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Event-based Synchronization in Biology: Dynamics of PWlsripled Oscillators

Anton V. Proskurnik

Abstract— The principles of event-based control appear to be a
backbone of many self-coordinating natural systems. Popations of
flashing fireflies and cells of the cardiac pacemakers are beled to
reach synchrony via event-based interactions, known as theulse
coupling. Synchronization via pulse coupling is also widgl used in
wireless sensor networks, allowing to avoid the packet exemge. In
spite of serious attention to networks of coupled oscillats, there
is a lack of results on their synchronization under general opology
and phase-response curves. The most general, to the best diet
authors’ knowledge, result of this type (Wang et al., 2012) siablishes
synchronization of oscillators with a delay-advance phasessponse
curve under the assumption of strongly connected network tpology. In
this paper we relax the latter assumption to the existence an oriented
spanning tree, which is also necessary for the synchronizan, being
commonly adopted in multi-agent control.

Index Terms— Event-based control,
pulse coupling

oscillators, synchronization,

As control systems become large scale and distributed ov
large distances, the costs of fast information processirggnsors,
controllers, and actuators and of reliable communicatietwben
them, dramatically increase. This challenges one to dpwabatrol
strategies that use communication and computational ressin a
“parsimonious” way, giving birth to a new theory which intatgs
studies on control, communication and computing [1]. Whsre
exact estimates of the minimal communication rate and obntr
strategies providing this rate are quite complicated andnlmna
known for linear systems (see e.g. [2] and references therthiere
are alternative approaches that, being non-optimal, aghsimpler
and still provide visible economy of communication resestc
Among them is the paradigm avent-basedor event-triggerell
control [3]-[6], proved to be especially efficient in contod large-
scale networked and multi-agent systems [7]-[10].

Whereas the history of the event-based control in engingeri
is usually counted from the seminal papers [11], [12], loedobe
that complex systems coordinating via event-based pristdtad
attracted much attention in biological and biophysical oamities.
One of the first phenomenological description of an evestda
algorithm was given by J. Buck who studied synchronous flash
of a population of male fireflies in the dark:..each community
flash was initiated by a single flash, the others following @dn
instantaneously. Each individual apparently took his caeflash
from his more immediate neighbors, so that the mass flashthaok
form of a very rapid chain of overlapping flashes[13, p. 310]. In
other words, a firefly interacts to its neighbors via reactitmthe
eventsof their flashing; an intensive light destroys this mechanis
and the fireflies begin to flash asynchronously [13]. Analegou
event-based interactions, referred to as phése coupling lead to
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synchronous hand claps of applauding audience [14] andtamain
synchronous behavior in many biological networks, inahgdcar-
diac and circadian pacemakers [15]-[17].

Mathematical models of the pulse-coupled oscillator (PG&x}
works basically assume the trajectory of each oscillatoticoa
small vicinity of a stable limit cycle. Confined to the osatthr
motion along the cycle and neglecting the transversal djcgm
these models describe each oscillator with a sgaltearse variable
(varying on a unit circle or a segment of real line, at whose
right endpoint the phase variable is reset to the left on@)ike
diffusively coupled oscillators (e.g. Kuramoto networkk8]), in
PCO networks the duration of each interaction is negligityall
compared to the oscillator natural period. Passing sont paithe
cycle (corresponding to a fixed phase value), an oscillates fan
event (e.g. emits a pulse or some other stimulus), affectorge
of its neighbors (the set of which is determined by the networ
torpology). Upon receiving a stimulus from a neighbor, theil@tor
?rajectory is slightly disturbed, which is usually modekesiaphase
shift, described by the@hase response (or resetting) cur¢leRC)
[19].

Since the influential papers [20], [21], networks of PCO have
been attracting considerable attention of system and aotiteo-
rists, giving an instructive model of self-organizing uneeodest
communication, inspired by nature. Pulse-coupling petigbroved
to be very efficient in the problem of wireless sensor netwsynh-
chronization [22]-[25], as they save the communicatioroueses
and increase the network reliability by avoiding messagshamnge.

