characteristic of the pattern to be detected or classified,
while a feature set aims at effectively describing patterns from
different classes: similar patterns in the real world should have
very close vectors in the feature space. The feature vectors
are thus used to train a classifier, which creates models of the
patterns of different classes through a learning process. Then
it employs such models to classify newly observed patterns in
the testing phase [30]–[37]. In the last years traditional clas-
sification schemes have been improved, and more sophisticated
architectures have been proposed in order to increase the overall
reliability of the audio detector [20], [38] or to take into account
the different time resolution of the events of interest [39], [40].

Starting from a preliminary work [24], in this paper we
present a detection system based on a high-level representation
of the audio stream, able to take into account both the short-
and long-time properties of the events of interest. Thanks to the
use of a bag-of-words approach, our method learns which are
the short-time characteristics of an event that are discriminant
for such event on a longer time scale and that differentiate it
from the background sound. This is a very important property,
especially in the considered domain. In fact, in the case of
the application at hand, a car crash sound is characterized by
an abrupt variation of energy in time while a skidding tire is
a sustained sound whose energy is concentrated in a narrow
interval of frequencies.

We validated the system on a data set1 that we made avail-
able for benchmarking purposes. In the proposed data set, the
sounds of interest are not isolated but superimposed on different
typical background sounds of roads and traffic jam, in order to
consider the occurrence of such abnormal events in real-world
conditions.

The paper is organized as follows: in Section II we describe
the proposed method and its rationale; in Section III we provide
an overview of the system set up and an analysis on the
positioning of the microphones; then, we present a detailed
analysis of the performance in Section IV. Finally, we draw
conclusions in Section V.

II. METHOD

The purpose of the proposed system is to distinguish audio
events of interest from the background sound and classify them
into one of M classes. The rationale of the proposed approach
is based on the consideration that a sound is composed of small,
atomic audio units, similarly to a text that is composed of a num-

1The data set is available at the url http://mivia.unisa.it/

ber of words, and the occurrence of particular units in a given
time interval is an indicator of the presence of a certain event.

In order to build a description of the audio stream based
on such assumption, a classification architecture exploiting
the Bag of Words approach is employed. The bag of words
technique has been widely applied for text categorization, in
which the datum to be classified is represented by counting the
occurrences of low-level features (words) and constructing a
(high-level) vector whose dimensionality is equal to the number
of possible words contained in a dictionary. The high-level
vector corresponds, thus, to the histogram of occurrences of
words, used for the classification of the text.

In the proposed architecture for audio analysis, the following
layers have been defined: 1) extraction of low-level features,
2) learning of a dictionary of basic audio words, 3) construction
of a high-level vector and 4) classification. Below, a detailed
explanation of each layer is provided.

A. Low-Level Features Extraction

In contrast with video streams, an audio signal can show
abrupt variations within few milliseconds. Thus, in order to
take into account its short-time variability, the audio stream
is framed in small, partially overlapped, chunks (frames) of
duration Tf . The value Tf has to be chosen to take into account
the analysis of both low and high frequency components at the
same time: with a very short frame, for instance, the system will
not be able to consider low-frequency components; conversely,
with a very long frame, high-frequency components will be
averaged over a long time interval. For each frame, the system
computes a vector of low-level features.

Three sets of low-level features have been considered and
experimented with, namely the Mel-frequency cepstral coeffi-
cients (MFCC) [27], energy ratios in Bark sub-bands [28] and
features based on temporal and spectral characteristics of the
signal [25], [26], previously employed in [24]. More details on
the three feature sets are reported in Table I.

B. Dictionary Learning

The low-level feature space is continuous and theoretically
infinite, thus not suitable for the detection of the presence
of specific relevant atomic units of sounds (hereinafter audio
words). In order to derive a finite set of audio words, we use
the K-means algorithm, which clusters the vectors on the basis
of their similarity. The output of the K-means algorithm is a
set of K points that correspond to the centroids of the clusters.
Since a centroid is representative for a group of similar low-
level vectors, we consider the set D = {u1, . . . , uK} of the
centroids as the dictionary of basic audio words.

