
 

 

 University of Groningen

Bandit-Inspired Memetic Algorithms for Solving Quadratic Assignment Problems
Puglierin, Francesco; Drugan, Madalina M.; Wiering, Marco

Published in:
Proceedings of IEEE International Conference on Evolutionary Computation

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Final author's version (accepted by publisher, after peer review)

Publication date:
2013

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Puglierin, F., Drugan, M. M., & Wiering, M. (2013). Bandit-Inspired Memetic Algorithms for Solving
Quadratic Assignment Problems. In Proceedings of IEEE International Conference on Evolutionary
Computation : CEC

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 16-07-2023

https://research.rug.nl/en/publications/7557846e-e2b2-4586-ad29-b14a2a2f69c7


Bandit-Inspired Memetic Algorithms for Solving
Quadratic Assignment Problems

Francesco Puglierin
Information and Computing Sciences
Utrecht University, The Netherlands

Email: francesco@puglier.in

Mădălina Drugan
Artificial Intelligence Lab

Vrije Universiteit Brussel, Belgium
Email: mdrugan@vub.ac.be

Marco Wiering (IEEE Member)
Department of Artificial Intelligence

University of Groningen, The Netherlands
Email: m.a.wiering@rug.nl

Abstract—In this paper we propose a novel algorithm called
the Bandit-Inspired Memetic Algorithm (BIMA) and we have
applied it to solve different large instances of the Quadratic
Assignment Problem (QAP). Like other memetic algorithms,
BIMA makes use of local search and a population of solutions.
The novelty lies in the use of multi-armed bandit algorithms and
assignment matrices for generating novel solutions, which will
then be brought to a local minimum by local search. We have
compared BIMA to multi-start local search (MLS) and iterated
local search (ILS) on five QAP instances, and the results show
that BIMA significantly outperforms these competitors.

Index Terms—Meta-heuristics, Memetic Algorithms, Combi-
natorial Optimization, Quadratic Assignment Problem, Multi-
armed Bandit Algorithms

I. INTRODUCTION

Many real-world problems in logistics, transport, and manu-
facturing can be modeled as combinatorial optimization prob-
lems. These problems have a huge set of possible solutions,
and the goal of an optimization algorithm is to find the best so-
lution. Since most of these problems are known to be NP-hard,
the most promising optimization algorithms use heuristics to
find good solutions without huge computational costs. There
are many different optimization algorithms, such as Genetic
Algorithms [1], Tabu Search [2], Simulated Annealing being
derived from the Metropolis Algorithm [3], and Ant Colony
Systems [4]. A promising class of methods are meta-heuristics
[5] and memetic algorithms [6], [7] that integrate a simple
local search algorithm in their framework. The advantage of
using local search is that it automatically finds a local optimum
when given some newly generated solution. Therefore, the
global search only has to consider the space of local optima,
which is usually much smaller than the space containing all
feasible solutions.

Quadratic Assignment Problems. The quadratic assign-
ment problem (QAP) is a combinatorial optimization problem
introduced by Koopmans and Beckmann in 1957 as a formal
model for allocating indivisible economical activities [8].
Informally, there is a given number of facilities to assign to
the same number of locations in an optimal way; a mutual
distance is given between locations, as is the flow, a number
which quantifies the mutual interaction between facilities. The
optimality is reached by placing the facilities in the locations
so that the complete solution minimizes the summation of the
products of distance and flow between all the facilities.

Several optimization objectives of the problem have been
proposed in literature; the following one, proposed by Çela in
[9], is probably the most commonly used:

cost(π) =

n∑
i=1

n∑
j=1

fijdπ(i)π(j), (1)

where n is the size of the problem instance, f is the flow
matrix, fij is the directed flow between facility i and facility
j, d is the distance matrix, and dij is the directed distance
between location i and location j. Finally, π represents a
possible permutation over (1,2,...,n) and π(i) corresponds to
the index of the location to which facility i is assigned. The
aim is to minimize the cost function defined by formula (1).
The QAP has been proven NP-hard in [10].

Main contributions. This paper describes the novel bandit-
inspired memetic algorithm (BIMA), which combines memetic
algorithms with multi-armed bandit algorithms [11] and local
assignment matrices to generate novel solutions. BIMA uses
a population of solutions and local search to obtain a set of
local minima from newly generated solutions. The novelty in
the method is the use of a multi-armed bandit algorithm on
a set of local assignment fitness matrices to globally search
for promising novel solutions. The idea of BIMA is to select
local assignments using the multi-armed bandit algorithm and
to enforce these promising assignments on a solution of an
individual in the population. After generating a novel solution,
local search is used to obtain a local optimum.

