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Polynomial Approximation of Spectral Data in
LVQ and Relevance Learning

Friedrich Melchert!2, Udo Seiffert?, and Michael Biehl!

! University of Groningen, Johann Bernoulli Institute for Mathematics and Computer
Science, P.O. Box 407, 9700 AK Groningen, The Netherlands
2 Fraunhofer Institute for Factory Operation and Automation IFF, Sandtorstrasse 22,
39106 Magdeburg, Germany

Abstract. High dimensional data serves as input for a variety of clas-
sification tasks. In the case of spectral information, this data can be
understood as discrete sampling of an (unknown) underlying function.
In this paper we discuss an approach that improves classification perfor-
mance for spectral data by expanding the data in terms of basis func-
tions. Two real world spectral data classification problems demonstrate
the advantages of the method.

Keywords: Classification; supervised learning; functional data; Learn-
ing Vector Quantization; relevance learning; dimensionality reduction

1 Introduction

A variety of real-world applications produce high-dimensional data that are usu-
ally difficult to handle with traditional methods. Apart from developing new
methods suited for a high number of input dimensions, one possible solution is
to use prior knowledge about the underlying structures of the input data for
dimension reduction or data simplification. A very general and in most cases
justifiable approach is to assume high dimensional data vectors are a discretized
representation of a continuous function. This is true for different types of data,
such as time series and spectral data, which are frequently high-dimensional.

Such data is usually recorded in order to serve as input data in a classification
task. Different machine learning and classification algorithms can be applied,
each having its own advantages and disadvantages. Prototype- and distance-
based methods have the advantage of being intuitive to implement and inter-
pret. In this paper an extension of the popular Learning Vector Quantization
(LVQ) [6] is employed. In LVQ systems, prototypes serve as characteristic exem-
plars of their corresponding classes. In combination with an appropriate distance
measure, they constitute an efficient method of classification [2].

The choice of the distance measure is the key to the design of an LVQ system
[2]. In contrast to fixed Euclidean or other Minkowski measures, the General-
ized Matrix LVQ (GMLVQ) makes use of the more flexible concept of relevance
learning. In GMLVQ a parametrized distance measure is used and its parame-
ters are determined in a data-driven training process [12]. Therefore, only the
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basic structure of the distance measure has to be specified in advance. This ap-
proach offers greater flexibility and, moreover, the interpretation of the adaptive
distance measure can give further insight into the structure of the data [14].

In this paper, we discuss the application of GMLVQ to functional input data.
In [5] a functional representation of the relevances in GMLVQ was proposed and
investigated, but samples and prototypes were still considered to be in original
feature space. This paper presents an alternative approach that produces a func-
tional representation of the data and performs GMLVQ adaptation in the space
of coefficients for the functional representation. The idea was first presented in
[13] where a wavelet expansion of mass spectrometry data was employed. Al-
though this also led to a reduction of input dimensions, the wavelet expansion
was motivated as an easy way of finding discriminative features of the sharply
peaked mass spectra.

In [11] the SOM algorithm is modified for the unsupervised clustering of
spectral information by expanding the input data in terms of B-Spline functions.
This yields a reduction of input dimensions by a factor of two. In this paper we
demonstrate that a similar approach using Chebyshev polynomials as functional
basis can reduce the number of input dimensions even further without significant
loss or even improvement of performance with respect to the full feature dataset.
Since the potential benefit of the approach for the quality of the classification has
been discussed in [8], here we focus on the aspect of dimensionality reduction.

2 Polynomial approximation of functional data

In order to reduce the number of input dimensions the approximation of the
data using a weighted set of basis functions is considered. It is assumed, that
the d-dimensional feature vectors v; € R result from sampling a continuous (in
general unknown) function f;(z).

v;; = fi(xz;) with j=1,2,....d. (1)

For a given set of suitable basis functions gx(x) it is possible to find the coeffi-
cients ¢; ; so that

fi@) =iy grla). (2)
k=0

By limiting the maximum number of coefficients to n, and thus truncating the
series, Eq. (2) becomes an approximation of the original function, which can be
achieved by means of general approximation schemes like least mean squares or
minimal maximum deviation.

From the obtained set of coefficients c; ; a new set of feature vectors ¢; € R"
can be composed. Throughout the following we assume that n < d, obviously.

