
  

 

 

 

 

 

 

 

 

 

Copyright 

by 

Dipanjan Basu 

2010 

 

 



  

 

The Dissertation Committee for Dipanjan Basu Certifies that this is the approved 

version of the following dissertation: 

 

 

Quantum Transport and Bulk Calculations for  

Graphene-Based Devices 

 

 

 

 

 
Committee: 
 

Leonard F. Register, Supervisor 

Sanjay K. Banerjee, Co-Supervisor 

Emanuel Tutuc 

Allan H. MacDonald 

Jack Lee 

Swaroop Ganguly 



  

Quantum Transport and Bulk Calculations for  

Graphene-Based Devices 

 

 

 

by 

Dipanjan Basu, B.E., M. Tech. 

 

 

 

Dissertation 

Presented to the Faculty of the Graduate School of  

The University of Texas at Austin 

in Partial Fulfillment  

of the Requirements 

for the Degree of  

 

Doctor of Philosophy  

 

The University of Texas at Austin 

December, 2010 



  

 

 

 

 

Dedication 

 

To my parents 



v 

Acknowledgements 

It gives me immense pleasure to express my heartfelt gratitude to my advisors Dr. 

Leonard Franklin Register and Dr. Sanjay K. Banerjee. Their able guidance, encouraging 

words, and constant support in all forms have always been directed to the best of my 

interest. They are so responsive, patient and understanding  I find it difficult to express 

in words their contribution, this work would not be possible without them. 

 My sincere thanks to Dr. Allan H. MacDonald, whose help, especially to this 

work, especially the final parts has been invaluable. He has been very kind to my queries, 

giving me time whenever I wanted. I am grateful to Dr. Emanuel Tutuc, Dr.Swaroop 

Ganguly and Dr. Jack Lee for serving in my committee, and thank them sincerely. I also 

want to thank Dr. Chandra Mouli for the opportunity of the interesting research internship 

with Micron Technologies, Inc. at Boise in summer 2008. 

I have been helped in my work by many colleagues and friends whose 

contribution I greatly appreciate, Dr. Matthew Gilbert with whom I collaborated in the 

initial years, and my group mates over the years; Swaroop, Xiaofeng, Xin, Bahniman, 

Ken-Ming, Mehedi, Hui, John, Ningyu and Dharmendar. Special thanks to Dharmendar 

for his help with understanding the mean-field theory and related work.  

I am deeply indebted to my dear parents, whose encouragement and support have 

nourished me and have made me who I am, and to my darling wife Antara whose 

presence here has in so many ways improved my experience outside work. I have many 

happy memories with friends here at Austin, I thank them, especially to Sagnik, Shovan, 

Swaroop, Samaresh, Debarshi, Samarjit, Praveen and their families. Special thanks to my 

friends Dipankar and Mosin. Thanks to Jeannie for support, to Joe, Joy, Jason and 

Emmanuel for their company. Finally I thank the Almighty for everything.  



vi 

 Quantum Transport and Bulk Calculations  

for Graphene-based Devices  

 

Publication No._____________ 

 

 

Dipanjan Basu, Ph.D.  

The University of Texas at Austin, 2010 

 

Supervisor: Leonard F. Register 

Co-supervisor: Sanjay K. Banerjee 

 

As devise sizes approach the nanoscale, novel device geometries and materials are 

considered, and new types of essential physics becomes important and new physical 

switching mechanism are considered, and as our intuitive understanding of device 
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band gaps in otherwise gapless graphene monolayers, I studied the effects of edge 

disorder in such graphene nano-ribbon FETs. I found that ribbon widths sufficiently 
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narrow to produce useful bandgaps, would also lead to an extreme sensitivity to ribbon-

edge roughness and associated performance degradation and device-to-device variability.     

Going beyond conventional switching but staying with the graphene material 

system, to model electron-hole condensation in two graphene monolayers separated by a 

tunnel dielectric potentially beyond room temperature, I developed a self-consistent 

atomistic tight-binding treatment of the required interlayer exchange interaction within 

non-local Hartree-Fock mean-field theory.  Such condensation, associated many-body 

enhanced interlayer current flow, and gate-control thereof is the basis for the beyond-

CMOS Bilayer-pseudoSpin Field Effect Transistor (BiSFET) proposed by colleagues. I 

studied the effect of various system parameters and on interlayer charge imbalance on the 

strength of the condensate state.  I also modeled the critical current, the maximum 

interlayer current that can be supported by the condensate, its detailed dependence on the 

nature and strength of the required interlayer bare tunneling and on charge imbalance. 

The results presented here are expected to be used to refine devices models of the 

BiSFET, and may serve as guides to experiments to observe such a condensate state.  
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Chapter 1:  Introduction 

1.1 BACKGROUND FOR THE DISSERTATION  

As devise sizes approach the nanoscale, novel device geometries and materials are 

considered, and new types of essential physics becomes important and new physical 

switching mechanism are considered, and as our intuitive understanding of device 

behavior is stretched accordingly, increasing first-principles simulation is required to 

understand and predict device behavior.   

Scaling of the Complementary Metal-Oxide Semiconductor (CMOS) logic 

technology into and beyond the 16 nm node is a difficult challenge that lies ahead in the 

semiconductor technology roadmap [1] Owing in part to these CMOS scaling issues, 

there is an increased emphasis on emerging materials and devices that may provide a 

solution beyond the 22nm node. In the short run, alternate channel materials such as 

Germanium, III-V compound semiconductors and graphene can be substituted in place of 

bulk and strained Si to achieve performance gains, provided the replacement channel 

material is able to overcome the technological problems of fabricating high-quality, 

defect-free channel matched to underlying Si substrate.  These state-of-the-art metal-

oxide-semiconductor field-effect transistors (MOSFETs) have common traits―use of 

novel materials (e.g., strained materials, III-Vs,), strong geometrical confinement (e.g., 

strong gate fields, silicon on insulator devices, FinFETs, nanowire devices) and current 

paths comparable to or less to their mean-free path between scattering events.  This 

scaling invalidates treatment of the carriers as localized particles, and drift-diffusion or 

even hydrodynamic models of transport.  Semiclassical Monte Carlo methods can 

frequently be used to address the transport issues, and even the quantum confinement 

issues within useful approximations via quantum corrected potentials [2-7].  For more 



2 

rigorous simulation fully quantum methods are required in principle.  In practice, 

however, increased rigor leads to increased computational demand and the search for 

computational efficiency and rigor continues.  To date a variety of methods have been 

pursued including methods that seek solution analytically [2-4] or numerically [5-10] in 

one or more dimensions using Green‘s function approaches [5-11]. 

Recently, there has been tremendous enthusiasm in the semiconductor community 

since the isolation of single layers of graphite or graphene by Novoselov and Geim in 

2004 [12]. Single and few layers of carbon sheets (graphene) and ensuing field effect 

devices have been demonstrated. Much like carbon nanotubes, graphene layers exhibit 

very high room temperature mobilities, up to =10,000 cm
2
/Vs, corresponding to a long, 

~400nm mean free path and Fermi velocity of 1/300 the speed of light (10
8
 cm/s) which 

ise ten times that in Si, and can ‗in principle‘ lead to very high ON-state Field-Effect-

Transistor (FET) currents [13]. But since graphene is a gapless semiconductor, it also 

leads to high OFF-state leakage and non-saturating drive currents which are problematic 

for digital logic, as will be discussed in more detail later. 

The ITRS also identifies that, in the long run, there is a need for the development 

of a new manufacturable information processing primitive that may augment the CMOS 

logic gate by being able to perform specific tasks more efficiently as a primitive unit, or 

even ultimately replacing CMOS.   Graphene, also has a unique linear band structure, 

unlike the parabolic E(k) relation in most semiconductors, leading to what are known as 

Dirac massless fermions.  And it seems possible that some of the remarkable physics of 

graphene will lead to novel beyond-CMOS logic devices as well, such as gated tunneling-

devices [citation needed] or the recently proposed ―pseudospin‖ devices [14], which 

operates on entirely different switching materials. 
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1.2 OUTLINE 

The outline of this dissertation is as follows:  In Chapter 2, I will delineate the 

development of our atomistic full-band simulator and apply it to demonstrate band-to-

band tunneling in nanowire MOSFETs with low-band gap III-V semiconductor channels. 

In Chapter 3, I move on to graphene-based devices and illustrate the difficulty in using 

extremely narrow width nanoribbons of graphene, a proposed means of achieving 

significant band gaps, as channel material for MOSFETs due to an extreme sensitivity of 

transport to edge roughness. In Chapter 4, I briefly review a novel device proposal based 

on possible room-temperature electron hole condensation in graphene bilayers. I then 

present our tight-binding calculations of the spontaneous (i.e., without single-particle 

tunneling) exchange interaction in such a system and investigate the role of various 

parameters on the excitonic condensation. In Chapter 5, I present self-consistent 

exchange interactions in the graphene bilayer in the presence of weak bare interlayer 

tunneling, and explore the dependency of the condensate state and exchange potential on 

the nature and strength of the bare tunneling. We also present the critical interlayer 

tunneling current between the graphene bilayers, the maximum interlayer current that the 

condensate can support, in presence of this bare tunneling and its dependence on various 

system parameters. Finally, in Chapter 6 I propose future directions to work on and 

provide concluding remarks. 
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Chapter 2:  Atomistic full-band quantum simulator 

2.1 NECESSITY OF 3D, FULL BAND, ATOMISTIC QUANTUM SIMULATORS  

Phase coherent ballistic transport effects become important for many 

semiconductor devices as channel lengths scale to few tens of nm [15], necessitating full 

quantum transport simulation. FETs using nanowires as the semiconducting channel have 

high confinement in the channel region in not only the vertical, but also the lateral 

direction. Furthermore, the source (S) and drain (D) regions may be comparatively large 

compared to channel cross-section and defects such as surface roughness or charge 

impurities may be present within the channel. As a result, nominally discrete propagating 

modes can mix and a quasi one-dimensional (1D) model of quantum transport with 

discrete transverse modes within the channel cross-section can be insufficient.  Fully 

three-dimensional (3D) quantum transport simulation becomes necessary.  

Moreover, in present nanoscale devices, the energy bands are significantly altered 

from their bulk values, particularly for hole transport and very strongly confined electron 

systems, so that instead of the simpler and computationally easier effective mass 

approach, a full band structure treatment within a full quantum framework becomes a 

necessary refinement. Several III-V materials such as InAs, InSb, InGaAs and group IV 

material like Ge have been identified as possible candidates for replacing Si channel [1]. 

InSb with its very high electron mobility is particularly suitable for high-speed logic [16, 

17].  The attendant low band-gap, however, makes it difficult to shut off the InSb based 

transistors, necessitating more complex architectures like quantum well FETs [18, 19]. 

Simple effective-mass based quantum transport simulation also fail to address the band-

to-band tunneling in InSb nanowire transistors under high OFF-state gate bias, as well as 

the proper dependence of the band gap on the degree of confinement. 
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For simulation of transport in these novel materials, a full band, full quantum 

mechanical transport model is often required, to probe the properties of the 

device/material for different atomic configurations or atomic-level disorders. The 

recursive scattering matrix variant of the non-equilibrium Green‘s function (NEGF) 

based quantum transport simulator that we developed uses an atomistic, tight-binding 

basis, where it becomes relatively easy to simulate ab initio not only different materials, 

but also look at the effect of atomic scale disorders, such as effect of non-ideal edges in 

armchair graphene nanoribbon channel MOSFETs. Here, we will briefly sketch the 

development of this simulator, and use it to demonstrate how band-to-band tunneling 

increases the leakage current in OFF state in field-effect transistors with low band gap 

semiconductors such as InSb as channel material. 

2.2  NUMERICAL METHOD 

Here we have adapted an efficient transmission matrix based approach to 

quantum transport calculation previously implemented within an effective mass 

approximation [20] for full 3D, atomistic, nearest-neighbor tight-binding (TB) based 

simulations. These transport calculations represent an alternative numerical 

implementation for such systems of the widely accepted non-equilibrium Green‘s 

function [NEGF] approach [21].  

2.2.1  Crystal structure and basis set  

We incorporate each atom in the device explicitly in the Hamiltonian, and 

represent each atom by its orthogonal (Löwdin) orbitals, where the on-site energies and 

hopping potentials are obtained from empirical TB theory [22]. The atomistic 

Hamiltonian changes for different materials, orbital bases and crystal orientations; 

however, the general method remains the same. For an optimum balance of accuracy and 
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computational cost in the simulations of this work, we have restricted ourselves to the 

sp
3
s* basis with nearest neighbor interactions, as the energy bands are well modeled close 

to the  point [22]. Also, we have used the original empirical TB parameters given in 

[22] instead of the parameters optimized to obtain best fit of just the low lying conduction 

and valence bands [23]. Here we demonstrate the capability of our atomistic simulator in 

a qualitative rather than quantitative fashion, and therefore we will restrict our 

concentration to [100] transport in III-V semiconductors that exhibit a zinc-blende crystal 

structure. 

For [100] transport in a square III-V nanowire, we can visualize the nanowire as 

successive face-centered cubic (fcc) planes that are displaced from the previous plane 

along the body diagonal by (a/4, ±a/4, ±a/4) where a is the material lattice constant. The 

atomistic view of eight successive fcc planes along the transport direction is shown in 

Fig. 1. The atomic structure repeats itself every fourth layer along the transport direction, 

and therefore, these four layers constitute the primitive cell. 