Multi-armed bandit (MAB) algorithms are an important
framework in reinforcement learning [12], [13] used mainly
to study the theoretical properties of these advanced machine
learning algorithms. In evolutionary computation, adaptive op-
erator selection algorithms have made use of MAB algorithms
to select a good genetic operator (like mutation operators with
different exchange rates [14], [15]). MABs are preferred to
other on-line learning algorithms because they are simple, easy
to implement and to tune. To our knowledge the application
of MAB algorithms to combinatorial optimization for keeping
information about the structure of the search space and to
generate novel solutions by selecting assignments to enforce
on a solution is new. In this context, the strength of bandit
algorithms is that they integrate information about the fitness
and popularity of assignments over time in order to optimally



cope with the exploration/exploitation trade-off.
We have performed a comparison of BIMA to multi-start

local search and iterated local search on five QAP instances.
The results show that BIMA obtains significantly better results
on all problem instances.

Outline of this paper. In Section II, we describe sev-
eral optimization algorithms related to meta-heuristics and
memetic algorithms. In Section III, we describe the Bandit-
Inspired Memetic Algorithm. Section IV describes related
work that inspired the development of BIMA. Then, in Section
V the experimental setup and results will be given. Section VI
concludes the paper and describes some possibilities for future
work.

II. BACKGROUND

In this section, we present the two main algorithmic con-
cepts upon which the BIMA algorithm is built.

A. Local-search Based Algorithms

Intuitively, local search (LS) [16] starts from an initial
solution and iteratively generates new solutions using a neigh-
borhood strategy. Each step, a solution that improves over the
existing best-so-far solution is chosen. The algorithm stops
when there is no improvement possible. Best improvement
LS explores all the individuals in the neighborhood of a
solution and selects the best solution that is improving over
the initial solution and all the other visited solutions. In a first-
improvement local search the hunt stops as soon as a better
solution is encountered. The local search technique has the
limitation of stopping once a local minimum is reached, which
translates into reaching a solution whose neighborhood does
not contain any improvement.

A suitable neighborhood operator for QAPs is the 2-
exchange swapping operator that swaps the locations of two
different facilities. This operator is attractive because of its
linear time to compute the change in the cost function with the
condition that the flow and distance matrices are symmetrical
[7]. The size of the neighborhood increases quadratically with
the number of facilities.

Multi-start Local Search (MLS). Multi-start local search is
probably the simplest meta-heuristic. The idea of MLS consists
of restarting the search from a random solution once a local
minimum has been reached by local search, and to repeat
this until a termination condition is reached. The resulting
MLS method can be classified as a meta-heuristic due to its
ability of exploring different areas of the search space. There
are certain limitations in MLS design because it is basically
random sampling in the space of local optima. Therefore, it
does not scale up well to a large number of local optima.

Iterated Local Search (ILS). In permutation problems like
QAPs, the mutation operator interchanges facilities between
different locations. When LS uses the 2-exchange operator
to generate a neighborhood, the mutation operator should
exchange at least the locations of three facilities to escape from
the region of attraction of a local optimum. The m-exchange
mutation uniform randomly selects m distinct pairs of facilities

for which the locations are sequentially exchanged. This global
step to generate a new initial solution is performed after a local
optimum has been found using the best found solution during
the entire run. Thus, the only difference between MLS and
ILS is in the technique used to restart LS. The advantage of
ILS is that it exploits possible structural relationships in the
search space (i.e. correlations or blocks in the QAP matrices).

Memetic Algorithms. In memetic algorithms [7], [6]. a
genetic algorithm is combined with an individual refinement
of the single solutions using local search. The advantage is that
the quality of solutions in the population is improved before
they share genetic information with their peers. Memetic
algorithms have been shown to outperform genetic algorithms
for some difficult problems (see e.g., [7]). ILS and MLS store
only a single best-so-far solution whereas memetic algorithms
use a population of solutions optimized with local search.