At the same time, there is the lack of mathematical results,
ensuring synchronization in networks of PCOs with geneRCE
and network topologies. Assuming the coupling strengthddo
very weak, one can approximate such a network with a contisiuo
Kuramoto-like model [23], [26], [27] that is now well studie
(see e.g. a recent survey [28] and references therein).oWitime
“weak coupling” assumption, the dynamics of PCO networks is
hybrid and has been examined mainly for the cases of allito-a
and ring coupling [20], [29]-[32]. One of the most generauiés
on PCO synchronization has been obtained in [24] and eskaslia
Synchronization in ensembles of identical PCO, providedrtARC
is of the delay-advanceype and the maximal deviation between
their initial phases is less than half of the oscillationiper The
criterion from [24] restricts the network to kstrongly connected

In the present paper, we extend the result of [24] to a widessc|
of networks, whose interaction graph is not necessarilgngily
connected but isrooted or, equivalently, contains amriented
spanning tree This is a standard assumption in the literature on
consensus and synchronization [33], [34] and the minimaire-
ment under which the synchronization is possible. Our i@oite in
particular, is applicable to a network with one leader anckse
followers, uncovered by the results of [24].

Il. THE PROBLEM SETUP

Henceforth we deal with the following model of PCO networks,
elaborated in [24], [25], [30]-[32]. Consider an ensemilévo> 1
identical oscillators, whose phase functions &&),...,0n(t) €



[0; 27). The “free-run” dynamics of each oscillator is of coupled oscillators, whereis, a21 may be arbitrary and PRC
. is such a map tha®(0) = ®(n) = ®(2r) = 0. Consider a
0i(t) =w, 0i(t—) =2 = 0i(t+) =0. (@) solution, starting a8 (0) = 0 and 62(0) = . The first event
Here the frequencyw > 0 is constant and, as usual, we assumds fired by the second oscillator at timé = m/w. One has
that passing through the valer, the phase is reset t@ 01(tz—) = 7 = 61(t2+) and hence the next event is fired by
In order to synchronize their phase variables, the oscitiat the first oscillator at timetj = 2m/w; after this 61(t3+) = 0,
apply the following event-based control protocol. As theagth 02(t3+) = m, that is, the initial configuration is recovered.
of an oscillator passes through some fixed value (commonlfor a In the next section a criterion will be given, which guaraste
oscillators), it fires arevent e.g. by sending out a stimulus. Without Synchronization for solutions, whose initial phageg0) differ by
loss of generality, we assume that tfid oscillator fires at time 1€ss thanr. Synchronization under this condition is well known
t. > 0 if 0;(t.—) = 2. At this moment, its phase is reset@p for Kuramoto models [28] and was proved in [24] for networks

whereas the remaining oscillators may acquire phase shifts ~ of PCO with delay-advance PRC under the assumption of strong
' ‘ connectivity of the network, which will be relaxed in the hex
0:i(t«+) = 0i(ts—) + cai;®(0:(t+—)) mod 2wVi#j. (2)  section.

Here the valuesi;; € {0;1} determine thenteraction topology 111. M AIN RESULTS
of the network: thejth oscillator affects théth one if and only if
ai;; = 1. The number > 0 stands for theoupling strengttin the
network and the ma@ : [0; 2r] — R is referred to as thehase
response curvéPRC). We always assume thatis continuous and
®(0) = 0 = ®(27), which means that a firing oscillator affects

none of those oscillators, that are synchronous to i (t.—) = ®(0) = d(r) = B(2m) — 0. Furthermore®d(z) < 0 if « € (0;7)
2m = 0;(te—), thenfs(t.+) = 93:(15*—‘—) - 0 . _and®(z) > 0 whenzx € (m; 2m).
In order to make the model just described complete, it remain Assumption 1 implies that during event-triggered inteiac(2)

to define the behavior when several oscillators fire simelthasly the phase of the influenced oscillatr(¢) jumps towards that of
(a "cluster burst” [31] occurs). We follow the model from [nd the firing oscillatord; (¢) (modulo 27) except for the case where

consider the resulting phase jump as the (nonlineap)grposition 0,(t.—) = 0. If Bi(t.—) € (0;), the ith oscillator is ahead of
of sevgral jumps. Let. t.hah os.C|IIator be affected at tImE:. b the firing one and is to be delaye®(@;(t.—)) < 0), whereas
by k simultaneously firing oscillators, then its new phase is for 6:(t.—) € (0;) it has to be advanced. Our next assumption

0i(ti+) = ToWo...oU(0:i(t.—)), U(0) 2 0+cd(0) mod 2r. prohibits overshoots during such a synchronization.
— Assumption 2: The coupling strengtl is chosen in a way that

In this section, we establish a criterion of synchronizatio the
network (1),(2),(3) under several assumptions. The firsiditmn
requires that the oscillators havalalay-advancdRC [24]. Exam-
ples of such PRC may be found e.g. in [24], [30].