2.2.2 Band structure calculation for the leads  

The time-independent Schrödinger equation for a tight-binding Hamiltonian can 

be written in a layer-to-layer coupled form as: 

 . , 1 1 , , 1 1l l l l l l l l l lEH ψ H ψ H ψ ψ  2.1  

Here lψ is the wavefunction (column matrix) where each row corresponds to a particular 

orbital of a particular atom in the l-th layer, , 1l lH is the coupling (square matrix) from 

layer l to layer l±1, E is the eigenenergy and the ,l lH are populated with on-site energies 

including applied potential energy contributions, and transfer matrix elements between 

atoms in same layer, and , 1l lH  are populated with transfer matrix elements between 

atoms in neighboring layers. The entire device from source (S) to drain (D) can be broken 
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up into N layers perpendicular to the transport direction. Fig. 2 shows these layers 

schematically. Within the leads the applied potential energy contributions are determined 

by the source and drain biases and the injected charge densities; within the simulation 

region, by self-consistent electrostatics. 

The S/D contacts/leads can be assumed to be semi-infinite wires that are in 

thermal equilibrium with the applied bias, and are therefore equipotential. Denoting the 

four layers of the fcc lattice repeat unit from left to right as –2 to 1 (see Fig. 3.2) and 

assuming constant potential, which is adjusted consistent with source and drain biases 

and charge densities, (1) can be written explicitly for the left lead as:  

 
4, 3 3 2, 2 2 2, 1 1

3, 2 2 1, 1 1 1,0 0

2, 1 1 0,0 0 0,1 1

1,0 0 1,1 1 1,2 2

0

0

0

0

E

E

E

E

H ψ H ψ H ψ

H ψ H ψ H ψ

H ψ H ψ H ψ

H ψ H ψ H ψ

. 2.2  

where for Bloch states and also evanescent states within the leads we may 

write 3 1 2 2, ψ ψ ψ ψ , with Bloch factor exp xik a  for the set of four layers 

each space by a/4 from the previous.  

After some algebraic manipulation we can reduce the eigensystem to a basis set 

consisting of 2ψ  and 3ψ as follows: 

 1 1

0,1 0, 1 0,1 0,0 1

1 1 1 1 1
01,2 1,1 0,1 0, 1 1,2 1,0 1,2 1,1 0,1 0,0

 
E

E E E

H H H H ψ

ψH H H H H H H H H H

1 1 1 1 1

2, 3 2, 2 1, 2 1, 1 2, 3 2, 1 2, 3 2, 2 1, 2 1,0 1

1 1
01, 2 1, 1 1, 2 1,0

E E E

E

H H H H H H H H H H ψ

ψH H H H

 

2.3  

Equation (2.3) is a generalized eigenvalue system whose dimension depends on the size 

of the system modeled and the tight-binding basis set used. We solve Eqn. (2.3) using 

standard commercially available math libraries such as IMSL [24].  
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Figure 2.1. Eight fcc lattice planes, stacked along (100) direction, to form a square 
nanowire 2 atoms wide, showing the individual atomic locations in the 
plane.  For zinc blende structures such as InSb, the layers are alternately 
anions and cations. For a diamond crystal structure such as Si or Ge, all the 
atoms are identical. 

The eigenfunctions of Eqn. (2.3) can be identified as propagating modes if | |=1.  

A plot of the corresponding real values of kx vs. the eigenenergy E provides the real band 

structure for the quantum wire leads.  A similar procedure also allows calculation of the 

imaginary band structure for the evanescent states | |≠1 which is relevant to 

understanding tunneling. 

The probability current flow j for any wavefunction lψ  is:  

 †

, 1 1

2
Im l l l lj ψ H ψ . 2.4  

The probability current carried per mode per unit energy by these occupied Bloch states 

should always be precisely equal to 2/h counting both spin states, where h is the Planck‘s 

constant. This relation is used to normalize the amplitude of the incident wavefunctions.  

The solutions to Eqn. (2.3) with | |=1 and j>0 (although not necessarily kx>0) for the left 

lead represent the right-going incident propagating waves. 

 

Layer 3 
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Atom 

Layer 4 Atom 

Transport 
Direction 

Layer 1 Atom 
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Device 

Figure 2.2. Schematic of the transport calculation showing the break-up of the 
simulation region into a device region that includes source, channel and 
drain regions (green shade), and semi-infinite source and drain contacts at 
the two ends. The layer to layer interaction matrix is shown for only one 
interaction in the schematic (H12). In practice, there are a large number of 
slices in the device region, depending on the length of the device simulated. 

2.2.3 Transport Calculation 

The eigenfunctions of the leads form a complete basis that is used for injecting 

probability density into and extracting probability density from the device region.  For the 

two central layers in the left lead, and for each energy, the eigenfunctions can be arranged 

into a basis matrix BL, as [20]: 
 

1 1
L

0 0

( ) ( )

( ) ( )

ψ ψ
B

ψ ψ
, 2.5  

Here 0ψ is now a square matrix where each row represents a particular orbital of a 

particular atom as before, and each column represents a particular transverse mode in the 

left lead (source side). And  (←) indicate the basis functions that either propagate or 

decay towards right (left). Similarly the basis function BR can be constructed for the two 

central layers, N+1 and N+2, in the right lead (drain side). 

Within the simulation region, B0 can then be propagated to the right one layer at a 

time via transfer matrices Tl  
 

1 1

, 1 , -1 , 1 ,
l

l l l l l l l lE

0 1
T

H H H H
, 2.6  
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such that 
 

1 1

1 1

l l l l

l

l l l l

ψ ψ ψ ψ
T

ψ ψ ψ ψ

, 2.7  

Here the Hamiltonians H are adjusted for changing coupling potentials, and onsite 

potentials including the self-consistent changes to the electrostatic potential. 

In principle at least, by cascading the transfer matrices and imposing appropriate 

boundary conditions, the complex transmission and reflection matrices t and r coupling 

each incoming mode to each outgoing mode, — one column and one row for each mode 

in the respective leads  for the entire device can then be calculated: 

 1

1 ....R N N 2 1 L

t 1
B T T T TB

0 r
, 2.8  

Propagation from the drain can be handled similarly. 

In practice however Eqn. (2.8) is extremely unstable. We have followed the 

stabilization method developed by Usuki et al. [20] to solve for the t and r matrices, but 

the wave-functions are obtained using a simpler, equivalent method given in [25]. 

 Carrier density n is obtained from the probability density associated with the wave 

functions injected from source (left), n( ), as well as drain (right), n( ). n( ) is 

calculated for each atom  in the device by summing over the probability density in each 

orbital   in each incident propagating mode : 

 2

, , ( ) ( )sn dE E f E , 2.9  

Then n is fed into Poisson‘s equation to solve for the electrostatic potential which, in 

turn, is self-consistently fed back into Eqn. (2.1). 
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Figure 2.3. Schematic of the device simulated: (left) the cross-section of the channel 
region, perpendicular to the transport direction and (right) the view from the 
top showing the source and drain contact at the ends, and the gate oxide in 
the middle, surrounding the channel. 

y semiconductor devices as channel lengths scale to few tens of nm [15], necessitating 

full quantum transport simulation 

 Once a self-consistent solution is obtained, the total charge current due to 

injection from the source side (I) can be calculated from the normalized wavefunctions 

, ( )l Eψ  for arbitrary temperature and bias from 

 †

, , 1 1,

2
Im ( ) ( ) ( )l l l l SI q dE E E f Eψ H ψ , 2.10  

at any point within the simulation region, where q is the electronic charge, and  labels 

the mode and l the layer. Here fS is the Fermi function at the source contact, and the 

integration is performed over the range of applied bias plus or minus a few kBT/q to 

account for non-zero temperature effects, where kB is Boltzmann‘s constant and T is the 

temperature.  
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The method of calculating transmission probabilities that we follow [20] is similar 

to Ando‘s formalism [26], and Khomyakov et al. [27] have discussed the equivalence of 

this approach with that of the Green‘s function techniques [21, 28]. Gilbert and Ferry 

adapted this method to calculate 3D quantum transport in Si-on-insulator metal-oxide-

semiconductor FET devices within an effective mass approach [8]. We note that the 

numerical approach used here is, beyond being an atomistic tight-binding approach, quite 

different than that used in [29]. 

2.3  RESULTS OF BAND-TO-BAND TUNNELING IN III-V NANOWIRE FETS 

The schematic of a gate-all-around InSb nanowire FET is shown in Fig. 3. For 

computational ease, we have restricted the nanowire widths to 26.92, 32.40 and 38.88 Å, 

corresponding to 4, 5 and 6 atoms along the width, respectively. The device has an 

alumina (Al2O3) high-κ gate dielectric, with an effective oxide thickness of 6.48 Å, where 

the high-κ dielectric material is modeled pseudo-atomistically by taking appropriate 

empirical obtained TB parameters to produce a band gap corresponding to Al2O3, with 

band offset to InSb as reported in [30] with a type I interface. 

2.3.1 Band Structure of [100] square InSb nanowire  

The band-structure of an ultrascaled square (100) InSb nanowire of width 26.92 Å 

is shown in Fig. 2.4. The conduction and valence band edges shift to -0.28 eV and 0.78 

eV, respectively, from the bulk values being 0 and 0.23 eV for the set of TB parameters 

used [22] illustrating the considerable increase of band gap induced by very strong 

confinement.  

In Fig. 2.5, the self-consistent ID-VG characteristics are shown for ballistic 

transport in square (100) InSb nanowires of widths 26.92 and 32.40 Å. While these 

extremely narrow cross-sections (corresponding to 4 and 5 atoms wide) may not be 
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realized in practice, the simulations serve to illustrate the band-to-band tunneling (BTBT) 

that ails any low band gap semiconductor. 

 

Figure 2.4. Energy dispersion relationship of the multiple quantum confined subbands 
of a square (100) InSb nanowire of width 26.92 Å. 

For large negative VG, the valence band is pulled up under the gate, allowing 

electrons injected from the conduction band of source to tunnel into the valence band in 

the channel, giving rise to OFF state BTBT leakage current. This leakage current 

decreases with decreasing nanowire width, since wires with smaller cross-section have 

higher confinement-induced band gap, which reduces the overlap of bands, thereby 

reducing the current. The peak drain current, however also decreases slightly on reducing 

the cross-section (see the linear ID-VG in the inset of Fig. 2.5) likely due to an overall 

reduction in injected carrier velocities resulting from strong confinement combined with 

non-parabolicity. 
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Figure 2.5. ID-VG for two square (100) InSb nanowire MOSFETs in a gate-all-around 
architecture, having identical channel length of Lch = 5.2 nm. Inset: ID-VG in 
linear scale. Lower BTBT in narrow nanowires reduces IOFF, but peak ID is 
also slightly reduced for narrow nanowires. 

In the OFF state, band-to-band leakage, and thus ID is also be reduced by 

increasing the channel length (Lch) due to an increase in the barrier thickness and an 

associated decrease in tunneling probability. This reduction can be seen in Fig. 2.6 for 

two devices with different Lch (5.4 and 10.2 nm) but same nanowire width (Wch = 3.24 

nm) where the minimum subthreshold current decreases by ~ 3 orders of magnitude. In 

the ballistic limit, ION remains unaffected by the increase of Lch (inset of Fig. 2.6) 

although gate capacitance and required drive current would increase.  And with some 

diffusive transport, however, ION would also be expected to decrease with the increase of 

Lch. As a consequence, Lch would have to be optimized to achieve the best combination of 

ION and low IOFF.The band-structure of an ultrascaled square (100) InSb nanowire of 

width 26.92 Å is shown in Fig. 2.4. The conduction and valence band edges shift to -0.28 

eV and 0.78 eV, respectively, from the bulk values being 0 and 0.23 eV for the set of TB 
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parameters used [22] illustrating the considerable increase of band gap induced by very 

strong confinement. 

 

Figure 2.6. ID-VG for two square (100) InSb nanowire MOSFETs, having same Wch = 
3.24 nm, and different Lch. Longer Lch has lower minimum IOFF due to 
reduced BTBT. In absence of scattering, peak ID is unchanged with Lch, as 
the inset (linear plot of ID-VG) confirms. 

2.4  APPLICATIONS TO OTHER DEVICES 

Before moving on to the conclusion, we would like to mention that we have been 

able to use this program for a variety of other applications. For example, Hui Chen in our 

group, while looking at the heterojunction field-effect devices had been using Franz two 

band model based on corrected WKB method [31], for calculating tunneling transmission 

in InSb across a barrier of height 1.13 eV for a band overlap of 100 meV. Since 

confinement induced band structure changes are not automatically modeled in such a 

formulation, he used this full band treatment to compare results, which show a fair match 

(Fig. 2.7) after the effective band mass in the two band model was adjusted. 
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Figure 2.7. Transmission as a function of injection energy in InSb for a barrier of height 
1.1 eV when injected from InSb nanowire, as a function of the barrier length 
(top-down increases by one monolayer, starting from 1. Wch = 3.24 nm. The 
symbols are from the full band simulator, and solid line from Franz two 
band model, with effective mass adjusted to fit the full band result. 

2.5 CONCLUSION 

 Here we present our transmission matrix based approach to ballistic quantum 

transport calculation for full three-dimensional, atomistic simulations using a tight-

binding basis with nearest-neighbor interactions. The method is a variant of the more 

commonly used non-equilibrium Green‘s function and is versatile enough to be applied to 

a variety of applications due to its atomistic nature. In the following chapter we will 

apply this method to graphene nanoribbon channel MOSFETs, in particular to the effect 

of edge roughness in such devices, and very briefly, to resonant tunneling between 

electrons in two monolayers of graphene. 
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Chapter 3:  Effect of edge roughness in graphene nanoribbons channel 
MOSFETs 

As mentioned in the first chapter, ever since the isolation of graphene in 2004 

[12], there has been a tremendous effort not only in understanding and experimentally 

realizing the unique physics offered by this inherently 2D electron system, but also to 

harness the excellent electrical properties that can be realized from pristine, defect-free 

samples of graphene. Because of this tremendous interest, the field of graphene research 

remains a very fast paced one. An excellent overview of the potential use and the physics 

of graphene can be found in recent review articles like [13, 32, 33].  

