
 

 

 University of Groningen

Event-based Synchronization in Biology: Dynamics of Pulse Coupled Oscillators
Proskurnikov, Anton; Cao, Ming

Published in:
Proc. of the First IEEE Conference on Event-Based Control, Communication and Signal Processing

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Final author's version (accepted by publisher, after peer review)

Publication date:
2015

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Proskurnikov, A., & Cao, M. (2015). Event-based Synchronization in Biology: Dynamics of Pulse Coupled
Oscillators. In Proc. of the First IEEE Conference on Event-Based Control, Communication and Signal
Processing: IEEE [EBCON_3_3]

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-06-2022

https://research.rug.nl/en/publications/2d2aab85-c8df-4913-a045-fd9070871527


Event-based Synchronization in Biology: Dynamics of PulseCoupled Oscillators

Anton V. Proskurnikov and Ming Cao

Abstract— The principles of event-based control appear to be a
backbone of many self-coordinating natural systems. Populations of
flashing fireflies and cells of the cardiac pacemakers are believed to
reach synchrony via event-based interactions, known as thepulse
coupling. Synchronization via pulse coupling is also widely used in
wireless sensor networks, allowing to avoid the packet exchange. In
spite of serious attention to networks of coupled oscillators, there
is a lack of results on their synchronization under general topology
and phase-response curves. The most general, to the best of the
authors’ knowledge, result of this type (Wang et al., 2012) establishes
synchronization of oscillators with a delay-advance phase-response
curve under the assumption of strongly connected network topology. In
this paper we relax the latter assumption to the existence ofan oriented
spanning tree, which is also necessary for the synchronization, being
commonly adopted in multi-agent control.

Index Terms— Event-based control, oscillators, synchronization,
pulse coupling

I. I NTRODUCTION

As control systems become large scale and distributed over
large distances, the costs of fast information processing in sensors,
controllers, and actuators and of reliable communication between
them, dramatically increase. This challenges one to develop control
strategies that use communication and computational resources in a
“parsimonious” way, giving birth to a new theory which integrates
studies on control, communication and computing [1]. Whereas
exact estimates of the minimal communication rate and control
strategies providing this rate are quite complicated and mainly
known for linear systems (see e.g. [2] and references therein), there
are alternative approaches that, being non-optimal, are much simpler
and still provide visible economy of communication resources.
Among them is the paradigm ofevent-based(or event-triggered)
control [3]–[6], proved to be especially efficient in control of large-
scale networked and multi-agent systems [7]–[10].

Whereas the history of the event-based control in engineering
is usually counted from the seminal papers [11], [12], long before
that complex systems coordinating via event-based protocols had
attracted much attention in biological and biophysical communities.
One of the first phenomenological description of an event-based
algorithm was given by J. Buck who studied synchronous flashes
of a population of male fireflies in the dark:“...each community
flash was initiated by a single flash, the others following almost
instantaneously. Each individual apparently took his cue to flash
from his more immediate neighbors, so that the mass flash tookthe
form of a very rapid chain of overlapping flashes...”[13, p. 310]. In
other words, a firefly interacts to its neighbors via reactions to the
eventsof their flashing; an intensive light destroys this mechanism
and the fireflies begin to flash asynchronously [13]. Analogous
event-based interactions, referred to as thepulse coupling, lead to
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synchronous hand claps of applauding audience [14] and maintain
synchronous behavior in many biological networks, including car-
diac and circadian pacemakers [15]–[17].

Mathematical models of the pulse-coupled oscillator (PCO)net-
works basically assume the trajectory of each oscillator tolie a
small vicinity of a stable limit cycle. Confined to the oscillator
motion along the cycle and neglecting the transversal dynamics,
these models describe each oscillator with a scalarphase variable
(varying on a unit circle or a segment of real line, at whose
right endpoint the phase variable is reset to the left one). Unlike
diffusively coupled oscillators (e.g. Kuramoto networks [18]), in
PCO networks the duration of each interaction is negligiblysmall
compared to the oscillator natural period. Passing some point on the
cycle (corresponding to a fixed phase value), an oscillator fires an
event (e.g. emits a pulse or some other stimulus), affectingsome
of its neighbors (the set of which is determined by the network
topology). Upon receiving a stimulus from a neighbor, the oscillator
trajectory is slightly disturbed, which is usually modeledas aphase
shift, described by thephase response (or resetting) curve(PRC)
[19].

