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The processes involved in human performance seem inherently complex and 

dynamic. For example, in order to “read the game”, a soccer player must 

integrate all the information from the ongoing movements and positions of team 

members, the opponents, the relative positions between them, where the ball is 

located, etc. Furthermore, an individual’s motor performance, which is 

particularly crucial in sports, depends on various simultaneous processes at 

different levels of the motor system: Cells, muscles, limbs, the brain, and so forth. 

In addition, individuals and teams do not perform in a void, but in achievement 

contexts, in which they strive for their goals, and their psychological states and 

performance may fluctuate as a function of many personal and environmental 

factors. For example, an athlete may enter a positive or negative spiral when 

perceiving that he or she is progressing or regressing in relation to the preferred 

goal or outcome (e.g., the victory). This perception of progress and regress, and 

the positive and negative psychological and behavioral (performance) changes 

accompanying this perception, are called positive and negative psychological 

momentum (PM; e.g., Gernigon, Briki, & Eykens, 2010). Positive and negative PM 

can emerge from one’s (or the opponent’s) mistakes, referee decisions, crowd 

behaviors, one’s psychological and physical state at a certain moment, and the 

interactions between these factors (Taylor & Demick, 1994). In addition, 

switching from performance on a relatively short time frame to a long-term 

process, individuals develop their abilities over multiple years, and hence over 

many practice or competition occasions. Ultimately, very few individuals develop 

world-class performance (e.g., winning Olympic medals), and their excellent 

abilities develop out of a combination of a variety of personal and environmental 

factors in interaction (e.g., motivation, coaching, family support, practice; 

Simonton, 1999).  

 The current dissertation aims to capture complex dynamic performance-

related processes, including the topics illustrated above. This means that we 

examine complexity at different levels and time scales (from motor processes 

during one task, up to ability development during a career; see Table 1).  
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Table 1. Overview of the dissertation. Each chapter has a different focus on 

complex processes and time scales. 

 

Chapter Focus (complex processes) Time scale(s) 

2 Level of complexity of cognitive skills, 
measured while watching soccer game 
plays 

Single game plays (video 
clips) 

3 Complexity of motor organization, 
measured during ergometer rowing 

Single rowing ergometer 
session consisting of 550 
rowing strokes 

4 Dynamics of psychological momentum 
in teams, measured during ergometer 
races 

Single ergometer race 

5 Connection between short and long-
term psychological momentum, 
measured during and across ergometer 
races 

Single ergometer race, as 
well as a sequence of 
ergometer races 

6 Development of excellence out of 
complexity, modeled over the course 
of a career 

Life span of ability 
development 

 

 The studies have been conducted in a sports context, in which ongoing 

psychological and performance processes take place. These processes (e.g.,  PM, 

talent development) are, however, also relevant to other achievement contexts 

such as education and business (Day, Gordon, & Fink, 2012), in which individuals 

or teams are typically considered as goal-oriented, performance-driven agents 

(e.g., Katz, 2001). That said,  the  sports context provides particularly well-defined 

performance criteria (e.g., winning or losing), the actions needed to meet those 

criteria are clear (e.g., scoring goals in soccer), and performers can often be 

studied on a relatively small surface (e.g., a soccer field) within a relatively short 

time frame (e.g., a match).  

1.1  Why Would Performance Processes Be Complex? 

 The word complex is mentioned several times in this chapter. Importantly, 

complexity is not just reflected in the number of components that are involved in 

psychological and performance processes (e.g., the number and kinds of cells or 
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muscles that are active during performance, the number of personal and 

environmental variables that shape the development of excellence). Instead, a 

complex phenomenon or system is characterized by emergence and adaptation. 

More specifically, with regard to human performance this is the emergence and 

adaptation of psychological and performance states from the ongoing interaction 

between various intrapersonal (psychological and physical) and situational 

components (e.g., Kello et al., 2010; Kelso, 1995; Van Geert & Fischer, 2009). This 

conceptualization is different from the notion of complicatedness. In a 

complicated system many components are involved, which can be studied in 

isolation, and the resulting psychological and performance states can be 

understood when knowing the contributions of the individual components 

(Ottino, 2004). In other words, a resulting state, such as world-class sport 

performance, can be understood from the addition of a number of causal 

components (e.g., motivation, physical skills, personality), that can therefore be 

studied in isolation in order to understand why some individuals develop world-

class performance. The complexity perspective, however, assumes that the 

underlying mechanism of a certain state is multi-causal and dynamic, making it 

virtually impossible to reduce the explanation to one or a few directly-identifiable 

components.  

 However, researchers in the domain of social sciences have primarily 

attempted to untangle the complicatedness underlying human behavior. That is, 

by isolating one or a few independent variables researchers aimed to find an 

explanation for the occurrence of a psychological or performance state within a 

sample of participants (see also Van Geert, 2009a for a related discussion on 

static versus dynamic models of explanation). This entails that not the process 

itself (e.g., talent development) is studied, but how the results of those processes 

(e.g., world-class performance) are distributed over the population, and relate to 

other measurable components within the population (e.g., physical 

characteristics, motivation). The principal question that follows from this aim is 

whether the variance in some potential (performance) predictor x explains a 

significant portion of variance in performance outcome y (Atkinson & Nevill, 

2001).  

