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ABSTRACT. We provide a comprehensive overview of the strengths and weaknesses of different spa-
tial econometric model specifications in terms of spillover effects. Based on this overview, we advocate
taking the SLX model as point of departure in case a well-founded theory indicating which model is
most appropriate is lacking. In contrast to other spatial econometric models, the SLX model also allows
for the spatial weights matrix W to be parameterized and the application of standard econometric
techniques to test for endogenous explanatory variables. This starkly contrasts commonly used spatial
econometric specification strategies and is a complement to the critique of spatial econometrics raised
in a special theme issue of the Journal of Regional Science (Volume 52, Issue 2). To illustrate the pitfalls
of the standard spatial econometrics approach and the benefits of our proposed alternative approach
in an empirical setting, the Baltagi and Li (2004) cigarette demand model is estimated.

1. INTRODUCTION

Spatial spillovers are a main interest in regional science. They can be defined as
the impact of changes to explanatory variables in a particular unit i on the dependent
variable values in other units j (�i).1 A valuable aspect of spatial econometric models
is that the magnitude and significance of spatial spillovers can be empirically assessed.
Improved accessibility to spatial panels and software, along with advances in the field,
has increased the use of these methods over the past years.

Recently, spatial econometrics has been appraised in a special theme issue of the
Journal of Regional Science (JRS). Partridge et al. (2012) provide an overview of the
three contributing papers of Gibbons and Overman (2012), McMillen (2012), and Corrado
and Fingleton (2012). Gibbons and Overman’s (2012) critique focuses on identification
problems. For a better understanding, it is important to distinguish three different iden-
tification problems in spatial econometrics. The first is mentioned by McMillen (2012,
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a previous version in December 2012, as well as valuable comments from participants of the 59th Annual
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p. 196): “There are N(N-1) potential relationships among the observations, but only N
data observations are available.” This problem can be solved by imposing model structure
at the start in the form of a spatial weights matrix W, which reduces the number of
parameters to be estimated from N(N-1) to a number that corresponds to the number of
spatial interaction effects that are considered in the spatial econometric model.2 In this
respect, spatial econometrics differs from the neighborhood effects literature. Whereas
spatial econometric researchers can observe the geographical location of the units in the
sample and utilize this information to impose structure on W by placing more weight on
closer observations, neighborhood effects researchers often do not have this kind of infor-
mation, mainly because group formation tends to be independent of geographical location.
Often groups or cells of similar types of people within a neighborhood are formed based
on gender, age, education, etc. The question which groups should be formed creates a new
identification problem.

The second identification problem is stressed by Gibbons and Overman (2012) in
section 2 of their paper, and also highlighted by McMillen (2012), Corrado and Fingleton
(2012), and Partridge et al. (2012). Different spatial econometric models are generally im-
possible to distinguish without assuming prior knowledge about the true data-generating
process, which is often not possessed in practice. The same applies to the W matrix. Al-
though the proposition to place more weight on closer observations is widely accepted, the
true W is generally unknown. McMillen (2012, p. 192) critiques the use of a pre-specified
W because it demands a specific functional form, as well as the routine use of the spatial
autoregressive model (SAR) and the spatial error model (SEM) as a quick fix for nearly any
model misspecification issue related to space.3 Elhorst (2010) confirms that up to 2007 spa-
tial econometricians were mainly interested in the SAR and SEM models, and points out
that the seminal book by Anselin (1988) and the testing procedure for these models based
on robust Lagrange Multiplier tests developed by Anselin et al. (1996) may be considered
as the main pillar behind this way of thinking. Due to this, still too many empirical papers
consider only the SAR and SEM models based on one or more pre-specified W matrices.
Corrado and Fingleton (2012) also acknowledge that too often applied studies have been
driven by data-analytic considerations with an emphasis on diagnostics and empirical
model validity. For this reason, they strongly argue for the use of more substantive the-
ory in empirical spatial econometric modeling, especially regarding W.4 While McMillen
(2010, 2012) advocates the use of nonparametric and semiparametric methods as an al-
ternative to simply imposing common specifications of W whose appeal seems to lie in the
frequency of their use, Corrado and Fingleton (2012) propose a hierarchical model with a
block-diagonal group interaction matrix taken from the neighborhood effects literature.

2An exception is if W is parameterized, which increases the number of parameters to be estimated.
Note that there is a link with nonspatial regression models; the response coefficients of a simple linear
regression model are also fundamentally unidentified if one does not make the basic assumption that they
are the same for all observations in the sample.

3In this paper, we use the acronyms used in LeSage and Pace (2009). Figure 1 hereafter gives a full
overview. As noted by a referee, although McMillen (2012) uses the SAR model for illustration purposes, his
critique is applicable to other parametric model extensions. In general, the assumption of linear functional
forms is questioned; in this respect, also see McMillen (2013).

4They also show that many studies are based on a well-founded theoretical background such as
Fingleton and Lopez-Bazo (2006) and Ertur and Koch (2007) with specifications based on neoclassical
growth theory. Another example they provide is the modeling of social networks using the SAR model
where, e.g., a student’s behavior is directly affected by the behavior of their friends. Another notable
example, mentioned in McMillen (2012, 2013), is Brueckner (2006) who adopts the SAR model to empiri-
cally assess strategic interaction among local governments (see also Brueckner, 2003). Recently, Buonanno
et al. (2012) provide a well-founded theoretical background of W as an exponential distance decay function
to analyze crime and social sanction in Italy.
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The third identification problem occurs when the unknown parameters of a model
cannot be uniquely recovered from their reduced-from specification even if the spatial
econometric model and W are correctly specified. This is the topic of section 3 in Gibbons
and Overman’s contribution. By now, many papers have shown that the parameters of the
main spatial econometric models are formally identified and can be consistently estimated
if correctly specified and W satisfies certain regularity conditions. Kelejian and Prucha
(1998, 1999) consider the IV/GMM estimator of the SAR and the spatial autoregressive
combined (SAC) model; Lee (2004) focus on the (quasi-)ML estimator of the SAR model;
Bramoullé et al. (2009) study identification of the spatial Durbin model (SDM) in terms
of instrumental variables for both the group interaction and arbitrary spatial weights
matrices and prove that the matrices I, W, and W2 should be linearly independent, and
that the parameters in the SDM model should not satisfy the common factor restriction
derived by Burridge (1981).5 They demonstrate that endogenous and exogenous interac-
tion effects are separable, unless one of these two conditions breaks down. Liu and Lee
(2013) consider the IV estimator of the SAR model and Drukker et al. (2013) the GMM
estimator of the SAC model in the presence of additional endogenous regressors besides
spatial interaction effects among the dependent variable. Generally, these studies find
that the correlation between two units in the spatial weights matrix should converge
to zero as the geographical or economic distance separating them increases to infinity,
thereby corroborating the basic idea to place more weight on closer observations. The in-
creased attention to endogenous regressors is laudable since researchers face uncertainty
about the endogeneity of X in (nearly) all applications (Fingleton and Le Gallo, 2008,
p. 320; Gibbons and Overman, 2012, p. 186). In sum, only the parameters of a spatial
econometric model with all possible spatial interaction effects based on arbitrary spatial
weights matrices have not been proved to be free of this type of identification problem, as
we will also demonstrate empirically in this paper.

In conclusion, we can say that the basic identification problem in spatial econometrics
is the difficulty to distinguish different models and different specifications of W from each
other without reference to specific economic theories.

In view of these critical notes, it is clear that the way of thinking and the model
selection strategy that are used to determine the structure of spatial processes need
revision. Gibbons and Overman (2012) propose two solutions. One, which is their
preferred approach, is the use of natural experiments and microeconomic data sets. The
second solution is to take the spatial lag of X (SLX) model as point of departure (Gibbons
and Overman, 2012, p. 183). We support and further work out this second proposal of
Gibbons and Overman, but for additional reasons than pointed out in their paper.

Until recently, empirical studies used the coefficient estimates of a spatial econo-
metric model to test the hypothesis as to whether or not spatial spillover effects exist.
However, LeSage and Pace (2009) point out that a partial derivative interpretation of
the impact from changes to the variables represents a more valid basis for testing this
hypothesis. By considering these partial derivatives, we are able to show that some mod-
els are more flexible in modeling spatial spillover effects than others, and that the SLX
model is the simplest one of those. Importantly, model selection strategies that have been
developed in the literature so far generally focus on the SEM, SAR, SAC, and SDM mod-
els, whereas the SLX model is left out of the picture, even though this model has been
considered in applied research before (see, e.g., Boarnet, 1994a, 1994b, 1998; Holtz-Eakin

5� + �� = 0 with � = 0 in Equation (2).
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and Schwartz, 1995; Dalenberg et al., 1998; Fischer et al., 2009).6 This holds for the ro-
bust LM tests developed by Anselin et al. (1996) and for the recent interest in models
containing more than just one spatial interaction effect, in particular pertaining to the
SAC and SDM models. It also holds for studies comparing the general-to-specific and the
specific-to-general approaches (Florax et al., 2003; Mur and Angulo, 2009),7 the emerging
literature on Bayesian posterior model probabilities (LeSage and Pace, 2009, chapter 6;
Mur et al., 2013), and the J-test (Kelejian, 2008; Burridge and Fingleton, 2010; Burridge,
2012). In stark contrast to these standard and emerging spatial econometric specification
strategies, we follow Gibbons and Overman’s (2012) proposal to take the SLX model as
point of departure, unless the researcher has an underlying theory or coherent economic
argument pointing toward a different model.