Assumption 1: The function® : [0; 27r] — R is continuous with

k times

(3) v ), U(z) <2 ;2 5
The mapping¥ (9) is sometimes referred to as thbase transition (z) >0 Vo € (05m), (@) <2 va € (m32m), ()

curve (PTC). If theith agent at timg.. has the phasé;(t.—) =6  where¥(z) = = 4 ¢®(z) stands for the phase transition map.
and is affected by the event of some other oscillator, its pbase Assumption 2 is always satisfied with sufficiently smatl- 0 if
jumps to6;(t.+) = ¥(0) due to (2). Equation (3) states that the d(z) d(z)

. T
burst of k& simultaneous events result in the sequencé: @uch inf ——= > —o0, sup
z€e(0;m) T z€(m;2m) 2r —«x

instantaneous jumps. - o _
The definition (3) implies that trajectories continuouslgpend ~Analogous conditions, providing that oscillators do noemwun,
on the initial conditions, unlike the models with taeditiveeffect ~ are often adopted in the literature, see e.g. [31]. Someictsn,
of several events [21], [30]), assuming that for @ngne has imposed by Assumptions 1 and 2, is the impossibility of syaeh
nization in finite time, proved in [24]. On the other hand, lsuc
Oitat) = 0i(t—) +¢ > ay®(0;(t.—)) mod 2. convergence requires the PRC to be linear in the vicinity afid2r
3:0; (te —)=2m [24], which is a basic case in the theory of wireless senstwarks
) . (4)_ but not for biological oscillators [30]. An important impétion
Protocols (4) are usually examined either for weak coupllngof these assumptions is the absence of the Zeno behavior: it
c <<1by reducmg them fo quamot? models [21], [23], [,27] O will be shown that the instants of consequent events can have
under the assum.pt|o.n thqt oscillators’ phases are norigp)mng no accumulation point. Moreover, two events fired thye same
0:(t) # 0x(t), which is valid e.g. for almost all trajectories underoscillator are always separated by a positive dwell-time.
all-to-all interactions [20], [30]. Another definition, vidh allows Lemma 1: Let Assumptions 1 and 2 hold afd= 2r /w be the
the phase tran_sltlon map under several events_to be mileda natural period of oscillator (1). If thg¢th oscillator fires an event at
was prop(_)se_d in the_ very recent paper [32], which also dedis 0 ;.o £ > 0, then0 < 0;(t) < w(t—t.) < 7 ast € (t.; tx +T/2).
with special interaction graphs. - , In particular, it fires no events ase (t.;t. + 7/2].
Our goal is to find out conditions which guarantee asymptotic o, the other hand, the time between two consequent events is
synch.rqryzatlo'n in the networked system (1),(4). o estimated from above by, as implied by the following lemma.
Definition 1: The phase®;(:) (i = 1,..., N) synchronize if Lemma 2: Let Assumptions 1 and 2 hold am(to) € [r; 27).

i) _ 1051 S 0. Then thejth oscillator fires (only) once during the interv@b; to +
t=oo T/2]. Moreover,d;(t) — 0;(to) > w(t — to) ast € (to;t1), where
Here, as usuak'? = cos ¢ + 1sin ¢ for any ¢ € R. t1 is the time of event.

It is commonly known that even under simple undirected topol At any time ¢, > 0 either one of the phase(to) belongs
gies synchronization in general is not possible for soméaini to [r;27) and hence the next event will be fired no later than in
conditions [20], [30]. The simplest example is a palv (= 2) 7T/2 seconds, or otherwisg;(¢) € [0; 7) and the phases evolve in
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Fig. 1: d(z1, 22, z3) = 5w /4

accordance with (1) till one of them reach2s. This obviously
occurs at the instartt= to + (2 — max; 0;(¢0))/w < T'. In both
situations one can see the interim between two consequentsev
in the networks is not greater than

As was shown in Section Il, synchronization under arbitrar
initial conditions cannot be proved sind(w) = 0. There exist
two-cluster solutions, where the clusters’ phases deister;

moreover, such solutions may be stable [31]. However, under

fire (for the first time) no later than, + d(0)/w = T — (0. —
d(0))/w < T. The next firing time for the oscillator with index
j € J is greater thart. +7/2 > t. + d(0)/2, so these "leading”
oscillators fire for the second timegdter the other oscillators have
fired. Notice, however, that in general + 7//2 < T, so one
or several oscillators frony can fire twice during the period’.
Finally, for anyt one hasi(t) = d(01(t),...,0~(t)) < d(0) < m,
so the arguments may be retraced, replading’] with [¢;t + T
and 6;(0) with 0;(¢).