 To give an illustration, with regard to talent or excellence development, 

typical questions would be what the contributions are of, for example, genes, 
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amount of practice, environmental support, or cognitive commitment to become 

an excellent performer. Studies focusing on such questions have provided 

important insights into the kinds of factors contributing to excellent performance. 

For example, Van Yperen (2009) assessed―amongst other things―the goal 

commitment (independent variable) of youth AJAX players of the same cohort 

with a questionnaire. Fifteen years later he determined the career success 

(dependent variable) of the players (i.e., who had been playing in the Premier 

league in The Netherlands or another European country for at least 10 years, and 

who eventually did not end up playing in a professional league). When analyzing 

the results, Van Yperen (2009) controlled for potential confounds such as the 

soccer level of the players at the time of data collection (i.e., 15 years earlier). He 

found that players having a successful career also had a higher goal commitment 

at the time they were assessed in the youth academy, thereby marking goal 

commitment as a potential causal component of ultimate excellent performance, 

and demonstrating that psychological variables may play a pivotal role in talent 

development. More specifically, Van Yperen (2009) found that goal commitment 

explained 14% of the variance in soccer players’ career success. 

 Continuing with the example of the study of Van Yperen (2009), while 14% 

explained variance is a large portion according to the guidelines in social sciences 

(Cohen, 1988), 86% was not accounted for by the variable goal commitment. It is 

obvious that various other factors play a role, yet it remains highly probable that 

we will never come close to explaining 100% of the variance, even if all 

substantial factors are included. Although the prevailing interpretation for this 

would be that measurements always involve random error variance (Van Geert & 

Van Dijk, 2002), an alternative perspective could be that the underlying 

components of human performance are in an ongoing interaction, which provides 

the principal explanation for the development of career success. For example, 

support from parents and friends, recent successes and investments of the coach 

may influence the goal commitment of a player, which in turn positively 

influences the supporting environment again, and so on (cf. Phillips, Davids, 

Renshaw, & Portus, 2010). Note that the dynamic interactions we refer to here 

are different from the interaction effects studied in the social sciences. These are 

generally limited to 2 or 3 interacting factors, often with a limited number of 

levels. Hence, the conventional method is to refine models using an additive 

strategy (adding factors and interaction effects to causal models). Using this 
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method, a newly added variable or interaction term will often lead to only a 

minor gain in explained variance of the resultant psychological or performance 

state (Van Geert, 2009a). Therefore, this dissertation explores new models 

(rather than new potential determinants) to capture the complex processes of 

human performance.  

 Note that this dissertation is not intended to falsify or criticize the approach 

that is based on studying the (isolated) components that contribute to human 

performance (i.e. complicated models). This approach does provide important 

information, particularly if the research aim is to explain the distribution of 

human performance in the population, based on the distribution of specific 

causal underlying components. However, the current dissertation aims to capture 

the complex processes underlying human performance states, that is, how 

psychological and performance states emerge out of the ongoing interaction 

between various intrapersonal (psychological and physiological) and situational 

components. In order to do so, an important step is to find and apply the tools to 

measure the emergence and adaptation of complex psychological and 

performance patterns.  

 Although the complexity approach is not mainstream in the domain of social 

sciences, it has rapidly grown across different scientific domains (e.g., Gleick, 

2008; Kauffman, 1995; Strogatz, 2003). Furthermore, its merits are increasingly 

recognized in the study of social dynamics (Castellano, Fortunato, & Loreto, 

2009), developmental psychology (e.g., Van Geert, 2000), and sport sciences (e.g., 

Davids et al., 2014; Gernigon et al., 2010). The methods we apply here are thus 

inspired by applications and propositions from several scientific domains, 

including nonlinear dynamical systems in learning and development (e.g., Newell, 

Liu, & Mayer-Kress, 2001; Thelen & Smith, 1994; Van Geert, 1991; 1994; 2000), 

dynamical social psychology (Nowak & Vallacher, 1998; Vallacher, Read, & 

Nowak, 2002), synergetics (e.g., Haken, 1977; 1983; Haken, Kelso, & Bunz, 1985), 

self-organized critical dynamical systems in physics, biology, and cognitive 

psychology (e.g., Bak, Tang, & Wiesenfeld, 1987; Glass, 2001; Van Orden, Holden, 

& Turvey, 2003), network science (Newman, Barabási, & Watts, 2006), and 

mathematical modeling (e.g., Van Geert, 1991; Van der Maas et al., 2006).  
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1.2  How Can We Capture Complex Processes of Human Performance? 

 In order to provide insights into the complex processes involved in human 

performance, the research focus should be on obtaining an understanding of 

higher-order psychological and performance patterns, and the underlying system 

of dynamically interacting components (Nowak & Vallacher, 1998). Throughout 

this dissertation we propose different methods and techniques to capture 

complexity in various performance-related processes. Chapter 2 starts with an 

approach based on Skill Theory (Fischer, 1980). Skill theory lends itself particularly 

well to extract a measure of complexity in cognitive skills, which corresponds to a 

higher order measure reflecting the way individuals (continuously) structure the 

components in the world they perceive or interact with (Fischer & Bidell, 2006). 