C. High-Level Representation

In Fig. 1, a sketch of the process of construction of the
high-level representation is shown. Given the dictionary D,
for each low-level vector vi, the closest audio word uj is
determined. The occurrences of each word uj in a time-limited
interval are used to build a high-level feature vector. Such vector
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TABLE I
DETAILS OF THE THREE LOW-LEVEL FEATURE SETS USED FOR THE EXPERIMENTS

Fig. 1. Construction of the high-level representation. For each vector vi the nearest audio word uj in the dictionary is determined (b). Then, the occurrence
counts of the single audio words are stored in a histogram, whose bins are hj(j = 1, . . . ,K) that constitutes the high-level vector (c). In the example, vectors v1
and v2 have u2 as the nearest audio word in the dictionary. Thus, the second bin of the histogram has a value equal to 2. In the same way, audio word u3 has only
one close vector, resulting in a value equal to 1 for the third bin of the histogram. Audio words u1 and u4, instead, have no occurrences.

corresponds to the histogram H = (h1, . . . , hK), whose bins
are computed as:

hj =

N∑
i=1

δ(bi, j), j = 1, . . . ,K (1)

where δ (·) is the Kronecker delta and bi is the index of a word
within the set D, determined as:

bi = argmin
j

d(vi, uj), j = 1, . . . ,K (2)

where d(vi, uj) is a dissimilarity measure between the vector
uj and the prototype vi (the Euclidean distance is considered).

D. Classification Architecture

Our hypothesis is that certain classes of sounds are consid-
ered to have distinctive audio words that allow the system to dif-
ferentiate such sounds from the other classes. A pool of M + 1
Support Vector Machines (SVM), each of them dedicated to the
detection of a certain class of sounds (M events of interest plus
the background sounds), has been trained with the high-level
feature vectors. The SVM classifier is particularly suited for the
employed sound representation since it is able to learn which
are the words that are relevant for a particular class of events
and discard those words that do not contribute to an effective
classification, giving them a very low weight. We employed
SVM with linear kernel, which gives satisfactory results in our
experiments coupled with fast processing that is important for
real-time responses.

The SVM is, originally, a binary classifier. Thus, a pool of
SVM (Fig. 2) is realized in order to face the multi-class problem

Fig. 2. Architecture of the classifier. The scores of the SVM classifiers are
combined in order to determine the final class to be assigned to the input
vector H .

at hand. The i-th classifier is trained using as positive examples
the samples from the class Ci and as negative examples all
the samples from the other classes. During the testing phase,
each classifier computes a score si which is a measure of
the confidence of the classification, higher for more reliable
decisions. The final class C is chosen as the one of the SVM
that gives the highest score above a certain threshold λ:

C =

{
C0, if si < λ ∀ i = 0, . . . ,M

argmax
i

si, otherwise.
(3)

If all the classifiers give a confidence score si < λ the time
interval is classified as a background sound in class C0. For our
experiments the threshold is set as λ = 0. The use of a SVM
classifier for the background class increases the robustness of
the proposed system with respect to background noise and
entails a reduction of false alarms.
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Fig. 3. A sketch of the deployment of the proposed system: a set R of
microphones is located at a distance of m meters far from each other and at
a height hr . An event of interest can be recognized at a maximum distance of
d meters from the closest microphone.

III. DEPLOYMENT ARCHITECTURE

Our hypothesis for the deployment of the system is that we
have a set R = {ri|i = 1, . . . , Nm} of Nm microphones in-
stalled on one side of the road and located at a distance ofmme-
ters far from each other and at a height of hr meters (see Fig. 3).

The choice of the distance m strongly depends on two
factors: 1) the sound intensity of the events to be detected,
2) the maximum distance d from the microphone at which an
event can still be detected by the system. Of course, d depends
on the kind of environment the system has to work on: we
expect that this value is higher for a country road (where only
few vehicles go through the street with a low speed) than for
a highway, where the number of vehicles and their speed are
significantly higher.