Another reason, also not discussed in Gibbons and Overman (2012), is that in con-
trast to other spatial econometric models, the elements of W in the SLX model can be
parameterized. This allows for greater flexibility in the specification of W, which is an
often criticized aspect of spatial econometric modeling (Corrado and Fingleton, 2012;
McMillen, 2012). A final reason is that standard instrumental variables (IV) approaches,
developed outside the spatial econometrics literature, can be used to investigate whether
(part of) the X variables and their spatially lagged values, WX, are endogenous.

The setup of this paper is as follows. First, we provide a comprehensive overview of
the spillover effects that result from linear spatial econometric models with all different
combinations of interaction effects. By taking this perspective, we discuss the advantages
and limitations of adopting different specifications. Our intention is to provide more guid-
ance for researchers aiming to empirically assess spillover effects. Besides the advantage
that the spillover effects using the SLX model are more straightforward, both in terms of
estimation and interpretation, they are also more flexible than those from the commonly
used SEM, SAR, and SAC models. Furthermore, instead of adopting the traditional binary
contiguity matrix, in Section 3 we propose using a W that is parameterized. To compare
both the standard spatial econometric approach and our proposed alternative approach in
an empirical setting, the Baltagi and Li (2004) cigarette demand model is estimated. This
empirical application demonstrates that the common approach leads to incorrect infer-
ences and that ignoring potential endogeneity of regressors, and thereby, the application
of IV estimators, may also lead to incorrect inferences. Finally, we provide conclusions
and suggest directions for further research.

2. SPATIAL ECONOMETRIC MODELS AND CORRESPONDING DIRECT AND
SPILLOVER EFFECTS

Figure 1 summarizes different spatial econometric models that have been considered
in the literature. It extends the figure presented in Elhorst (2010) to include the SLX
model. The simplest model considered in Figure 1 is the familiar linear regression model
which takes the form

6Many of these studies consider explanatory variables measured in surrounding spatial units without
explicitly labeling the model the SLX model, which is one of the reasons they are difficult to trace in the
literature.

7One exception is Florax and Folmer (1992), who are among the first to compare the performance
of three selection procedures to choose among SAR, SEM, SDM and, importantly, also the SLX model.
They use the commonly applied LM-tests to test for either a spatial autoregressive or a spatial error term
specification and propose an F-test to test for spatially lagged independent variables. Unfortunately, their
Monte Carlo simulation experiment shows that the probability of finding the true model out of these four
models is rather poor.

C© 2015 Wiley Periodicals, Inc.
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Note: GNS = general nesting spatial model, SAC = spatial autoregressive combined model, SDM = spatial
Durbin model, SDEM = spatial Durbin error model, SAR = spatial autoregressive model, SLX = spatial lag of X
model, SEM = spatial error model, OLS = ordinary least squares model.

FIGURE 1: Comparison of Different Spatial Econometric Model Specifications.

Y = ��N + X� + �,(1)

where Y represents an N × 1 vector consisting of one observation on the dependent vari-
able for every unit in the sample (i = 1, . . . , N), �N is an N × 1 vector of ones associated
with the constant term parameter �, X denotes an N × K matrix of explanatory variables
associated with the K × 1 parameter vector �, and � = (ε1, . . . , εN)T is a vector of inde-
pendently and identically distributed disturbance terms with zero mean and variance
�2.8 Since model (1) is commonly estimated by ordinary least squares (OLS), it is often
referred to as the OLS model.

Starting with the OLS model, the spatial econometrics literature has developed mod-
els that treat three different types of interaction effects among units: (i) endogenous in-
teraction effects among the dependent variable, (ii) exogenous interaction effects among
the explanatory variables, and (iii) interaction effects among the error terms.

Unfortunately, there is a gap in the level of interest in these interaction effects
between econometric theoreticians and practitioners. Theoreticians are mainly interested
in models containing endogenous interaction effects, interaction effects among the error
terms or endogenous interaction effects in combination with either exogenous interaction
effects or interaction effects among the error terms (i.e., the SAR, SEM, SDM, and
SAC models, respectively), because of the econometric problems and often complicated
regularity conditions accompanying the estimation of these models. The reason they do
not focus on the spatial econometric model with only exogenous interaction effects is
because the estimation of this model does not cause severe additional econometric prob-
lems, provided that the explanatory variables X are exogenous and the spatial weights
matrix W is known and exogenous. Under these circumstances standard estimation
techniques suffice.9 Consequently, the SLX model is not part of the toolbox of researchers
interested in the econometric theory behind spatial econometric models. We emphasize,
however, that since the X variables are often not exogenous and the W matrix is generally

8The superscript T indicates the transpose of a vector or matrix.
9By replacing the argument X by X = [X WX] of routines that have been developed to estimate SAR,

SEM, and SAC models, one can also estimate the SDM, SDEM, and GNS models.
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unknown, econometric challenges remain.10 The extension of Figure 1 with the SLX
model is intended as a call for both theoretical and applied spatial econometric work to
pay more attention to this model and these two issues.

The model in Figure 1 that includes all possible interaction effects takes the form:

Y = �WY + ��N + X� + WX� + u, u = �Wu + �.(2)

We will refer to model (2) as the general nesting spatial (GNS) model since it includes
all types of interaction effects.11 The spatial weights matrix W is a positive N × N matrix
that describes the structure of dependence between units in the sample. The variable
WY denotes the endogenous interaction effects among the dependent variables, WX the
exogenous interaction effects among the explanatory variables, and Wu the interaction
effects among the disturbance terms of the different observations. The scalar parameters
� and � measure the strength of dependence between units, while �, like �, is a K × 1
vector of response parameters. The other variables and parameters are defined as in
model (1).

Since the GNS model incorporates all interaction effects, models that contain less in-
teraction effects can be obtained by imposing restrictions on one or more of the parameters
(shown next to the arrows in Figure 1). Both frequently used, but also largely neglected
models are included. In particular, the SLX model is generally overlooked in the spatial
econometrics literature.

Various methods can be applied to estimate spatial econometric models such as
maximum likelihood (ML), instrumental variables or generalized method of moments
(IV/GMM), and Bayesian methods. There is a large literature on how the coefficients of
each of the interaction effects can be estimated.12 Considerably less attention has been
paid to the interpretation of these coefficients. Many empirical studies use the point esti-
mates of the interaction effects to test the hypothesis as to whether or not spillovers exist.
Only recently, thanks to the work of LeSage and Pace (2009), researchers started to realize
that this may lead to erroneous conclusions, and that a partial derivative interpretation
of the impact from changes to the variables of different model specifications represents a
more valid basis for testing this hypothesis.

Direct and Spillover Effects

The direct and spillover effects corresponding to the different model specifications are
reported in Table 1. By construction, the OLS model does not allow for spillovers since it
makes the implicit assumption that outcomes for different units are independent of each
other, which is restrictive especially when dealing with spatial data. Even though the
SEM takes into account spatial dependence in the disturbance process, it also provides
no information about spillovers, as shown in Table 1.13 This is clearly a major limitation
of the SEM if measuring the effects of spillovers is of great interest. The direct effect,
i.e., the effect of a change of a particular explanatory variable in a particular unit on
the dependent variable of the same unit, is the only information provided. Therefore, if

10The authors thank the referees for their comments on these issues and come back to them in
Sections 3 and 4.

11LeSage and Pace (2009, p. 53) neither name nor assign an equation number to model (2), which
reflects the fact that this model is typically not used in applied research.

12For example, LeSage and Pace (2009) provide details on the ML and Bayesian methods and Kelejian
and Prucha (1998, 1999, 2010) and Kelejian et al. (2004) on IV/GMM estimators.

13Lacombe and Lesage (2013) also reserve the term “spillover effects” to refer to spillovers resulting
from an observable explanatory variable. For the SEM model, the term “diffusion of shocks” is used.

C© 2015 Wiley Periodicals, Inc.
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TABLE 1: Direct and Spillover Effects Corresponding to Different Model Specifications

Model Direct Effect Spillover Effect

OLS/SEM �k 0
SAR/SAC Diagonal elements of Off-diagonal elements of

(I-�W)−1�k (I-�W)−1�k

SLX/SDEM �k �k

SDM/GNS Diagonal elements of Off-diagonal elements of
(I-�W)−1[�k+W�k] (I-�W)−1[�k+W�k]

applied researchers want to obtain inference on spillovers, alternative spatial econometric
models need to be considered.14

One such model that allows an empirical assessment of the magnitude and signifi-
cance of spillover effects is the SAR model. If the SAR model (3) is rewritten to its reduced
form (4), the direct and spillover effects can be obtained:

Y = �WY + ��N + X� + �,(3)

Y = (I − �W)−1 ��N + (I − �W)−1 X� + (I − �W)−1 �.(4)

The matrix of partial derivatives of the expectation of Y, E (Y), with respect to the
kth explanatory variable of X in unit 1 up to unit N is[

∂E (Y)
∂x1k

. . .
∂E (Y)
∂xNk

]
= (I − �W)−1 �k,(5)

which is reported in Table 1. The diagonal elements of (5) represent direct effects, while
the off-diagonal elements contain the spillover effects. To better understand the direct and
spillover effects that follow from this model, the infinite series expansion of the spatial
multiplier matrix is considered:

(I − �W)−1 = I + �W + �2W2 + �3W3 + · · · .(6)

Since the off-diagonal elements of the first matrix term on the right-hand side
(the identity matrix I) are zero, this term represents a direct effect of a change in X.
Conversely, since the diagonal elements of the second matrix term on the right-hand
side (�W) are zero by assumption, this term represents an indirect effect of a change
in X. All other terms on the right-hand side represent second- and higher-order direct
and spillover effects. Since both the direct and spillover effects vary for different units
in the sample, the presentation of both effects can be challenging. With N units and
K explanatory variables, it is possible to obtain K different NxN matrices of direct and
spillover effects. Even if N and K are small, it may be difficult to compactly report the
results. LeSage and Pace (2009) therefore propose to report one direct effect measured
by the average of the diagonal elements and one spillover effect measured by the average
row sums of the off-diagonal elements. From Table 1 it can also be seen that the SAC
model shares the same direct and spillover effect properties as the SAR model.