B. Multi-armed Bandits

One of the most important problems involved in a search al-
gorithm is to optimally cope with the exploration/exploitation
trade-off. It is important that previously found solutions that
are very good are used to construct new solutions (exploita-
tion), but the new solution should be sufficiently different in
order to explore large parts of the search space (exploration).
Achieving a good compromise between the two extremes is
not a problem found only in meta-heuristics; it is in fact
common in reinforcement learning [12], planning [17] and
dealing with imperfect knowledge in general. One of the
archetypal examples of such dilemma is the Multi-Armed
Bandit (MAB) model, known since the beginning of the
century and first formalized in its current form by Robbins
in 1951 [18].

The MAB models the uncertainty faced by a gambler
who has to choose how to spend his coins among K one-
armed bandits, each behaving according to an independent
and initially unknown probability distribution, in order to
maximize his final profit. An alternative way of describing
the gambler’s goal is to talk about regret minimization, where
the regret is the difference between the profit obtained by an
ideal sequence of plays (always pulling the best arm, if the
reward distributions are stationary) and the performed plays.

There are multiple bandit solvers, and our focus is on
optimistic index policies, and on the Upper Convergence
Bound (cUCB for short, [11]) in particular. cUCB is one
of the most applied techniques to solve multi-armed bandit
problems. The idea behind cUCB involves computing for each
arm an upper bound for the returned reward, basing the bound
estimation on both the rewards history and the accuracy of the
reward estimation (the number of pulls performed on the arm).
Whenever the gambler has to choose which arm to pull, he
finds out the value of cUCB for each arm according to formula
(2) and selects the highest scoring one.

Scoretj = x̄tj +

√
c ln

∑
k p

t
k

ptj
(2)



The first term in the formula, x̄tj , encodes the expected average
reward for arm j according to the knowledge available in time-
step t. Always choosing the arm with the highest expected
reward would result in a purely exploitative algorithm, so the
formula includes a second term to deal with exploration. The
variable ptj represents the number of times arm j has been
pulled at time-step t, making the value of the second term
in formula (2) inversely proportional to the arm popularity. c
is some parameter that can be tweaked, although its value is
often just set to 2, like in the original UCB algorithm [11].

III. BANDIT-INSPIRED MEMETIC ALGORITHM (BIMA)

In this section, we describe how we combined multi-armed
bandits with local search in a novel memetic algorithm. BIMA
consists of 3 important factors: (1) a population of solutions,
(2) a set of local assignment matrices, and (3) a multi-armed
bandit algorithm to select assignments to enforce on a solution.
Algorithm (1) shows the pseudocode of BIMA.

In the initialization phase, a pool of random solutions
is generated. Here ps denotes the population size. Then,
2opt local search creates an initial pool with only local
minima.

After that the algorithm constantly selects assignments to
enforce on a solution of an individual in the pool. This is
done by first selecting a subset At of all allowed assignments.
This subset either contains the assignments from (1) another
parent, a randomly selected donor parent, or (2) the assign-
ments currently in the whole population, or (3) all possible
assignments (which contain n× n possibilities). The decision
which subset to select is made randomly.

After a subset is selected, the method selects assignments
based on some parameters and local assignment matrices. This
method, select assignments forms the core of the algorithm,
and will be explained later.

The method enforce assignments simply puts the selected
assignments in the selected individual. To create valid solu-
tions, local swaps will be performed between the assignments
to enforce and the assignments that were in the individual
before.

Finally, the newly generated solution is brought to a local
minimum using 2opt local search. After that the fitness of
the new solution is compared to the fitness of the previous
solution of the individual and replaces the old solution if its
fitness (cost) is lower.

The core of the algorithm is the select assignments step.
This step makes use of local assignment matrices and a multi-
armed bandit algorithm, which we will now explain in more
detail.

A. Local Assignment Fitness Matrices

An approach common to Tabu Search [2], ACS algorithms
[19] and univariate EDA algorithms [20], [21] is to associate
to single assignments flags or values that are then used to
guide the search. Ant Colonies and several EDA algorithms
in particular approach the QAP by keeping an n × n matrix

Algorithm 1 BIMA-QAP

Pool(rnd)← {πrnd1 , πrnd2 , . . . , πrndps }

for all πrndi in Pool(rnd) do
π0
i ← 2opt local search(πrndi )

end for
Pool(0)← {π0

1 , π
0
2 , . . . , π

0
ps}

t← 0

repeat
At ← subset assignments(donor, population, all)
SAt ← select assignments(At, l,ms, c)
πtmpi ← enforce assignments(SAt, πti )
πnewi ← 2opt local search(πtmpi )

if fitness(πnewi ) ≤ fitness(πti) then
Pool(t+ 1)← Pool(t) \ {πti} ∪ {πnewi }

else
Pool(t+ 1)← Pool(t)

end if

t← t+ 1

until stop condition

encoding the desirability of each assignment χi,j in time-
step t. These assignment matrices store the desirability of
assigning each facility i to location j, and therefore have
size n× n, where n is the size of the problem instance. The
best assignments can then be selected from the assignment
matrix and used to change an existing solution. This kind of
explicit memory is appealing, because it can add an additional
dimension to the search by efficiently reusing data already
gathered during the algorithm execution.