In order to better understand the impact of the environment
on the coverage capabilities of the microphones, we consider
that the signal to noise ratio (SNR) of the sound acquired by a
microphone (expressed in decibel) is computed as follows:

SNR = Ls(d)− Ln (4)

where Ls(d) represents the intensity level expressed in decibel
of the event of interest occurring at a distance d from the micro-
phone, while Ln is the noise in decibel introduced by the traffic.
In the following more information about the computation of
these two contributions is provided.

A. Intensity Level of the Event of Interest

Since the propagation of the sound is affected by spreading,
absorption, ground configuration and so on, the intensity of
the audio event acquired by the microphone is attenuated by
a factor A(d):

Ls(d) = Ls(d0)−A(d) (5)

where Ls(d0) is the sound intensity at a reference distance d0.

According to the standard ISO 9613-2 [41], the attenuation
can be computed as a combination of four contributions,
which strongly depend on the environment where the sound is
propagating:

A(d) = Adiv(d) +Aatm(d) +Agr(d) +Abar(d). (6)

Each of these contributions is determined by particular char-
acteristics of the environment. In particular:

• Adiv is due to the geometrical divergence; we suppose
a spherical spreading from the source, whose sound is
radiated equally in all directions; thus, the sound level is
reduced by 6 dB for each doubling of distance from the
source:

Adiv(d) = 20 log
d

d0
+ 11 (7)

where 11, computed as 10 · log(4 · π), is a constant that
models the spherical spreading factor.

• Aatm is due to the atmospheric absorption during the
propagation of the sound waves and can be computed as
follows:

Aatm(d) =
α · d
1000

(8)

where α is the atmospheric attenuation coefficient, which
is a function of the temperature, the humidity and the
nominal frequency. According to [41], α = 32.8 dB/Km
assuming a temperature around 10 ◦C and a nominal
frequency of 4 kHz.

• The ground attenuationAgr is the result of sound reflected
by the ground surface interfering with the sound propa-
gating directly from the source (the vehicle causing the
sound of interest) to the receiver (the microphone). Let
hr and hs be the receiver height and the source height,
respectively. In order to compute Agr, the standard [41]
suggests to partition the area between the source and the
receiver into three regions: source region (whose size is
30 · hs), around the source, which determines the attenua-
tion As; middle region, which determines the attenuation
Am; receiver region (whose size is 30 · hr), around the
receiver, which determines the attenuation Ar. Agr is thus
computed as:

Agr(d) = As +Am(d) +Ar. (9)

In particular, at the nominal band of 4 kHz, Ar and As

can be computed as follows:

Ar = As = 1.5 · (1 −G) = 1.5. (10)

According to the standard, the G value is equal to 0, since
we suppose that the road is a hard ground. Conversely,
Am can be computed as:

Am(d) = 3 · q(d) · (1 −G) (11)
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where

q(d) =

{
0 d ≤ 30 (hs + hr)

1 − 30(hs+hr)
d d > 30 (hs + hr).

• Finally, Abar is due to the presence of barriers. Consid-
ering that the microphones are mounted directly on the
road, this factor can be neglected in our scenarios.

B. Intensity Level of the Traffic Noise

In the last decades the scientific community has proposed
several approaches for modeling traffic noise, since it is consid-
ered very important in order to evaluate the acoustical impact
both for environment management and urban planning. As
shown in [42] and [43], there is not a commonly adopted rule
but rather each country adopts its own standard: for instance,
the CoRTN [44] procedure has been adopted in England, the
RLS 90 [45] model in Germany, the C.N.R. model [46] in Italy
and the NMPB in France [47].

A common idea of such methodologies is to take into account
the traffic flow, both of light and heavy vehicles, the typology
of the road surface and the distance between the microphone
and the carriage generating the noise. In particular, in this paper
we apply the CoRTN model in order to evaluate the traffic noise
generated in different scenarios by taking advantage on the on
line application provided by [48]. The CoRTN model evaluates
the so called L10 (from now on Ln), that is the noise level
exceeded for just 10% of the time over a period of one hour.