We are now ready to formulate our main result, stating that
the synchronization takes place under the mentioned asmumsp
provided that the network topology has oriented spanning tree
Consider a graple = (V, E), whereV = {1,..., N} is the set of
nodes, corresponding to oscillators, afids the set of arcs, defined
by the matrixA: E = {(i,5) : aj, = 1}. Notice that, as usual in
multi-agent control [33], the direction of an arc corresg®rio the

¥nfluence (or information flow): theith oscillator affects theth,

i.e.a;; = 1, if and only if an arc(j, ) from j to ¢ exists.
Theorem 1: Let Assumptions 1-3 hold and the gragh have

Assumptions 1 and 2 such clusters cannot arise if the initi" Oriented spanning tree. Then the oscillators syncheoniz

phases are “approximately” synchronized, deviating b ld&n It should be noticed that the assumption on the existence of
m: max;,; [0;(0) — 6:(0)] < m. We prove an even more generalan oriented spanning tree is commonly adopted in multi-agen

result, where the deviations are calculated moduto

We start with some preliminaries and notation. ISét= {z €
C : |z| = 1} stand for the unit circle, whose pointse S' are in
one-to-one correspondende— z = ¢* with phased = [0; 27).

Definition 2: We refer to a closed connected subseSbf{that
is, a set{e" : w € [a;b] C R}) as anarc in S'. Given an arc
L C S', let|L| € [0;2n] stands for its length (in radians). For
a finite sequence = {2}, c S' let d(2) 2 rgian_|L| (the
minimum is taken over all arcs, containing). Anéiogoasly, for a
sequencd = {0}, C [0;27) let d(0) 2 d(e', ..., eN).

For instance, for three points on Fig. 1 one ldds:, z2, 23) =
5w /4, one of the two minimal arcs is drawn in red.

Assumption 3: One hasd(6:(0),...,0~5(0)) < m, i.e. the
minimal arcLo containing points:*: () has lengthLo| < 7 (such
an arc is obviously unique).

control [33], [34], being the weakest condition under whitie
synchronization can be proved. If this condition fails, réhexist
two disjoint sets of node$,V> # @, such that none of them
has incoming arcs [35, Theorem 5]. In particular, two groops
oscillators, corresponding to the nodes fréfnand those fronis,
communicate neither to each other nor to the remaining ré&two
so synchronization between them is not possible.

Proofs of Lemmas 1-3 and Theorem 1 are given in Section V.

IV. NUMERICAL SIMULATION

In this section, the result of Theorem 1 is confirmed by nucagri
tests. We simulate a network @ = 4 identical oscillators with
the natural frequencyw = 1rad/s, whose interaction topology is
shown in Fig. 2. Notice that the graph in Fig.2 has an oriented

The following lemma shows that the condition from Assump-

tion 3 remains valid at any time> 0.

Lemma 3: Let Assumptions 1-3 hold and, be the minimal
arc from Assumption 3. Then for any> 0 andj = 1,..., N
one hasei" € L, £ ¢'L,. Moreover, the functioni(t) £
d(6:1(t),...,0n(t)) is non-increasing and hendét) < d(0) < .

Lemma 3 implies, in particular, that under Assumptions 1-3

the limit existsd, = lim;_ o d(01(t),...,0~(t)). The oscillators
asymptotically synchronize, obviously, if and onlydf = 0. An
elegant corollary, which follows from this lemma, showstthader
the aforementioned assumptions the sequence of eventarappe
be very regular.

Corollary 1: Under Assumptions 1-3 the claims are valid:

1) during the natural period” = 27 /w any oscillator fires at
least once and no more than two times;

3

3)
- =/
T
s
<
\

0N
~
"
Pt
\

\ J
X
@

Fig. 2: The network topology

spanning tree, but iaot strongly connected because the phase of
the “leading” oscillatorl is unaffected by the others.