An important characteristic of the spillovers produced by the SAR and SAC models
is that they are global in nature. Anselin (2003b) describes the difference. A change in
X at any location will be transmitted to all other locations following the matrix inverse
in Equation (6), also if two locations according to W are unconnected. In contrast, local

14The SEM model might still be relevant when empirical evidence in favor of spillover effects cannot
be found.

C© 2015 Wiley Periodicals, Inc.
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spillovers are those that occur at other locations without involving an inverse matrix, i.e.,
only those locations that according to W are connected to each other. According to LeSage
and Pace (2011) another distinction between the two is that global spillovers include
feedback effects that arise as a result of impacts passing through neighboring units (e.g.,
from region i to j to k) and back to the unit that the change originated from (region i),
whereas local spillovers do not.

Despite its popularity, the SAR model has many serious limitations. Elhorst (2010)
demonstrates that the ratio between the spillover effect and direct effect of an explanatory
variable is independent of �k. The implication is that the ratio between the spillover
and direct effects is the same for every explanatory variable, which is unlikely to be
the case in many empirical studies. Pace and Zhu (2012) point out that the parameter
� affects both the estimation of spillovers and the estimation of spatial disturbances.
This implies that if the degree of spatial dependence in the error terms is different from
that in the spillovers, then it can be the case that both are estimated incorrectly. In
this respect, Pinkse and Slade (2010, p. 106) criticize the SAR model for the laughable
notion that the entire spatial dependence structure is reduced to one single unknown
coefficient. Corrado and Fingleton (2012) point out and demonstrate by using a simple
Monte Carlo simulation experiment that the coefficient estimate for the WY variable
may be significant because it could be picking up the effects of omitted WX variables or
nonlinearities in the WX variables if they are erroneously specified as being linear. This
makes the interpretation of a causal (spillover) effect difficult and what we considered to
be the basic identification problem in the introduction. That is, the issue is if it is possible
for a researcher to discern whether the significant coefficient of the WY variable is due to
omitted variables or due to a causal effect of WY. An issue that has recently gained more
attention in this respect is that global spillovers are often more difficult to justify (see,
e.g., Arbia and Fingleton, 2008; Corrado and Fingleton, 2012; Gibbons and Overman,
2012; Partridge et al., 2012; Lacombe and LeSage, 2013). According to Pinkse and Slade
(2010), this is also a primary criticism of standard spatial econometrics; researchers try
to fit their preferred model (usually a SAR model) onto every empirical problem rather
than having the nature of the empirical problem inform which particular model best
answers the question. We come back to this issue in the empirical application.

In contrast to the models above, the SLX model contains spatially lagged explanatory
variables, taking the following form:

Y = ��N + X� + WX� + �.(7)

The direct and spillover effects do not require further calculation compared to other
models such as the SAR model. As reported in Table 1, the direct effects are the co-
efficient estimates of the nonspatial variables (�k) and the spillover effects are those
associated with the spatially lagged explanatory variables (�k).15 Therefore, a strong as-
pect is that there are no prior restrictions imposed on the ratio between the direct effects
and spillover effects, which was a limitation of the SAR and SAC models. Like the SLX
model, the direct and spillover effects of the spatial Durbin error model (SDEM) are the
vectors of the response parameters � and �, respectively. Even though these models are
more straightforward in terms of estimation and interpretation and, most importantly,
are useful for investigating local spillovers, they are not as commonly applied as global
spillover specifications.16

15See also LeSage and Pace (2011, p. 22).
16The urban economics literature is an exception; if interaction effects are incorporated, exogenous

interaction effects are usually preferred.
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The SDM model, which has recently become more widely used in applied research,
includes both endogenous and exogenous interaction effects (LeSage and Pace, 2009;
Elhorst, 2010). To obtain the direct and spillover effects shown in Table 1, the SDM (8)
can be expressed in its reduced form (9):

Y = �WY + ��N + X� + WX� + �,(8)

Y = (I − �W)−1 ��N + (I − �W)−1 (X� + WX�) + (I − �W)−1 �.(9)

From Equation (9), the matrix of partial derivatives of E (Y) with respect to the kth
explanatory variable of X in unit 1 up to unit N is obtained[

∂E (Y)
∂x1k

. . .
∂E (Y)
∂xNk

]
= (I − �W)−1 [

I�k + W�k
]
.(10)

As reported in Table 1, the diagonal elements of the matrix represent the direct effects
and the off-diagonal elements, the spillover effects. Just as for the SLX and the SDEM mod-
els, there are no prior restrictions imposed on the ratio between the direct and spillover
effects. Table 1 shows that this is due to the fact that both the direct effect and the spillover
effect of an explanatory variable depends not only on the parameters � and �k, and the
matrix W, but also on the coefficient estimate �k (Elhorst, 2010). LeSage and Pace (2009,
p. 28) and Lacombe and LeSage (2013) provide an econometric-theoretical motivation in
favor of the SDM model if (i) the true model is SEM, (ii) there is at least one potentially
important variable omitted from the model, and (iii) this variable is likely to be correlated
with the independent variables included in the model. It is shown that only the SDM model
produces unbiased, though inefficient, parameter estimates under these circumstances.
They also show that one can determine the strength of correlation between included and
excluded independent variables to test whether assumptions (ii) and (iii) are true. Unfor-
tunately, this test statistic is not valid when assumption (i) is violated, i.e., if for example
SDEM is the true model. Furthermore, although Gibbons and Overman (2012, appendix)
confirm that this setup leads to the SDM model, they also emphasize that this does not
solve the problem of whether the causal effect of the observed spatial patterns in the data
is due to endogenous interaction effects or interaction effects among the error terms.

Finally, as can be noted in Table 1, the GNS model shares the same spillover prop-
erties as the SDM. Even though taking the GNS model as point of departure to measure
spillovers seems appealing since it contains all possible interaction effects, two major
issues are that a formal proof under which conditions the parameters of this model are
identified is not available yet (see Section 1) and the problem of overfitting. Even though
the parameters are not identified, they can still be estimated. However, they have the
tendency either to blow each other up or to become insignificant as a result of which this
model does not help to choose among the SDM and SDEM models. We come back to this
issue in the empirical application.

Our overview of spatial econometric models with all conceivable combinations of
different types of interaction effects makes clear that four models are able to produce
spillover effects that in relation to their corresponding direct effects may be different from
one explanatory variable to another. It concerns the SLX, SDEM, SDM, and GNS models.
The other models, although interesting from an econometric-theoretical viewpoint, are
less flexible since they impose restrictions on the magnitude of spillover effects in advance.
Since Figure 1 shows that the SLX model is the simplest of these four more flexible models,
it is recommendable to take this model as point of departure when having any empirical
evidence that the observations in the sample are spatially dependent.17

17As mentioned before, an exception is if the researcher has a theoretical framework or coherent
economic argument for another type of model.
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3. THE SLX MODEL AND PARAMETERIZING W

Studies dealing with geographical units often adopt a binary contiguity matrix with
elements wi j = 1 if two units share a common border and zero otherwise, an inverse
distance matrix, or an inverse distance matrix with a cut-off threshold distance of for
example, m miles.18 If in a particular study theory predicts that the connectivity between
nearby units will be stronger than those further away, this is related to the well-known
first law of geography: “Everything is related to everything else, but near things are
more related than distant things” (Tobler, 1970, p. 236). However, this is often used too
readily to justify spatial econometric specifications, including W (Partridge et al., 2012;
Neumayer and Plümper, 2013). Even if there are theoretical reasons indicating that
spatial interaction effects are related to distance, it is often not clear from the theory the
degree at which the spatial dependence between units diminishes as distance increases.
The common practice to adopt one of the spatial weight matrices mentioned above (or
variants of these) can be quite arbitrary, also if alternative specifications are considered
to check whether the results are robust.

For this reason, the literature on the specification of W is extensive and can be di-
vided into five main approaches. Researchers may adopt an: (i) exogenous19 pre-specified
W with fixed weights, (ii) exogenous pre-specified but parameterized W (where one or more
parameters are estimated), (iii) endogenous pre-specified W, (iv) exogenous unknown W
that is estimated, or (v) endogenous unknown W that is estimated. Furthermore, a distinc-
tion can be made between using parametric methods discussed in Corrado and Fingleton
(2012), and semiparametric and nonparametric methods discussed in McMillen (2010,
2012, 2013). These latter methods have been used to estimate W, and as an alternative to
using W. An advantage of semiparametric and nonparametric methods is that a specific
functional form is not assumed. A disadvantage is that spatial dependence is often taken
to be a nuisance phenomenon and thus does not account for spatial spillovers (Corrado
and Fingleton, 2012, section 6).20

The most widely used approach is (i) within a linear regression framework, followed
by approach (ii) which has the advantage that it can provide more flexibility if it is not
clear how sensitive interaction is to distance.21 Approaches (iii) and (iv) are receiving more
attention, while (v) is yet to be explored to the best of our knowledge (cf. Harris et al., 2011;

18Alternative ways to specify W can be found in Corrado and Fingleton (2012), such as using economic
variables. One potential problem of specifying W based on economic variables is endogeneity because
exogeneity of W is one of the regularity conditions for formal identification.