The main idea is to partition the road into a set of S segments
(so as within one segment the noise level variation is lower
than 2 dB) and to separately evaluate for each i-th segment
the basic noise level Li, taking into account attenuation due to
the distance as well as the particular environment. Finally, the
contribution of all the segments is combined so as to obtain the
overall noise Ln.

According to the CoRTN model, the noise Li for the i-th
segment, evaluated with a given traffic flow q, is computed as
follows:

Li = 42.2 + 10 log10 q + C (12)

where C is the correction factor required for different values
of speed v, percentage of heavy vehicles p and gradient of
the road g. In fact, the basic computation of Li (with C = 0)
considers the average speed v = 75 Km/h, the percentage of
heavy vehicles p = 0% and the gradient of the road G = 0
degrees.

In order to simulate scenarios different with respect to the ba-
sic one, a proper correction C = C1 + C2 needs to be applied.
In particular, C1 is the correction for v and p:

C1=33 log10

(
v + 40 +

500
v

)
+ 10 log10

(
1 +

5p
v

)
− 68.8

(13)

while C2 is the correction for the gradient of the road and is
computed as:

C2 = 0.3 · g. (14)

TABLE II
SUMMARY OF THE VALUES OF THE PARAMETERS USED

FOR THE EVALUATION OF THE DISTANCE d

Finally, the contributions of the S segments are combined in
order to calculate the overall traffic noise Ln:

Ln = 10 log10

S∑
i=1

10Li/10. (15)

C. Discussion

The simulation has been performed by considering different
scenarios our system can work on. In particular, we evaluate
how the SNR varies depending on the following parameters:
the distance d, the vehicle speed v in the set {50, 70, 100,
130} km/h, the number of vehicles per hour q in the set
{100, 500, 1000, 4000} vehicles/h.

In Table II we report the value of the parameters considered
in the simulation, while the obtained results are reported in
Fig. 4: in particular, each figure shows how the SNR (y-axis)
varies with respect to the distance (x-axis) as the value of q is
fixed. The curves on the same graphic refer to different values
of v. As expected, it is evident how the SNR significantly
decreases by increasing the speed, the traffic flow and the
distance.

Although the considered model allows us to simulate the
behavior of the proposed system in several environments by
combining various traffic flows and vehicle speeds with dif-
ferent distances values, we decided to focus on the following
two scenarios representing somehow the best and the worst
case in which the proposed system can work: (1) a country
road, where vehicles have typically a limited speed (around
50 km/h) and the flow is very low (less than 100 vehicles/h);
(2) a highway, where in the rush-hours the vehicle flow may
be very high (around 4000 vehicles/h) as well as their speed
(around 100 km/h).

Taking into account, as we explain in detail in Section III,
that an event of interest with a SNR = 10 dB can be reliably
detected by the proposed system, we designed the positioning
of the microphones.

In Fig. 4(a) and (d), we depict the attenuation of the SNR
with respect to the distance at fixed traffic flow q = 100 and
q = 4000, respectively. In the first case, we observe that the
SNR of the sounds of interest is about 10 dB at a distance of
120 meters, while in the second case a SNR of 10 dB can be
achieved at a distance of about 25 meters. This implies that
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Fig. 4. Variation of the value of SNR (expressed in dB) with respect to the distance d (expressed in meters) the average speed v (expressed in km/h) and the
traffic flow q (expressed in vehicles/h).

for a country road the microphones can be placed at about
240 meters far from each other. The highway scenario, instead,
is definitively more challenging due to the high number of
vehicles crossing the road and the optimal distance between
microphones is approximately m = 50 meters.

IV. EXPERIMENTAL RESULTS

A. The Data Set

To the best of our knowledge, there are no publicly available
data sets for road surveillance applications. Thus, we created
a data set that contains two classes of hazardous road events,
namely crashes and tire skidding. The audio clips are sampled
at 32 kHz, with a resolution of 16 bits per PCM sample; the
whole data set was made publicly available at http://mivia.
unisa.it for benchmarking purposes.