Using Skill Theory, complexity can be extracted from actions and verbalizations 

while individuals are exposed to, or interact with, task material (Van Der Steen, 

Steenbeek, & Van Geert, 2012). Chapter 3 demonstrates how we can extract a 

measure of complexity that is assumed to reflect the underlying complex dynamic 

organization from which actual performance emerges. In this chapter complexity 

thus refers to the underlying system that generates human performance, which 

can be captured with nonlinear time series techniques applied to real-time 

performance data.   

 For the Chapters 4 and 5 we identified some important (collective) 

psychological and behavioral variables, whose changes would provide insights 

into the dynamics of a specific complex, performance related phenomenon: 

Psychological momentum (PM). We specifically study how these collective 

variables change under the influence of experimentally applied perturbations 

(i.e., progressing or regressing in relation to one’s goal in competitive sport 

situations). In Chapter 6, we use mathematical modeling techniques in order to 

capture performance patterns on the long term, during the development of 

excellence. Here, the complexity is reflected in the ongoing interactions between 

the components, and the fact that the developmental trajectories towards 

excellent performance are a function of these interacting (changing) components.  

 The methods we employ in the different studies should of course stem from 

solid theoretical considerations that warrant their applications to the study of 

(complex) human performance processes. The methods and their theoretical 

underpinnings for each subsequent chapter are therefore elaborated on below. 
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1.3  Capturing Complexity of Athletes’ Cognitive Skills (Chapter 2) 

 Expert athletes have been found to outperform non-experts in terms of their 

perceptual-cognitive skills (Mann, Williams, Ward, & Janelle, 2007). For instance, 

experts are able to anticipate events faster and more accurately (e.g., predicting 

the direction of a cross), and make better decisions than non-expert players (e.g., 

deciding where to move to receive the ball from a team member; for a 

demonstration of such skills in a famous expert―Christiano Ronaldo―, see 

https://www.youtube.com/watch?v=vSL-gPMPVXI). These skills would emerge 

from the continuous information pick-up of the athletes, which makes an athlete 

able to “read the game” (Bjurwill, 1993; Williams, 2000). Examples of relevant 

information in soccer, for instance, are the ball, opponents, team members, and 

their movements or changing positions. In addition, experts would pay attention 

to postural and bodily orientation information, mostly the shooting side of the 

player including the hip, leg, and foot (Williams, 2000). A soccer player thus 

constructs his (dynamic) representation of the actions taking place on the soccer 

field, which is based on the integration of multiple elements in continuous 

interaction (e.g., the players, opponents, ball, etc.). Capturing the complexity (i.e., 

the integration of the interacting components) of these representations has 

remained a challenge for researchers (e.g., McPherson, 2000; Roca, Ford, 

McRobert, & Williams, 2011). 

 In the domain of developmental psychology, Fischer (1980) has developed a 

cognitive-developmental theory, proposing that development (or improvement) 

of cognitive skills can be expressed in terms of increasing complexity (Fischer, 

1980; Fischer & Bidell, 2006). Related to this, Fischer proposed a complexity scale 

along which cognitive skills could be classified according to the way task- or 

object-related components are integrated to construct a (dynamic) 

representation. The scale ranges from a representation of one single observable 

characteristic of the task or object under study―single sensorimotor level―onto 

a representation of the relations between characteristics that constitute high 

(complexity) level properties of the task or object―abstraction level. Although 

this theory has never been applied to the achievement domain of sports, its 

applicability has been proven in other domains, science education in particular. 

For instance, in a recent study conducted by my favorite colleague, Van Der Steen 

(2014), the complexity of children’s representations of gravity and air pressure 
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was examined. The complexity level of a child with regard to gravity, for instance, 

was reflected in the verbalizations of the child while working on a gravity task. If 

the researcher would release a ball, and would ask the child to explain what 

happened, the child could answer at different levels. An answer at the 

sensorimotor level would be “The ball falls down”, which is simple and directly 

observable. If the child would have given the (unlikely) answer that “gravity 

caused the ball to fall down when you released it”, it would reflect an abstract 

level, because the explanation is more than a simple observation of what 

happens and includes a general understanding of the law that explains the ball 

falling down from the moment it is released. 

 Because of (a) the challenge to capture the complexity of (dynamic) 

representations that athletes such as soccer players construct during game plays, 

(b) the potential of Skill Theory to measure the complexity of representations that 

are constructed, and (c) the previous successful applications of Skill Theory in 

educational contexts, Chapter 2 attempts to measure the complexity of soccer 

players’ representations. More specifically, we designed a soccer-specific coding 

scheme and we coded the complexity of soccer players’ verbalizations of the 

actions that took place in video clips they were exposed to. Our method, based 

on Skill Theory, thus allowed us to extract the complexity, regardless of the 

specific components that were verbalized (e.g., a player, the ball, the kind of 

action). For example, when a player in the clip gives a cross from the left, the 

soccer player may describe the action as “the player shoots”, which reflects a 

representation of a low complexity level, including the connection between two 

directly observable components (i.e., the player and the ball). However, the 

soccer player could also integrate several components of the action, such as the 

ball, goal, and players, as well as relative positions between these components, 

by stating: “The left wingback gives a cross to the striker at the second post”. In 

addition to the general interest to capture the complexity of cognitive skills of 

athletes, we specifically address whether the complexity level of the soccer game 

play representations, is related to the level of expertise of soccer players. 