Since the influential papers [20], [21], networks of PCO have
been attracting considerable attention of system and control theo-
rists, giving an instructive model of self-organizing under modest
communication, inspired by nature. Pulse-coupling policies proved
to be very efficient in the problem of wireless sensor networksyn-
chronization [22]–[25], as they save the communication resources
and increase the network reliability by avoiding message exchange.

At the same time, there is the lack of mathematical results,
ensuring synchronization in networks of PCOs with general PRCs
and network topologies. Assuming the coupling strengths tobe
very weak, one can approximate such a network with a continuous
Kuramoto-like model [23], [26], [27] that is now well studied
(see e.g. a recent survey [28] and references therein). Without the
“weak coupling” assumption, the dynamics of PCO networks is
hybrid and has been examined mainly for the cases of all-to-all
and ring coupling [20], [29]–[32]. One of the most general results
on PCO synchronization has been obtained in [24] and establishes a
synchronization in ensembles of identical PCO, provided their PRC
is of the delay-advancetype and the maximal deviation between
their initial phases is less than half of the oscillation period. The
criterion from [24] restricts the network to bestrongly connected.

In the present paper, we extend the result of [24] to a wider class
of networks, whose interaction graph is not necessarily strongly
connected but isrooted or, equivalently, contains anoriented
spanning tree. This is a standard assumption in the literature on
consensus and synchronization [33], [34] and the minimal require-
ment under which the synchronization is possible. Our criterion, in
particular, is applicable to a network with one leader and several
followers, uncovered by the results of [24].

II. T HE PROBLEM SETUP

Henceforth we deal with the following model of PCO networks,
elaborated in [24], [25], [30]–[32]. Consider an ensemble of N > 1
identical oscillators, whose phase functions areθ1(t), . . . , θN (t) ∈



[0; 2π). The “free-run” dynamics of each oscillator is

θ̇i(t) = ω, θi(t−) = 2π ⇒ θi(t+) = 0. (1)

Here the frequencyω > 0 is constant and, as usual, we assume
that passing through the value2π, the phase is reset to0.

In order to synchronize their phase variables, the oscillators
apply the following event-based control protocol. As the phase
of an oscillator passes through some fixed value (common for all
oscillators), it fires anevent, e.g. by sending out a stimulus. Without
loss of generality, we assume that thejth oscillator fires at time
t∗ > 0 if θj(t∗−) = 2π. At this moment, its phase is reset to0,
whereas the remaining oscillators may acquire phase shifts:

θi(t∗+) = θi(t∗−) + caijΦ(θi(t∗−)) mod 2π ∀i 6= j. (2)

Here the valuesaij ∈ {0; 1} determine theinteraction topology
of the network: thejth oscillator affects theith one if and only if
aij = 1. The numberc > 0 stands for thecoupling strengthin the
network and the mapΦ : [0; 2π] → R is referred to as thephase
response curve(PRC). We always assume thatΦ is continuous and
Φ(0) = 0 = Φ(2π), which means that a firing oscillator affects
none of those oscillators, that are synchronous to it: ifθi(t∗−) =
2π = θj(t∗−), thenθi(t∗+) = θj(t∗+) = 0.

In order to make the model just described complete, it remains
to define the behavior when several oscillators fire simultaneously
(a “cluster burst” [31] occurs). We follow the model from [31] and
consider the resulting phase jump as the (nonlinear)superposition
of several jumps. Let theith oscillator be affected at timet = t∗
by k simultaneously firing oscillators, then its new phase is

θi(t∗+) = Ψ ◦Ψ ◦ . . . ◦Ψ
︸ ︷︷ ︸

k times

(θi(t∗−)), Ψ(θ)
∆
= θ+cΦ(θ) mod 2π.

(3)
The mappingΨ(θ) is sometimes referred to as thephase transition
curve (PTC). If theith agent at timet∗ has the phaseθi(t∗−) = θ
and is affected by the event of some other oscillator, its newphase
jumps toθi(t∗+) = Ψ(θ) due to (2). Equation (3) states that the
burst of k simultaneous events result in the sequence ofk such
instantaneous jumps.