The idea in BIMA is to keep track of a local fitness value for
each assignment, and to store them in the local fitness matrix
F̃ t(l), where l denotes the individual in the pool. The value
f̃ tij(l) in the matrix represents the aggregate fitness associated
to assignment χi,j . The local fitness matrix belongs to a single
individual in the solution pool.

At every update, f̃ tij(l) is computed by linearly combining
the average fitness of the solutions visited by individual l
containing that assignment (f̄ tij(l), with weight w1) and the
fitness of the best solution with χi,j in it (f̌ tij(l), with weight
1 − w1), as in Equation (3). These values are updated every
time a solution of individual l containing that assignment is
evaluated.

f̃ tij(l) = w1f̄
t
ij(l) + (1− w1)f̌ tij(l) (3)

The great majority of the evaluations takes place during
local search. Updating the matrix values during local search is
considered sort of compulsory to get a decent estimation of the



fitness. We note that all fitness values are normalized between
0 and 1, which is required by the used bandit algorithm.

B. Local Assignment Pull-count Matrices

Next to the local fitness matrices, the algorithm uses local
pull-count matrices. The pull counts ptij(l) are stored in
matrix P t(l) and updated whenever the associated assignment
is involved in a solution belonging to individual l being
evaluated. The pull-counts are used to compute the accuracy of
the estimation of the associated local assignment fitness values.
The main question is when to update the counts associated
to each assignment. This should go together with the update
of the fitness estimations, which is mostly done during local
search. Considering that the formula being put together is not
going to be involved with local search, this means that in the
vast majority of cases the arms are not pulled because of their
higher index score. In fact, most of the pulls are performed
implicitly while traversing 2-opt neighborhoods.

An interesting consequence of this is that when the bandit
formula, which will be explained next, is used to select a set of
assignments to enforce on a specific solution, the assignments
not involved in local search will be more likely to be selected
due to their higher exploration term. These assignments are
also more likely to be outside the basin of attraction of the
2-optimized solution, which is a very desirable property for
an operator that has to complement local search.

The local pull-count and fitness matrices are zero-initialized.
Since local search is performed as the first step on the random
initial solutions, we found that in practice after the first local
search phase all assignments were visited. However, to deal
with the theoretical possibility that an assignment was not
explored, we checked the values of the pull-count matrices and
initialized them to 1 in case they were never visited. We did
this since the pull-counts should always be positive integers
for the bandit algorithm.

C. Multi-armed Bandit Algorithms

We will now describe how we adapted the cUCB bandit
algorithm to select assignments to enforce on some solution
of a selected individual. Devised as a complement to local
search, select assignments(At, l,ms, c) is used once in each
macro-iteration. An individual l is randomly chosen from the
ps available (ps is the population size), then ms assignments
are selected to be enforced on the associated solution. These
assignments are the ones from the selected subset of assign-
ments At for which the following formula takes the highest
scores:

Scoretij =

1−
f̃ tij(l)− min

(k,l)∈At
(f̃ tkl(l))

max
(k,l)∈At

(f̃ tkl(l))− min
(k,l)∈At

(f̃ tkl(l))

+

√√√√√c ln
∑

(k,l)∈At

ptkl(l)

ptij(l)

The first part in this equation is the exploitation term. It
uses 1 minus the normalized (between 0 and 1) fitness value
to prefer the assignments from At having the lowest cost. The
second term is the exploration term from cUCB now making
use of the local pull-count matrices.