The oscillators start with phasés = /2, 62 = 0.37, 03 =

2) between two events, fired by the same oscillators, allrothd.037 andf, = 0.97 (red).

oscillators fire (at least once).

Indeed, consider arbitrary initial phaseg0) € [0; 2x), satisfy-
ing Assumption 3. Le®, = max; 6;(0) andJ = {j : 0;(0) =
0.}. The oscillators with indices frony fire first at time instant
te =T —0./w, andb;(t.—) > 2r—d(0) > = for anyi. Therefore,
all the remaining oscillators ¢ J fire during (¢«; t. +d(0) /w] due
to Lemma 2. Sincé. > d(0) = 6. —min; 6;(0), all the oscillators

First we simulate the dynamics of network under the delay-
advanced PRGD(0) —sinf (see Fig.3a) and the coupling
strengthc = 0.4. The dynamics of oscillators’ phasés (blue),

02 (orange),ds (green) andd, (red) are shown on Figs. 4 and 5.
The diagram of events is displayed in Fig. 6: the pdint) on the
plot in Fig. 6 (wheret > 0 andi € {1, 2, 3,4}) indicates that the
ith oscillator fires an event at time
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Fig. 7: Oscillator phasesp(6) from (6), ¢ = 0.5.
Our second test deals with pieceswise-linear delay-agvamRC

—0,0 € [0;7/2)
() =4¢0—m,0¢€[rn/2;3r/2] (6)
2m — 0,0 € (37/2;27],
depicted in Fig. 3b, the coupling strength being= 0.5. The

dynamics of oscillators’ phasek(t) are shown in Figs. 7 and 8; @)t =0s (b) ¢ = 225 (©) t = 425 (d) t = 100s

the events diagram is displayed in Fig. 9.
Fig. 8: Oscillator phases ofi*, ®(0) from (6), ¢ = 0.5.

Orad
27T /
I \ V. PROOFS
Tt This section is organized as follows. We start with provirfg o

Lemmas 1 and Lemma 2, which establish important properties o
n the event sequence and entail Lemma 3. Then we pass to the proo
of Theorem 1, based on the construction of teéeirn map

Proof of Lemma 1. For a short while after an event (or burst of

ME!

/ ‘ events) occurs no other events can be fired and the phases avol
[/ N A S S accordance with (1). S0 < 6;(t) < w(t —t«) ast € [t«;t«+¢) if
10 2 0 0 e > 0 is small (and, in fact, the equality holds(t) = w(t — t.)).

Fig. 4: Oscillator phasesp(f) = —sinf, ¢ = 0.4. Let o be the maximak with such a property. Our goal is to show

thateg > 7'/2. Assume on the contrary thag < 7'/2. Sincee is
maximal, at the time instarf = t. + ¢ the phase); is affected

by single or multiple events. Sincg < 0;(¢'—) < w, one has
\ 0 < 6;(t'+) < 6;(¢'—) due to Assumption 1 and 2. After this, no
other events are fired for a while and herfice 6;(t) < w(t —t.)
also for some interval € [t'; t'+¢). One arrives at the contradiction
with the maximality ofe, thus proving the lemmdal
"~ Proof of Lemma 2 is based on the same idea. For sma# 0

(@)t =0s (b) t = 22s (€) t = 42s (d) ¢ = 100s we have no events during the intera; to+<) and hencé, (t) >
w(t —t«) ast € [to;to + €). Let 9 be the maximak with such

a property. Our goal is to show that at time = to + o the jth
oscillator fires an event, so théf(¢t1—) = 2x. Indeed, sincey is
maximal, at the time instantt single or multiple events are fired. If
the jth oscillator does not fire, its phase either remains unatng
or is affected by some events and hefigbi1—) < 0;(t1+) < 27
due to Assumptions 1 and 2. After this, no other events ard fire
for a while and henceé < 6;(t) > w(t —t.) also for some interval
t € [t1;t1+¢) which contradicts to the maximality af,. Therefore,
2r the jth oscillator fires at time; and w(t1 — to) < 27 — 6;(¢o),
which proves the lemmadll

b e . . . . 3 We are now ready to prove Lemma 3.

Fig. 5: Oscillator phases 0f', ®() = —sin6, ¢ = 0.4.