1.4  Capturing Complexity in Motor Performance (Chapter 3) 

 Whereas Chapter 2 is focused on complexity at the level of cognitive skills, 

assessed while athletes watched sports video clips, Chapter 3 examines the 
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complexity of the motor system that generates actual sport performances. When 

performing bodily movements, various processes take place that contribute to 

how the movements are executed, including neuronal activity, muscle 

contractions, limb movements, and so forth. The processes involved in movement 

execution are not only numerous, but also coupled, and take place at different 

levels and time scales. This entails that motor performance emerges from 

continuously interacting component processes (i.e., interaction-dominant 

dynamics), which is opposed to the perspective that human performance is 

determined by localized functions or modules that command our movement 

sequence to be carried out, such as a central pattern generator or motor program 

(i.e., component dominant dynamics; see Wijnants, 2014).  

 Our assumption that sport performance―here motor performance in 

particular―emerges from interaction dominant dynamics (i.e., complexity) rather 

than component dominance, is based on two lines of reasoning that have been 

proposed in the literature. The first is that elite athletes’ performance is, and 

should be, coordinated, yet flexible (Chow, Davids, Hristovski, Araújo, & Passos, 

2011; Phillips, Portus, Davids, & Renshaw, 2012; Seifert, Button, & Davids, 2013). 

That is, even if movement patterns show regularities (e.g., in repeated rowing 

strokes), they are also adaptive (e.g., a rower can easily adjust his movements to 

speed up or react to a branch in the water). One principle hypothesis according to 

the interaction dominant perspective, is that the human motor system organizes 

itself around metastable states, meaning that it is placed in between order 

(regularity) and disorder (flexibility) (e.g., Kello, Beltz, Holden, & Van Orden, 2007; 

for a general theoretical model, see Bak, Tang, & Wiesenfeld, 1988). The second 

line of reasoning is of a statistical nature. If our motor performance is generated 

by separate components performing specific functions to generate our 

movements, we would expect that repeated movement measures (e.g., of 

movement duration) reveal random variations from measure-to-measure, called 

white noise. In other words, if each measure (e.g., the duration of a single rowing 

stroke) is the sum of independent component effects, and each subsequent 

movement is independent from the former, we should observe a normal 

distribution of measures with error variance on either side (cf. central limit 

theorem, see Kello et al., 2010). In reality, however, white noise in time series of 

human processes is the exception rather than the rule (Kello et al., 2007). 
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 In the domain of physiology and motor control, white noise patterns are only 

observed in people who suffer from a (physiological or motor) disease (e.g., 

Goldberger et al., 2002; Hausdorff et al., 1997; 2001). Measuring healthy physical 

processes in real-time, researchers virtually always find that the pattern of 

variation is characterized by many high-frequency and low-amplitude fluctuations 

that are nested in low-frequency and high-amplitude fluctuations, which is called 

pink noise (or 1/f noise). This pink noise pattern would be a typical expression of 

complexity, as it would reflect that motor processes at faster time scales are 

nested in processes at slower time scales, and that all these processes interact 

cooperatively to generate our performance (e.g., Van Orden et al., 2003). In line 

with this reasoning, the time series of heart beat intervals of healthy adults reveal 

prominent patterns of pink noise, whereas a clear deviation from pink noise (e.g., 

random variation in intervals) signals heart failure (e.g., Goldberger et al., 2002). 

In addition, stride interval time series of healthy young adults reveal patterns of 

pink noise, whereas stride intervals of people with Huntington or Parkinson 

disease demonstrate white noise patterns (e.g., Hausdorff, 2009; Hausdorff et al., 

1997). 

 Assuming that human physiology and motor control is characterized by 

complexity―physiological and motor processes take place across multiple time 

scales in interaction―, which is expressed in a pink noise time series, it is likely 

that time series of sport performance also reveal this pattern. In line with the fact 

that cyclical (i.e., repetitive) movements lend themselves best for the analysis of 

temporal structures (e.g., Glass, 2001; Wijnants, Bosman, Hasselman, Cox, & Van 

Orden, 2009; Wijnants, Cox, Hasselman, Bosman, & Van Orden, 2012), Chapter 3 

aims to examine the noise patterns in rowers’ rowing strokes at ergometers. 