The definition (3) implies that trajectories continuously depend
on the initial conditions, unlike the models with theadditiveeffect
of several events [21], [30]), assuming that for anyi one has

θi(t∗+) = θi(t∗−) + c
∑

j:θj (t∗−)=2π

aijΦ(θi(t∗−)) mod 2π.

(4)
Protocols (4) are usually examined either for weak couplings
c << 1 by reducing them to Kuramoto models [21], [23], [27] or
under the assumption that oscillators’ phases are non-overlapping
θi(t) 6= θk(t), which is valid e.g. for almost all trajectories under
all-to-all interactions [20], [30]. Another definition, which allows
the phase transition map under several events to be multi-valued,
was proposed in the very recent paper [32], which also deals only
with special interaction graphs.

Our goal is to find out conditions which guarantee asymptotic
synchronization in the networked system (1),(4).

Definition 1: The phasesθi(·) (i = 1, . . . , N ) synchronize if

eıθi(t) − eıθj(t) −−−→
t→∞

0.

Here, as usual,eıϕ = cosϕ+ ı sinϕ for anyϕ ∈ R.
It is commonly known that even under simple undirected topolo-

gies synchronization in general is not possible for some initial
conditions [20], [30]. The simplest example is a pair (N = 2)

of coupled oscillators, wherea12, a21 may be arbitrary and PRC
is such a map thatΦ(0) = Φ(π) = Φ(2π) = 0. Consider a
solution, starting atθ1(0) = 0 and θ2(0) = π. The first event
is fired by the second oscillator at timet12 = π/ω. One has
θ1(t

1
2−) = π = θ1(t

1
2+) and hence the next event is fired by

the first oscillator at timet11 = 2π/ω; after this θ1(t
1
2+) = 0,

θ2(t
1
2+) = π, that is, the initial configuration is recovered.

In the next section a criterion will be given, which guarantees
synchronization for solutions, whose initial phasesθi(0) differ by
less thanπ. Synchronization under this condition is well known
for Kuramoto models [28] and was proved in [24] for networks
of PCO with delay-advance PRC under the assumption of strong
connectivity of the network, which will be relaxed in the next
section.

III. M AIN RESULTS

In this section, we establish a criterion of synchronization in the
network (1),(2),(3) under several assumptions. The first condition
requires that the oscillators have adelay-advancePRC [24]. Exam-
ples of such PRC may be found e.g. in [24], [30].

Assumption 1: The functionΦ : [0; 2π] → R is continuous with
Φ(0) = Φ(π) = Φ(2π) = 0. Furthermore,Φ(x) < 0 if x ∈ (0; π)
andΦ(x) > 0 whenx ∈ (π; 2π).

Assumption 1 implies that during event-triggered interaction (2)
the phase of the influenced oscillatorθi(t) jumps towards that of
the firing oscillatorθj(t) (modulo 2π) except for the case where
θi(t∗−) = 0. If θi(t∗−) ∈ (0; π), the ith oscillator is ahead of
the firing one and is to be delayed (Φ(θj(t∗−)) < 0), whereas
for θi(t∗−) ∈ (0;π) it has to be advanced. Our next assumption
prohibits overshoots during such a synchronization.

Assumption 2: The coupling strengthc is chosen in a way that

Ψ(x) > 0 ∀x ∈ (0; π), Ψ(x) < 2π ∀x ∈ (π; 2π), (5)

whereΨ(x) = x+ cΦ(x) stands for the phase transition map.
Assumption 2 is always satisfied with sufficiently smallc > 0 if

inf
x∈(0;π)

Φ(x)

x
> −∞, sup

x∈(π;2π)

Φ(x)

2π − x
< ∞.

Analogous conditions, providing that oscillators do not overrun,
are often adopted in the literature, see e.g. [31]. Some restriction,
imposed by Assumptions 1 and 2, is the impossibility of synchro-
nization in finite time, proved in [24]. On the other hand, such a
convergence requires the PRC to be linear in the vicinity of0 and2π
[24], which is a basic case in the theory of wireless sensor networks
but not for biological oscillators [30]. An important implication
of these assumptions is the absence of the Zeno behavior: it
will be shown that the instants of consequent events can have
no accumulation point. Moreover, two events fired bythe same
oscillator are always separated by a positive dwell-time.