19Typically, weights matrices are treated as being exogenous, although there are cases where this
assumption may be inappropriate (see, e.g., Kelejian and Piras, 2014).

20This was also discussed in the first two sections. It is stressed that in general, and in a marked
departure from standard spatial modeling, McMillen advocates the use of more flexible semiparametric
and nonparametric approaches to W. However, if the objective is to directly test for causal (spillover)
effects based on a rigorous theoretical foundation, it is reasonable to impose structure to identify the
model (McMillen, 2012, section 5), as in the form of W.

21See among others, Burridge and Gordon, 1981; Boarnet, 1992, 1994a, 1994b; Song, 1996; Pace
et al., 1998; Boarnet et al., 2005; Fischer et al., 2009. Most studies use grid search to scan over a range of
values of the nonlinear parameter(s), among which is Song (1996) who also considers alternative distance
decay functions. In contrast to the other studies, Fischer et al. (2009) estimate the decay parameter
simultaneously along with the other parameters in their SLX specification using a direct search procedure.
There is also previous research focusing on spatial autocorrelation (Cliff and Ord, 1981, ch. 5; Dubin, 1988,
1992), where it is shown that instead of W, it is also possible to directly parameterize the variance-
covariance matrix; Anselin (2003a) shows that this approach is problematic since the null hypothesis of
no spatial autocorrelation does not correspond to an interior point of the parameter space and hence does
not satisfy the regularity conditions for estimation.
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Kelejian and Piras, 2014; Qu and Lee, 2015). The latter study distinguishes two general
ways to estimate a spatial weights matrix: letting the data determine W using geosta-
tistical modeling techniques (e.g., Getis and Aldstadt, 2004) or regressing the residuals
for each unit on the residuals of all other units, a technique originally proposed by Meen
(1996) that is viable in long panels (Beenstock and Felsenstein, 2012).22 Unfortunately,
it is commonly the case that researchers are faced with situations where N > T rather
than T > N, making this method unfeasible due to the large amount of parameters that
need to be estimated. Other potential limitations of estimating W are discussed in Harris
et al. (2011, p. 254), Corrado and Fingleton (2012, p. 14), and Neumayer and Plümper
(2013, p. 5), with the last two particularly stressing the atheoretical nature of data-driven
approaches.

Although interaction between units can be independent from geographical proximity
(see Neumayer and Plümper, 2013 for examples), for those cases in which researchers
can place more weight on closer observations, we demonstrate the flexibility that occurs if
they take one step forward by using a simple parametric approach applied to the elements
of an inverse distance matrix

wi j = 1
d �

i j
,(11)

where dij denotes the distance between observations i and j, and � is the distance decay
parameter to be estimated. We hasten to point out that this is one possible approach and
that, in this respect, a literature overview and a comparison of the pros and cons of the
alternative approaches is an important topic for further research.23

A nonlinear but straightforward estimation technique24 can be used to estimate the
parameter � , providing more information on the nature of the interdependencies of the
observations in the sample. For example, if the estimate of � is small this is an indication
that the commonly applied binary contiguity principle is not an accurate representation
of the spatial dependence. This is because contiguity can be thought of as a restrictive
distance measure where interaction between units is confined only to those units that
share borders. This is visually depicted in Figure 2 where the vertical line (BC) shows
how a binary contiguity specification would cut-off interaction between units.

One unexplored advantage of parameterizing W in the SLX model is that unlike the
other spatial econometric models in Figure 1, it is not hampered by the perfect solution
problem. The solution � = −1, � = 0, � = Y1 + · · · + YN, and � = 0 in Equations (3) and
(11) would perfectly fit the dependent variable in the SAR model, as well as the SEM and
SDM models (together with � = 0).25 Formally, this perfect solution has been excluded. To
prove consistency of the ML estimator of the SAR model, Lee (2004) shows that one of the
following two regularity conditions should be satisfied: (a) the row and column sums of
the matrices W and (I–�W)−1 before W is row-normalized should be uniformly bounded

22Recent studies building upon this approach in a spatial panel data framework using nonparametric
methods include Beenstock and Felsenstein (2012) and Bhattacharjee and Jensen-Butler (2013).

23We also considered and estimated an exponential distance decay function, a specification with a
different � for every explanatory variable, and a gravity type of specification with parameterized power
functions of the population size of states i and j, but these are all variants of the basic idea and therefore
might be investigated and compared in future research.

24If the SLX model in Equation (7) is taken as point of departure and the elements of W are specified
as in Equation (11), the scalar � and the parameter vectors � and �, given � , and � given �, � and � can
be alternately estimated until convergence occurs. Matlab code of this routine is provided at the Web site
of the second author.

25Note that the SEM model can be rewritten as a constrained SDM model (� = –��). This explains
why the perfect solution of the SDM also holds for the SEM.

C© 2015 Wiley Periodicals, Inc.



350 JOURNAL OF REGIONAL SCIENCE, VOL. 55, NO. 3, 2015

Interaction BC

1/d γ

Distance
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in absolute value as N goes to infinity, or (b) the row and column sums of W before W is
row-normalized should not diverge to infinity at a rate equal to or faster than the rate of
the sample size N.26 If the elements of W take the form in (11) and � = 0, we have wi j = 1
for all off-diagonal elements of W, as a result of which the row and column sums are N-1,
which diverge to infinity as N goes to infinity. Furthermore, we have (N – 1)/N → 1 as
N goes to infinity. Since neither condition (a) nor condition (b) is satisfied, this perfect
solution problem has been excluded formally. However, computer software working with
real data and fixed sample sizes, N = N̄, cannot simply rule out these parameter values
for � and � , as a result of which it often converges to the perfect solution computationally.
The question whether a local next to this invalid global optimum exists and whether it is
possible to program the SAR, SEM or SDM models such that this local optimum can be
obtained is an interesting topic for further research. Importantly, when the SLX model
specification is taken as point of departure, the perfect solution problem is not relevant,
which simplifies the analysis.

4. EMPIRICAL APPLICATON

State Cigarette Demand Model

To compare the standard approach and our proposed alternative approach in an
empirical setting, we consider the following cigarette demand model taken from Baltagi
and Li (2004) as a candidate to include spatial interaction effects

ln (Cit) = � + �1 ln (Pit) + �2 ln(Iit) + 	i + �t + εit,(12)

where the subscript i denotes states (i = 1, . . . , 46) and the subscript t denotes time periods
(t = 1, . . . , 30). Cit is real per capita sales of cigarettes, which is measured in packs per
person aged 14 years and older. Pit is the average retail price of a pack of cigarettes
and Iit is real per capita disposable income. The equation is obtained from maximizing
a utility function depending on cigarettes and other consumer goods subject to a budget
constraint.27 The model is aggregated over individuals since the objective is to explain
sales in a particular state, as in Baltagi and Levin (1986, 1992), Baltagi and Li (2004),
Debarsy et al. (2012), and Elhorst (2014), among others. If the purpose, on the other hand,
is to model individual behavior (e.g., the reduction in the number of smokers or teenage

26Condition (a) originates from Kelejian and Prucha (1998, 1999).
27For details on demand models derived from an underlying theory of consumer utility maximization

see, e.g., Chung (1994) and Chintagunta and Nair (2011).
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smoking behavior) then this is better studied using micro data (see, e.g., Lewit and Coate,
1982; Lewit et al., 1987; Wasserman et al., 1991; Soetevent and Kooreman, 2007).28

The data consist of a panel of 46 U.S. states over the period 1963–1992.29 This data
set has also been used for illustrative purposes in other spatial econometric studies and
is also widely used for pedagogical motives. We therefore find it conducive to use it to
illustrate the points raised in this paper. Moreover, since the focus is on spillovers it is
particularly relevant that the empirical application encompasses a well-founded motiva-
tion for spillover effects, which we discuss shortly. All the variables are log-transformed
as in previous studies, and thus the interpretation of the estimates can be in elasticity
terms.

The model specification includes state-specific fixed effects, 	i, and time-specific fixed
effects, �t. In this way, specific state characteristics (e.g., states with tax exempt military
bases) and omitted effects that are common across all states that occurred during the
period (e.g., policy changes and health warnings) are controlled for.30 Using Monte Carlo
simulation experiments, Lee and Yu (2010) show that ignoring time-period fixed effects
may lead to large upward biases (up to 0.45) in the coefficient of the spatial lag. The
explanation is that most variables tend to increase and decrease together in different
spatial units over time (e.g., along the business cycle). If this common effect is not taken
into account and thus not separated from the interaction effect among units, the latter
effect might be overestimated. This is a typical example of one of the shortcomings of
the SAR model discussed in Section 2: the spatial lag picking up the effects of omitted
variables, in this case of time period fixed effects when they are not controlled for.

The main motivation to extend the basic model to include spatial interaction effects is
the so-called bootlegging effect; consumers are expected to purchase cigarettes in nearby
states if there is a price advantage. This smuggling behavior is a result of significant
price variation in cigarettes across U.S. states and partly due to the disparities in state
cigarette tax rates.31 Baltagi and Levin (1986, 1992) incorporate the minimum real price
of cigarettes in any neighboring state as a proxy for the bootlegging effect. A limitation is
that this proxy does not account for cross-border shopping that may take place between
other states than the minimum-price neighboring state (Baltagi and Levin, 1986).32 This
can be due to smuggling taking place over longer distances by trucks since cigarettes can
be stored and are easy to transport (Baltagi and Levin, 1992) or due to geographically
large states where cross-border shopping may occur in different neighboring states. To

28Blundell and Stoker (2007) provide a review and propositions to bridge the gap between micro
and macro level research and point out that both approaches have a role to play. We use state-level data
mainly due to our illustration purposes. In addition, even though cigarette consumption is observed at
the individual level, cigarette price is not, which can result in severely downward biased estimates of
the standard errors (Moulton, 1990). Another issue is zero observations requiring the use of, e.g., a Tobit
model, which raises additional questions that would need to be addressed such as whether the zero values
are a result of nonconsumption or corner solutions (Yen and Huang, 1996).