We want to note that many of the properties characterizing
the MAB are lost in the combinatorial optimization scenario.
More than one assignment needs to be enforced at once,
otherwise the chances of getting out of the basin of attraction
of the previous minimum would be pretty slim. Furthermore,
the quality measure of an assignment is dependent on the
rest of the assignments in the solution as well. This implies
that assignments are not independent as arms are assumed to
be, and that also non “pulled” assignments are influencing
the feedback. One more consequence is that the feedback
associated to an assignment can change according to the neigh-
borhood(s) being analyzed. Nonetheless, the loss of theoretical
bounds and properties does not take away from the fact that it
is interesting to see how an algorithm like cUCB performs in
balancing exploration and exploitation in this new algorithm.

IV. RELATED WORK

In this section we will describe several methods related to
BIMA. We note that it is not our intention to fully cover the
field of combinatorial optimization algorithms, since the field
is simply too large to cover in one paper.

Ant Colony Systems. Ant Colony Systems (ACS), first
introduced by Marco Dorigo in [4], attempt to solve com-
binatorial optimization problems by imitating the behavior
of worker ants hunting for food. In ACS virtual ants are
traveling around the search space, composing solutions by
combining heuristic evaluations with values left behind in
virtual pheromone trails, to which an evaporation factor is
applied at each iteration. The pheromone trails determine the
goodness of a specific assignment. By having different ants
constructing different solutions using them, the best solution(s)
can be used to increase the pheromone trails of assignments
belonging to these solutions. Then, in the future more ants
will compose solutions with the assignments in the best found
solutions.

A later implementation of the Ant System specifically
tailored for the Quadratic Assignment Problem is HAS-QAP,
introduced by Gambardella, Taillard and Dorigo in 1999
[19]. Here the ants use the information in the trails to alter
previously generated solutions, instead of generating new ones
from scratch. Another relevant tweak is the inclusion of a
local search routine that improves the solutions generated by
the ants themselves. Both these approaches, altering previous
solutions and local search, found their way into BIMA as well.

Estimation of Distribution Algorithms. Another category
of population-based algorithms are Estimation of Distribution
Algorithms (EDAs) [22], [20]. These methods, whose theoret-
ical foundation is in probability theory, build a probabilistic
model around good solutions and use that as a guide in
exploring the search space. The model is constantly updated
to include information about newly generated solutions. An



algorithm related to BIMA was proposed in [21], where an
assignment matrix contains values that directly encode the
probability of altering a solution with each of the assignments.
These probabilities are adapted based on the best found
solutions.

V. EXPERIMENTAL SETUP AND RESULTS

In this section, we will first explain which QAP instances
we have used to compare BIMA to MLS and ILS. After that
we will present our experimental results.

A. Experimental Setup

We used QAP instances from QAPLIB, which is a reposi-
tory for QAP instances and results. To compare BIMA to MLS
and ILS, five instances of various sizes have been selected
from QAPLIB: nug30, ste36a, tai60a, tai80a, and sko100a.
Table I provides for each instance the fitness of the best
known minimum, the size n of the instances, the amount of
fitness evaluations specified for the stopping condition, and
the number of runs we performed with BIMA, MLS, and
ILS. The number of evaluations is the same for all methods,
and this number was selected based on a compromise be-
tween the goodness of found solutions and the computational
time needed to run the experiments. We have used first-
improvement local search in all three methods.

Table I
THE INSTANCES WITH THE FITNESS OF THE BEST SOLUTION KNOWN, THE
SIZE OF THE INSTANCES, THE AMOUNT OF EVALUATIONS FOR EACH RUN

AND THE NUMBER OF RUNS FOR EACH EXPERIMENT.

Instance Size n Known Min. Evaluations Runs
nug30 30 6,124 40,000,000 50
ste36a 36 9,526 100,000,000 50
tai60a 60 7,205,962 300,000,000 50
tai80a 80 13,499,184 300,000,000 50

sko100a 100 152,002 300,000,000 50

We note that on the two smaller instances shown in Table I,
BIMA always found the best known optimum [23]. However,
these problems turn out to have multiple global minima. There-
fore, on these two problems we will compare the methods
based on how many different global optima they find in a run.
This experiment will therefore show the explorative power
of the three methods. For the three larger instances BIMA,
ILS, and MLS could not always stretch down to the known
minimum in the specified amount of iterations. Therefore,
the behavior of the methods on these instances is compared
focusing on how close - on average - they get to the best
known minimum, within the allowed execution boundaries.