3.1  BACKGROUND FOR STUDYING THE EFFECT OF EDGE ROUGHNESS 

The first field-effect device using graphene as the channel material was 

demonstrated experimentally by Max Lemme in 2004 (the channel width was ~ 265 nm) 

[34]. Theoretical calculations focusing on narrow, perfect armchair nanoribbons as 

channel material for MOSFETs predicted high performance [35-37].  It has been possible 

to pattern graphene into ribbons of widths in the order of tens of nanometers [38]. 

However, narrow samples of graphene with perfect edges have been difficult to fabricate 

[39], and even though significant progress has been made in recent times to grow smooth 

narrow ribbons by chemical and self-assembly methods [40], lithographically the task 

remain very challenging. This prompted us to investigate the effect of these edge 

imperfections on transport in graphene nanoribbons.  

3.1.1 Band structure of monolayer graphene  

Bulk graphene has a two-dimensional hexagonal lattice with a two atom basis. 

Since only the electrons in the pz ( ) orbital participate in transport, it suffices to 

represent graphene by its π orbital [41, 42]: 
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ij ij i ij

H tN q , 3.1  

Here Nij is 1 for the honeycomb lattice nearest neighbors, and is zero otherwise, 

and t is the nearest neighbor C-C hopping energy and is taken commonly as –2.7 eV for 

symmetric conduction and bands [42].  is the self-consistent electrostatic potential that 

we will consider only in the context of device simulation. The bulk band structure of 

graphene is metallic, and the conduction and valence bands touch one another at E=0, 

with the dispersion nearly linear for low energies.  

 

Figure 3.1. Armchair (horizontal ribbon) and zigzag (vertical ribbon) nanoribbon edge 
configurations and associated primitive unit cells along the ribbon. The 
green rhombus shows the primitive cell for bulk monolayer graphene 
containing one each of A and B sublattice C atoms (white and blue circles). 

Ribbons of graphene come in two basic edge configurations, armchair and zigzag. 

(See Fig. 3.1). The primitive cell in the 1D ribbon is a rectangle spanning the entire width 

of the ribbon, and four layers along the length. The repeat unit of four layers allows us to 

use the same relations as were developed in Chapter 2. Tight-binding theory predicts that 

zigzag nanoribbons have localized edge states near the Fermi level, making them less 

attractive for channel material [43], although consideration of finer details, e.g. spin 
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degree of freedom for the zigzag ribbon edges, or passivation of dangling bonds at the 

edges by different functional groups resulting possibly in different bonding strengths at 

the edge atoms may lead to the appearance of nonzero band gaps [44, 45]. Armchair 

nanoribbons, on the other hand, have a linear conduction and valence subband touching 

at E=0 as in bulk graphene, making it a gapless semiconductor if the number of atoms 

along the width is 3p+1, otherwise, there is a band gap, the gap being inversely 

proportional to the ribbon width (p is an integer) [43].  

 

Figure 3.2. First three dispersion relations from left to right: conduction band subbands 
for graphene nanoribbons having armchair edges of 1.6, 1.8 and 2.0 nm 
widths, or 7, 8 and 9 atoms along a line.  Extreme right dispersion relation: 
zigzag nanoribbon of 1.14 nm width corresponding to 7 atoms along a line. 
Energy is reference to the nominal Dirac point energy. All zigzag 
nanoribbons, and armchair nanoribbons having 3p+1 atomic width, where p 
is an integer, have states at E = 0. a is the C-C bond length (1.42 Å). 

The band structure for armchair graphene nanoribbons having 7, 8 and 9 atoms 

along the width of the armchair edge (armchair width of 1.6, 1.8 and 2.0 nm respectively) 

is shown in Fig. 3.2. The pattern of zero gap for 3p+1 atoms and semiconductor 

otherwise makes the energy dispersion near E=0 extremely sensitive to the width of the 
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nanoribbons, prompting us to investigate the effect of irregular edges on the transport 

characteristics of armchair nanoribbons. 

3.2  MODELING EDGE ROUGHNESS 

At the edges of graphene ribbons, C atom vacancies with respect to what would 

be a perfect armchair edge, give rise to steps [39]. We have modeled these edges by 

defining a correlation number r as the fraction of times the state of an edge site is 

identical to the corresponding site in the preceding slice, the 2D graphene nanoribbon 

being conjured up as a series of single atom thick slices along the transport direction. For 

r = 0.9, steps in the edge occur 10% of the time, either from a series of C atoms to vacant 

sites or vice versa.  Edge sites are randomly vacant for r = 0.5.  And with r = 1.0, a 

perfect armchair edge is achieved. A graphene sheet 10.5 nm long and 4.18 nm wide with 

r = 0.9 is shown in Figure 3.3(a). At the edges of graphene ribbons, C atom vacancies 

with respect to what would be a perfect armchair edge, give rise to steps [39]. We have 

modeled these edges by defining a correlation number r as the fraction of times the state 

of an edge site is identical to the corresponding site in the preceding slice, the 2D 

graphene nanoribbon being conjured up as a series of single atom thick slices along the 

transport direction. For r = 0.9, steps in the edge occur 10% of the time, either from a 

series of C atoms to vacant sites or vice versa.  Edge sites are randomly vacant for r = 

0.5. And with r = 1.0, a perfect armchair edge is achieved. A graphene sheet 10.5 nm 

long and 4.18 nm wide with r = 0.9 is shown in Figure 3.3(a).  

3.2.1 Device Schematic 

For the sake of investigation into device characteristics, following [35], we 

consider a dual gate MOSFET structure where conduction occurs in the graphene layer 

sandwiched between top and bottom SiO2 layers. Source and drain regions are n+ doped 
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to a concentration of 10
13

 cm
-2

, and are contacted by perfectly matched semi-infinite 

graphene leads. The channel region is nominally undoped. Fig. 3.3(b) shows a schematic 

of the graphene nanoribbon dual gate MOSFETs.  

 

Figure 3.3. Left: (a) Top view of an armchair graphene nanoribbon channel, showing 
vacant sites along the edges where C atoms (black dots) are missing. Right: 
(b) Schematic of the double gate MOSFET simulated (side view). For 
clarity, the nanoribbon of (a) is shorter (10.5 nm) than that used in the 
simulated MOSFET. 

3.3 RESULTS 

3.3.1. Effect of edge roughness and width on transmission 

The transmission characteristics for imperfect nanoribbon channels of varying 

nominal widths (Wch) are shown in Fig. 3.4(a) under flatband conditions ( 0 ). In each 

case, atomically identical edges with edge roughness characterized by r = 0.90 were used. 

Results with perfect edges (r = 1) are shown for comparison. Disorder introduces 

scattering. As the width is scaled down the impact of the edge disorder increases and 

transmission goes down, with very poor transmission in the narrow ribbons. Fig. 3.4(b) 

shows the transmission characteristics for 7.63 nm wide graphene channel with five 

different values of the edge roughness parameter r. It is evident that transmission falls 

drastically as the correlation r falls below 0.99. 
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Figure 3.4. Left: (a). Transmission T(E) as a function of incident energy E across 
graphene channels having identically rough edges. Right (b) T(E) vs. E for a 
7.63 nm wide graphene channel having different roughness at the edges. r = 
0.5 has edge sites randomly vacant and r=1.0 has a perfect armchair edge. 
Steps show perfect transmission for ideal armchair edges of corresponding 
width. 

3.3.2. Double gate MOSFET ID –VG in presence of edge roughness 

The drain current per unit width, 
D ch

I W for dual gate graphene channel 

MOSFETs with atomically identical edges characterized by r = 0.9 (we use the same 

edge configuration here as for the simulations of Fig. 3.4(a)) but different widths, are 

shown in Fig. 3.5(a) as a function of VG. In these electrostatically self-consistent 

simulations, charge accumulates on the C atoms in the vicinity of the steps, resulting in 

variations in the potential and, this introduces additional scattering on top of scattering 

introduced by disorder. The degradation of ID is large above threshold. As expected, ID is 

relatively less affected for the widest device, i.e., having Wch = 15.74 nm. However, only 

for the narrowest ribbon (Wch = 4.18 nm) is the subthreshold behavior marginally 

acceptable for a MOSFET even with atomically smooth nanoribbon edges, a consequence 

of band-to-band tunneling mediated leakage currents. Also, Fig. 3.5(a) reveals that 

leakage in the nominally OFF state increases in the presence of edge roughness. The 
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graphene nanoribbons considered here are nominally semiconducting, i.e., they are so in 

the limit of no edge roughness. From Fig. 3.2, a metallic or semiconducting energy 

dispersion relation emerges if the number of C atoms along the width is 3p+1, or 

otherwise. With some of the edge sites vacant, one gets an admixture of different widths, 

resulting in quasi-localized defect states within the band gap, which contributes to the 

OFF state leakage. 

 

Figure 3.5. ID–VG characteristics on Left (a) log-linear and Right (b) linear-linear  scale 
for the MOSFET structure of Fig. 1, for three different channel widths, 
showing performance degradation for channels with rough edges (dashed 
lines, solid symbols) from the ideal ballistic devices (solid lines, open 
symbols). VD = 0.2 V. 

3.3.3. Variability and performance issues due to edge roughness 

Edge roughness leads to significant variability among devices with different 

atomic edge configurations for the same correlation parameter r and channel width. This 

variability can be seen in Fig. 3.6(a) in 
D ch

I W for two set of devices with Wch = 4.18 nm, 

one set with r = 0.99 and one set with r = 0.5 values. The error bars represent plus or 

minus the standard deviation for a set of ten different random edge configurations with 

identical r. Even with r = 0.99 there is a large variability. 
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The performance penalty incurred for reducing BTBT leakage current by 

increasing Lch is small for graphene channel MOSFETs because of the high mobility of 

carriers in graphene. In a perfectly smooth edge graphene nanoribbon MOSFET, the 

leakage current would decrease with increase of Lch, as can be seen in Fig. 3.6(b) 

(circles). However, for rough channel devices, the defects and associated localized states 

increase with increase of Lch, thereby increasing the defect-induced OFF state leakage 

current. This is corroborated from the ID of the rough devices in Fig. 3.6(b) (square 

symbols), where the leakage current of the longer channel MOSFET (Lch = 32 nm) is not 

necessarily less than that of the shorter channel device (Lch = 21 nm). 

 

 

Figure 3.6. Left (a) ID–VG in linear scale for the dual gate MOSFET with Wch = 4.18 nm 
and Lch = 16.75 nm, using different values of edge roughness parameter r. 
Right (b) ID–VG for Wch = 4.67 nm, for two different Lch, using same r 
(=0.9). For both figures, error bars plotted indicate standard deviation in ID 
across ten randomly different edges having macroscopically same values of 
r. VD = 0.3 V for these simulations. 

3.4 APPLICATIONS OF THE PROGRAM TO OTHER GRAPHENE-BASED DEVICES 

In addition to looking at edge effects, we have applied the program to simulate 

several other cases, of which we will show two here.  
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3.4.1. On drain current saturation effects in graphene transistors 

The ID-VD characteristics for low band gap semiconductors show an ambipolar 

characteristic that is obtained in some experimental reports on graphene field-effect 

transistors as well [46, 47]. To explore this behavior, we simulated the ID-VD 

characteristics for an armchair graphene nanoribbon in two limiting cases, having a 

metallic band structure, and that for a semiconducting one, and for two different widths, 

for the same device schematic as that of the previous study. The results are given in Fig. 

3.7. Comparing the ID for the narrow ribbons, we find that for the semiconducting one, ID 

initially tends to saturate with VD. This is the electron current that comes from the source 

injection, which sees a barrier. As VD increases further, increasing overlap in energy 

between the drain conduction band with source valence bands sets in, leading to an 

increase in source-to-drain electron tunneling, or equivalently, hole transport from source 

to drain, so that ID starts to increase again. For normal incidence (ky=0 for transport along 

x), due to the Klein tunneling phenomenon [48], electrons do not see any barrier (same 

for the linear band in the metallic nanoribbon), and that gives the linear ID-VD for the 

narrow metallic channel device. For bulk graphene, where transport occurs in both linear 

as well parabolic bands, or equivalently, for off-angle incidence (ky≠0) at the barrier, one 

can expect ID in between these extremes. 

For the larger channel width, we indeed find the ID of these types coming 

together. Here transport occurs in more subbands, so that for the metallic armchair 

ribbons, the linear band does not dominate ID. On the other hand, for the semiconducting 

ribbon, the band gap decreases, so that there is more tunneling current for larger VD. The 

onset of tunneling can be postponed in these cases, by pushing EF to a higher value by 

achieving a higher dopant density in the source drain region to reduce the ambipolar 

transport otherwise. 
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Figure 3.7. ID-VD characteristics for single layer armchair graphene nanoribbon having 
42.46 nm device length, Lch = 16.76 nm, Tox = 2.5 nm, NDS = 5×10

12 
cm

-2 

and VG = -0.1 V The tunneling current and over the top current are visual 
aids to understand the components that make up the total ID. 

3.4.2.  Resonant tunneling between electrons in two graphene bilayers  

A variety of negative differential resistance (NDR) devices that operate on 

resonant tunneling phenomenon have been studied, why?. These devices are based on 

single particle tunneling unlike the possible coherent many body enhanced tunneling that 

is proposed in the next chapter [14], and therefore operate at a higher bias, in order to get 

a comparable tunneling [14]. We have utilized this NEGF-based single-particle simulator 

to study these devices and help understand the design issues of these devices. For 

example, to get a qualitative understanding of the broadening of the density of states in 

these system, we simulated the tunneling from the electron Fermi surface of top graphene 

layer (EF at 150 meV from Dirac point) to bottom (EF at 140 meV) for a normal graphene 

bilayer with a weak bare coupling (5 meV) between the layers. For this source-drain bias 

of 10 meV, we calculate the interlayer tunneling current (Iil) between the layers as a 
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function of the interlayer potential (Vil), which serves to align the bands (at Vil =0) or 

otherwise destroy the resonance. The resulting Iil (shown in Fig. 3.8) as a function of Vil, 

which when normalized to the peak current, gives us the expected lorentzian distribution, 

from which the broadening of density of states with decrease of channel of length can be 

estimated (Iil increases with Lch in Fig 3.8 due to the small coupling value chosen here). 