29The data can be accessed at the Baltagi (2008) companion Web site: www.wileyeurope.com/college/
baltagi. An adapted version is available at: www.regroningen.nl/elhorst.

30For more details on reasons to include state and time specific effects, refer to Baltagi (2008).
Elhorst (2014) found that the model specification with spatial and time-period fixed effects outperforms
its counterparts without spatial and/or time-period fixed effects, as well as the random effects model.

31For example, in Massachusetts the cigarette tax rate is around double that of New Hampshire.
Baltagi (2008) and references therein provide more details.

32Note that even if individual level data are used, capturing the bootlegging effect also requires an a
priori specification. For example, Lewit and Coate (1982) and Wasserman et al. (1991) excluded individuals
who lived in communities where the price of cigarettes exceeded another price found within a 20-mile wide
band around their place of residence from the analysis. Wasserman et al. (1991, p. 46, footnote 4) admit
that the choice of an appropriate band is somewhat arbitrary.
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take this into account, other studies have extended the model to explicitly incorporate
spatial interaction effects. However, while the specification originally adopted by Baltagi
and Levin (1992) resembles the SLX model but then with only one exogenous interaction
effect (price), applied spatial econometric studies have either included: (i) endogenous
interaction effects, (ii) interaction effects among the error terms or (iii) a combination of
endogenous and exogenous interaction effects. It reflects the fact that the SLX model is
overlooked in the applied spatial econometrics literature.

In this case including endogenous interaction effects implies that state cigarette sales
directly affect one another, which is difficult to justify.33 The resulting global spillovers
(discussed in Section 2) would mean that a change in price (or income) in a particular
state potentially impacts consumption in all states, including states that according to W
are unconnected.34 Pinkse and Slade (2010, p. 115) argue that an empirical problem like
this is insightful precisely because it is difficult to form a reasonable argument to include
endogenous interaction effects even though they are easily found statistically. Given
the research question of whether consumers purchase cigarettes in nearby states if there
is a price advantage, this example points toward a local spillover specification such as
the SLX model rather than a global spillover specification.

Standard Approach

In this section, we first take a more standard spatial econometric approach and es-
timate the models discussed in Section 2, especially focusing on the spillover results and
identification issues. The basic model (12) is therefore extended to include different (com-
binations of) interaction effects following Figure 1. Even though models with a spatially
lagged dependent variable (WY) have just been argued to represent a misspecification,
they are included to further feed the discussion on their limitations. It is also shown that
there is relatively little guidance into which specification is best, confirming the critique
by Gibbons and Overman (2012), McMillen (2012), and Corrado and Fingleton (2012) that
identification is a crucial issue and that a statistical approach driven by data-analytic con-
siderations may lead to erroneous conclusions. Just as in many other studies, the spatial
weights matrix W is initially specified as a row-normalized binary contiguity matrix, with
elements wi j = 1 if two states share a common border, and zero otherwise. This specifi-
cation of W was also used by Baltagi and Li (2004), Elhorst (2013, 2014), and Debarsy
et al. (2012).35 In subsection “The SLX Approach” we demonstrate our proposed alter-
native approach using the SLX model with a parameterized distance based W, and in
subsection “Endogenous Regressors” we apply instrumental variables techniques to test
for potential endogeneity of the price of cigarettes in the own and in neighboring states
and adjust the results accordingly.

Table 2 reports the estimation results explaining cigarette demand for the different
spatial econometric models, as well as the OLS model. The spatial models are estimated
by ML, with the exception of the SLX model which is estimated by nonlinear OLS (see
footnote 24). The coefficient estimates of the two explanatory variables, price and income,

33The geographical scale is large; see Partridge et al. (2012, p. 169) for a similar argument pertaining
to neighboring county poverty rates. In contrast, if teen smoking behavior is being analyzed then it would
be sound to argue that an individual’s propensity to smoke is directly influenced by the smoking behavior
of their friends.

34This implies that, e.g., price changes in California would exert an impact on cigarette consumption
even in states as distant as Illinois or Wisconsin.

35The latter study also specifies a row-normalized W based on state border miles in common between
states and find that the results are similar.

C© 2015 Wiley Periodicals, Inc.



VEGA AND ELHORST: THE SLX MODEL 353

TABLE 2: Model Comparison of the Estimation Results Explaining Cigarette Demand,
W = Pre-Specified Binary Contiguity Matrix

OLS SAR SEM SLX SAC SDM SDEM GNS GNS2

ln(P) −1.035 −0.993 −1.005 −1.017 −1.004 −1.003 −1.011 −1.020 −1.017
(−25.63) (−24.48) (−24.68) (−24.77) (−24.49) (−24.60) (−24.88) (−25.40)

ln(I) 0.529 0.461 0.554 0.608 0.557 0.601 0.588 0.574 0.575
(11.67) (9.86) (11.07) (10.38) (10.51) (10.33) (10.57) (11.02)

W × ln(C) 0.195 −0.013 0.225 −0.481 −0.400
(6.79) (−0.22) (6.85) (−7.01)

W × ln(P) −0.220 0.051 −0.177 −0.645 −0.555
(−2.95) (0.62) (−2.24) (−5.97)

W × ln(I) −0.219 −0.293 −0.168 0.079 0.053
(−2.80) (−3.70) (−2.12) (0.85)

W × u 0.238 0.292 0.229 0.628 0.550
(7.26) (4.73) (6.95) (14.60)

R2 0.896 0.900 0.895 0.897 0.895 0.901 0.897 0.873
Log-likelihood 1,661.7 1,683.5 1,687.2 1,668.4 1,687.2 1,691.4 1,691.2 1,695.1

Note: t-values are reported in parentheses; state and time-period fixed effects are included in every model.

TABLE 3: Model Comparison of the Estimated Direct and Spillover Effects on Cigarette
Demand, W = Pre-Specified Binary Contiguity Matrix

OLS SAR SEM SLX SAC SDM SDEM GNS

Direct effects
ln(P) −1.035 −1.003 −1.005 −1.017 −1.004 −1.016 −1.011 −0.999

(25.63) (−25.10) (−24.68) (−24.77) (−24.47) (−24.84) (−24.88) (−25.43)
ln(I) 0.529 0.465 0.554 0.608 0.556 0.594 0.588 0.594

(11.67) (10.18) (11.07) (10.38) (10.56) (10.88) (10.57) (10.35)
Spillover effects

ln(P) −0.232 −0.220 0.010 −0.215 −0.177 −0.122
(−5.63) (−2.95) (0.17) (−2.39) (−2.24) (−1.89)

ln(I) 0.107 −0.219 −0.006 −0.200 −0.168 −0.155
(5.51) (−2.80) (−0.20) (−2.30) (−2.12) (−2.16)

Note: See notes to Table 2.

are statistically significant at the 1 percent level for all eight model specifications. The
magnitudes and signs are as expected. There is a negative price effect and a positive
income effect on cigarette sales, which is consistent with economic theory and previous
studies.

Since the coefficient estimates of the global specifications cannot be compared with
each other and with those of the local specifications, we immediately turn to the direct
and spillover effects reported in Table 3 derived from these coefficient estimates.36 If
the spatial econometric model contains endogenous interaction effects (WY), the direct
effect estimates include feedback effects that arise as a result of impacts passing through
neighboring states and back to the state where the change instigated. This is the reason
that there are differences between the direct effects (Table 3) and point estimates of the

36To draw inferences regarding the statistical significance of the effects estimates, LeSage and Pace
(2009, p. 39) suggest simulating the distribution of the direct and indirect effects using the variance-
covariance matrix implied by the maximum likelihood estimates. We use the variation of 1,000 simulated
parameter combinations drawn from the multivariate normal distribution implied by the ML estimates.
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explanatory variables (Table 2) for the SAR, SAC, SDM and GNS models, but not for the
OLS, SEM, SLX, and SDEM models (see also Table 1). On the other hand, the feedback
effects in the first group of models appear to be relatively small. For example, the greatest
difference between the direct effect and the point estimate for the income variable is found
in the GNS model, 0.588–0.574 = 0.014, amounting to a feedback effect of only 2.4 percent.
Overall, the impact of a change in income or a change in price in a particular state on
cigarette demand in that state has almost a similar estimate and inference regardless of
which measure (coefficient estimate or direct effect) and model is used.

In contrast, the discrepancies between the spillover impacts are substantial (Table 3).
The results show that the choice of model specification leads to completely different
conclusions. In particular, both the price and income spillover effects in the SAC model
are almost zero and statistically insignificant. This is due to the point estimate of the
spatially lagged dependent variable (WY) being close to zero and reflects the fact that this
model is similar to the SEM, which by construction does not allow for spillover effects.
Another noticeable difference is that the spillover effect of income corresponding to the
SAR model is positive, whereas in the other models it is negative. Thus, an increase in per
capita income in a particular state leads to increased cigarette sales in neighboring states
according the SAR model, whereas a negative and significant spillover effect is found
in the SLX, SDEM, SDM, and GNS models. The spillover effect of the price variable is
negative for all models, which implies that an increase in the price of a pack of cigarettes
in a state will not only lead to reduced cigarette demand in the state itself, but also in
nearby states.37 This result is clearly not in line with the bootlegging effect originally
found by Baltagi and Levin (1986, 1992) and which was the main motivation to adopt a
spatial econometric model.