A. Proof of Lemma 3

! . . . . . Lt sec
® Let the sequence of events in the system be triggered at nismen
Fig. 6: Event diagram@(¢) = —sin6, ¢ = 0.4. 0<7 <72 <...Lemma 1 implies that any bounded interval
[0;¢] contains only finite number of;. By definition, for¢t < =
Both numerical examples confirm that the oscillators get- syrandt € (7:;7:11) equation (1) holds, s () = ¢! +0:(0) ¢
chronous under protocol (2), as claimed by Theorem 1. L; for t < 7. Therefore,e’®1=) ¢ L. Vi by continuity.
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Fig. 9: Event diagram®(6) from (6), c = 0.5.

Our goal is to show thae:("t) ¢ L, Vi. Indeed, let the
jth oscillator fires an event so théj(t1—) = 2w, and theith
one is affected, choosing its phase in accordance with (2je N
that 0;(t1—) # m, since|Ls;| < w by Assumption 3 andl:,
contains both phase8;(t1—) = 27 and 0;(t1—). Assume that
0;(t1—) € (0;7). Then for anyd € [0; 0;(t1—)] one hase'’ € Ly,
as|Li,| < 7 (see Fig.10). This entails that’ ") ¢ L, due
to Assumptions 1,2. In the case of multiple events, one a&o h
efittit) ¢ L, due to Assumptions 1,2 and (3). The case wher
0;(t1—) € (m;2m) is considered analogously (see Fig.10). Thu
we haveei1t) ¢ L, Vi so thate'®® ¢ L, for t < .
Retracing the same arguments, one proves #tfat?) e L, for

 Lemma 4: Let £" € [0;27]" be a sequence that has a limit
& = lim &". Thentl(¢") — t1(¢) forall j = 1,2...,N and

n—oo

S(E™) (&), i.e. S continuous at any point of its definition.
Proof: Suppose first for simplicity that® (£) # 1(£) for

all i # j. Renumbering the oscillators, without loss of generality
one may assume that(§) < ... < tY(§), i.e. & = max; ;.
Then we havet? () T — & /w and thus it is obvious that
th(€) = T — &/w — ti(§) since &l = max; &} asn is
sufficiently large. Furthermore, it is obvious that the syststate
after the first eventf”? 2 0(tL(&")+) — & 2 0(tL(O)+)
asn — oo. Substituting nowé — £, and renumbering os-
cillators (1,2,...,N) — (2,3,...,N,1), one can obtain now
that t3(€") = t1(€") + ti(EL) — ti(§) + ti(&y) = ()
and 9(t2(£M)+) — 6(t2(€)+) and so on, getting finally that
O(LY (€")+) — 0(tY (§)+) and S(E") = BN (€")+) — S(€) =
O(tY (£)+) asn — oo.

The case where some oscillators may fire simultaneously is
considered likewise but for one difference. Assume agamt th
oscillators are sorted in the order of their first firiigé) < ... <

tV (€). Suppose e.g. thel (€) = t2(¢) 3)

o= th(€) < ),
that is, the first oscillators fire simultaneously. It is easily shown

then thatt (€") — t.(§) for i = 1,2,...,l asn — oo, and

Jor large n the first{ oscillators fire earlier than the remaining

ones. A crucial difference is that one can no longer prové tha
0(t:

*

(EM)4) — O(t:(€)+) since the state in the right hand side

¢ < 75 and so on, proving thus the first claim of Lemma 3 andVa@S Produced by the cluster burst bfevents, that may be not

showing thatd(t) = d(01(t),...,0n(t)) < d(61(0),...,0n(0)).
By substitutiond; (0) — 0;(s) one shows thad(t + s) < d(s) for
anyt,s > 0, i.e. d is non-increasingll

0:(t1—) € (0;m)

0;(ti—)

0;(t1—) € (m;2m)

Fig. 10: lllustration to the proof of Lemma 3

B. The return map and its continuity

In this subsection, we introduce some auxiliary constamgito
be used in the proof of Theorem 1. The main of them isrétern
map [20], [31], which describes the evolution of the initial &ta
during one full “cycle” of oscillator firing.