 

Figure 3.8. Resonant interlayer tunneling current (Iil) for a graphene bilayer as a 
function of the interlayer potential (Vil) that serves to align the bands at Vil 
=0, or destroy the resonance at Vil ≠ 0, for three different channel lengths Lch 

= 31.48 nm. Left (a) Iil  normalized to the channel width (20 nm for all the 
three curves), and on right (b) normalized to maximum Iil  

3.5 CONCLUSION 

We found that monolayer-graphene-based logic devices that rely on the band gap 

of narrow ribbons to turn the devices OFF, suffer from the extreme sensitivity of the 

narrow ribbons to the edge disorder [49]. Similar conclusions were reached at elsewhere 

[50]. The variability is too high, ION low, and leakage in OFF-state high. For digital logic 

applications, where high ION/IOFF ratio is a necessity, bilayer graphene offers a better 

prospect, since it is possible to create an electrically tunable gap in bilayers [51-53]. On 

the other hand, the high mobility of carriers in monolayer graphene makes it suitable for a 

plethora of applications, e.g., graphene FETs are potentially useful for low noise 
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amplifiers (LNA) operating at tens of GHz [33]. LNA FETs do not require a high 

ON/OFF ratio as digital logic; a ratio of 3-10 is sufficient. This makes graphene FETs, 

which have low band gap at large graphene nanoribbon (GNR) widths, suitable for such 

applications, even if they might be inadequate for digital logic. We have also looked at 

other aspects of field-effect as well as tunneling-based graphene devices using the 

simulator discussed here.  

However, graphene may serve not only a replacement channel material offering 

high carrier velocity; its novel properties may allow for fundamentally different 

mechanisms of switching, some of which has been reviewed in [32, 33]. In subsequent 

chapters, we will concentrate on one of these ideas and explore the physical conditions 

required for realization of the novel device based on electron-hole pair condensation in 

bilayer graphene. 
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Chapter 4:  Tight-binding study of spontaneous electron-hole 
condensation in graphene bilayers 

The electronic properties of bilayer graphene are quite different from monolayer 

graphene. The low-energy band structure of bilayer graphene reveals a parabolic 

dispersion unlike the linear bands of monolayer graphene, and an asymmetry in the 

potential of the two layers induces a band gap as predicted by phenomenological tight-

binding models [51] as well as ab initio density functional calculations [53]. However, 

the band gap is limited to a value of about 0.3 eV because of the strong screening of the 

external potential in the graphene layers, and even that may be difficult to achieve [54], 

resulting in limited improvement of ON/OFF ratio in bilayer compared with monolayer 

graphene channel MOSFETs. Here however, we will focus on a novel phenomenon 

involving collective behavior of electrons and holes in two layers of graphene separated 

by a thin dielectric. 

4.1  MOTIVATION FOR THE PRESENT WORK  

4.1.1 Electron-hole coherence in bilayer graphene: background physics  

In early 2008, researchers at Maryland and the University of Texas independently 

predicted that spontaneous coherence can occur in a bilayer graphene separated by a thin 

dielectric tunnel barrier, with electrons in one layer pairing up with holes in the other 

layer, to form a spontaneously coherent bilayer state that can be viewed as a Bose 

condensate of electron-hole pairs [55, 56]. Such a system supports persistent 

supercurrents in which electrons and holes flow in the same direction. Experimentally so 

far such coherent behavior has been realized only for semiconductor bilayer systems, and 

then only at extremely low temperatures and when the system is placed in a strong 

magnetic field which further enhances the tendency toward this type of collective 
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behavior [57]. However, a synergy of the properties of graphene may make it possible for 

the condensate to manifest itself in graphene bilayers at much higher temperatures and 

zero magnetic fields the ability to use closely-spaced atomically thin layers to 

maximize the interlayer Coulomb interaction; symmetric electron and hole band 

structures over the energy ranges of interest that allow accurate nesting between the 

electron and hole (2D) Fermi surfaces, a zero band gap (for bulk monolayer graphene) 

which allows all of any interlayer electrostatic potential difference to be used to induce 

electrons and holes, and a low density of states that leads to the desired high Fermi 

energies at relatively low carrier densities [55, 56, 58]. 

4.1.2 Device proposal utilizing the coherent state in bilayer graphene: the BiSFET  

The possibility of room temperature exciton condensation, the enhanced low-bias 

tunneling expected in the many-body ordered state, and the possible gate control thereof 

prompted the design of an extremely low power logic device by researchers at the 

University of Texas, which could advance the international technology roadmap for 

semiconductors [14]. The device, which goes by the acronym BiSFET (Bi-layer 

pseudoSpin Field-Effect Transistor), is not a simple drop-in replacement for MOSFETs. 

However, SPICE-based circuit modeling has demonstrated the possibility of creating a 

variety of logic elements with such devices with switching energies per device on the 

order of 0.01 aJ—i.e, 10 zepto-Joules (zJ)—discounting parasitics if such condensates 

can be formed and controlled [14, 59, 60]. By comparison, ―end of the roadmap‖ CMOS 

is expected to have switching energies of roughly 5 aJ [1]. The qualitative advantages of 

this collective device concept flow from its use of gates to control collective rather than 

individual electron transport. 
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4.1.3 Physical assumptions behind the BiSFET I-V  

Guided by experimental results in analogous low-temperature systems [57, 61-67] 

as well as theory [68, 69], researchers expect a negative differential resistance as the 

condensate collapses with increasing interlayer voltage (Fermi level splitting), perhaps 

beginning with voltages small compared to kBT.  A weakening of the condensate was also 

expected by relatively small charge imbalances (of perhaps 10%) which could be created 

by gating of the layers, as conceptually illustrated in Fig. 4.1(a), where it was assumed 

that the initial charge concentrations (~5×10
12

/cm
2
) could be induced under zero gate bias 

via differences in gate work functions or other means.  If correct, the result would be low-

voltage device characteristics qualitatively like those of Fig. 4.1(b). The functional form 

used for the BiSFET circuit simulations is of the form [14]: 
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4.2  

where ∆p and ∆n are the variations in charge densities with all four terminal voltages and 

Go is the Landauer-Büttiker conductance per unit gate width. While such device 

characteristics do not make for simple low-voltage drop-in replacements for MOSFETs, 

it was found to be possible to produce all basic logic functions within SPICE-based 

circuit simulations [14, 70]. Still, the BiSFET currently remains as only a concept based 

on novel physics predicted in a novel materials system. If such a device and/or other 

devices based on such a condensate are to be realized, the conditions under which this 

condensate can be created and controlled needs to be better understood, as well as 

experimentally realized. 
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Figure 4.1. Top (a) Device schematic of BiSFET showing uncoupled graphene contacts, 

and coupled channel.  creates asymmetry between the top (hole) and 
bottom (electron) layers. Direction of wave function propagation and 
corresponding electrical currents are also shown. Bottom (b) I-V 
characteristics of BiSFET for three different gate voltages VG,n with VG,p = -
25 mV consistent with Eqn. (4.1) and (4.2) and 20 nm gate width. Note that 
while the region of condensate formation is indicated schematically in (a) by 
reduced spacing between layers here, there are others ways to localize the 
condensate including changes in dielectrics, charge densities, and/or initial 
degree of charge balance. 

4.2  MODELING INTERLAYER EXCHANGE INTERACTIONS IN GRAPHENE BILAYERS 

USING TIGHT-BINDING -ORBITAL BASIS  

The bilayer graphene model we study for this work is shown schematically in Fig. 

4.2(a). The arrangement of the carbon (C) atoms in the primitive cell of the two coupled 

graphene layers is shown in Fig. 4.2(b). A uniform relative dielectric constant εr is 

assumed as a simple first-order approximation to the net effect of interlayer and gate 
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dielectrics and gate-induced screening.  We start by neglecting the role of direct/bare 

single-particle hopping between layers. The only interaction between the two layers at 

this stage is the Coulomb attraction between electrons in one layer and holes in its 

neighbor.  The solutions thus obtained may only be applicable in the weak direct-

coupling limit of course.   For the purpose of definiteness, Fig. 4.2(b) shows a Bernal 

alignment between the two layers in the relative spatial arrangement of the atoms in most 

cases (A sublattice atom in top layer (AT) located above B sublattice atom in the bottom 

layer (BB)). However, our results do not change significantly quantitatively or 

qualitatively if the two layers are aligned hexagonally (AT above AB, and BT on top of 

BB).  

 

Figure 4.2. Left (a) Schematic of the two oppositely charged graphene monolayers, 
separated by a dielectric. Right (b) Arrangement of C atoms showing the 

primitive cell (green rhombus) containing four atoms  AT (dotted circle) 
and BT (blue circle) for the top layer C atoms, and AB (red solid circle) and 
BB (blue solid circle) for the bottom layer. This figure is for the Bernal 
stacking arrangement in which BT lies directly above AB. Also shown are 

the real space lattice vectors 
1

a  and
2

a , and the vectors from AT to the 

nearest neighbor BT atoms,
1

n ,
2

n and
3

n   
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4.2.1 Modeling bilayer graphene to simulate BiSFET  

Within Hartree-Fock (HF) theory many-body interactions are approximated by a 

non-local mean field potential )(HF 21 R,RV  for the electrons. This potential can be written 

as the sum of three distinct potentials [71]which are: 
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on our tight binding lattice, where R are the positions of the atoms, are the tight-

binding electron energy eigenfunctions, and nβ are the occupancy factors, and the 

δ(R1,R2) are Kronecker delta functions in the discrete coordinates R. The first two terms 

are local, arising from the external field and the local charge density (Hartree potential) 

respectively, and the last term is the non-local exchange potential (Fock potential). 

For this study of excitonic condensation in graphene bilayers, we are primarily 

interested in the interlayer exchange interactions,  
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Here RT and RB are the 2D in-plane vectors for the atoms in the top and bottom graphene 

layers, respectively. ΔR = |RT  RB| is the magnitude of the in-plane component of the 

separation between the atoms, and d is the separation between the two layers. And the 

eigenstates label  has been expanded in terms of the band index α, wave-vector k, and 

spin state s. The remaining potential, the Hartree terms and the intralayer Fock terms, 

serve to self-consistently determine the gate potentials which would be required to 

introduce a specific potential difference between the top and bottom layers. In this work 

we represent these latter contributions simply assuming a potential difference Δ, such that 

a Δ/2 potential is added to the top (electron) and bottom (hole) layers, respectively. 
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A self-consistent solution for HF T B( )V R ,R  within an effective single-particle 

tight-binding Schrodinger equation is sought to approximate the true many-body ground 

state. For each value of α, k, s, this Schrodinger equation can be written as:  
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for the top and bottom layers, respectively.  Here, ε are the eigenenergies and HTB is the 

nearest neighbor -orbital (pz-orbital for the assumed x-y oriented graphene planes) tight-

binding Hamiltonian from which the single particle band structure is obtained using this 

Schrodinger equation, which can be written as:  

 
TB , , , ,( ) ( )s s j

j

H tk kR R , 4.7  

where t = −2.7 eV[42]. Note that , , ( )sk R  for any atom located at R  outside the four-

atom primitive unit cell of the bilayer graphene system, can be obtained from the value 

for the corresponding atom with the primitive unit cell R  by using the Bloch 

condition
( ''- ')

, , , ,( '' ) ( ' )i

s se k R R

k kR R .  

Self-consistent solutions to Eqs. (4.4)-(4.7) can be obtained simply by setting the 

interlayer exchange interaction of Eq. (4.4) to zero.  This solution corresponds to an 

uncorrelated state with electrons isolated in one layer or the other, and bands in the two 

layers simply shifted by Δ/2. A self-consistent solution of Eqs. (4.4)-(4.7) that yields a 

non-zero value of the inter-layer exchange potential and eigenfunctions that are coherent 

sums of orbital amplitudes on both layers captures the condensate state [69]. As usual 

these solutions of the Hartree-Fock equations minimize the total energy subject to the 

Slater determinant wave-function approximation. When bare inter-layer tunneling terms 

are absent in the Hamiltonian, the state with inter-layer coherence, and therefore 
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interaction terms in the mean-field Hamiltonian that act like inter-layer hopping/tunneling 

potentials for the Hartree-Fock quasi-particle, breaks the Hamiltonian symmetry which 

conserves particle number separately in each layer.  The broken symmetry state has lower 

inter-layer Coulomb interaction energy because the anti-symmetry of the many-electron 

wave-function reduces the spatial overlap probability between electrons in different 

layers only when coherence is present. In terms of the quasi-particle energy spectrum, a 

gap is formed in the band structure of the two-layer system about the points at which the 

conduction band of the top layer and the valence band of the lower layer would otherwise 

cross. With the Fermi level in the vicinity of this anti-crossing, the energy reduction for 

the condensed state can be seen in the reduction of the energies of the occupied Hartree-

Fock quasi-particle states in the vicinity of the anti-crossing. 

For illustration, this gap formation for the correlated state at 0 K temperature with 

balanced charge distributions of 6×10
12 

cm
-2

 corresponding to an interlayer potential 

splitting Δ of 0.5 eV, with an interlayer spacing of 1 nm, and with a dielectric permittivity 

εr = 3.9 of SiO2 is shown in Fig. 4.3 where the quasi-particle energy bands are plotted 

along the high-symmetry directions. The size of the gap in this case is ~30% of the 

isolated layer Fermi energies relative to their respective Dirac points. 

 To obtain this and subsequent correlated state solutions numerically, we used an 

iterative procedure and "seeded" the calculations for the first iteration only either by 

replacing the tight-binding wave-function correlation product *

, , T , , B( ) ( )s sk kR R in Eq. 