Furthermore, given the proposition that elite athletes’ performance is 

characterized by movement patterns that are both regular and flexible (e.g., 

Chow et al., 2011; Phillips et al., 2012; Seifert et al., 2013), we test whether elite 

athletes’ time series of ergometer performance reveal more prominent patterns 

of pink noise compared to the performance of sub-elite athletes. 
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1.5  Emergence of Positive and Negative Psychological Momentum in Teams  

  (Chapter 4) 

 In the Chapters discussed above, we aim to capture complexity during tasks in 

which participants are not “perturbed”. In reality, however, individuals or teams 

often perform their actions to achieve specific goals, and along the way they 

encounter positive or negative events (i.e., the perturbations) that bring them 

closer to, or further away from, a desired goal. The psychological and behavioral 

performance changes, that occur while progressing or regressing in relation to a 

goal, can be studied within the dynamical framework of psychological momentum 

(PM; Gernigon et al., 2010).  

 In general, positive and negative PM have been considered as dynamic states 

that may emerge and disappear (Adler, 1981; Adler & Aldler, 1981; Gernigon et 

al., 2010). More specifically, according to the most recent definition, PM is “a 

positive or negative dynamics of cognitive, affective, motivational, physiological, 

and behavioral responses (and their couplings) to the perception of movement 

toward or away from either an appetitive or aversive outcome” (Gernigon et al., 

2010, p. 397). The complex nature of PM is reflected in the various interacting 

cognitive, affective, behavioral, and situational components from which positive 

and negative PM emerge (Briki, Den Hartigh, Hauw, & Gernigon, 2012; Gernigon 

et al., 2010). In team performance, athletes are also involved in continuous 

interactions with their team members. During a competition, positive and 

negative PM thus emerge out of complexity (i.e., the interacting components).    

 A major challenge with regard to research on PM is to study its dynamical 

nature, that is, how positive and negative PM states actually emerge. To date, 

research on PM has mainly focused on the antecedents of PM (i.e., specific 

personal and situational components that may cause PM) and its consequences 

(i.e., performance changes) (e.g., Tayor & Demick, 1994; Vallerand, Colavecchio, 

& Pelletier, 1988), thereby limiting the understanding of the emergence of this 

complex phenomenon. Our suggestion that the emergence of PM is difficult to 

capture based on this conventional approach has been indirectly supported by a 

reviewer, who noted that “there are more factors that influence PM than 

researchers can count”. This also contributes to the idea that deeper insights into 

the PM process are unlikely to come from attempts to search for the additional 

influence of specific factors. To obtain a better understanding of PM dynamics, 
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we should thus apply an alternative method, which allows us to examine the 

process, that is, how PM moves to its two forms (i.e., positive and negative PM). 

 About three decades ago, Haken et al. (1985) proposed a method to study 

how different coordination patterns form in biological systems, which I will briefly 

explain given its applicability to PM research. The HKB method was established 

based on an experimental research program to understand the emergence of 

different states of coordination in humans, as well as the conditions that give rise 

to the different states (for a review, see Kelso, 1995). The main purpose of Kelso 

and colleagues’ research program was to come to an understanding of changes in 

coordination patterns with a parsimonious framework based on the following 

theoretical concepts and recommendations. First, many components can be 

experimentally studied (e.g., activations of different muscles or muscle groups), 

but according to the HKB method one should determine the essential variables 

(i.e., collective variables or order parameters) in order to characterize the 

coordination dynamics. The second methodological recommendation is that one 

should determine the variable (i.e., the control parameter) that induces a change 

from one coordinative state to another (Beek, Verschoor, & Kelso, 1997).  

 The first major insight based on the HKB method was that anti-phase 

(abduction-adduction) finger movements change to an in-phase pattern at some 

critical movement frequency (e.g., Haken et al., 1985; Schöner & Kelso, 1988). 

When the movement frequency decreased again, people remained in the in-

phase pattern for some time, that is, a shift back to the anti-phase pattern was 

delayed, which is called hysteresis. In these studies the relative phase (i.e., the 

relative timing difference between the two fingers) was the collective variable, 

which captures the pattern emergence from the interactions among various 

neuronal, muscular, and metabolic components. The movement frequency was 

the control parameter that changes (but does not prescribe) the coordination 

pattern. By showing that an in-phase pattern is more stable (i.e., more easily 

maintained) than an anti-phase pattern, Kelso and colleagues concluded that the 

in-phase coordination pattern is a stronger ‘attractor’―a state or pattern toward 

which the behavior tends to evolve―than the anti-phase pattern (Schöner & 

Kelso, 1988). 

 Recently, Gernigon et al. (2010) proposed that an adaptation of the HKB 

method is very well suited to study PM dynamics. In line with Gernigon et al.’s 
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proposition, Chapter 4 specifically examines the dynamics of team PM by 

applying the principles of the HKB method. In line with these principles, the first 

question to be answered is which variables are essential to characterize team PM 

dynamics. First, because (team) PM involves both psychological and behavioral 

variables, we focus on collective variables in both spheres. At the psychological 

level, we take collective efficacy into consideration, which is considered one of 

the most powerful team attributes. Collective efficacy is not an aggregate of 

individual self-efficacies, but rather an emergent phenomenon on the group level 

that is related to PM, thereby qualifying as a suitable collective variable (Bandura, 

1997; Tasa, Tagger, & Seijts, 2007). According to the literature on team 

performance, another essential and emergent team-variable related to PM is 

task-cohesion (Carron & Hausenblas, 1998; Eisler & Spink, 1998), which we 

therefore also take into account. At the behavioral level, the coordination 

between the team members’ actions and the team efforts are typical team level 

variables that are critical for team performance (Kozlowski & Ilgen, 2006), and 

likely undergo changes when moving from positive to negative team PM and vice 

versa (Adler, 1981).  