An audio-based system for road surveillance has to deal with
different kinds of background sounds, ranging from very quiet
background (i.e. in the country roads) to highly noisy traffic
jams (i.e. in the center of a big city) and highways. Thus, in the
proposed data set the events of interest are superimposed to dif-
ferent background sounds in order to simulate their occurrence
in various environments. We, originally, collected 59 samples
of crashes and 45 of tire skidding, together with the sound of
23 different road locations. We adopted a procedure to combine
the original sounds, which we explain in the following.

The audio clips x(n) have been, initially, normalized so that
they have all the same overall energy:

x(n) =
x(n)

xrms(n)
(16)

where xrms(n) is the root mean square (RMS) value of the
clip. A background clip b(n) of about one minute duration
is randomly selected from the typical traffic sounds. Then a
number Ne of foreground events is randomly chosen from the
original data set and superimposed to the background sound,
in order to account for the occurrence of events of interest in
a real environment. The selected events are mixed with the
background sound, as follows:

outj(n) =
Ne∑
i=1

{
bj(n)⊕[si,ei] [A · xi(n)]

}
(17)

where⊕[si,ei] is an operator that combines the signal xi(n) with
the signal bj(n) in the interval delimited by [si, ei], starting

TABLE III
DETAILS ON THE COMPOSITION OF THE DATA SET. THE TOTAL

DURATION OF THE SOUNDS IS EXPRESSED IN SECONDS

and ending points of the sounds of interest, respectively. The
point ei is distanced from the starting point of the next sound
si+1 by an interval of 4 to 7 seconds in which only background
sound is present. The attenuation (or amplification) factor A is
determined so as to achieve a signal to noise ratio of 15 dB.

The final data set is composed of 57 audio clips of about
one minute created with the procedure defined above. Each
of the clips contains a sequence of events of interest: in total,
200 events per class are present. The produced clips are orga-
nized into N = 4 folds, each of them containing 50 events from
each class of interest that overlap various traffic background
sounds. The samples contained in a fold (both background and
events of interest) are not present in the remaining folds, which
are thus completely independent from each other. Moreover,
high variability in the data is ensured by the heterogeneous
background sounds on which the events of interest are super-
imposed. Within a given fold, the same event can be present as
mixed with different backgrounds, in order to better represent
various real situations. In the following of the text, we will refer
to the different classes with the following abbreviations: BN
for the background noise, CC for car crashes and TS for tire
skidding. A detail of the composition of the data set is reported
in Table III.

B. Experimental Setup

For the computation of the low-level features, the audio
stream is divided in frames of Tf = 32 milliseconds corre-
sponding to 1024 PCM samples. We found that the choice of
Tf = 32 ms is a reasonable compromise to take into account
both low- and high-frequency properties of the signal and to
perform a reliable short-time analysis of audio stream sampled
ad 32 KHz. Two consecutive frames are overlapped for the 75%
of their length in order to ensure continuity in the analysis of
the audio stream. Different values of the number K of clusters
(from 64 to 1024) have been considered for the experiments in
order to evaluate the sensitivity of the system.
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Fig. 5. On the first row the recognition rate of the proposed system (solid red line) for the three considered set of features is reported. The solid lines represent the
performance obtained on a test set with the same SNR as the training set (15 dB). The green and blue dashed lines show the results when the signal intensity (and
the SNR) is reduced by 3 dB and 6 dB, respectively. On the second row, the performance achieved with the kNN classifier demonstrate a loss in generalization
capabilities of the proposed method when a too high number of basic audio words is chosen.

The high-level feature vector is computed for a time window
of 3 seconds that shifts forward by 1 second. Two consecutive
time windows, thus, overlap by two seconds. In this way, the
continuity of analysis is ensured also at a time resolution of the
order of the seconds: events that occur at the end of one window
fall roughly in the middle of the next one.

For the experiments, the N -fold cross-validation is used.
Cross-validation is a technique used for the assessment of
the performance of a pattern recognition system and of its
generalization capabilities to different data. It consists in the
separation of a data set into a number of folds, which are
independent from each other in terms of samples. It means that
the samples contained in one fold are not present in other folds.
The cross-validation is often used to estimate how accurately
a system will work in practice and how stable it will be under
different conditions. In turn, N − 1 folds are used as a training
set to learn the classification model, and the remaining fold is
used as a test set. The results of the N test obtained in this way
are then averaged.