(4.4) by T Bexp[ ( )c ik R R  where c a small dimensionless constant; by replacing the 

exchange interaction of Eq. (4.4) with a Bernal-like or hexagonal-like but weaker bare 

interlayer coupling; or by starting from a self-consistent condensed state obtained 

previously under different conditions. In any case, for subsequent iterations the seed was 

removed and the Fock potential of Eq. (4.4) was obtained from the wave-functions of the 
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previous iteration, and the calculation was iterated until convergence was achieved. We 

emphasize that we have confirmed through multiple tests that the final self-consistent 

solutions are not dependent on this initial seeding method or value. 

 

Figure 4.3. Energy bands of two graphene layers separated by 1.0 nm of SiO2 (εr = 3.9), 
having layer potentials of –Δ/2 (top layer – blue) and +Δ/2 (bottom layer – 
red) in the uncoupled state (solid lines) along the high symmetry directions 
in the Brillouin zone (shown above). Δ = 0.5 eV. Phase coherence between 
layers creates a correlated, lower energy state (black dash-dotted lines). The 
inset magnifies the low energy spectrum, revealing a band gap Eg of 74 meV 
at 0 K for balanced top and bottom layer charge distributions, i.e., EF is 
located within the band gap in this case  

4.3  RESULTS OF SPONTANEOUS EXCHANGE INTERACTIONS IN GRAPHENE BILAYERS  

4.3.1 Characteristics of the real-space non-local exchange potential  

The non-local mean-field exchange interaction appears as an effective inter-layer 

hopping term in the tight-binding Hamiltonian. For conceptual understanding, it is 

convenient to subdivide inter-layer exchange into four contributions distinguished by 

sublattice indices for both top and bottom layers. Coupling between an A sublattice atom 

Δ 

Eg 
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in the top layer and an A sublattice atom in the bottom layer can be identified as an AT-

AB interaction. Similarly AT-BB, BT-AB and BT-BB interactions can be identified. 

The non-local nature of the exchange interaction is evident from the self-

consistently calculated AT-AB exchange potential shown in Fig. 4.4, obtained under the 

same conditions as given above for Fig. 4.3. The rapidly oscillating dependence of this 

nonlocal potential on RB − RT is apparent from the positive and negative excursions of 

the potential in Fig. 4.4. The picture becomes simpler if the contributions to VHF(RT,RB) 

from states near the two Dirac points kD are considered separately. (We have confirmed 

that the exchange potential contribution from near one Dirac point has little effect on 

quasi-particles near the other Dirac point, as assumed from the beginning in continuum 

model theories.)  When we divide out the phase factor D B Texp[ ( )]ik R R  from the 

VHF(RT,RB) contribution from near one or the other Dirac point kD we obtain the 

potential V'HF(RT,RB), illustrated in Fig. 4.5 for AT-AB and BT-BB interactions. To within 

the arbitrary constant phase factor for V'HF(RT,RB) as a whole discussed above, the 

resulting functions AT-AB and BT-BB can be taken as purely real. Furthermore, the 

eigenstates of the coupled system , ,sk that contribute most to the exchange interaction 

are necessarily those that significantly overlap both layers, those near the band anti-

crossing centered about the nominal Fermi surface kF = |kF − kD| location for the 

uncoupled system for these balanced charge distributions. The calculated exchange 

interaction decays not only with the large characteristic Coulomb decay of 2 2 1/2( )R d , 

but also with spatial correlation of the condensate which, for typical gaps in these 

calculations for coupled graphene layers, has a characteristic scale of ΔR ~ 1

Fk . 

The functions V'HF(RT,RB) for AT-AB and BT-BB, while of identical magnitude, 

are of opposite sign. This result is expected because conduction and valence band 

(pseudo-)spinors at a given wave-vector differ only by the relative sign of their 
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projections onto individual sublattices. This self-consistent coupling we obtain is of the 

form required to maximize the interaction between conduction band states in one layer 

and valence band states in the other layer. However, as evident from Figs. 4.6 and 4.7, 

V'HF(RT,RB) for AT-BB and BT-AB coupling are complex functions of RB − RT and have 

peak values that are quite a bit smaller than the AT-AB and BT-BB couplings, having only 

about one-fifth of the peak magnitude. Due to the chiral nature of graphene, the relative 

phases of the wave-functions on the A and B sublattices of each layer also vary rapidly 

with k around the Fermi surface. As a result, even for small ΔR, the mostly constructive 

phase interference among contributions of individual states , ,sk to V'HF(RT,RB) between 

A sublattice sites and between B sublattice sites, implies substantial destructive 

interference between the contributions to both AT-BB and BT-AB exchange potentials.  

We note that the mean-field interlayer coupling V'HF(RT,RB) is quite distinct in character 

from any familiar single-particle interlayer coupling, whether Bernal-like or hexagonal-

like. This observation will play a key role in the consideration of critical currents later. 

There are also separate solutions of the mean-field equations with mostly 

constructive interference among the contributions for either AT-BB or BT-AB exchange 

potentials, but at a cost of substantial destructive interference for all three other 

combinations, and  a corresponding weaker less energetically favorable total coupling, at 

least in the absence of bare coupling. As a result, in our self-consistent calculations of the 

spontaneous condensate, these solutions are unstable, as also to be expected physically.  

Finally we note that shifting the bottom layer lattice slightly in real space to 

obtain a hexagonal spatial overlap (AT above AB, BT above BB) has essentially no effect 

on the exchange potentials and band structure.  The spatial structure of the inter-layer 

hopping mean-field is determined almost exclusively by the sublattice structures of the 

wave-functions at the Fermi level in the separate layers, and hardly at all by the influence 
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of relative atomic positions on interlayer Coulomb interactions because of the large 

interlayer separations d as compared to inter-atomic distances within the layers.  Even in 

a strongly coupled bilayer (low temperature T, low εr, small d) the band gaps for real-

space hexagonal and Bernal atomic arrangements are equal to within fractions of meVs 

of one another. 

 

Figure 4.4. Left (a) The real-space variation of the exchange potential VHF(RT,RB) for 
coupling between atoms of the A sublattices of top and bottom layers, as a 
function of RB − RT. Δ = 0.5 eV, d = 1 nm, εr = 3.9, and balanced charge 
distributions at 0 K are assumed. Here and subsequent such plots, the color 
of the marker spheres indicate the value of the interaction, and the sizes of 
the spheres indicate the magnitude of this value. Right (b) Top view of the 
potential showing rapidly oscillating nature of VHF(RT,RB) 
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Figure 4.5. V'HF(RT,RB) for (left) AT-AB coupling and (right) BT-BB coupling, obtained 

by dividing VHF(RT,RB) by )](exp[ BB RRkDi , as a function of RB − RT. 

The imaginary components vanish. Δ = 0.5 eV, d = 1 nm, εr = 3.9, and 
balanced charge distributions at 0 K are assumed.  

 

Figure 4.6. (Left) Real and (right) imaginary parts of V'HF(RT,RB) for AT-BB coupling as 
a function of RB − RT. Δ = 0.5 eV, d = 1 nm, εr = 3.9, and balanced charge 
distributions at 0 K are assumed.  
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Figure 4.7. (Left) (Left) Real and (right) imaginary parts of V'HF(RT,RB) for BT-AB 
coupling as a function of RB − RT. Δ = 0.5 eV, d = 1 nm, εr = 3.9 and 
balanced charge distributions at 0 K are assumed.  

4.3.2 System parameter dependence 

In bilayer systems an electric potential difference between layers is necessary to 

induce carriers and open up the opportunity for condensation.  The dependence of the 

coherence-induced band gap, a measure of the condensate strength, on the electric 

potential difference Δ is shown in Fig. 4.8 for three different dielectric constants and a 

fixed interlayer spacing d of 1 nm. Note that there is continuous strengthening of the 

condensate with increasing Δ. However the rate of increase is smaller at large values of 

Δ. This diminishing rate of return is even more pronounced when viewed as a function of 

electron and hole densities, which scale as Δ
2
 because of the linear band structure in 

contrast to the Fermi energy which is equal to Δ/2. On the other hand, 2 FE should 

remain above roughly 8kBT where kB is Boltzmann's constant, which is approximately 

200 mV at room temperature. 
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Figure 4.8. Band gap as a function of potential difference Δ for three different 
dielectrics, with d = 1 nm and balanced charge distributions at 0 K.   

The low-energy quasiparticle band dispersion of the two-layer graphene system is 

plotted in Fig. 4.9(a) as a function of interlayer separation d, for effective dielectric 

constant εr = 2.2 and Δ = 0.5 eV. As d increases, the exchange interaction becomes weak 

and the band-structure approaches that of the uncoupled system. The nearly exponential 

dependence of band gap, a measure of the strength of the condensate, on layer separation 

is evident from the semilog plot in Fig. 4.9(b), where we plot the band gap at T = 0 K and 

Δ = 0.5 eV for two additional dielectric constant values. This strong dependence on the 

interaction strength, controlled by d, has the same origin as the familiar strong 

dependence on weak interactions in the qualitative McMillan formula for the critical 

temperatures of superconductors. 

In Figs 4.8, 4.9(b) and 4.10 we plot the condensate band gap as a function of εr for 

graphene layers separated by 1 nm, at Δ = 0.5 eV and T = 0 K and T = 300 K.  These 

figures exhibit the weakening of the condensate with increasing εr and the corresponding 

decrease in the Coulomb interaction between the two layers. Here we note that εr of 2.2 is 

essentially that used in original work of Ref. [56] and is close to that speculated for 
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graphene on SiO2 in air [72], or it can be thought of as that of a low-κ material like BN 

[73]. εr=3.0 corresponds to a low-κ dielectric like C-doped SiO2 [74], εr = 3.9 

corresponds to SiO2 and εr = 9.1 to a high-κ dielectric like Al2O3. 

 

Figure 4.9. Left (a). Low-energy dispersion of the graphene bilayer system with Δ = 0.5 
eV and εr = 2.2 at 0 K, and balanced charge distributions, as a function of 
layer separation d (legend entries are in nm). The labeled solid lines (black 
and red online, respectively) are the band structures of the top and bottom 
graphene layers in absence of an exchange coupling between the layers.  
Right (b) Band gap Eg in the correlated condensate state for three different 
dielectrics, showing exponential scaling of the band gap with layer 
separation, at 0 K with Δ = 0.5 eV and balanced charge distributions.  

 

Figure 4.10. Band gap for two graphene layers with Δ = 0.5 eV, d = 1 nm, and balanced 
charged distributions at 0 K and 300 K, as a function of the dielectric 
constant. The minimum values are limited by the accuracy of the 
calculation. 

Top 

Bottom 
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We note that the overall strength of the condensate is more sensitive to changes in 

εr than d, as further exhibited in Fig. 4.11 where the band gap is plotted vs. both εr and d. 

For example, the gap widens by a factor of about 3.9 when εr decreases from 4 to 2, but 

only by a factor of about 1.6 when d decreases from 2 nm to 1 nm. For the non-local 

exchange potential VHF(RT,RB) defined in Eq. 4.4, the underlying Coulomb interaction 

varies with εr
−1

 for all values of ΔR, but as d
−1

 only for ΔR = 0.  

 

Figure 4.11. Band gap Eg for the bilayer condensate with Δ = 0.5 eV and balanced 
charged distributions at 0 K, as a function of the interlayer dielectric 
constant εr and layer separation d. 

As in the theory of superconductivity, the mean-field theory condensate is 

destroyed by thermal energies kBT on the order of the 0 K energy gap, Eg0. Specifically, 

for these otherwise decoupled graphene bilayers, the occupation probabilities , ,sn k  of the 

electronic states , ,sk below the band gap that contribute most to VHF(RT,RB) decrease 

with increasing temperature.  In addition, the occupation of the states above the band gap 

increase in the same way, but the contributions to VHF(RT,RB) for any occupied states 

, ,sk  above the band gap are precisely opposite that for the corresponding 

state , ,sk below the band gap. Both contributions, thus, weaken VHF(RT,RB) with 
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increasing temperature. Furthermore, as the condensate weakens, the band gap shrinks 

producing a positive feedback and a rapid collapse in the self-consistently calculated 

condensate with increasing temperature. Fig. 4.12 shows the temperature dependence of 

the band gap for three different effective dielectric constants. The layer separation d = 1 

nm and the potential difference Δ = 0.5 eV in all cases. As expected, the lower the 

permittivity, the stronger the 0 K condensate, and the higher the temperature that can be 

tolerated. The insert in Fig. 4.12, where the data is scaled by Eg0, illustrates that the 

condensate decay is close to a universal function of kBT/Eg0 as expected for these 

balanced charge distributions, with collapse with temperature by kBT/Eg0 ≈ 0.25, or Eg0 ≈ 

4kBT. Any parameter change that alters the Eg0/kBT ratio is expected to produce a similar 

effect, as per the collapse of the condensate shown in Fig. 4.10 at a fixed temperature of 

300 K as a function of dielectric permittivity when as Eg0 approaches 100 mV (kB∙300 K 

= 25.9 mV).  

 

Figure 4.12. Temperature dependence of the band gap for three different dielectric 
constants with Δ = 0.5 eV, d = 1 nm and balanced charge distributions.  
Lower εr result in larger coupling strength and therefore larger 0 K band 
gaps that are, therefore, also more robust at higher temperatures. The top 
right insert shows the same data scaled by 0 K band gap (Eg0), to illustrate 
the similarity of the T dependence of band gap for different εr.  
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Mean-field theory accounts for condensate suppression due to fermionic entropy 

at finite temperatures, but does not account for thermal fluctuations of the condensate 

spatial distribution. The latter effect dominates at very large values of Eg0, as explained in 

[56], but because of the condensate‘s substantial phase stiffness, is expected to produce 

relatively small changes in critical temperature Tc at the coupling strengths that can be 

reached experimentally. 