For a vectoré = (£1,...,&n) € [0;27]Y such thatd(€) <
7 consider the solution of our systefi{t) = (61(t),...,0n(t))
with initial conditions 6;(0) = &; Vi. Note that we extend here
the notion of solution, allowing that; (0) = 27 for somes. In this
situation, we assume that the corresponding oscillatonsddiately
fire events and reset their phases$ tafter which the system evolves
as usual. Let] (¢) stand for the time when thigh oscillator triggers
its first event, Corollary 1 implies that < t1(£) < T. Lett.(€)

simultaneous in theith system. One can show, however, that
n A (=1 s A &
€} = 0(max £1.(6")+) = & = 0(t.(E)+).

Notice that the value in the left-hand state is the stater aftle
I events have fired. Substituting nogv— &, and renumbering
oscillators, one again can iterate this procedure as was dbave
in the non-degenerate case, proving the claim of Lemma. =
Lemma 3 implies thatS is a non-expansive map in the sense
of the “diameter”d: d(S(£)) < d(§) wheneverd(¢) < =. The
following lemma shows that if the network topology has arotéed
spanning tree, then the iteratish' ~! = SoSo...0S is featured
by much stronger contractivity property.
Lemma 5: Let the graphG defined in Section Il have an
oriented spanning tree. Then(f< d(€) < =, thend(SY~1(£)) <

d(§)

Proof: Let L(¢) be the arc of minimal length, containing the
points ei ) and J_(t), J4(t) stand for the sets of indices of
oscillators, being its endpoints at timéthe shortest turn from the
points from J_ to those fromJy is counterclockwise). A closer
analysis of the proof of Lemma 3 reveals that at the time ohtve
t. the following alternatives are possible:

« oscillators fromJ_(t.—), J4(t«—) are not affected by the
firing oscillator(s), thenL(t.+)| < |L(t«—)| andJ_ (t.—)
J_(tst), J4(t—) = J4(tA);

« some of the “extremal” oscillators are affected, huft.+)|
|L(t«—)l|. In this caseJ_(t.+) C J_(t«—) and J4 (t.+)
J4+(t«—) and at least one inclusion is strict;

« the length is decreasingL(t.+)| < |L(t.—)|.

It may be noticed that during the cycle &f consequent events

C

max; t1(&) be the time when the last of oscillators has just fired(triggered by all of oscillators) at least once the secondhid

the system state after this eventdis2 0(t(£)+).

Definition 3: We call the mapS : £ — 6..(£) the return mapof
the system.

The following lemma, showing thef is continuous, is a corner-
stone tool in proving the synchronization.

alternative must take place. Otherwise, one would have igjoidt
sets of nodes/_ (t.—), J4(t.—) without incoming arcs that is not
possible for a graph with oriented spanning tree [35, Thaobg
Since the cardinality off_ (t) U J4(¢) is not greater thadV, after
N — 1 cycles the length of arc necessarily decreases. [ ]



C. Proof of Theorem 1 [17]

Henceforth the assumptions of Theorem 1 are supposed to hcm;]
and in Assumption 3 one hag(0) do < m. Let 6(t)
(01(¢),...,0n(t)) be a solution. For synchronization it is sufficient

to prove thatd(t) — 0 ast — co which, in its turn, is entailed [19]
by d(S™(0(0))) — 0 asn — oo. Indeed, from Corollary 1 and [20]
Lemma 3 it follows thatd(S(6(0))) > d(6(T)) and, therefore,
d(S™(0(0))) > d((nT)) for anyn = 1,2,....

Consider a compact sek = {£ € [0;27]Y : 4(§) < [21]
do}. We are going to show that any sequent{s™¢) — 0 as 22]

n — oo for any £ € K. Suppose, on the contrary, thdy =

lim d(S™&) > 0. Since K is compact, there exists a sequence
n— o0

ng — oo such thatS"+¢& — & € K anddy = d(&). Therefore, (23]
SN-Mmee  §N=1¢y and hencely = d(SY7'&). One arrives

at the contradiction with Lemma ¥ [24]
VI. CONCLUSIONS
In this paper, we examine the protocol for oscillator sypnehr o5
nization, based on pulse-coupled interactions. We proe¢ ttie [25]
oscillators get synchronized for a general pulse responsee mf
the delay-advance type, provided that the topology of thevarx  [26]

has an oriented spanning tree and the maximal distance &etive

initial phases is less than The extensions for more general classe?ﬂ]
of networks, including those with positivefraction periods[24],

[25] and time-varying topology, is the subject of ongoingearch.
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