 The second question is what variable induces a change from positive to 

negative team PM, that is, what could be the control parameter? According to 

earlier literature, PM would be triggered when perceiving progress or regress in 

relation to the outcome or goal one wants to reach (e.g., winning a match in 

sports; Gernigon et al., 2010; Vallerand et al., 1988). In line with the guidelines of 

the HKB method, the position in relation to a desired outcome or goal would 

qualify as a control parameter that can be varied (thereby manipulating progress 

and regress). Thus, taken together, Chapter 4 is inspired by the original HKB 

method and its proposed adaptation to study PM (Gernigon et al., 2010). In this 

chapter, we specifically examine team PM dynamics by studying how collective 

efficacy, task-cohesion, efforts, and interpersonal coordination change when 

rowing teams progress or regress in relation to the victory in an ergometer race.  

1.6  The Interconnection Between PM Within and Across Task Performance  

  (Chapter 5)  

 Although the previous literature focused on PM within a task or match (see 

Chapter 4), theorists have proposed that complex dynamical processes take place 
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at several interacting levels and time scales (e.g., Newell et al., 2001). With regard 

to PM, this would mean that the PM dynamics within a task are probably 

embedded in a PM process that takes place over a longer time scale (i.e., over 

multiple tasks). In turn, the PM process that takes place on the longer term time 

scale, is influenced by the single tasks.     

 While empirical evidence is repeatedly found for the proposition that human 

physiological and motor processes emerge from interacting processes across 

multiple time scales (Chapter 2), interacting time scales with regard to social 

phenomena are mostly hypothesized in theoretical works (e.g., Granic & 

Patterson, 2006; Lichtwarck-Aschoff, Van Geert, Bosma, & Kunnen, 2008; Van 

Geert & Steenbeek, 2005). However, some empirical indications have been found 

in the domain of learning based on observations of natural student – teacher 

interactions. For instance, Steenbeek, Janssen, and Van Geert (2012) studied 

student – teacher arithmetic sessions and students’ learning trajectories over a 

school year. They found that ineffective sessions (e.g., due to initiations of the 

student that are followed by (repeated) ineffective feedback or responses of the 

teacher) influence the quality of the student – teacher communication in the next 

session, and hence results in a suboptimal learning trajectory of the student over 

the course of the school year. In other words, the short term dynamics shape the 

long term learning trajectory, and the learning trajectory influences the student – 

teacher dynamics within (next) sessions.  

 In the domain of motor learning, Zanone and Kelso (1992) conducted an 

experiment in which they exposed individuals to a coordination task they had to 

learn (i.e., moving fingers in a 90° relative phase, which is a relatively difficult 

coordination pattern, see Haken et al., 1985; Kelso, 1995; Schöner & Kelso, 1988). 

The authors found that it was difficult for most participants to produce the 

pattern at the baseline session, before learning the coordination task. However, 

learning the task in single sessions (short-term) seemed to change the pre-

existing preferred coordination patterns (i.e., the attractor landscape), which 

became visible when examining the coordination dynamics across sessions 

(longer-term). More specifically, Zanone and Kelso (1992) found that the 

participants learned to execute a 90° relative phase coordination in a fairly stable 

manner over the course of the experiment (i.e., five days). This suggests that the 

short term learning sessions altered the attractor landscape of possible 
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coordination patterns that extended over the longer term (i.e., across sessions), 

which in turn constrained the performance of the coordination task within the 

next session (short-term). 

 Chapter 5 is based on the propositions that (a) processes involved in human 

performance take place across multiple time scales that are interconnected (e.g., 

Steenbeek et al., 2012), (b) pre-existing dynamics can be altered by performances 

in successive sessions (Zanone & Kelso, 1992), and (c) PM dynamics can be 

studied based on an adapted HKB method (see Chapter 4). In the first 

conceptualization of PM in the literature, Adler (1981) proposed that PM takes 

place within a task (e.g., a sports match), but also across tasks, such as during a 

sports tournament or season. Given that PM is considered a complex dynamical 

phenomenon (Gernigon et al., 2010), long- and short-term PM processes should 

be interconnected (cf. Steenbeek et al., 2012). Furthermore, because successive 

sessions may influence pre-existing dynamics, repeated successful or 

unsuccessful sessions should affect the PM dynamics within a subsequent session 

(cf. Zanone & Kelso, 1992).  

 Recent research on PM dynamics in individuals has shown that, within a 

competition, negative PM is entered more rapidly and is more stable than 

positive PM (i.e., negative PM is a stronger “attractor state”; Briki, Den Hartigh, 

Markman, Micallef, & Gernigon, 2013). Because dynamics can be altered by 

previous sessions or experiences (Zanone & Kelso, 1992), we propose that 

previous successful competitions leading to long-term positive PM could weaken 

the negative PM attractor within a subsequent competition. In Chapter 5 we 

experimentally test this question during an ergometer-rowing tournament, by (a) 

manipulating athletes’ successive races, which they could either win or lose, 

respectively, and (b) letting athletes gradually regress from an almost-victory to a 

defeat in the last session in order to study the PM dynamics within that race. The 

collective variables we take into account are the perceptions of momentum, self-

efficacy, and the effort exertion of the athletes.             