4.3.3 Gate control: effect of charge imbalance  

Understanding the sensitivity of the condensate to charge imbalance may be 

critical to designing and interpreting experiments to observe the condensate. And gate 

control of the condensate through its dependence on electron-hole charge imbalance 

provides the switching mechanism imagined in the proposed BiSFET device. Under 

equilibrium conditions, a charge imbalance corresponds to a shift in the Fermi energy 

either up or down away from the middle of the condensate's band gap. In particular, 

lowering the Fermi level corresponds to decreasing the electron concentration in the 

upper graphene layer and increasing the hole concentration in the lower layer in these 

simulations. The associated reduction in occupation probabilities , ,sn k of the states , ,sk  

is most pronounced for those states of the correlated system nearest to the band edge, 

which again are those which contribute most strongly to VHF(RT,RB). Thus, the 

condensate is weakened and the band gap shrinks. For these unbalanced cases, the 

location of the Fermi level must be self-consistently calculated, along with changes in 

VHF(RT,RB), to maintain a fixed degree of charge imbalance as would be imposed by 

external gating.  We note that shifting the Fermi level up, corresponding to increasing the 

electron concentration and reducing the hole concentration, has an identical effect since 

the contributions of occupied states , ,sk above the band gap to VHF(RT,RB) precisely 
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cancel out the contributions of those of their counterparts , ,sk  below the band gap, as 

previously noted.  

   

Figure 4.13. Energy band edges and Fermi level as a function of carrier imbalance 
between top layer electron density and bottom layer hole density for 
graphene bilayers separated by 1 nm at 25 K and 300 K with εr = 3 and Δ = 
0.5 eV.  

Self-consistently calculated band edges and relative EF positions as a function of 

the charge imbalance between the top electron (n) layer and bottom hole (p) layer, here 

defined as (n p)/(n+p), for the graphene bilayers separated by 1 nm of εr = 3 low-κ 

material at 25 K and 300 K are shown in Fig 4.13. The same is shown for bilayers 

separated by 1.3 nm under otherwise identical conditions in Fig. 4.14. (We use 25 K here 

because, with the Fermi level now varying self-consistently with the band gap, the 

solutions become increasingly difficult to converge with decreasing temperatures.) We 

find that the condensate can be eliminated by charge balances of 25% or less in these 

simulations. And it can be substantially weakened at 300 K with charge variations of 

around 10%, which is all that would be required for the proposed BiSFET. Furthermore, 

though we have considered only a small region of the design space here, it appears that 

the weaker the initial condensate, the more sensitive it is to charge imbalance. Thus, from 
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an applications point of view, the strongest condensate is not necessarily the best 

condensate.  

   

Figure 4.14. Energy band edges and Fermi level as a function of carrier imbalance 
between top layer electron density and bottom layer hole density for 
graphene bilayers separated by 1.3 nm at 25 K and 300 K with εr = 3 and Δ 
= 0.5 eV.  

4.3.4 Critical current 

When single-particle interlayer coupling is neglected entirely, the total electronic 

energy Etot in the presence of the nearly ―spontaneously formed‖ condensate remains 

independent of the global interlayer phase difference between the layers, ω.  However, 

interlayer coherence is never truly spontaneous, but rather is influenced by other 

processes such as single-particle tunneling between layers which introduce an ω-

dependence to Etot. This feature of bilayer exciton condensate physics plays an essential 

role because it leads to dramatically enhanced inter-layer currents up to a critical value 

[65, 66, 69]. When the interlayer phase stiffness is large, the critical current is given by 

the maximum value of the collective interlayer current [75]:  

 
tot2cI e E , 4.8  
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When the layer degree-of-freedom in a bilayer is viewed as a pseudospin, Eqn. (4.8) can 

be viewed as a Landau-Liftshitz equation for the time-derivative of the pseudospin 

component which measures layer polarization. An interesting aspect of graphene bilayer 

condensate physics is that the collective current is sensitive to the details of the single 

particle interlayer coupling. In this section we illustrate this dependence by performing 

perturbative calculations for the weak Bernal-like and hexagonal-like bare interlayer 

coupling arrangements. In the next chapter we will explore in detail how the form of the 

exchange potential gets altered due to the nature and strength of the bare tunneling. 

To estimate the critical current here, we treat the bare interlayer coupling as a 

weak perturbation. The principal contribution to the total electronic energy Etot is that due 

to the interlayer mean-field exchange interaction. However, as noted before, this 

exchange interaction does not actually establish a preferred value for the phase difference 

ω between the layers, i.e., the condensate properties of the otherwise uncoupled layers 

remain the same if the phases of the self-consistent wave-functions are uniformly 

modified by a phase factor ie in one layer. Therefore, the global interlayer phase (ω) 

dependence of the total electronic energy Etot (Eqn. (4.8)) reduces to the ω-dependence of 

the expectation value of the corresponding single-particle coupling Hamiltonian 

contribution, Vbare, here calculated to first order in terms of the wave-functions of the 

unperturbed condensate state. This expectation value is, 

 
bare , , , , bare , ,

, ,

| |BZ s a s a s
s

V A n Vk k k k

k

, 4.9  

where Δk is the k-space area associated with each k-point, and ABZ is the Brillouin zone 

(BZ) area. The wave-functions have been normalized so that 

, , , , , ,
, ,

| 4BZ s a s a s
s

A nk k k k

k

per primitive unit cell, consistent with filling the 

band structure up to the Dirac point on average. The critical current, Ic, the maximum 
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steady-state current that can flow between the two condensates, can then be estimated 

from the maximum value of Eqn. (4.8), which now takes the form 

tot bare2 2cI e E e V  here (where both spin and valley 

degeneracy have already been accounted for in the summations above). 

In the geometry that is most commonly considered, the interlayer hopping would 

occur across a possibly amorphous dielectric. Epitaxial tunnel barriers, such as BN for 

example, could offer important advantages if the relative orientations of the graphene and 

BN layers could be controlled [76] as will become clear from the following discussion. 

Both the typical size of tunneling matrix elements and the degree to which they satisfy 

momentum conservation could vary widely. Here, for the purpose of illustration, we treat 

the bare tunneling as simply a parameter. Consider first bare interlayer coupling to be 

bareV t  for AT and AB atoms within the same bilayer primitive unit cell, and to be zero 

otherwise. For the condensate corresponding to 1 nm layer separation, a low-κ dielectric 

of εr = 3.0 and an interlayer potential of Δ = 0.5 eV at 0 K, which produced a 127 meV 

band gap, we find (see Fig. 4.15) that the critical current is approximately (t /eV) × 

(1.8×10
3
) × e  per primitive cell, or t  × 8.4 nA nm

2 
meV

1
. (Expressed per nominal 

charge carrier per layer, electron or hole, the critical current is (t /meV) × 0.58 × e .) 

For a t  of approximately 1 meV, this result is essentially that employed for modeling 

purposes for the BiSFET [14], although even 1.2 meV is beyond the perturbative limit for 

these calculations.  However, if under the same conditions otherwise, we take bareV t  

for a BT-AB Bernal-like coupling within the same primitive unit cell, the critical current 

essentially vanishes (drops by roughly two orders of magnitude or more depending on 

precise details of the layer alignments). The reason for these stark differences becomes 

clear upon noting that the values of Fock potentials V'HF(RT,RB) of Eqs. (4.4)—as 

illustrated by Figs. 4.5-4.6—at (or at least very close to) the origin, RB − RT = 0 are the 
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values of the corresponding expectation values of Vbare of Eq. 4.9, to within a factor of 

2

04 rt d e  and the phase factor ω.  As can be seen from these figures, in this way, 

bare AT-AB coupling or bare BT-BB will couple strongly to the condensate.  In contrast 

bare BT-AB or bare AT-BB coupling to the condensate essentially.  And the hexagonal-like 

in-phase sum of equal AT-AB and BT-BB coupling, which is essentially orthogonal to the 

condensate that is self-optimized in an "anti-hexagonal" manner to maximize the 

exchange coupling between the conduction band of one layer and the valence band of the 

other as discussed previously, suffers the same fate. These stark differences demonstrate 

that, in this perturbative limit at least, critical currents will be sensitive not only to the 

thickness of the tunnel barrier but also to its detailed atomic structure and coupling to the 

graphene. 

 

Figure 4.15. Expectation value of the interlayer tunneling <Vbare> expressed in terms of 

the assumed bare interlayer tunneling t , as a function of the interlayer phase 
difference ω (left axis, blue solid curve). Right axis (green dotted curve) 
shows the critical current. Both results are for interlayer bare tunneling 
between only AT and AB carbon atoms.  <Vbare> as well as the critical 
current approaches zero for Bernal-like or hexagonal-like perturbative 
coupling  
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We emphasize that the above results were obtained in the perturbative limit when 

the bare coupling is quite weak and has little or no effect on the condensate itself, such as 

might occur in initial efforts to experimentally observe such a condensate. However, in 

the presence of more significant if still moderate bare AT-BB or BT-AB coupling for 

example, the energetically favorable solutions for the combined Hamiltonian could take 

on this latter character, which would have a profound effect on the corresponding critical 

currents.  

4.4  CONCLUSION  

The prediction of the possibility of spontaneous excitonic condensation in two 

oppositely charged graphene monolayers separated by a thin dielectric layer up to and 

above room temperature under suitable conditions [55, 56] prompted us to study the 

dependence of the strength of such condensates on various system parameters [77]. While 

we were mostly interested in the property of the "spontaneously formed" condensate, we 

report here on the critical current that can flow between the graphene layers as a function 

of the bare coupling, treating the bare tunneling as a perturbation. Even within such 

approach, the sensitivity of the critical current to the detailed nature of the interlayer 

coupling was apparent, leading us to explore its effect in greater detail in the following 

chapter. 
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Chapter 5:  Effect of interlayer bare tunneling on electron-hole 
coherence in graphene bilayers  

In the previous chapter, we attempted to throw light on the nature of the 

spontaneous excitonic condensation in the limit of weak interlayer bare tunneling such 

that it can be treated as a perturbation. However, such perturbative treatment holds for 

only extremely small values of bare tunneling, and typically for critical currents below 

what would be required for, e.g., effective BiSFET operation. Moreover, interlayer 

coherence, is never truly spontaneous, but rather is influenced by other processes such as 

single-particle tunneling between layers. To extend the knowledge of the behavior of the 

condensate in the presence of substantial bare single-particle tunneling, in this chapter we 

present self-consistent solutions of the condensate state in the presence of bare tunneling 

of varying strength and pattern of interlayer coupling among the atomic sublattices of the 

two graphene layers.  

5.1 INTERLAYER BARE TUNNELING AS A TIGHT-BINDING PARAMETER  

The model of the system essentially remains unchanged [Fig. 4.2] and as before, 

we consider here both the Bernal as well as hexagonal layer overlap [AT above AB, and 

BT on top of BB, see Fig. 4.2 (b)], as will be evident later. We modify the Schrodinger‘s 

equation, given in Eqn. (4.5) and (4.6) to include the bare tunneling as: 

 

B

TB , , T , , T tnnl, HF T B , , B , , , , T( ) / 2  ( ) ( , ) ( ) ( )s s s s sH H Vk k T B k k k

R

R R R R R R , 5.1  

and †
TB , , B , , B HF B T , , T , , B, ,tnnl,

T

( ) / 2  ( ) ( , ) ( ) ( )s s s sk s
H H Vk k k kT B

R

R R R R R R  5.2  
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for the top and bottom layers, respectively. Here, ε are the eigenenergies and HTB is the 

nearest neighbor -orbital (pz-orbital for the assumed x-y oriented graphene planes) used 

before in Eqn. (4.6).  

 
tnnl,T B

H  is the top-to-bottom (signified by "T B‖, not, to be confused with "TB" 

signifying "tight-binding") part of the bare single-particle tunneling Hamiltonian, and 

was not considered self-consistently earlier, though treated perturbatively (equivalent to 

Vbare in previous chapter). For bare interlayer coupling from BT to AB carbon atoms with 

Bernal-like stacking, e.g., 
tnnl,T B

H  takes the form 
B Ttnnl,T B B( , )H t AR R , where 

B TB( , )AR R  is the Kronecker delta functions in the discrete 2D coordinates R, and t  is 

the tunneling amplitude considered earlier. The bottom-to-top (B T) part of the single-

particle tunneling Hamiltonian would then be just the Hermitian adjoint/conjugate, 

T B

† †

tnnl,B T B A tnnl,T B( , )H t HR R , although here we generally take t  as purely real.  

5.2 SELF-CONSISTENT RESULTS AND DISCUSSION 

In the geometry that is most commonly considered [14, 56], the interlayer 

hopping would occur across a dielectric, possibly amorphous. In general, the nature and 

type of the tunneling matrix elements could vary widely from system-to-system or even 

in the same system for amorphous dielectrics. We will consider a number of limiting 

cases here to tease out possible behaviors. 

5.2.1  Quasi-Hexagonal Bare Coupling, AT-AB and BT-BB 

Here, for illustration we first consider real quasi-hexagonal single-particle bare 

coupling between the graphene layers, such that single-particle bare tunneling occurs 

between AT-AB and BT-BB atoms only. However, we vary the bare hopping parameter t  

for each of these two interactions separately. Unless otherwise mentioned, for all 

calculations in this chapter we will consider the bilayer system separated by a low-  
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dielectric of permittivity εr=3.0, and thickness d = 1nm, having a potential asymmetry of 

/ 2 , where Δ=0.5 eV. For reference, under balanced charge distribution, the band gap 

for this system at T=0 K, is 127 meV. 

As shown in Fig. 5.1(a), for
T B T B,B -B ,A -A 0t t , the band gap of the system 

remains 127 meV, that of the condensate in the absence of coupling. In addition, as 

shown in Fig. 5.1(b), even with the coupling, the critical current remains essentially zero. 