Lemma 1: Let Assumptions 1 and 2 hold andT = 2π/ω be the
natural period of oscillator (1). If thejth oscillator fires an event at
time t∗ > 0, then0 < θi(t) ≤ ω(t−t∗) < π ast ∈ (t∗; t∗+T/2).
In particular, it fires no events ast ∈ (t∗; t∗ + T/2].

On the other hand, the time between two consequent events is
estimated from above byT , as implied by the following lemma.

Lemma 2: Let Assumptions 1 and 2 hold andθj(t0) ∈ [π; 2π).
Then thejth oscillator fires (only) once during the interval(t0; t0+
T/2]. Moreover,θj(t)− θj(t0) ≥ ω(t− t0) ast ∈ (t0; t1), where
t1 is the time of event.

At any time t0 ≥ 0 either one of the phasesθi(t0) belongs
to [π; 2π) and hence the next event will be fired no later than in
T/2 seconds, or otherwiseθj(t) ∈ [0; π) and the phases evolve in



z1 z2

z3

Fig. 1: d(z1, z2, z3) = 5π/4

accordance with (1) till one of them reaches2π. This obviously
occurs at the instantt = t0 + (2π−maxj θj(t0))/ω ≤ T . In both
situations one can see the interim between two consequent events
in the networks is not greater thanT .

As was shown in Section II, synchronization under arbitrary
initial conditions cannot be proved sinceΦ(π) = 0. There exist
two-cluster solutions, where the clusters’ phases deviateby π;
moreover, such solutions may be stable [31]. However, under
Assumptions 1 and 2 such clusters cannot arise if the initial
phases are “approximately” synchronized, deviating by less than
π: maxi,j |θj(0) − θi(0)| < π. We prove an even more general
result, where the deviations are calculated modulo2π.

We start with some preliminaries and notation. LetS
1 = {z ∈

C : |z| = 1} stand for the unit circle, whose pointsz ∈ S
1 are in

one-to-one correspondenceθ 7→ z = eıθ with phasesθ = [0; 2π).
Definition 2: We refer to a closed connected subset ofS

1 (that
is, a set{eıω : ω ∈ [a; b] ⊂ R}) as anarc in S

1. Given an arc
L ⊆ S

1, let |L| ∈ [0; 2π] stands for its length (in radians). For
a finite sequencēz = {zi}

N
i=1 ⊂ S

1 let d(z̄)
∆
= min

zi∈L∀i
|L| (the

minimum is taken over all arcs, containingzi). Analogously, for a
sequencēθ = {θi}

N
i=1 ⊂ [0; 2π) let d(θ̄)

∆
= d(eıθ1 , . . . , eıθN ).

For instance, for three points on Fig. 1 one hasd(z1, z2, z3) =
5π/4, one of the two minimal arcs is drawn in red.

Assumption 3: One hasd(θ1(0), . . . , θN (0)) < π, i.e. the
minimal arcL0 containing pointseıθi(0) has length|L0| < π (such
an arc is obviously unique).

The following lemma shows that the condition from Assump-
tion 3 remains valid at any timet ≥ 0.

Lemma 3: Let Assumptions 1-3 hold andL0 be the minimal
arc from Assumption 3. Then for anyt ≥ 0 and j = 1, . . . , N

one haseıθj(t) ∈ Lt
∆
= eıωtL0. Moreover, the functiond(t)

∆
=

d(θ1(t), . . . , θN (t)) is non-increasing and henced(t) ≤ d(0) < π.
Lemma 3 implies, in particular, that under Assumptions 1-3

the limit existsd∗ = limt→∞ d(θ1(t), . . . , θN(t)). The oscillators
asymptotically synchronize, obviously, if and only ifd∗ = 0. An
elegant corollary, which follows from this lemma, shows that under
the aforementioned assumptions the sequence of events appears to
be very regular.

Corollary 1: Under Assumptions 1-3 the claims are valid:

1) during the natural periodT = 2π/ω any oscillator fires at
least once and no more than two times;

2) between two events, fired by the same oscillators, all other
oscillators fire (at least once).