1.7  Emergence of Excellent Performance Out of Complexity (Chapter 6) 

 In the chapters outlined above, we aim to study complex dynamic processes 

on relatively short time scales (i.e., during task performance and across a few 

tasks). Such processes can often be examined within the specific context in which 
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they take place. Processes developing over a long period of time are more 

difficult to capture based on observational and experimental research designs. 

However, researchers have shown that such processes can be investigated using 

computer simulations (e.g., Nowak, Szamrej, & Latané, 1990; Nowak, Vallacher, 

Tesser, & Borkowski, 2000; Schuhmacher, Ballato, & Van Geert, 2014; Van Geert, 

1991). To date, one of the most challenging long-term processes to capture in 

relation to human performance is the development of excellence (Detterman, 

2014; Kaufman, 2013). Since the 19th century, researchers and philosophers have 

attempted to find the components that underlie excellence development 

(Simonton, 1999). Currently, about 150 years later, the debate on the underlying 

components continues to exist (e.g., Detterman, 2014; Kaufman, 2013). In 

addition, major components that have been proposed previously, such as 

deliberate practice (Ericsson, Krampe, & Tesch-Römer, 1993), turn out to be not 

as important as previously assumed (Hambrick et al., 2014; Macnamara, 

Hambrick, & Oswald, 2014). In line with our complexity perspective on human 

performance processes, Chapter 6 proposes that excellence emerges out of 

mutual interactions between several performance-related components, such as 

one’s ability, practice, family support, coach or teacher support, that form a 

dynamic network. 

 The central focus in Chapter 6 is to study the topology from which excellence 

develops. In general, a network topology can be envisioned as a graph 

characterized by several nodes, which correspond to the components (e.g., ability 

level, amount of practice) that are connected via a number of links. In the past 

decades, different kinds of network topologies have been proposed, and the ones 

that are applied most frequently are the random network (Erdös & Renyi, 1960), 

which formed the basis for more “real-world” network topologies, such as the 

small-world network (Watts & Strogatz, 1998) and the scale-free network 

(Barabási, 2009; Barabási & Albert, 1999). In a random network (Erdös & Renyi, 

1960), couples of randomly selected nodes are connected, and each node has the 

same probability of being connected to any other node within the network. In a 

small-world network (Watts & Strogatz, 1998), most nodes are connected to their 

nearest neighbor nodes, whereas some nodes are randomly connected to more 

distant nodes in the network. Hence, this kind of network is characterized by a 

high clustering of components with some shortcuts to other (clusters of) 

components. Many real-world phenomena exhibit small world properties, such as 
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the spread of rumors, epidemic diseases, or computer viruses (see Strogatz, 

2003). In a scale free network (Barabási, 2009; Barabási & Albert, 1999), few 

nodes are connected to many other nodes, and a large number of nodes are 

poorly connected (hence generating a scale-free power law relationship between 

the number of links and the amount of components having that number of links). 

Scale free networks properties are found in, amongst others, the world-wide-

web, protein interactions, and traffic dynamics (see Barabási, 2009).        

 Research on talent and excellence development has shown that an 

individual’s ability is influenced by several components, including practice, 

parental support, coach and teacher support, and it is likely that such 

components in turn influence the individual’s ability, either directly or indirectly 

(cf. Küpers, Van Dijk, & Van Geert, 2014; Van Geert & Steenbeek, 2005). In 

Chapter 6 we therefore simulate ability-networks including directed links 

between the nodes, which means that the connections run from one node to 

another. These connections are sparse and randomly assigned (cf. Erdös & Renyi, 

1960), and each node has few direct links, but could be indirectly connected to a 

large portion of the other nodes (cf. Watts & Strogatz, 1998). Moreover, nodes 

(e.g., developing an interest in activities outside one’s ability domain) may appear 

or disappear over an individual’s (career) development and establish connections 

with other nodes (cf. Barabási, 2009). Although this network topology thus has 

similarities with existing network models that have been used to examine 

complex processes, it is tailored to the characteristics of human ability 

development.  

 In short, the network model we propose in Chapter 6 explains excellence as a 

developmental and emergent property. In a particular individual's ability 

network, a node could have a supportive effect on other nodes (e.g., a coach who 

stimulates the motivation and interest of a child), but it could also inhibit the 

development of another node (e.g., a tough coach who negatively affects the 

motivation and interest of the child). Thus, the network constantly develops 

through changes in the levels (i.e., values) of the nodes, among others as a 

consequence of the interactions with other changing nodes. In addition, the 

directed links between the components could be symmetric, asymmetric, direct, 

and indirect. We aim to demonstrate that this model, characterized as a network 

with dynamic properties, provides a basis to understand the process of excellence 
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development. We will do so by showing the correspondence between the 

network model predictions and the existing literature on talent and excellence 

development.  
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Chapter 2: Characterizing Expert 
Representations During Real Time Action: A 

Skill Theory Application to Soccer 
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Abstract 

In various domains, experts are found to possess elaborate domain-specific 

representations they developed over years. In this study, we provide the first 

systematic attempt to characterize short-term representations among individuals 

with different expertise levels. We showed videos of soccer game plays to expert, 

near-expert, and non-expert soccer players, and asked them to describe the 

actions taking place. Verbalizations were coded based on Fischer’s Skill Theory. 