It should be noted that such hexagonal-like bare coupling also would not provide 

conduction-band to valence-band coupling between the two graphene layers in the 

absence of the condensate; the overlap between conduction and valence band states of the 

same wavevector k with respect to such in-phase hexagonal coupling would be 

identically zero.  

In contrast, along the perpendicular "direction" to the above in 

T B T B,B -B ,A -At t space, i.e., 
T B T B,B -B ,A -A 0t t , there is a substantial increase of band-

gap with the magnitude of t , with the band gap reaching 163 meV for 

T B T B,B -B ,A -A 7.5t t meV. Along this direction, the phase-correlation relationship 

established among the sublattices of the two graphene layers by the bare tunneling alone 

is precisely the anti-hexagonal phase relation between the wavefunctions on A and B 

sublattices that maximizes the exchange interaction for the spontaneous condensate. 

Indeed, when considering all possible combinations of 
T B,A -At and 

T B,B -Bt coupling, it is 

only variations in the interlayer coupling in this 
T B T B,B -B ,A -At t direction that 

substantially affects the band gap, as also seen in Fig. 5.1(a). Furthermore, the interaction 

between the condensate and the bare tunneling is synergistic. The 36 meV increase of 

self-consistently obtained band gap for 
T B T B,B -B ,A -A 7.5t t  meV substantially 

exceeding the band gap produced by the bare tunneling alone (neglecting the exchange 

interaction), which is nearly equal to 
T B T B,B -B ,A -At t , or 15 meV in this case. The 
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coupling of the bare tunneling to the condensate is also evident from the substantial 

critical current Ic reaching approximately 193 nA/nm
2
 in these calculations for 

T B T B,B -B ,A -At t 7.5 meV. Another way of viewing these results is that the band gap 

and critical current are an approximately uniform function of the band gap produced by 

the bare coupling alone, even if the latter depends critically on the relative values of 

T B,A -At and 
T B,B -Bt . 

 

Figure 5.1. Surface plots showing on left the band gap (in meV) and on right the critical 
current density (Ic) variation for a graphene bilayer with weak coupling 
between AT-AB and BT-BB carbon atoms. For a given magnitude of bare 

tunneling, the maximum band gap (and Ic) occur when t BB = t AA , since 
that is the phase relationship established between the graphene sublattices to 
maximize the exchange interaction in the limit of the "spontaneous 

condensate" (t BB = t AA =0).  

5.2.2  Bernal-like, Hexagonal and "Half-Hexagonal" Coupling  

Considering for example, with a Boron Nitride (BN) interlayer dielectric [76], 

crystalographically aligned for the sake of argument, with differing layer thickness and 

differing surface atoms types, one could imagine a qualitatively Bernal-like AT-BB or BT-

AB coupling, or a "half-hexagonal" AT-AB or BT-BT coupling (in addition to effectively 

non-local bare coupling that we shall not explicitly consider here). The latter also 
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represents an intermediate sub-case of the coupling considered in subsection (A) above, 

but we shall expand on it here.  

The self-consistently calculated band gap and critical currents are shown in Figs. 

5.2 and 5.3 respectively, for both for AT-AB bare coupling only and for BT-AB bare 

coupling only. The sum of the band gap of the spontaneous condensate produced by the 

exchange interaction alone and that of the band gap produced by bare-coupling alone, 

where the latter is again approximately equal to the bare coupling potential t  in both 

cases, is also shown in Fig. 5.2 for reference. Note that the bare local BT-AB coupling is 

orthogonal to exchange interaction of the spontaneous condensate which essentially 

vanishes at RT = RB (The latter is also asymmetric and, thus, would still be orthogonal to 

any non-local AT-AB coupling that is symmetric in RT – RB). Accordingly, for smaller 

values of t , the critical current Ic is relatively very limited for BT-AB bare coupling. 

However, in the approximately 5 to 7.5 meV range, a transition occurs, above which the 

Ic approaches if not quite reaches that for AT-AB bare coupling of the same strength. As 

the gap produced by bare BT-AB coupling is again approximately equal to the bare 

coupling potential itself, this result means that above this transition the critical current 

approaches if not quite reaches the same functional dependence on the gap produced by 

bare coupling alone here as for anti-hexagonal coupling. At the same time, the self-

consistently calculated band gap actually decreases, initially falling below that of the 

spontaneous condensate alone, although it then begins to increase again, eventually 

exceeding the result for sum of the exchange only and bare coupling only results. As can 

be seen in Fig. 5.4, this transition is associated with a significant change in the nature of 

the condensate itself. Comparing the exchange potentials of Fig. 5.4 for t =0 to the result 

for BT-AB coupling, with t =5.0 meV one can see that the bare coupling has established a 

definite phase relation ω between the layers as the first required step to allow a critical 
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current, as evident in shifts between the real and imaginary components of the exchange 

interactions. In addition, there are quantitative changes apparent in the size and shape of 

the AT-BB and BT-AB exchange potentials. However, the exchange interactions still 

remain nearly orthogonal to the BT-AB interaction. By the time t  reaches 7.5 meV, 

however, the exchange potential has taken on the pattern and phase of the bare potential, 

being dominated by a strong BT-AB exchange interaction and a corresponding interlayer 

correlation in the wavefunctions. The chiral nature of graphene then forces destructive 

interference for the remaining exchange terms, reducing their contributions, much as 

discussed in Section 4.3.1for the spontaneous condensate.  

From Fig. 5.5, we find that the critical current varies as the square of the bare 

tunneling amplitude t . This is true for the AT-AB hexagonal-like as well as for the Bernal 

tunneling at high enough values, such that it is well coupled to the condensate. Indeed, 

for the AT-AB critical current, we find that for t  ranging up to 25 meV, the critical 

current follows the empirical relation, 20.3    8.58t t for the system studied here. For 

comparison, the BiSFET design employs a maximum current in the range of 10 nA/nm
2
. 

The bare tunneling value required to get such a critical current is nearly 2.5 meV. For 

larger t , significantly larger Ic is possible, though we realize that even in the ideal device, 

current will be limited by factors such as injection, finite-size effects and bias conditions. 

Note that the effects of precisely hexagonal-like bare coupling with AT-AB and 

BT-BB coupling of equal strength and phase are not shown in Figs. 5.2 and 5.3. While 

Bernal-like BT-AB or AT-BB bare and/or exchange coupling can produce a strong 

conduction-to-valence band coupling, such hexagonal coupling produces no coupling 

between the conduction and valence bands. Therefore even large precisely hexagonal 

bare coupling cannot couple to the condensate which inherently requires a strong 

conduction-to-valence band interaction. Only to the extent that bare coupling is 
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orthogonal to this hexagonal limit, will significant critical currents be possible, consistent 

with the results of Fig. 5.1 and confirmed for higher coupling strengths up to 100 meV. 

 

Figure 5.2.  Self consistent band gap vs bare tunneling (both in meV) for two different 
cases of bare tunneling (AT-AB only and BT-AB only). Band gap for single 
particle bare tunneling only is shown in pink, scaled by the spontaneously 
formed (no tunneling) coherent state band gap, Eg0 for comparison. Δ = 0.5 
eV, d = 1 nm, εr = 3.0, and balanced charge distributions at 0 K are assumed.  

 

Figure 5.3. Critical current as a function of bare tunneling for AT-AB and BT-AB 

coupling. The dependence becomes identical for large t  (inset). Δ = 0.5 eV, 
d = 1 nm, εr = 3.0, and balanced charge distributions at 0 K are assumed.   
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Figure 5.4. Self-consistent Fock exchange potentials V'HF(RT,RB) for graphene bilayers 

with a t bare tunneling between C atoms in Bernal (BT-AB) stacking for 
three different sublattice pair interactions, as a function of RB − RT. Δ = 0.5 
eV, d = 1 nm, εr = 3.0, and balanced charge distributions at 0 K are assumed.  
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Figure 5.5. Critical current supported by the excitonic condensate scaled by the bare 

hopping potential strength t  as a function of t  for the hexagonal-like (AT-
AB only) and bernal (BT-AB only) bare tunneling. For perturbative 

calculation, the critical current is directly proportional to t  for AT-AB 
tunneling, and is zero for BT-AB tunneling  

The relationship of the bare tunneling pattern to that of the condensate, even for 

weak bare tunneling values, can also be observed in the temperature dependence of the 

condensate, as shown in Figs 5.6 and 5.7. Previously, independent of dielectric or layer 

separation, in the absence of bare coupling we found the collapse of the condensate band 

gap (Eg) with increasing temperature to be a universal function of temperature when both 

the band gap and the thermal energy (kBT) were scaled by Eg0, where Eg0 is the 0 K band 

gap, having the same form as the variation of the order parameter with temperature in any 

mean-field theory [78]. In these figures a significant and increasing stretch-out of the 

collapse of the condensate is seen for with AT-AB bare coupling and strong BT-AB 

coupling beyond the above described transition in the condensate. For weaker BT-AB 

coupling the collapse remains more abrupt, although even here it should be noted that 

there is a residual gap that exceeds that for the bare coupling alone (again approximately 

equal to the bare coupling potential itself). 
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Figure 5.6. Temperature dependence of the band gap for three different bare tunneling 
values, zero, 1.0 meV and 2.5 meV, all having AT-AB tunneling only. εr = 
3.0 with Δ = 0.5 eV, d = 1 nm and balanced charge distributions. Top right 
insert shows the same data scaled by 0 K band gap (Eg0).  

 

Figure 5.7. Temperature dependence of the band gap for three different bare tunneling 
values, zero, 1.0 meV and 2.5 meV, all having BT-AB tunneling only. εr = 
3.0 with Δ = 0.5 eV, d = 1 nm and balanced charge distributions. Top right 
insert shows the same data scaled by 0 K band gap (Eg0).  
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5.2.3 Band gap, Critical current and Carrier Imbalance  

We have noted before that the effects of carrier imbalance on the condensate 

strength and critical current in the presence of a bare coupling will no doubt be relevant 

to experimental attempts to observe the condensate, and would be necessary for the 

proposed BiSFET to function based on gate control of the condensate. For the 

spontaneous condensate at least, we found in the previous chapter that imbalance of the 

electrons and holes in the two layers reduces the exchange interaction leading to an 

eventual collapse of the condensate to the normal state. 

As shown in Fig. 5.8, for better or worse AT-AB bare coupling makes the 

condensate more robust to charge imbalance, particularly large charge imbalance. Still as 

shown in Figs. 5.8 and 5.9, respectively, the calculated strength of the condensate as 

measured by the band gap and of the critical current, are monotonically and significantly 

decreasing functions of increasing charge imbalance at both the considered 25 K and 300 

K temperatures for all of considered bare coupling strengths t  which ranged up to 15 

meV (though we verified the trend up to t =25 meV). 

In contrast, for BT-AB there can be more complicated behavior. For example, as 

shown in Fig. 5.10, at a temperature of 25 K the band gap actually becomes much more 

sensitive to charge imbalance for low bare coupling strengths, 0.5 and 1.0 meV in this 

case. At higher coupling strengths at 25 K and for all cases at 300 K, the condensate, 

however, again becomes more robust to large charge imbalances as for AT-AB. The 

critical current behavior shows it's own distinctive traits. For 5 meV or less of bare 

coupling, below the transition from spontaneous-condensate anti-hexagonal exchange 

coupling to the bare-coupling-induced Bernal-like exchange coupling for balanced charge 

distributions, the initial effect of charge imbalance is actually to increase the critical 

current. For 7.5 meV of bare coupling or more, above the transition, the critical current 
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again decreases with charge imbalance, and monotonically at 300 K. This behavior for 

low BT-AB bare coupling can be associated with a shift in the pattern of the exchange 

potential of the spontaneous condensate with charge imbalance. As seen in Fig. 5.11, at 

T=25 K for 10% imbalance, the spontaneous condensate is no longer entirely orthogonal 

to the BT-AB bare coupling.  Thus, charge imbalance gives the BT-AB bare coupling a 

moderate head start toward shifting the pattern of the condensate and the exchange 

interaction from anti-hexagonal to Bernal-like, with an attendant increase in the critical 

current and, e.g., earlier initial drop in the condensate band gap seen in Figs. 5.23 and 5.3.  

5.3 CONCLUSION  

In this work, we have extended the mean-field theory treatment of interlayer 

exchange interactions within our atomistic tight-binding model of two graphene 

monolayers. By considering representative limiting cases, we show how the relation of 

the pattern of bare coupling among the atomic sublattices to that of the "anti-hexagonal" 

pattern of the exchange interaction for the spontaneously formed condensate (AT-AB and 

BT-BB coupling of same strength and opposite phase, with other terms being small) 

determines the relation of the band gap and critical current to the bare coupling. For 

example, for patterns of bare coupling that couple well to the anti-hexagonal pattern of 

the spontaneous condensate, a substantial critical current is obtained―readily larger than 

the values required for the BiSFET―dependent on 
T B T B,A -A ,B -Bt t . Bernal-like bare 

interlayer coupling (BT-AB or AT-BB), in contrast, is essentially orthogonal to the 

spontaneous exchange interaction and, thus, initially leads to very little critical current. 

However, by inducing a change in the condensate itself to a Bernal-like pattern, bare-

coupling-dependent band gaps and critical currents as a function of bare interlayer 

coupling strength are then obtained that approach those for patterns of bare coupling that 

do couple well to the spontaneously formed condensate. In contrast, hexagonal bare 
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coupling (AT-AB and BT-BB coupling of same strength and phase) does not couple well to 

either anti-hexagonal or Bernal-like forms of the condensate and exchange interaction. 

Nor is it possible to induce a shift in the condensate to a compatible hexagonal form, as 

such a hexagonal form is fundamentally incompatible with coupling between the 

conduction and valence bands of the respective graphene layers. Collectively, however, 

these results suggest that only patterns of bare coupling that can couple well to neither the 

anti-hexagonal pattern of the spontaneous condensate nor the inducible Bernal-like 

pattern will not be able to produce significant critical currents ultimately.  