The conclusions from these findings are as follows. The flexible models (SLX, SDEM,
SDM, and GNS) produce price and income spillover effects that are mutually comparable
in terms of sign, magnitude and significance levels (although with different mathematical
formulas) but significantly different from those produced by the nonflexible models (SAR,
SEM and SAC). Yet, these flexible models do not provide empirical evidence in favor of
the bootlegging effect. The explanation for this counterintuitive finding can be traced
back to the identification issues discussed in the introduction. The first identification
problem is that the true W is unknown. Although we used information about the spatial
arrangement of the states in the sample to place more weight on closer observations, the
pre-specified binary contiguity matrix has been taken for granted rather than tested. One
notable objection to the binary contiguity matrix is that it limits cross-border shopping to
only adjacent states, while in reality people may also benefit from lower prices if they visit
distant states for purposes other than just buying cigarettes, as well as when smuggling
takes place over longer distances by trucks (Baltagi and Levin, 1992).

The second identification problem is that different spatial econometric models are dif-
ficult to distinguish. The most significant identification problem of our empirical example
pertains to the type of interaction effects causing the spillover effects. Even though the
flexible models produce price and income spillover effects that are comparable in terms
of sign, magnitude and significance levels, the mechanism through which observations
at other locations is affected is very different across these models. In the SDM and GNS
model the spillovers work through both endogenous and exogenous interaction effects,
whereas in the SLX and SDEM models they work through exogenous interaction effects.

37The exceptions are the SAC model which has a positive estimate, although it is almost zero and
insignificant as was mentioned previously, and the SEM and OLS model which do not allow for the
quantification of spillover impacts.
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The third identification problem is that the unknown parameters of the GNS model
are not formally identified even if W is correctly specified. To examine this, we performed
an empirical Monte Carlo experiment, which is termed empirical since it is design de-
pendent (Huber et al., 2013). We generated the dependent variable of each of the spatial
econometric models 1,000 times based on the independent variables and their coefficient
estimates reported in Table 2, taking a random draw from the normal distribution based
on the parameter estimate of �2. On average, these results should be similar to those of
the original coefficient estimates if the model is identified. This Monte Carlo experiment
demonstrated that the biases in the parameter estimates are negligible, except for the
GNS model. The last column in Table 2 (labeled “GNS2”) reports the simulated parame-
ter values averaged over 1,000 replications for the GNS model.38 The largest biases are
found in the coefficient estimates of the spatially lagged price variable (W×ln(P)), the spa-
tially lagged dependent variable (W×ln(C)), and the spatially autocorrelated error term
(W×u).39 The reason for these biases is that in 7 percent of the replications the parameter
estimates of the spatially lagged dependent variable (� ) and the spatially autocorrelated
error term (�) appeared to be interchanged.

Another problem is that the coefficient estimates of the spatial interaction effects in
the GNS model have a tendency to blow each other up (in absolute value). The spatial
autoregressive coefficient equals –0.481 and the spatial autocorrelation coefficient 0.628.
Although the net effect of these two coefficients, 0.147, is close to the spatial autoregressive
coefficient of 0.225 in the SDM model and the spatial autocorrelation coefficient of 0.229
in the SDEM model, these two individual coefficients are difficult to interpret, both in
terms of sign and magnitude.40 For this reason, the GNS model also does not help us to
choose between the next-most general models, either the SDM if � = 0 or the SDEM if
� = 0, since both parameters in this model appear to be significant. The conclusion from
both findings is that the GNS model is overfitted and that Occam’s razor applies. Some
researchers prefer simpler models to more complex ones due to overfitting; excessively
complex models are affected by statistical noise, whereas simpler models may capture the
underlying process better and thus have better predictive performance.

To overcome these identification problems, we follow our proposed alternative strat-
egy taking the SLX model as point of departure and using a parameterized distance
based weights matrix instead of one based on contingency to estimate the extent at which
interaction dampens as the distance between units increase. In addition, we test for
endogenous regressors.

The SLX Approach

Table 4 reports the estimation results explaining cigarette demand for the SLX model;
column (1) repeats the results using the row-normalized binary contiguity matrix and
column (2) shows the results using the parameterized inverse distance matrix. Row-
normalizing a weights matrix based on inverse distance causes its economic interpretation
in terms of distance decay to no longer be valid (Anselin, 1988, pp. 23–24; Kelejian and

38The value of �2 for the GNS model is 0.00445. Results for the other models are available upon
request from the authors.

39The original estimate for W×ln(P) is –0.645, while the simulated coefficient estimate is –0.555,
representing a bias of 0.090 or around –13.95 percent of the original parameter value. For the other two
parameter estimates, the biases are 0.081 and –0.078 (or –16.67 percent and –12.42 percent of the original
parameter values), respectively.

40A recent interesting empirical study related to this point can be found in Bivand (2012), where
questions are raised concerning the numerical issues involved in fitting the GNS model (termed SAC
Durbin model in his paper) and how one should interpret the output.
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Prucha, 2010).41 For example, the impact of unit i on unit j is not the same as that of unit
j on unit i, and the information about the mutual proportions between the elements in
the different rows of W gets lost. We therefore scale the elements of W based on inverse
distance by its maximum eigenvalue.

The direct effect estimates change slightly when adopting the parameterized inverse
distance specification, whereas the differences in the spillover effect estimates are sub-
stantial. We first draw attention to the results of the price spillover effects. In the first
specification using the binary contiguity matrix, the spillover effect is negative and signif-
icant, which was discussed previously when comparing the different spatial econometric
models. In fact, all the models allowing for the quantification of spillover effects resulted
in negative price spillovers, which is not consistent with the bootlegging effect. In other
words, these specifications do not confirm that consumers near state borders will pur-
chase cigarettes in neighboring states if they are cheaper relative to prices in their own
state.42 By contrast, in the second specification using the parameterized inverse distance
matrix, the price spillover effect is positive with an elasticity of 0.254 and significant
(t-value = 3.08). The interpretation of this latter estimate is that a positive increase in
own-state prices leads to increased sales of cigarette packs in neighboring states, which
corroborates the existence of bootlegging behavior. Previous studies have used different
specifications to capture this bootlegging effect and have mostly found evidence for it.
However, no previous study has considered the SLX model and parameterizing W.

The estimate of the distance decay parameter is 2.938 and also highly significant.
This makes sense because only people living near the border of a state are able to benefit
from lower prices in a neighboring state on a daily or weekly basis. If the distance decay
effect at five miles from the border is set to 1, it falls to 0.130 at 10 miles, 0.040 at 15 miles,
and 0.017 at 20 miles. People living further from the border can only benefit from lower
prices if they visit states for other purposes or if smuggling takes place by trucks over
longer distances. It explains why the parameterized inverse distance matrix gives a much
better fit than the binary contiguity matrix; the degree of spatial interaction on shorter
distances falls much faster and on longer distances more gradually than according to the
binary contiguity principle (see Figure 2). This is corroborated by the R2, which increases
from 0.897 to 0.916, and the log-likelihood function value, which increases from 1668.2 to
1812.9.

Turning to the income spillover effects in Table 4, the estimates are negative and
highly significant across both spatial weights matrices. The main difference is that under
the second column, the income elasticity is higher. These results indicate that increases
in own-state per capita income decrease cigarette sales in neighboring states. An expla-
nation could be that higher income levels reduce the necessity or incentive to purchase
less expensive cigarettes elsewhere. In sum, the results suggest two forces at work that
influence bootlegging behavior. There is a positive price effect which is reasonable since
higher own-state prices will motivate people to search elsewhere, i.e., a substitution effect.
However, increases in income have the opposite effect since there will be less motivation to
make the effort of travelling across the border even if there is a relative price advantage,
i.e., an income effect.

41For further discussion on the consequences of row-normalization, see Neumayer and Plümper
(2012, 2013).

42We also estimated the model with the decay parameter set to one in advance (� = 1 in Equation (11)
and find that the price spillover is also negative, but statistically insignificant; results are available upon
request.
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Endogenous Regressors

Another important issue to address is whether or not cigarette prices are endogenous.
Except for Kelejian and Piras (2014), previous spatial econometric studies based on Balt-
agi and Li’s cigarette demand model did not treat price as being potentially endogenous.
Although these studies argue or assume that price differences across states are largely
due to state tax differences which are exogenously set by state legislatures, it is likely
that demand has a feedback effect on price. Therefore, we formally test whether price
and prices observed in neighboring states may be considered exogenous. The advantage
of the SLX model over other spatial econometric models is that nonspatial econometric
techniques can be used for this purpose. It concerns the Hausman test for endogeneity in
combination with tests for the validity of the instruments to assess whether they satisfy
the relevance and exogeneity criterions. The methodology behind these tests is explained
in many econometric textbooks; we used Hill et al. (2012, pp. 419–422).