C. Performance Evaluation

We evaluate the performance of the proposed system by
measuring the recognition rate (true positive rate, TPR), i.e.
the rate of correctly detected events of interest, and the false
positive rate (FPR), i.e. the rate of wrongly detected events
of interest when only background sound is present. A correct
classification is counted when at least one of the overlapping
time windows with the events is correctly classified. A false
positive occurrence, which corresponds to a false alarm in a
real system, is counted if an event of interest is detected when
only background sound is present. In the case that the same

event of interest is detected in two consecutive background time
windows, only one false positive occurrence is counted.

Furthermore, we compute the receiver operating character-
istic (ROC) curve, a method that is widely used to evaluate
the overall performance of a classification system. It is a plot
of the trade-off between the TPR and FPR of a classifier as
its discrimination threshold is varied. The closer a ROC curve
to the top-left corner of the plane, the better the performance.
We consider the area under the ROC curve (AUC), which is
equal to 1 for a perfect system, as an overall measure of the
performance.

In Fig. 5 we report the performance of the proposed system
(red solid line) in terms of recognition rate on the data set.
We studied the variation of the recognition rate with respect to
the number of basic audio words (clusters) learned during the
training phase. In the top row of Fig. 5 the performance of the
SVM classifier is depicted for the three considered sets of low-
level features. We achieve an average recognition rate of 82%,
80.25% and 75% with a standard deviation of 1.5, 1.64 and 2.4
by employing as low-level features the set proposed in [24], the
MFCC and the BARK, respectively. Moreover, we estimated
the variance of the generalization error for the 4-folds cross-
validation using the method of Nadeau and Bengio [49]. We ob-
served that the estimated variance is from 25 to 50 times smaller
that the average error, thus confirming statistical significance of
the experiments on N = 4 folds.

In addition to the SVM classifier, we employed a k-Nearest
Neighbor (kNN) classifier in order to evaluate the generaliza-
tion capabilities of the proposed high-level representation. We
depict the performance achieved with the kNN classifier in the
bottom row of Fig. 5. The value of k has been experimentally
set to 5. Although the performance results of the SVM-based
classifier are stable with respect to the number of clusters, the
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TABLE IV
DETAILED RESULTS ACHIEVED BY THE PROPOSED SYSTEM

CONFIGURED WITH K = 64 BASIC AUDIO WORDS

TABLE V
CLASSIFICATION MATRICES ACHIEVED BY THE PROPOSED

METHOD ON THE DATA SET WITH THE THREE

CONSIDERED SETS OF LOW-LEVEL FEATURES

performance achieved with the kNN classifier suggests that
an increasing number of audio words causes a worsening of
generalization capabilities. Thus, if too many words are used
in the training phase, the system will be specialized in the
recognition of the events from the training set. However, for
the application at hand, the number of clusters is not a critical
parameter as it is kept below 128.

In Table IV we report a summary of the results achieved
by the system configured with K = 64 clusters, which is the
value that gives the highest generalization.2 In Table V, instead,
we report the classification matrices achieved by the proposed
system. We can note that the features proposed in [24] and
the MFCC features show higher robustness to traffic noise
with respect to Bark features. This determines that the system
achieves a larger false positive rate when the Bark features set is
used, due to the difficulties in differentiating the basic units of
the sounds of interest from the background in very noisy traffic
conditions. However, further studies on the temporal integration
of basic audio units could improve the robustness to noise and
the detection capabilities.

2With K = 64 clusters, the SVM classifiers learn for the classes BN , CC
and TS the following average number of support vectors: (60, 55, 50) for Bark
features set, (55, 70, 60) for MFCC features set and (50, 60, 55) for the feature
set in [24].

Fig. 6. ROC curves of the proposed system configured with the three consid-
ered sets of features.