Regardless of the pattern of bare coupling, these results suggest that the critical 

current may eventual become a roughly universal function of the band gap produced by 

bare coupling alone, although this behavior may be delayed for more Bernal-like bare 

coupling and the band gap produced by bare coupling alone is strongly dependent on the 

detailed pattern of the bare interlayer coupling itself.  

 

Figure 5.8. Self-consistent band gap as a function of imbalance for several different 
bare tunneling values for AT-AB coupling at T= 25 K (left) and 300 K 
(right).  Δ = 0.5 eV, d = 1 nm and εr = 3.0. The strength of the bare tunneling 
in meV is shown on the right. For comparison, the spontaneous condensate 

behavior (t  =0) is also shown. 
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Figure 5.9. Self-consistently calculated critical current for graphene bilayers having an 
AT-AB bare coupling as a function of carrier imbalance between the layers 
for increasing values of bare tunneling, at T= 25 K (left) and 300 K (right). 
The current density is shown in linear scale in the bottom row and in 
logarithmic scale in the top row. Δ = 0.5 eV, d = 1 nm, εr = 3.0. 

 

Figure 5.10. Self-consistent band gap as a function of imbalance for several different 
bare tunneling values for BT-AB coupling at T= 25 K (left) and 300 K 
(right).  Δ = 0.5 eV, d = 1 nm and εr = 3.0. The strength of the bare tunneling 
in meV is shown on the right. For comparison, the spontaneous condensate 

behavior (t  =0) is also shown. The arrows in the left figure (T=25 K) 
denote the cases, for which the exchange potentials have been drawn in Fig. 
5.13 to explore the reason behind the variation obtained here. 
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Figure 5.11. Self-consistently calculated critical current for graphene bilayers having a 
BT-AB bare coupling as a function of carrier imbalance between the layers 
for increasing values of bare tunneling, at T= 25 K (left) and 300 K (right). 
The current density is shown in logarithmic scale in the top row and in 
linear scale in the bottom row. Δ = 0.5 eV, d = 1 nm, εr = 3.0. 

 

Figure 5.12. Self-consistent band gap as a function of imbalance for several different 
bare tunneling values for AT-AB coupling at T= 25 K (left) and 300 K 
(right).  Δ = 0.5 eV, d = 1 nm and εr = 3.0. The strength of the bare tunneling 
in meV is shown on the right. For comparison, the spontaneous condensate 

behavior (t =0) is also shown. 
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Figure 5.13. Self-consistent Fock exchange potentials V'HF(RT,RB) for graphene bilayers 
showing the loss of symmetry due to carrier imbalance. Δ = 0.5 eV, d = 1 
nm, εr = 3.0, and T= 25 K for these simulations.  
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Chapter 6:  Conclusion 

In this section, I provide a summary of work done in the course of the research 

program, and suggest avenues for future research. 

6.1  SUMMARY  

Back in 2005, when I started working on this program, silicon nanowire 

MOSFETs had already been demonstrated [79], and their advantages over planar MOS 

devices [80, 81], had caught the attention of the semiconductor industry [82]. I had just 

joined the modeling and simulation group here at UT and started looking at the effect of 

surface roughness on transport in tri-gate silicon-on-insulator (SOI) MOSFETs as part of 

getting familiar with non-equilibrium Green‘s function based transport. The importance 

of random dopant fluctuation (RDF) had started becoming important due to the small 

scale of such devices, and our surface roughness studies with random dopant distribution, 

gave us interesting results that were later published.  (Note that based on this work on 

RDF in nanowire transistors, Micron Technologies, Inc. offered me an internship in 

summer 2008 at Boise, ID, where I looked at the dynamic random access memory 

(DRAM) process flow to identify the important process factors that cause extrinsic 

variations to electrical parameters of access transistors. Subsequently, I developed and 

demonstrated an efficient Response Surface Model to serve as a surrogate to the TCAD 

simulations for optimizing process conditions to reduce variation [83, 84].) However, the 

effective-mass framework which we were using for solving electron transport in these 

devices were clearly not sufficient for hole transport [85], because of the warped valence 

band structure. This prompted me to turn my attention towards the development of full-

band quantum transport code.  
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Of the several different band structure calculation methods, I was keen to adapt 

the tight-binding method, as the discrete, atomistic nature of it appealed to me (having 

grown used to discretizing the effective mass Schrodinger equation to a pseudo-tight-

binding form). The details of this development and the advantages of this method can be 

found in Chapter 2. The original intention was to use this tight binding full-band fully-3D 

quantum simulator to the study hole transport in silicon, Ge and III-V channel devices. 

However, the band structure that emerged from empirical tight binding method using five 

orbitals (sp
3
s*) only, as we were doing, while being reasonably accurate, and being 

optimum from the accuracy vs. computational load perspective [22], was inferior to 

models that employed more orbitals (sp
3
s*d

5
) within the tight-binding framework to 

capture the richness and more detail of the band structure [86], or methods like k.p which 

are reported to reproduce the hole band structure to a greater accuracy [85]. However, 

since our five band model gave reasonably accurate results near the gamma point, we 

employed it to model conduction band-to-valence band tunneling in III-V materials like 

InSb nanowires. Details on this result as well as the method of calculation of the tight-

binding transport are given in Chapter 2. 

In the mean time, research in graphene had picked up significantly since the 

discovery of the mechanical exfoliation method in 2004 [12], and by early 2007, when I 

had nearly finished the development of my atomistic tight-binding transport code, the 

first field-effect device based on monolayer graphene had already been demonstrated 

[34]. I had already started work on graphene, and the fact that for graphene, a single  

orbital per atom is sufficient to model the transport allowed me to continue to use my 

program to simulate large devices on personal workstations instead of employing 

supercomputers. As I comment in Chapter 3, initial simulation studies of ideal armchair-

edge graphene-channel MOSFETs reported extremely good device performance. Later 
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studies that employing a full-band model [37] (as compared to the effective mass 

treatment in [35]), also predicted excellent device characteristics, but as before 

considering ideal edge graphene nanoribbons. This prompted us to investigate the effects 

of non-ideal edges on the transport in graphene nanoribbons, as well as the effect of such 

roughness on device performance when these ribbons are used as the channel in 

MOSFETs. We used a simple correlation index to model the degree of roughness in the 

channel, and the ‗atomistic‘ nature of the full-band model helped us to easily treat the 

effect of vacant sites along the armchair edges giving rise to irregular edges, which, as we 

found, have a profound deleterious effect on the transport. For the same degree of 

roughness, the effect was more severe as the channel width was reduced, and we 

concluded that smooth ideal nanoribbons were key to achieving a high ON/OFF current 

ratios and device-to-device reproducibility as required to employ these graphene devices 

for logic. Chapter 3 discusses these details. 

Following the prediction of excitonic condensation of electrons and holes in 

graphene bilayers that could possibly survive at room temperatures and higher, my 

advisors working with Prof.s MacDonald and Tutuc had proposed to utilize the enhanced 

interlayer tunneling possible in such a condensate state to design a low-power, yet fast 

logic device, the BiSFET [14]. After coming back from my above mentioned 2008 

summer internship, I initially did preliminary single-particle calculations for tunneling 

transport in a graphene bilayer, where we mimicked the enhanced coupling in the 

condensate state empirically by treating the interlayer hopping between the Bernal-

stacked carbon atoms as a parameter that was varied to observe its effect on tunneling 

transmission [87]. Subsequently, I concentrated my efforts on simulating the equilibrium 

bulk graphene bilayer system with the exchange potentials calculated on the real-space 

tight-binding π-orbital basis, so that the self-consistent potentials obtained at the end can 
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be put into use later to improve our effective single-particle picture.  In the process, we 

explored the effect of various system parameters including carrier density, dielectric 

permittivity and thickness, and temperature on the strength of the condensate. The results 

of these are detailed in Chapter 4. We also studied the effect of charge distribution 

imbalance, which is the mechanism of condensate control in the BiSFET proposal, and in 

the limit of very weak to zero bare tunneling, we found that the condensate does weaken 

with increasing charge imbalance, and eventually collapses to the normal state.  

The enhanced interlayer tunneling current, which the device proposals on the 

condensate attempt to exploit, require a finite, even if weak, bare tunneling to survive. 

Therefore in the limit of weak bare tunneling, I explored the critical current supported by 

the condensate state, and these results are given in the final sections of Chapter 4. I found 

that, in this perturbative limit, while the critical current is proportional to the bare 

tunneling in the case of A-A bare tunneling only, it goes to zero in both the Bernal (A-B) 

or hexagonal (A-A and equal B-B only) cases. However, the ranges of bare tunneling that 

were allowed in the perturbative treatment being extremely small (typically less than 1 

meV, though the exact values depend on the system parameters chosen). We next 

attempted to self-consistently include the bare tunneling within the Hamiltonian, and 

calculate primarily the band gap, which measures the strength of the condensate, and the 

critical current, which is the key design parameter for device applications of the 

condensate. These calculations, reported in detail in Chapter 5, reveal the sensitivity of 

the condensate to the detailed nature as well as strength of the bare tunneling.  I found 

that if the bare interlayer coupling couples well to the spontaneous condensate obtained 

in the absence of coupling, e.g., A-A coupling only, the condensate is strengthened by the 

presence of bare tunneling, and the critical currents are enhanced, as shown in Chapter 5.  

On the other hand, I found that bare interlayer coupling that does not couple well to 
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spontaneous condensate, leads to extremely weak critical current that is also difficult to 

control by carrier imbalance, at least initially.  However, for stronger coupling, the bare-

coupling can cause nature of the condensate itself to change, and much of the behavior 

for couplings that do couple well to the condensate initially is regained.  Since 

experimental efforts to observe this condensate state also may rely on enhanced interlayer 

current as a signature of the correlated state, the conclusions arrived at here may serve as 

important beacon to such efforts. The results I arrived at indicate the necessity to achieve 

a sufficient control over the interlayer single-particle processes in order to not only 

design devices based on the condensate control, but also experimentally observe this 

condensate state. 

6.2 FUTURE WORK  

Graphene remains a fascinating field of study with fresh discoveries and 

applications regularly [32], as well as significant technological progress to synthesize 

large-area graphene flakes on which these novel electronic devices can be built [88, 89]. 

As a continuation of the work presented here, the following areas of research seem 

interesting. 

6.1.1 Rotated bilayer graphene  

To date we have considered only aligned graphene bilayers.  Rotated graphene is 

a rich field of study, particularly because such are observed frequently experimentally in 

grown graphene bilayers, for example, in epitaxial graphene on the C-terminated face of 

SiC [90]. A perturbative treatment of the bare interplanar tunneling within tight-binding 

theory [91] leads to a reduced velocity of the quasi-particles near the Dirac point of 

rotated graphene bilayer compared to conventional Bernal-stacked graphene bilayers. 

More recently, ab initio treatment of rotated graphene, as well as rigorous tight-binding 
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treatment [92] also reaches the same conclusion, while also pointing out the possible 

localization of the electrons in bilayers with a small angle of rotation. Regarding 

formation of a condensate, if the two graphene monolayers are rotated, then the degree to 

which a condensate can form, the degree to which bare tunneling is able to couple to the 

condensate, and how it influences the long-range order that the exchange interaction tries 

to establish, remains to be found.   

For modeling these rotated graphene bilayers within a tight-binding framework, 

we note that for rotation about the BT-AB carbon atom, which are stacked one on top of 

the other in a regular Bernal stacking, for a commensurate rotation, one gets periodic 

structures for the bilayer, of course, with bigger primitive cell, whose size increases with 

decreasing angle of rotation [91].  For such periodic structures, we can extend the 

treatment of exchange interaction as detailed here, at the cost of increasing computational 

complexity. This natural extension, even for relatively large angle commensurate 

rotation, such that the primitive cell is small, should indicate to possible fate of exchange 

interactions in a rotated graphene bilayer. 

6.1.2 Spatially inhomogeneous bare tunneling  

In a similar vein, instead of using a four-atom primitive cell for the regular 

graphene bilayer stacking (hexagonal or Bernal) considered here, using larger primitive 

cells, and different bare tunneling amplitudes between the vertically stacked carbon 

atoms, we can come up with a simple model of inhomogeneous bare tunneling across 

these graphene bilayers, which is very likely to occur when tunneling across an 

amorphous dielectric. While in this case the periodic treatment would imply an artificial 

repetition of the exact same spatial inhomogeneity in bare tunneling, one can possibly 

reduce this effect by increasing the size of the primitive cell under consideration. 
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6.1.3 Non-equilibrium transport  

While we have investigated the maximum interlayer current that can flow 

between the two graphene layers in the condensate state, it remains a calculation based on 

equilibrium condensate properties. We can extend this to non-equilibrium calculation by 

using our variant of non-equilibrium Green‘s function detailed earlier. While our Green‘s 

function transport calculation employed a nearest-neighbor tight-binding Hamiltonian, 

the exchange potentials are non-local, and therefore, inclusion of such in the Hamiltonian 

necessitates re-formulation of the eigenfunction equation and the stabilization routines. In 

principle though, that remains possible. Alternatively, one may truncate the long-range 

interaction to a shorter range "effective" exchange interaction, and simulate a finite 

BiSFET device. We had earlier taken steps in this direction, by simulating single-particle 

transport for a device schematic shown in Fig. 4.1 assuming a delta function single-

particle tunneling between the Bernal stacked carbon atoms in the two graphene layers 

within the coupled region, and uncoupled source-drain contacts from which we inject and 

extract carriers [87]. However, that was a first step to investigating the flow of current in 

the BiSFET geometry, and we can now improve the model by employing our knowledge 

of the self-consistent exchange potentials, to include a slightly longer range effective 

single particle hopping that mimics the Fock potentials. 
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