As instrumental variables we initially exploited variables that can be taken from the
Baltagi and Li (2004) cigarette demand data set. It concerns population size (16 years and
over) in each state and the weighted average in neighboring states, as well as consumption
and both own-state prices and neighboring state prices in the previous year. Regarding
population size, it is important to note that the dependent variable is measured as per
capita sales of cigarettes. Consumer demand for a product (y) depends on the market (x) in
which a consumer operates (e.g., the geographical area or time period) and the equilibrium
price in the market (p(x)). This can be formulated as: E(y|x,z) = D(p(x),z), where z are
consumer attributes (in our case: income) and D reflects mean demand dependent on (x,z).
The market equilibrium price can be seen to be: p(x) = �[E(y|x,z)*m(x),s(x)], where m(x)
is population size in x and s(x) denotes supply. In other words, although population size
does not directly influence an individual’s cigarette consumption, it may affect the price
of cigarettes. Therefore, in addition to income and income in neighboring states which
are already part of the SLX model, five potential instrumental variables were examined,
among which is population size (note that state and time period fixed effects were also
accounted for). As expected, the strongest instruments for the own-state and neighboring
state prices appeared to be their respective values in the previous year. However, these
instruments also appeared to be invalid due to serial correlation. Conversely, if this
instrument set of lagged prices is left aside, we ended up with a weak set of instruments
(with the first-stage F-statistic < 10). If instruments are weak, the 2SLS estimator can
suffer large biases.43

For this reason, we decided to expand the Baltagi and Li cigarette demand data set
with additional variables that may potentially serve as instruments for cigarette prices.
After examining the literature and data availability for the whole sample covering 1963–
1992, we included state compensation per employee and cigarette excise tax rates.44 The
former may affect the supply curve as it reflects labor costs, and thus the price as can be
seen in the formulation above.45 The latter is expected to be relevant since the price per
pack of cigarettes is composed of the excise tax rate; the correlation coefficient between

43For a discussion on problems related to weak instruments, such as small sample over-fitting bias
see, e.g., Staiger and Stock (1997).

44Both the expanded data set and the developed Matlab routines will be made available at the Web
site of the second author. The data was taken from Orzechowski and Walker (2012) and the U.S. Bureau
of Economic Analysis.

45A relevant point is raised by reviewers about the validity of using this variable as an instrument
since the model includes income. Although Kelejian and Piras (2014) do not provide motivation for including
this variable as an instrument, as we mentioned above, we include it because it can influence supply and
thus price. Nevertheless, it is important to formally test for validity, which is discussed shortly.
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these two variables is 0.60.46 Although a rationale is not provided, Kelejian and Piras
(2014) also include these measures as instrumental variables. Unfortunately, they do
not carry out standard tests for weak instruments and overidentifying restrictions; their
argument is that these tests first need to be extended to situations of spatial models
dealing with an endogenous W (p. 147). Several nonspatial econometric studies have also
used state cigarette excise taxes as an instrument for cigarette price (e.g., Keeler et al.,
1993; Lovenheim, 2008). Although these studies, as well as a related study of Keeler
et al. (1996), argue that cigarette excise tax rates have an exogenous quality, formal tests
of the validity of the instruments are again not provided. Golden et al. (2014) investigate
the determinants of cigarette tax rates using a panel of all U.S. states from 1981 to
2011, and find that these tax rates are largely driven by political characteristics (e.g.,
political party control) and also whether a state is an agricultural producer of tobacco.
In addition, citizens’ attitudes toward taxes and tobacco control, as well as cigarette tax
rates in neighboring states are found to be significant. This suggests that the tax rate is
not driven by cigarette demand. However, it is better to formally test whether these two
potential instruments are exogenous and so we proceed.

The results reported in columns (3)–(6) cover two sets of two possibilities based on this
extended data set. All models are estimated by 2SLS. The first set is used to investigate
whether only ln(P) or both ln(P) and W×ln(P) need to be treated as endogenous regressors.
The second set is used to find out whether empirical evidence is obtained in favor of the
bootlegging effect if we take a step back and start from the pre-specified binary contiguity
matrix, as in section “Standard Approach,” or if we stick to the parameterized inverse
distance matrix, as in section “The SLX Approach.” The notes to Table 4 show that we
ended up with a different set of instrumental variables in each case. The main reason is
that W×ln(P) is used as an instrument for ln(P) and does not need to be instrumented
if it is exogenous. Each set passed the F-test for strong enough instruments and the 
 2-
test for exogenous instruments (also known as Sargan’s overidentification test). The tax
variables pass the test, but population size and compensation per employee measured in
the own-state did not, but rather the neighboring values.

The t-tests on the residuals of the price variables taken from the first-stage regres-
sions in the original SLX model (also known as the Hausman test) point to endogeneity
of the price observed in the own state, but not of prices observed in neighboring states,
when adopting the parameterized inverse distance matrix (columns 5 and 6). The t-value
of the residual of the first-stage regression of the own-state price amounts to 4.50 and of
prices in neighboring states to −1.33. Apparently, consumption has feedback effects on
the price in the own state, but if consumers decide to buy more cigarettes in neighboring
states due to a price increase in their own state this has no significant feedback effects
on prices there too. This implies that the results reported in column (5) outperform the
results in columns (2) and (6).47 Although the results in column (5) compared to those
reported in column (2) change, they are relatively small compared to the changes we have

46These excise taxes are set by legislation and are usually collected before the point of sale from
manufacturers, distributors, or wholesalers and often are denoted by a tax stamp; thus, unlike other sales
taxes, they are usually included in the price of the item (CDC, 2012).

47Importantly, we not only took into account that the W matrix determining the exogenous interaction
effects in the SLX model depend on the estimated distance decay parameter � in the second stage of the
2SLS estimation procedure, but also that the W matrix of lagged prices in neighboring states depends on
� in the first stage of the 2SLS estimation procedure. This explains why the parameter estimate of � in
this model also changes.
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seen among columns (1) and (2). The price spillover effect falls from 0.254 to 0.192, but
remains significant (t-value = 3.00).

When the pre-specified binary contiguity matrix is adopted and ln(P) is treated as
endogenous (column 3), which it should according to the t-test of 4.63 on the residual of
the first-stage regression, the price spillover effect is negative rather than positive, just
as in its counterpart estimated by OLS (column 1), although no longer significant. These
things worsen when treating both ln(P) and W×ln(P) as endogenous (column 4), but this
model variant appears to be less relevant. Based on the t-test statistics W×ln(P) should
be treated as endogenous, whereas ln(P) should not, which is illogical. Furthermore, the
R2 falls below zero. Although mathematically possible when applying 2SLS, this is not
very promising. Since the R2’s of the 2SLS regressions based on the parameterized inverse
distance matrix also outperform their counterparts based on the binary contiguity matrix,
the conclusion must be that the parameterization of the spatial weights matrix remains
a necessary step to obtain plausible results.

5. CONCLUSIONS

This paper proposes a guide for researchers interested in measuring spillover ef-
fects. We first provide a comprehensive overview of what different spatial econometric
model specifications imply about spillover effects. We show that the more commonly used
models, especially the SAR model, are less flexible in their ability to measure spillover
effects. Unless there is a well-founded theoretical argument pointing toward a model with
endogenous interaction effects, this model is hard to justify. This point is also emphasized
in the recent special theme issue of the Journal of Regional Science (Volume 52, Issue
2) appraising spatial econometrics. Therefore, instead of taking the more standard route
of model selection in the spatial econometrics literature, we recommend taking the SLX
model as point of departure, since it is the simplest model of all models producing flexible
spillovers. Furthermore, we illustrate that adopting a parameterized instead of a pre-
specified W allows for even more flexibility. It should be stressed that this is not a general
result; alternatives, such as semiparametric and nonparametric approaches, might also
be used for this purpose. A comparison of the pros and cons of these different approaches
is an important topic for further research.

To compare the standard approach with our proposed alternative approach in an em-
pirical setting, the Baltagi and Li (2004) cigarette demand model is estimated. Although
other spatial econometric studies have used this data set for illustrative purposes, no
previous study has considered the SLX model. A notable result from the SLX estimation
results is that when employing the commonly used binary contiguity matrix, the price
spillover effect estimate does not corroborate the existence of bootlegging. By contrast,
when W is specified using the parameterized inverse distance specification, we do find
significant evidence in favor of the bootlegging effect.

The SLX model is also useful to test for endogenous regressors since nonspatial
econometric techniques can be used for this purpose. We find empirical evidence in fa-
vor of endogeneity of the price observed in the own state, but not of prices observed in
neighboring states. Using the SLX model, a parameterized inverse distance matrix, and
treating price in the state as endogenous, we find a significant price spillover effect of
0.192, indicating that if prices of cigarettes rise by 1 percent, cigarette demand in neigh-
boring states will increase by 0.192 percent. In addition, we find a strong distance decay
effect; at 20 miles from the border the impact of this bootlegging effect is already more
than 50 times smaller than at 5 miles.
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Bramoullé, Yann, Habiba Djebbari, and Bernard Fortin. 2009. “Identification of Peer Effects through Social

Networks,” Journal of Econometrics, 150, 41–55.
Brueckner, Jan K. 2003. “Strategic Interaction among Governments: An Overview of Empirical Studies,” Inter-

national Regional Science Review, 26(2), 175–188.
———. 2006. “Strategic Interactions among Governments,” in R.J. Arnott and D.P. McMillen (eds.), A Companion

to Urban Economics. Malden, MA: Blackwell, pp. 332–347.
Buonanno, Paolo, Giacomo Pasini, and Paolo Vanin. 2012. “Crime and Social Sanction,” Papers in Regional Science,

91, 193–218.
Burridge, Peter. 1981. “Testing for a Common Factor in a Spatial Autoregression Model,” Environment and

Planning A, 13, 795–400.
———. 2012. “Improving the J Test in the SARAR Model by Likelihood-based Estimation,” Spatial Economic

Analysis, 7(1), 75–107.
Burridge, Peter and Bernard Fingleton. 2010. “Bootstrap Inference in Spatial Econometrics: The J-Test,” Spatial

Economic Analysis, 5, 93–119.
Burridge, Peter and Ian Gordon (1981), “Unemployment in the British Metropolitan Labour Areas,” Oxford

Economic Papers, 33(2), 274–297.
CDC. 2012. (Centers for Disease Control and Prevention), Morbidity and Mortality Weekly Report, 61(12), 201–

204.
Chintagunta, Pradeep K. and Harikesh S. Nair. 2011. “Discrete-Choice Models of Consumer Demand in Market-

ing,” Marketing Science, 30(6), 977–996.
Chung, Jae Wan. 1994. Utility and Production Functions. Cambridge: Blackwell Publishing.
Cliff, Andrew D. and J. Keith Ord. 1981. Spatial Processes. London: Pion.
Corrado, Luisa and Bernard Fingleton. 2012. “Where is the Economics in Spatial Econometrics?” Journal of

Regional Science, 52(2), 210–239.