D. Sensitivity Analysis

In a real environment, the sound source can be located at var-
ious distances from the microphone, resulting in the acquisition
of signals with different intensity and signal to noise ratio. We
performed a sensitivity analysis of the proposed system with
respect to the signal intensity and the number of clusters. We
decreased the intensity of the signal by −3 dB and −6 dB, in or-
der to evaluate the detection capabilities at a distance of 25 and
120 meters depending on the scenario, according to the analysis
presented in Section III. In practice, we trained the system on
the events in the original data set and then tested it on events
whose intensity is −3 dB and −6 dB of the original signal.

As observed in the previous paragraph, the number of basic
audio words learned during the training process influences the
generalization abilities of the system, while the trend of the
recognition rate on the attenuated versions of the sounds (green
and blue dashed lines for −3 dB and −6 dB, respectively) is
coherent with the one of the original data set.

Conversely, it is worth noting that the performance of the
system with respect to different distances of the sound source
depends mostly on the low-level representation of the audio sig-
nal. When temporal features based on the intensity and energy
of the signal are used to describe the audio frames, in fact, the
performance inevitably decreases with an increasing distance
of the events from the microphone [blue and green lines in
Fig. 5(a), (b), (d) and (e)]. In such cases, when the energy of an
event of interest decreases, it becomes comparable with the one
of the background noise and it is more difficult to discriminate
such events. The MFCC features, widely used for several audio
recognition tasks like speech recognition or speaker identifica-
tion, are sensitive to additive noise. However they show higher
robustness to different signal to noise ratios, resulting in more
stable results, as it can be seen in Fig. 6. From Fig. 5(c) and (f),
it is evident how the low-level features based on the distribution
of the spectral energy in sub-bands has shown to be robust with
respect to decreasing values of the power of the signal.

In Table VI we report the average recognition rate and its
standard deviation achieved by the proposed system varying
the number of clusters for the test on the original data set and
the one considering also the attenuated versions of the signals.
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TABLE VI
RESULTS OF THE PERFORMED SENSITIVITY ANALYSIS. FOR BOTH THE

EMPLOYED CLASSIFIERS THE AVERAGE RECOGNITION RATE AND

ITS STANDARD DEVIATION ARE REPORTED IN THE CASE OF

CLASSIFICATION OF THE EVENTS IN THE PROPOSED DATA

SET (ORIG.) AND THEIR ATTENUATED VERSION (ATT.)

The results registered by using the kNN classifier are highly
influenced by the loss in generalization capabilities when a
high number of cluster is configured. In Fig. 6, instead, we
compare the ROC curves achieved by using the three sets of
low-level features. The area under the curves (AUC) are equal
to 0.80, 0.90, and 0.86 for the features used in [24], the MFCC
and BARK, respectively. The ROC analysis confirms that the
features based on the intensity and energy of the signal [24] are
inadequate for recognition of sounds at various distances, while
features based on frequency-analysis (MFCC and BARK) have
higher robustness to different SNR.

E. Real-Time Performance

The algorithm utilizes about 3% of the resource of a single
Intel i5 CPU core to process audio streams sampled at 32 kHz. It
has been also implemented and runs in real-time on a STM32F4
board, making its deployment very inexpensive.

V. CONCLUSION

In this paper we proposed a system for detecting hazardous
situations on roads by analyzing the audio stream acquired by
surveillance microphones. We carried out the experiments on
a data set that we created and made publicly available, with
the aim of studying the sensitivity of the proposed system with
respect to its configuration parameters. Furthermore, we con-
ducted a careful design analysis in order to understand the po-
tentiality of the proposed architecture, in terms of the maximum
distance at which an event of interest can be still recognized
in different kinds of environment, ranging from country roads
to highways.

The achieved results confirm that the proposed system can
be effectively used in noisy road environments, with an average
accuracy of 78.95% at a maximum distance of 120 meters in
country roads and of 25 meters on highways. Furthermore,
its overall processing load is still compatible with low cost
systems, so encouraging its porting on embedded systems with
limited hardware resources. This property allows the realization
of road surveillance systems with low deployment cost, also
in combination with already existing surveillance architectures
that provide audio acquisition sensors.
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