BIMA uses four parameters, which we selected based on
preliminary experiments and which we kept constant for the
five QAP instances. The used parameters for BIMA are: the
population size ps is set to 70. The number of assignments that
are each time selected and enforced, ms, is set to 1/6·n, where
n is the size of the problem (e.g. 80 for tai80a). The value for
c in cUCB is simply set to 2 (although we will show results
with different values for c for the two smaller QAP instances).

The value for w1 used for combining the lowest fitness of all
solutions in which an assignment belonged to and the average
fitness, is set to 0.5. ILS has one single parameter, m which
was each macro-iteration set randomly between a value of
3 and 1/3 · n, as in [24], [25]. MLS does not require any
parameters.

B. Experimental Results on the Smaller QAP Instances

We are also interested in the influence of the c parameter on
BIMA’s effectiveness to find different global minima. When
c is large, the exploration power of the method increases,
but this may be at the cost of exploiting previously found
good solutions less well. The results on nug30 for BIMA with
different values of c and ILS and MLS can be found in Table
II. The table shows how many different global minima are
found by the three methods. The results show that unlike MLS
and ILS, BIMA always finds a global minimum, and even finds
multiple of them. MLS finds a global minimum in less than
50% of the runs and is therefore also outperformed by ILS.

Table II
THIS TABLE COMPARES THE AVERAGE AMOUNT OF MINIMA FOUND ON

NUG30 BY EACH RUN OF BIMA (WITH VARYING C), MLS AND ILS.

Method c Average # Minima Standard Error

BIMA

0 2.32 0.15
1 3.20 0.12
2 3.42 0.08

10 3.80 0.06
100 3.76 0.06

MLS - 0.40 0.09
ILS - 0.91 0.14

Figure 1 shows the average number of global minima found
in nug30 during an entire run when different c-values are used
in BIMA. The figure shows that the number of found global
minima in general increases with c, although the best value
we tested is c = 10.

2.5

3.0

3.5

0 1 2 10 100
value of c in BIMA

a
ve

ra
g

e
 #

 o
f 

d
if
fe

re
n

t 
m

in
im

a

method

BIMA

Figure 1. This figure shows how the number of found global minima by
BIMA depends on the used value for c for nug30. The experiments were
repeated 50 times.



The results for ste36a can be found in Table III. Again the
results show that unlike MLS and ILS, BIMA always finds a
global minimum, and finds multiple of them. MLS only rarely
finds one global minima and is again the worst method.

Table III
THIS TABLE COMPARES THE AVERAGE AMOUNT OF MINIMA FOUND ON

STE36A BY EACH RUN OF BIMA (WITH VARYING C), MLS AND ILS.

Method c Average # Minima Standard Error

BIMA

0 5.34 0.23
1 6.42 0.22
2 6.04 0.21

10 6.28 0.23
100 5.62 0.19

MLS - 0.04 0.03
ILS - 0.66 0.07

Figure 2 shows the average number of global minima found
on ste36a during an entire run when different c-values are used
in BIMA. The figure shows that for this larger problem values
of c between 1 and 10 work best. The use of a very large
value, c = 100, can lead to too much exploration and too
little exploitation.

5.5

6.0

6.5

0 1 2 10 100
value of c in BIMA

a
ve

ra
g

e
 #

 o
f 

d
if
fe

re
n

t 
m

in
im

a

method

BIMA

Figure 2. This figure shows how the number of found global minima by
BIMA depends on the used value for c for ste36a. The experiments were
repeated 50 times.

C. Experimental Results on the Larger QAP Instances

The results for tai60a can be found in Table IV. The
minimum would be reached if the score would be 100.0, so it
is clear that within the allowed search time, none of the three
methods finds the optimum. However, the best found solution
of the three methods was found by BIMA. Furthermore, if
we compare the means of the best solutions found in the 50
runs using a student t-test, BIMA significantly (p < 0.01)
outperforms ILS and MLS. On its turn, ILS significantly
outperforms MLS.

In Figure 3, the optimization process is shown. It shows
that BIMA immediately finds better solutions than ILS and
MLS, and is able to improve the best found solution faster

Table IV
THE BEST AND AVERAGE BEST SOLUTION FOR TAI60A, EXPRESSED IN

PERCENTAGE OF THE KNOWN MINIMUM. THE LAST ROW REPRESENTS THE
STANDARD ERROR.

BIMA MLS ILS
Best Solution 100.859 102.056 100.918
Average Best 101.125 102.475 101.482

Standard Error 0.019 0.036 0.026

than the other methods. The figure also shows that at the end
BIMA is still improving, so it is probable that with much more
evaluations, the optimum will be found.