The quality of the functional approximation is highly dependent on the se-
lection of an appropriate set of basis functions and, of course, on the number of
approximation coefficients. Both choices should be guided by the specific prop-
erties of the input data. With respect to the number of functions and coefficients
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the proposed approach is quite robust within a range of values n [8]. Possible
basis functions include polynomials, trigonometric functions for periodic signals,
wavelets or spline functions. In this paper, we focus on using a polynomial basis
as an important example, more specifically the set of Chebyshev polynomials of
the first kind. They are defined recursively by

TQ(I‘) =1
Ti(z) =z (3)
To(z) =22T, -1 — Th—o(x)

Using Chebyshev polynomials as basis functions Equation (2) becomes a Cheby-
shev series which is known to provide an efficient way to represent smooth non-
periodic functions [3]. Within the context of this paper an open source MAT-
LAB™ library called chebfun [15] is employed to determine the coefficients of the
series. Although the library provides a wide variety of functions in the context of
Chebyshev polynomials, we only use the implementation of approximations for
discrete data in this paper. For a more detailed description of the implementation
see the documentation in [3].

3 Application to example datasets

The approach is demonstrated by applying it to two publicly available datasets
as well as manually distorted copies thereof. All of the datasets contain spectral
and thus functional input data. An illustration of the datasets is shown in Figure
1.

The first dataset, the Wine dataset (available from [9]), contains 124 samples
of wine infrared absorption spectra in the range between 4000 and 400 cm™!
with 256 sampled values each. One sample of the dataset, which could be clearly
identified as an outlier, was removed for the following analysis. The samples
are labeled according their alcohol content: A two class problem is created by
thresholding the alcohol level as described in [7], the resulting classes correspond
to low and high alcohol content.

As a second dataset we consider the Tecator dataset (available from [16]),
which comprises 215 reflectance spectra in the range from 850 to 1050 nm wave-
length. The spectra are sampled equidistantly using 2 nm step size resulting in
100 sampled values per spectrum. The spectral information was acquired from
meat probes and labeled according to their fat content. Similar to the Wine
dataset the fat content is thresholded at its median in order to obtain two classes.

For further illustration of the presented approach both datasets are artificially
distorted. For the Wine dataset, which seems to be pre-processed in terms of
offset elimination, cf. Fig. la, a random offset is added to each of the spectra.
This yields a dataset which will be referred to as WineRO (Wine with Random
Offset) in the following. The spectra in the Tecator dataset already have different
offsets (cf. Fig. 1b), so for distortion the offsets in the dataset are removed by
subtracting the mean value of each spectrum. The resulting dataset will be
referred to as the TecatorNO (Tecator with No Offset) dataset.
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Fig. 1: Input spectra of the different datasets. For the sake of clarity only 20
examples are drawn for each dataset. The presence of offsets in the WineRO
and Tecator datasets is clearly recognizable.

Two experiments are performed for each of the datasets: The first serves as
a natural baseline for classification performance and disregards the functional
characteristic of the input values entirely by training a GMLV(Q system in the
original feature space.

The second set of experiments involves a preprocessing of the data in terms
of polynomial expansion as described in section 2. For each dataset an approx-
imation is computed with n = 5,10, 15, ..., 50 polynomial coefficients, resulting
in new input feature vectors ¢; € R".

Demonstration code (MATLABTM) for GMLVQ training is available from [1].
The settings and parameters kept constant for all experiments. For most pa-
rameters the default values as specified in [1] were used. In detail this means,
all trained GMLV(Q systems comprised only one prototype per class which were
initialized as the class-conditional means in the training set. The relevance ma-
trix was initialized as proportional to the identity and batch gradient descent
optimization was performed employing an automated step size control as de-
seribed in [1,10]. As an additional preprocessing step the input data underwent
a z-score transformation that achieves unit variance and zero mean for all in-
put features. This transformation was done in order to balance varying orders
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Table 1: Comparison of processing workflows for experiments with and without
incorporation of the functional characteristics of the input data.

original data functional approximation
Preprocessing: polynomial approximation
with n coefficients
v, = ¢
z-score transformation z-score transformation
v; — v? ci —c?
Training;: Train GMLVQ on Train GMLVQ on
90% of v¥ 90% of c?
Validation: Validate GMLVQ on Validate GMLVQ on
remaining 10% of vZ remaining 10% of ¢"”

of magnitudes between the different features. Furthermore the transformation
facilitates a better interpretation of the resulting relevance matrices [12].