Indeed, consider arbitrary initial phasesθi(0) ∈ [0; 2π), satisfy-
ing Assumption 3. Letθ∗ = maxj θj(0) and J = {j : θj(0) =
θ∗}. The oscillators with indices fromJ fire first at time instant
t∗ = T−θ∗/ω, andθi(t∗−) ≥ 2π−d(0) > π for any i. Therefore,
all the remaining oscillatorsi 6∈ J fire during(t∗; t∗+d(0)/ω] due
to Lemma 2. Sinceθ∗ ≥ d(0) = θ∗−minj θj(0), all the oscillators

fire (for the first time) no later thant∗ + d(0)/ω = T − (θ∗ −
d(0))/ω ≤ T . The next firing time for the oscillator with index
j ∈ J is greater thant∗ + T/2 > t∗ + d(0)/2, so these ”leading”
oscillators fire for the second timeafter the other oscillators have
fired. Notice, however, that in generalt∗ + T/2 < T , so one
or several oscillators fromJ can fire twice during the periodT .
Finally, for anyt one hasd(t) = d(θ1(t), . . . , θN (t)) ≤ d(0) < π,
so the arguments may be retraced, replacing[0; T ] with [t; t + T ]
andθi(0) with θi(t).

We are now ready to formulate our main result, stating that
the synchronization takes place under the mentioned assumptions,
provided that the network topology hasan oriented spanning tree.
Consider a graphG = (V,E), whereV = {1, . . . , N} is the set of
nodes, corresponding to oscillators, andE is the set of arcs, defined
by the matrixA: E = {(i, j) : aji = 1}. Notice that, as usual in
multi-agent control [33], the direction of an arc corresponds to the
influence (or information flow): thejth oscillator affects theith,
i.e. aij = 1, if and only if an arc(j, i) from j to i exists.

Theorem 1: Let Assumptions 1-3 hold and the graphG have
an oriented spanning tree. Then the oscillators synchronize.

It should be noticed that the assumption on the existence of
an oriented spanning tree is commonly adopted in multi-agent
control [33], [34], being the weakest condition under whichthe
synchronization can be proved. If this condition fails, there exist
two disjoint sets of nodesV1, V2 6= ∅, such that none of them
has incoming arcs [35, Theorem 5]. In particular, two groupsof
oscillators, corresponding to the nodes fromV1 and those fromV2,
communicate neither to each other nor to the remaining network,
so synchronization between them is not possible.

Proofs of Lemmas 1-3 and Theorem 1 are given in Section V.

IV. N UMERICAL SIMULATION

In this section, the result of Theorem 1 is confirmed by numerical
tests. We simulate a network ofN = 4 identical oscillators with
the natural frequencyω = 1rad/s, whose interaction topology is
shown in Fig. 2. Notice that the graph in Fig.2 has an oriented

Fig. 2: The network topology

spanning tree, but isnot strongly connected because the phase of
the “leading” oscillator1 is unaffected by the others.

The oscillators start with phasesθ1 = π/2, θ2 = 0.3π, θ3 =
0.03π andθ4 = 0.9π (red).

First we simulate the dynamics of network under the delay-
advanced PRCΦ(θ) = − sin θ (see Fig.3a) and the coupling
strengthc = 0.4. The dynamics of oscillators’ phasesθ1 (blue),
θ2 (orange),θ3 (green) andθ4 (red) are shown on Figs. 4 and 5.
The diagram of events is displayed in Fig. 6: the point(t, i) on the
plot in Fig. 6 (wheret ≥ 0 and i ∈ {1, 2, 3, 4}) indicates that the
ith oscillator fires an event at timet.



(a) Φ(θ) = − sin θ (b) Piecewise-linearΦ(θ) from (6)

Fig. 3: Two PRC maps

Our second test deals with pieceswise-linear delay-advance PRC

Φ(θ) =







−θ, θ ∈ [0; π/2)

θ − π, θ ∈ [π/2; 3π/2]

2π − θ, θ ∈ (3π/2; 2π],

(6)

depicted in Fig. 3b, the coupling strength beingc = 0.5. The
dynamics of oscillators’ phasesθi(t) are shown in Figs. 7 and 8;
the events diagram is displayed in Fig. 9.

Fig. 4: Oscillator phases,Φ(θ) = − sin θ, c = 0.4.

(a) t = 0s (b) t = 22s (c) t = 42s (d) t = 100s

Fig. 5: Oscillator phases onS1, Φ(θ) = − sin θ, c = 0.4.

Fig. 6: Event diagram,Φ(θ) = − sin θ, c = 0.4.