Figure 3. This figure shows how the average fitness of the best solution found
improves over time for tai60a. We plotted the results after each 30,000,000
evaluations (steps T0 until T9). The experiments were repeated 50 times.

The results for tai80a can be found in Table V. The best
found solution of the three methods was found by BIMA. If we
compare the means using a student t-test, BIMA significantly
(p < 0.01) outperforms ILS and MLS. Again, ILS significantly
outperforms MLS.

Table V
THE BEST AND AVERAGE BEST SOLUTION FOR TAI80A, EXPRESSED IN

PERCENTAGE OF THE KNOWN MINIMUM. THE LAST ROW REPRESENTS THE
STANDARD ERROR.

BIMA MLS ILS
Best Solution 101.191 102.114 101.704
Average Best 101.586 102.581 102.182

Standard Error 0.023 0.029 0.016

In Figure 4, the optimization process is shown on tai80a.
The figure shows that BIMA again finds better solutions faster
than ILS and MLS, and is able to improve the best found



solution faster than the other methods. At the end BIMA is
still improving a lot.

Figure 4. This figure shows how the average fitness of the best solution found
improves over time for tai80a. We plotted the results after each 30,000,000
evaluations (steps T0 until T9). The experiments were repeated 50 times.

The results for sko100a can be found in Table VI. The best
found solution of the three methods was again found by BIMA,
which for this problem found a solution very close to the best
optimum known. If we compare the means using a student
t-test, BIMA significantly (p < 0.01) outperforms ILS and
MLS. Again, ILS significantly outperforms MLS.

Table VI
THE BEST AND AVERAGE BEST SOLUTION FOR SKO100A, EXPRESSED IN

PERCENTAGE OF THE KNOWN MINIMUM. THE LAST ROW REPRESENTS THE
STANDARD ERROR.

BIMA MLS ILS
Best Solution 100.092 100.412 100.150
Average Best 100.189 100.589 100.305

Standard Error 0.005 0.015 0.012

In Figure 5, the optimization process is shown on sko100a.
The figure shows that BIMA again finds better solutions faster
than ILS and MLS, and is able to improve the best found
solution faster than the other methods. Again, at the end BIMA
is still improving.

VI. CONCLUSIONS AND FUTURE WORK

In this paper the novel BIMA algorithm was described.
BIMA is a memetic algorithm combining a population of
solutions and a local search algorithm. BIMA is different from
other memetic algorithms in the way it generates novel solu-
tions in its global search. BIMA combines a multi-armed ban-
dit algorithm and information stored in local fitness and pull-

Figure 5. This figure shows how the average fitness of the best solution found
improves over time for sko100a. We plotted the results after each 30,000,000
evaluations (steps T0 until T9). The experiments were repeated 50 times.

count matrices to select promising explorative assignments for
a specific individual in the solution pool. These assignments
are then enforced on a solution and a valid solution is made
by using local swaps between new assignments and previous
ones in the solution. Finally, BIMA uses local search to bring
the newly generated solution to a local optimum.

The results showed that BIMA is very fast in finding good
solutions for difficult QAP instances and is able to keep
on improving its best found solution during the entire run.
BIMA significantly outperformed MLS and ILS on three hard
QAP instances. On two smaller QAP instances, the results
showed that BIMA has much better explorative capabilities
than MLS and ILS, and it is able to find multiple global
minima. Therefore, the power of BIMA is in its effective
way of handling the exploration/exploitation trade-off. This
was also our main goal when we developed the algorithm.

In future work we want to run longer experiments with
BIMA to see whether and how fast it finds the best known
minima. Furthermore, we want to integrate ideas from linkage
learning in the BIMA framework, since currently assignments
are selected without considering other assignments already
in a solution. Using higher order information in the local
assignment matrices, it may be possible to develop an even
better combinatorial optimization algorithm. Finally, we want
to extend the BIMA algorithm to other combinatorial opti-
mization problems and compare BIMA to the best known
algorithms in literature.

REFERENCES

[1] J. H. Holland, Adaptation in Natural and Artificial Systems: An Intro-
ductory Analysis with Applications to Biology, Control and Artificial



Intelligence. Cambridge, MA, USA: MIT Press, 1992.
[2] F. Glover and M. Laguna, Tabu Search. Norwell, MA, USA: Kluwer

Academic Publishers, 1997.
[3] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and

E. Teller, “Equation of state calculations by fast computing machines,”
The Journal of Chemical Physics, vol. 21, no. 6, pp. 1087–1092, 1953.