A validation scheme dividing the datasets randomly into 90% training data
and using the remaining 10% as a validation dataset is employed for each of
the experiments. As a measure for classification performance the area under the
ROC (AUROC) is evaluated with respect to the validation set [4]. The ROC
is computed by varying a threshold when comparing the distances between the
data points and the prototypes. The whole workflow is summarized in Table
1. All results were obtained by averaging over 10 random splits of the data.
Figure 2 shows the obtained performance for all datasets in dependency of the
number of polynomial approximation coefficients, as well as the performance of
the classifier using the raw input data.

To illustrate the advantages of the approach we provide more detail on the
Wine and WineRO datasets in Figure 3. The left-hand panels show the proto-
types obtained using a 20 coefficient polynomial approximation. The prototypes
are shown in the space of approximation coefficients, center panels display the
corresponding relevance profiles. In the right-hand panels, the reconstructed pro-
totypes are shown in the original feature space.

4 Discussion

The results depicted in Figure 2 reveal that the classification performance of
the GMLVQ systems trained on the polynomial approximation coefficients are
almost identical to or slightly better than the performance when using original
data. However, in a polynomial approximation with, say, 20 coefficients, which
performs well on all datasets (cf. Fig. 2), the number of input dimensions is
drastically decreased by 80% for the Tecator datasets and by 92% for the Wine
datasets.
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Fig.2: Comparison of the achieved validation performance, i.e. the area under
ROC for different datasets in dependence of the number of polynomial approxi-
mation coefficients. The solid line represents the value for the classification using
the unprocessed spectral information as feature vectors. Filled circles represent
results achieved using polynomial approximation coefficients.

Comparing the performance on datasets with and without artificial distor-
tion, we conclude that the distortion has no significant effect on performance
when the polynomial approximation is employed. However, the classification
performance with original spectra as input data, is significantly better for the
two datasets without offset (Wine and TecatorNO) than for their counterparts
retaining the offsets.

The combination of polynomial approximation and relevance learning is able
to suppress the influence of offsets. As shown in figure 3b and 3e the first polyno-
mial coefficient, which represents Ty(z) = 1 and can therefore be understood as
the constant part of the spectrum, is virtually disregarded by GMLVQ as indi-
cated by a very low value of the corresponding diagonal element of the relevance
matrix. Thus, the classification performance for both dataset versions, with and
without offset, is nearly the same.

Another benefit of the polynomial approximation is an implicit denoising
and smoothing of the data, as can be seen in Figure 3¢ and 3f. Apart from the
(irrelevant) offset, the prototypes are almost identical. The significant smoothing
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Fig. 3: Detailed comparison of one prototype for the Wine and WineRO dataset.
The top panels (a,b,c) belong to the Wine dataset, the bottom (d,e,f) to the
WineRO dataset. Left-hand panels (a,d) represent prototypes in space of poly-
nomial coefficients, center panels (b,e) represent the relevance profiles obtained
and the right-hand panels (c,f) represent the prototypes after retransformation
to original feature space.

caused by the polynomial approximation becomes evident when comparing the
prototypes to the input spectra in Figure 1.

5 Summary and Outlook

We presented a framework for reducing input dimensions for classification of
functional data, by applying polynomial approximation and performing classi-
fication in the space of the approximation coefficients. We considered two real
world spectral datasets, which were artificially distorted in order to illustrate
the advantages of the presented approach. The results show that for a suit-
able number of polynomial coefficients the resulting classification performance
is comparable or exceeds that for unprocessed data. In comparison to [11] using
Chebyshev polynomials as basis functions, the number of input dimensions was
more significantly decreased by up to 92%, thus drastically reducing the number
of parameters, the risk of over-fitting, convergence problems and computational
effort.

Furthermore, the robustness of the approach to offset distortion of the data
was demonstrated for both example datasets. In forthcoming studies we will
address the question whether this independence also holds for more complex
distortions, such as different scaling of data or the superposition of trends or
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other more complex offsets. Moreover, the intermediate functional representation
of the data allows for a more convenient application of mathematical operations
such as derivatives, integration or root finding to preprocess the data. These
can be used to provide more complex descriptions of the underlying functions,
e.g. the number of roots/maxima or maximum slope, to generate even lower-
dimensional feature vectors, that can serve as classification input.

Acknowledgments. F. Melchert thanks for the support of an Ubbo-Emmius
Sandwich Scholarship from the Faculty of Mathematics and Natural Sciences,
University of Groningen.
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