Both numerical examples confirm that the oscillators get syn-
chronous under protocol (2), as claimed by Theorem 1.

Fig. 7: Oscillator phases,Φ(θ) from (6), c = 0.5.

(a) t = 0s (b) t = 22s (c) t = 42s (d) t = 100s

Fig. 8: Oscillator phases onS1, Φ(θ) from (6), c = 0.5.

V. PROOFS

This section is organized as follows. We start with proving of
Lemmas 1 and Lemma 2, which establish important properties of
the event sequence and entail Lemma 3. Then we pass to the proof
of Theorem 1, based on the construction of thereturn map.

Proof of Lemma 1. For a short while after an event (or burst of
events) occurs no other events can be fired and the phases evolve in
accordance with (1). So0 < θi(t) ≤ ω(t− t∗) ast ∈ [t∗; t∗+ε) if
ε > 0 is small (and, in fact, the equality holdsθi(t) = ω(t− t∗)).
Let ε0 be the maximalε with such a property. Our goal is to show
thatε0 ≥ T/2. Assume on the contrary thatε0 < T/2. Sinceε0 is
maximal, at the time instantt′ = t∗ + ε0 the phaseθi is affected
by single or multiple events. Since0 < θi(t

′−) < π, one has
0 < θi(t

′+) < θi(t
′−) due to Assumption 1 and 2. After this, no

other events are fired for a while and hence0 < θi(t) ≤ ω(t− t∗)
also for some intervalt ∈ [t′; t′+ε). One arrives at the contradiction
with the maximality ofε0, thus proving the lemma.�

Proof of Lemma 2 is based on the same idea. For smallε > 0
we have no events during the interval(t0; t0+ε) and henceθi(t) ≥
ω(t − t∗) as t ∈ [t0; t0 + ε). Let ε0 be the maximalε with such
a property. Our goal is to show that at timet1 = t0 + ε0 the jth
oscillator fires an event, so thatθj(t1−) = 2π. Indeed, sinceε0 is
maximal, at the time instantt1 single or multiple events are fired. If
the jth oscillator does not fire, its phase either remains unchanged
or is affected by some events and henceθj(t1−) < θj(t1+) < 2π
due to Assumptions 1 and 2. After this, no other events are fired
for a while and hence0 < θi(t) ≥ ω(t− t∗) also for some interval
t ∈ [t1; t1+ε) which contradicts to the maximality ofε0. Therefore,
the jth oscillator fires at timet1 andω(t1 − t0) ≤ 2π − θj(t0),
which proves the lemma.�

We are now ready to prove Lemma 3.

A. Proof of Lemma 3

Let the sequence of events in the system be triggered at moments
0 < τ1 < τ2 < . . .; Lemma 1 implies that any bounded interval
[0; t] contains only finite number ofτi. By definition, for t < τ1
and t ∈ (τi; τi+1) equation (1) holds, soeıθi(t) = eıωt+ıθi(0) ∈
Lt for t < τ1. Therefore, eıθi(t1−) ∈ Lt1 ∀i by continuity.



Fig. 9: Event diagram,Φ(θ) from (6), c = 0.5.

Our goal is to show thateıθi(t1+) ∈ Lt1 ∀i. Indeed, let the
jth oscillator fires an event so thatθj(t1−) = 2π, and theith
one is affected, choosing its phase in accordance with (2). Note
that θi(t1−) 6= π, since |Lt1 | < π by Assumption 3 andLt1

contains both phasesθj(t1−) = 2π and θi(t1−). Assume that
θi(t1−) ∈ (0;π). Then for anyθ ∈ [0; θi(t1−)] one haseıθ ∈ Lt1

as |Lt1 | < π (see Fig.10). This entails thateıθi(t1+) ∈ Lt1 due
to Assumptions 1,2. In the case of multiple events, one also has
eıθi(t1+) ∈ Lt1 due to Assumptions 1,2 and (3). The case where
θi(t1−) ∈ (π; 2π) is considered analogously (see Fig.10). Thus
we haveeıθi(t1+) ∈ Lt1 ∀i so that eıθi(t) ∈ Lt for t < τ2.
Retracing the same arguments, one proves thateıθi(t) ∈ Lt for
t < τ3 and so on, proving thus the first claim of Lemma 3 and
showing thatd(t) = d(θ1(t), . . . , θN (t)) ≤ d(θ1(0), . . . , θN(0)).
By substitutionθi(0) 7→ θi(s) one shows thatd(t+ s) ≤ d(s) for
any t, s ≥ 0, i.e. d is non-increasing.�

θi(t1−) ∈ (0;π)

θi(t1−) ∈ (π; 2π)

θj(t1−)

Fig. 10: Illustration to the proof of Lemma 3

B. The return map and its continuity

In this subsection, we introduce some auxiliary constructions to
be used in the proof of Theorem 1. The main of them is thereturn
map [20], [31], which describes the evolution of the initial state
during one full “cycle” of oscillator firing.

For a vectorξ̄ = (ξ1, . . . , ξN) ∈ [0; 2π]N such thatd(ξ̄) <
π consider the solution of our system̄θ(t) = (θ1(t), . . . , θN (t))
with initial conditions θi(0) = ξi ∀i. Note that we extend here
the notion of solution, allowing thatθi(0) = 2π for somei. In this
situation, we assume that the corresponding oscillators immediately
fire events and reset their phases to0, after which the system evolves
as usual. Lettj∗(ξ) stand for the time when theith oscillator triggers
its first event, Corollary 1 implies that0 ≤ tj∗(ξ̄) ≤ T . Let t∗(ξ̄) =
maxj t

j
∗(ξ̄) be the time when the last of oscillators has just fired,

the system state after this event isθ̄∗
∆
= θ̄(t∗(ξ̄)+).

Definition 3: We call the mapS : ξ̄ 7→ θ̄∗(ξ̄) the return mapof
the system.

The following lemma, showing thatS is continuous, is a corner-
stone tool in proving the synchronization.

Lemma 4: Let ξ̄n ∈ [0; 2π]N be a sequence that has a limit
ξ̄ = lim

n→∞
ξ̄n. Then tj∗(ξ̄

n) → tj∗(ξ̄) for all j = 1, 2 . . . , N and

S(ξ̄n) → S(ξ̄), i.e. S continuous at any point of its definition.
Proof: Suppose first for simplicity thatti∗(ξ̄) 6= tj∗(ξ̄) for

all i 6= j. Renumbering the oscillators, without loss of generality
one may assume thatt1∗(ξ̄) < . . . < tN∗ (ξ̄), i.e. ξ1 = maxj ξj .
Then we havet1∗(ξ̄) = T − ξ1/ω and thus it is obvious that
t1∗(ξ̄

n) = T − ξn1 /ω → t1∗(ξ̄) since ξn1 = maxj ξ
n
j as n is

sufficiently large. Furthermore, it is obvious that the system state
after the first eventξ̄n+

∆
= θ(t1∗(ξ̄

n)+) → ξ̄+
∆
= θ(t1∗(ξ̄)+)

as n → ∞. Substituting nowξ̄ 7→ ξ̄+ and renumbering os-
cillators (1, 2, . . . , N) 7→ (2, 3, . . . , N, 1), one can obtain now
that t2∗(ξ̄

n) = t1∗(ξ̄
n) + t1∗(ξ̄

n
+) → t1∗(ξ̄) + t1∗(ξ̄+) = t2∗(ξ̄)

and θ(t2∗(ξ̄
n)+) → θ(t2∗(ξ̄)+) and so on, getting finally that

θ(tN∗ (ξ̄n)+) → θ(tN∗ (ξ̄)+) andS(ξ̄n) = θ(tN∗ (ξ̄n)+) → S(ξ̄) =
θ(tN∗ (ξ̄)+) asn → ∞.

The case where some oscillators may fire simultaneously is
considered likewise but for one difference. Assume again that
oscillators are sorted in the order of their first firingt1∗(ξ̄) ≤ . . . ≤
tN∗ (ξ̄). Suppose e.g. thet1∗(ξ̄) = t2∗(ξ̄) = . . . = tl∗(ξ̄) < tl+1

∗ (ξ̄),
that is, the firstl oscillators fire simultaneously. It is easily shown
then thatti∗(ξ̄

n) → ti∗(ξ̄) for i = 1, 2, . . . , l as n → ∞, and
for large n the first l oscillators fire earlier than the remaining
ones. A crucial difference is that one can no longer prove that
θ(t1∗(ξ̄

n)+) → θ(t1∗(ξ̄)+) since the state in the right hand side
was produced by the cluster burst ofl events, that may be not
simultaneous in thenth system. One can show, however, that

ξ̄n+
∆
= θ(max

1≤i≤l
ti∗(ξ̄

n)+) → ξ̄+
∆
= θ(t1∗(ξ̄)+).