C© 2015 Wiley Periodicals, Inc.



362 JOURNAL OF REGIONAL SCIENCE, VOL. 55, NO. 3, 2015

Dalenberg, Douglas R., Mark D. Partridge, and Dan S. Rickman. 1998. “Public Infrastructure: Pork or Jobs
Creator,” Public Finance Review, 26(1), 24–52.

Debarsy, Nicolas, Cem Ertur, and James P. LeSage. 2012. “Interpreting Dynamic Space-time Panel Data Models,”
Statistical Methodology, 9, 158–171.

Drukker, David M., Peter Egger, and Ingmar R. Prucha. 2013. “On Two-Step Estimation of a Spatial Autore-
gressive Model with Autoregressive Disturbances and Endogenous Regressors,” Econometric Reviews, 32(5–6),
686–733.

Dubin, Robin A. 1988. “Spatial Autocorrelation,” Review of Economics and Statistics, 70, 466–474.
———. 1992. “Spatial Autocorrelation and Neighborhood Quality,” Regional Science and Urban Economics, 22,

433–452.
Elhorst, J. Paul. 2010. “Applied Spatial Econometrics: Raising the Bar,” Spatial Economic Analysis, 5(1), 9–28.
———. 2013. “Spatial Panel Models,” in M.M. Fischer and P. Nijkamp (eds.), Handbook of Regional Science.

Berlin: Springer, pp. 1637–1652.
———. 2014. “Matlab Software for Spatial Panels,” International Regional Science Review, 37(3), 389–405.
Ertur, Cem and Wilfried Koch. 2007. “Growth, Technological Interdependence and Spatial Externalities: Theory

and Evidence,” Journal of Applied Econometrics, 22, 1033–1062.
Fingleton, Bernard and Julie Le Gallo. 2008. “Estimating Spatial Models with Endogenous Variables, a Spatial

Lag and Spatially Dependent Disturbances: Finite Sample Properties,” Papers in Regional Science, 87(3),
319–339.

Fingleton, Bernard and Enrique Lopez-Bazo. 2006. “Empirical Growth Models with Spatial Effects,” Papers in
Regional Science, 85(2), 177–198.

Fischer, Manfred M., Thomas Scherngell, and Martin Reismann. 2009. “Knowledge Spillovers and Total Factor
Productivity: Evidence Using a Spatial Panel Data Model,” Geographical Analysis, 41(2), 204–220.

Florax, Raymond and Henk Folmer. 1992. “Specification and Estimation of Spatial Linear Regression Models:
Monte Carlo Evaluation of Pre-test Estimators,” Regional Science and Urban Economics, 22, 405–432.

Florax, Raymond, Henk Folmer, and Sergio J. Rey. 2003. “Specification Searches in Spatial Econometrics: The
Relevance of Hendry’s Methodology,” Regional Science and Urban Economics, 33, 557–579.

Getis, Arthur and Jared Aldstadt. 2004. “Constructing the Spatial Weights Matrix Using a Local Statistic,”
Geographical Analysis, 36(2), 90–104.

Gibbons, Stephen and Henry G. Overman. 2012. “Mostly Pointless Spatial Econometrics?” Journal of Regional
Science, 52(2), 172–191.

Golden, Shelley D., Kurt M. Ribisl, and Krista M. Perreira. 2014. “Economic and Political Influence on Tobacco Tax
Rates: A Nationwide Analysis of 31 Years of State Data,” American Journal of Public Health, 104(2), 350–357.

Harris, Richard, John Moffat, and Victoria Kravtsova. 2011. “In Search of W,” Spatial Economic Analysis, 6(3),
249–270.

Hill, R. Carter, William E. Griffiths, and Guay C. Lim. 2012. Principles of Econometrics. Asia: Wiley.
Holtz-Eakin, Douglas and Amy Ellen Schwartz. 1995. “Spatial Productivity Spillovers from Public Infrastructure:

Evidence from State Highways,” International Tax and Public Finance, 2, 459–468.
Huber, Martin, Michael Lechner, and Conny Wunsch. 2013. “The Performance of Estimators Based on the Propen-

sity Score,” Journal of Econometrics, 175(1), 1–12.
Keeler, Theodore E., Teh-wei Hu, Paul G. Barnett, and Willard G. Manning. 1993. “Taxation, Regulation, and

Addiction: A Demand Function for Cigarettes Based on Time-series Evidence,” Journal of Health Economics,
12, 1–18.

Keeler, Theodore E., Teh-Wei Hu, Paul G. Barnett, Willard G. Manning, Hai-Yen Sung. (1996), “Do Cigarette Pro-
ducers Price-Discriminate by State? An Empirical Analysis of Local Cigarette Pricing and Taxation,” Journal
of Health Economics, 15, 499–512.

Kelejian, Harry H. 2008. “A Spatial J-Test for Model Specification against a Single or a Set of Non-Nested
Alternatives,” Letters in Spatial and Resource Sciences, 1(1), 3–11.

Kelejian, Harry H. and Gianfranco Piras. 2014. “Estimation of Spatial Models with Endogenous Weighting
Matrices, and an Application to a Demand Model for Cigarettes,” Regional Science and Urban Economics, 46,
140–149.

Kelejian, Harry H. and Ingmar R. Prucha. 1998. “A Generalized Spatial Two Stage Least Squares Procedure for
Estimating a Spatial Autoregressive Model with Autoregressive Disturbances,” Journal of Real Estate Finance
and Economics, 17, 99–121.

———. 1999. “A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model,” Interna-
tional Economic Review, 40, 509–533.

———. 2010. “Specification and Estimation of Spatial Autoregressive Models with Autoregressive and Het-
eroskedastic Disturbances,” Journal of Econometrics, 157, 53–67.

Kelejian, Harry H., Ingmar R. Prucha, and Yevgeny Yuzefovich. 2004. “Instrumental Variable Estimation of a
Spatial Autoregressive Model with Autoregressive Disturbances: Large and Small Sample Results,” in J.P.
LeSage and R.K. Pace (eds.), Spatial and Spatiotemporal Econometrics. Amsterdam: Elsevier, pp. 163–198.

C© 2015 Wiley Periodicals, Inc.



VEGA AND ELHORST: THE SLX MODEL 363

Lacombe, Donald J. and James P. LeSage. 2013. “Using Bayesian Posterior Model Probabilities to Identify Omitted
Variables in Spatial Regression Models,” Papers in Regional Science, DOI: 10.1111/pirs.12070.

Lee, Lung-Fei. 2004. “Asymptotic Distribution of Quasi-maximum Likelihood Estimators for Spatial Autoregres-
sive Models,” Econometrica, 72, 1899–1925.

Lee, Lung-Fei and Jihai Yu. 2010. “Some Recent Developments in Spatial Panel Data Models,” Regional Science
and Urban Economics, 40, 255–271.

LeSage, James P. and R. Kelley Pace. 2009. Introduction to Spatial Econometrics. Boca Raton, FL: Taylor and
Francis.

———. 2011. “Pitfalls in Higher Order Model Extensions of Basic Spatial Regression Methodology,” The Review
of Regional Studies, 41(1), 13–26.

Lewit, Eugene M. and Douglas Coate. 1982. “The Potential of Using Excise Taxes to Reduce Smoking,” Journal
of Health Economics, 1, 121–145.

Lewit, Eugene M., Douglas Coate, and Michael Grossman. 1987. “The Effects of Government Regulation on
Teenage Smoking,” Journal of Law and Economics, 24, 545–569.

Liu, Xiaodong and Lung-Fei Lee. 2013. “Two-Stage Least Squares Estimation of Spatial Autoregressive Models
with Endogenous Regressors and Many Instruments,” Econometric Reviews, 32(5–6), 734–753.

Lovenheim, Michael F. 2008. “How Far to the Border?: The Extent and Impact of Cross-Border Casual Cigarette
Smuggling,” National Tax Journal, 56(1), 7–33.

Meen, Geoff. 1996. “Spatial Aggregation, Spatial Dependence and Predictability in the UK Housing Market,”
Housing Studies, 11, 345–372.

McMillen, Daniel P. 2010. “Issues in Spatial Data Analysis,” Journal of Regional Science, 50(1), 119–141.
———. 2012. “Perspectives on Spatial Econometrics: Linear Smoothing with Structured Models,” Journal of

Regional Science, 52(2), 192–209.
———. 2013. Quantile Regression for Spatial Data. Heidelberg, New York, Dordrecht, London: Springer.
Moulton, Brent R. 1990. “An Illustration of a Pitfall in Estimating the Effects of Aggregate Variables on Micro

Units,” Review of Economics and Statistics, 72, 334–338.
Mur, Jesus and Ana Angulo. 2009. “Model Selection Strategies in a Spatial Setting: Some Additional Results,”

Regional Science and Urban Economics, 39, 200–213.
Mur, Jesus, Marcos Herrera, and Manuel Ruiz. 2013. “Selecting the W Matrix: Parametric vs. Non Parametric

Approaches,” paper presented at the Econometrics of Social Interaction Symposium, University of York.
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