[4] M. Dorigo, “Optimization, Learning and Natural Algorithms,” Ph.D.
dissertation, Politecnico di Milano, Italy, 1992.

[5] C. Blum and A. Roli, “Metaheuristics in combinatorial optimiza-
tion: Overview and conceptual comparison,” ACM Computing Surveys,
vol. 35, no. 3, pp. 268–308, 2003.

[6] P. Moscato, “On evolution, search, optimization, genetic algorithms
and martial arts: Towards memetic algorithms,” Caltech concurrent
computation program, C3P Report, vol. 826, 1989.

[7] P. Merz and B. Freisleben, “Fitness landscape analysis and memetic
algorithms for the quadratic assignment problem,” Transactions on
Evolutionary Computation, vol. 4, no. 4, pp. 337–352, Nov. 2000.

[8] M. Beckman and T. Koopmans, “Assignment problems and the location
of economic activities,” Econometrica, vol. 25, pp. 53–76, 1957.

[9] E. Cela, The Quadratic Assignment Problem: Theory and Algorithms.
Kluwer Academic Publishers, 1998.

[10] S. Sahni and T. Gonzalez, “P-complete approximation problems,” Jour-
nal of the ACM, vol. 23, no. 3, pp. 555–565, Jul. 1976.

[11] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine Learning, vol. 47, no. 2-3, pp.
235–256, May 2002.

[12] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction
(Adaptive Computation and Machine Learning). The MIT Press, 1998.

[13] M. Wiering and M. van Otterlo, Reinforcement Learning: State of the
Art. Springer Verlag, 2012.

[14] D. Thierens, “Adaptive strategies for operator allocation,” in Parameter
Setting in Evolutionary Algorithms, 2007, pp. 77–90.

[15] M. M. Drugan and D. Thierens, “Generalized adaptive pursuit algorithm
for genetic Pareto local search algorithms,” in Proceedings of Genetic
and Evolutionary Computation Conference, 2011, pp. 1963–1970.

[16] T. Stützle, “Iterated local search for the quadratic assignment problem.”
European Journal of Operational Research, vol. 174, no. 3, pp. 1519–
1539, 2006.

[17] R. Martinez-Cantin, N. de Freitas, E. Brochu, J. A. Castellanos, and
A. Doucet, “A bayesian exploration-exploitation approach for optimal
online sensing and planning with a visually guided mobile robot,”
Autonomous Robots, pp. 93–103, 2009.

[18] H. Robbins, “Some Aspects of the Sequential Design of Experiments,”
in Bulletin of the American Mathematical Society, vol. 58, 1951, pp.
527–535.

[19] L. Gambardella, É. Taillard, and M.Dorigo, “Ant colonies for the
quadratic assignment problem,” Journal of the Operational Research
Society, vol. 50, pp. 167–176, 1999.

[20] S. Baluja, “Population-based incremental learning: A method for in-
tegrating genetic search based function optimization and competitive
learning,” Pittsburgh, PA, USA, Tech. Rep., 1994.

[21] Q. Zhang, J. Sun, E. Tsang, and J. Ford, “Estimation of distribution
algorithm with 2-opt local search for the quadratic assignment problem,”
in Towards a New Evolutionary Computation. Advances in Estimation
of Distribution Algorithm. Springer-Verlag, 2006, pp. 281–292.

[22] M. Pelikan, D. E. Goldberg, and E. Cantu-Paz, “BOA: The bayesian
optimization algorithm,” in Proceedings of the Genetic and Evolutionary
Computation Conference, vol. 1. Orlando, Florida, USA: Morgan
Kaufmann, 1999, pp. 525–532.

[23] F. Puglierin, “A bandit–inspired memetic algorithm for quadratic assign-
ment problems,” 2012, unpublished master’s thesis, Utrecht University.

[24] M. M. Drugan and D. Thierens, “Path-guided mutation for stochastic
Pareto local search algorithms,” in Parallel problem solving from Nature
(PPSN), vol. LNCS. Springer, 2010, pp. 485–495.

[25] ——, “Stochastic pareto local search: Pareto neighbourhood exploration
and perturbation strategies,” Journal of Heuristics, vol. 18, no. 5, pp.
727–766, 2012.