Notice that the value in the left-hand state is the state after all
l events have fired. Substituting now̄ξ 7→ ξ̄+ and renumbering
oscillators, one again can iterate this procedure as was done above
in the non-degenerate case, proving the claim of Lemma.

Lemma 3 implies thatS is a non-expansive map in the sense
of the “diameter”d: d(S(ξ̄)) ≤ d(ξ̄) wheneverd(ξ̄) < π. The
following lemma shows that if the network topology has an oriented
spanning tree, then the iterationSN−1 = S ◦S ◦ . . . ◦S is featured
by much stronger contractivity property.

Lemma 5: Let the graphG defined in Section III have an
oriented spanning tree. Then if0 < d(ξ̄) < π, thend(SN−1(ξ̄)) ≤
d(ξ̄).

Proof: Let L(t) be the arc of minimal length, containing the
points eıωj(t) and J−(t), J+(t) stand for the sets of indices of
oscillators, being its endpoints at timet (the shortest turn from the
points fromJ− to those fromJ+ is counterclockwise). A closer
analysis of the proof of Lemma 3 reveals that at the time of event
t∗ the following alternatives are possible:

• oscillators fromJ−(t∗−), J+(t∗−) are not affected by the
firing oscillator(s), then|L(t∗+)| < |L(t∗−)| andJ−(t∗−) =
J−(t∗+), J+(t∗−) = J+(t∗+);

• some of the “extremal” oscillators are affected, but|L(t∗+)| =
|L(t∗−)|. In this caseJ−(t∗+) ⊆ J−(t∗−) andJ+(t∗+) ⊆
J+(t∗−) and at least one inclusion is strict;

• the length is decreasing:|L(t∗+)| < |L(t∗−)|.
It may be noticed that during the cycle ofN consequent events
(triggered by all of oscillators) at least once the second orthird
alternative must take place. Otherwise, one would have two disjoint
sets of nodesJ−(t∗−), J+(t∗−) without incoming arcs that is not
possible for a graph with oriented spanning tree [35, Theorem 5].
Since the cardinality ofJ−(t)∪ J+(t) is not greater thanN , after
N − 1 cycles the length of arc necessarily decreases.



C. Proof of Theorem 1

Henceforth the assumptions of Theorem 1 are supposed to hold
and in Assumption 3 one hasd(0) = d0 < π. Let θ̄(t) =
(θ1(t), . . . , θN(t)) be a solution. For synchronization it is sufficient
to prove thatd(t) → 0 as t → ∞ which, in its turn, is entailed
by d(Sn(θ̄(0))) → 0 as n → ∞. Indeed, from Corollary 1 and
Lemma 3 it follows thatd(S(θ̄(0))) ≥ d(θ̄(T )) and, therefore,
d(Sn(θ̄(0))) ≥ d(θ̄(nT )) for any n = 1, 2, . . ..

Consider a compact setK = {ξ̄ ∈ [0; 2π]N : d(ξ̄) ≤
d0}. We are going to show that any sequenced(Snξ̄) → 0 as
n → ∞ for any ξ̄ ∈ K. Suppose, on the contrary, thatd0 =
lim

n→∞
d(Snξ̄) > 0. SinceK is compact, there exists a sequence

nk → ∞ such thatSnk ξ̄ → ξ̄0 ∈ K andd0 = d(ξ̄0). Therefore,
SN−1+nk ξ̄ → SN−1 ξ̄0 and henced0 = d(SN−1ξ̄0). One arrives
at the contradiction with Lemma 5.�

VI. CONCLUSIONS

In this paper, we examine the protocol for oscillator synchro-
nization, based on pulse-coupled interactions. We prove that the
oscillators get synchronized for a general pulse response curve of
the delay-advance type, provided that the topology of the network
has an oriented spanning tree and the maximal distance between the
initial phases is less thanπ. The extensions for more general classes
of networks, including those with positiverefraction periods[24],
[25] and time-varying topology, is the subject of ongoing research.
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