Monte Carlo permutation tests revealed that players with higher expertise 

constructed representations of higher complexity (regardless of their specific 

content). Taking the content of the representations into account, we found that 

higher-expertise soccer players relatively more often included high complexity 

levels of actions not including the ball and (moving) players on the field. These 

findings improve our understanding of perceptual-cognitive expertise, by 

demonstrating how actors with different levels of expertise integrate the 

information they perceive to construct their representations in real time. 
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2.1  Introduction 

 Within the domains of sports (Williams, 2000), medicine (Ericsson, 2004), and 

physics (Chi, Glaser, & Rees, 1982), experts are found to possess more domain-

specific knowledge of facts and memories that they have developed over the 

years. While stored knowledge and memories refer to constituents of long-term 

representations, representations are also formed on the short-term (see Allan & 

Bickhard, 2013; Van Geert & Steenbeek, 2013). Such representations would, for 

example, refer to “reading” the game during a soccer match (e.g., Bjurwill, 1993), 

or the formation of scientific concepts during science class (e.g., Van der Steen, 

Steenbeek, Van Dijk, & Van Geert, 2014). These short-term representations 

emerge from the individual’s interaction with the material (or social) 

environment in real time, and are thus different from how representations are 

constructed in long-term memory. More specifically, what occurs in a particular 

situation (e.g., in a class room, on a sports field) feeds into the short-term 

representation, which may leave memory-traces, and change the complex 

network of skills and knowledge that constitutes the long-term representation 

(Van Geert & Steenbeek, 2013).  

 Research suggests that the long-term representations that have developed 

over time lead to an increasing ability to retrieve particular situations or 

structures (e.g., chess play positions, players’ positions on the soccer field), and 

consequently enhance anticipation skills (e.g., Ericsson & Kintsch, 1995; Feltovich, 

Prietula, & Ericsson, 2006; Van Geert & Steenbeek, 2013). Although long-term 

representations, as well as their possible relationships with domain-specific 

expertise have been investigated for decades, no attempt has yet been made to 

examine whether, and how, individuals with different domain-specific levels of 

expertise differ with regard to their short-term representations. In the current 

study, we propose Skill Theory, developed by Fischer (1980), as a framework to 

investigate and characterize these short-term domain-specific representations. 

We applied the framework in sports (i.e., soccer), a research area in which key 

insights into perceptual-cognitive skill development have been gained in the last 

decades (see Ericsson & Lehmann, 1996). An additional advantage of the domain 

of sports is that phenomena can be studied on a small surface and/or on a 

relatively short time scale.  
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Expertise and Long-Term Representations 

 Early evidence for the assumption that experts have extensive long-term 

domain-specific representations comes from De Groot (1946/1965), who 

observed that master chess players outperformed lower-level players in their 

ability to reconstruct a chess position after being briefly exposed to it for 5 

seconds. De Groot (1946/1965) concluded that master chess players possess 

elaborate representations of chess plays, so that they rapidly recognize, and 

remember, the structuring of static chess positions to which they are exposed. 

This finding was later replicated by Chase and Simon (1973), who also suggested 

that expert chess players have developed a skill to recognize the structure of the 

chess piece locations, due to repeated exposure to different chess board 

positions. 

 Comparable results have been found in other domains, including soccer (e.g., 

North, Williams, Hodges, Ward, & Ericsson, 2009; Williams & Davids, 1995; 

Williams, Hodges, North, & Barton, 2006). Williams et al. (2006) presented expert 

and non-expert soccer players with offensive soccer action sequences; half of the 

sequences had already been presented to the players in an earlier viewing phase. 

The results of their first experiment showed that expert players recognized earlier 

shown sequences quicker and more often than non-expert players. In their 

second experiment, Williams et al. (2006) displayed the players on the field as 

point-light formats. That is, a series of white dots depicted the players’ 

movements on a black background. Again, relative to non-expert players, expert 

soccer players recognized the similarity between the point-light sequences and 

the earlier encountered soccer sequences quicker and more often. In their 

interpretation of these results, Williams et al. (2006) suggested that expert 

players have more extensive (long-term) representations of patterns on the 

soccer field (Experiment 1), in particular with regard to players’ positions in 

relation to each other (Experiment 2).  

Perceptual-Cognitive Skills in Real Time 

 Although the above-mentioned studies focused on recalling or recognizing 

earlier encountered situations (e.g., chess positions or soccer film clips), 

researchers have also applied methods to untangle what information experts pay 
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attention to during real time performance, for instance, by employing visual 

search paradigms and verbal report protocols. In visual search studies, several 

authors conducted eye-movement recordings of soccer players involved in 

anticipation and decision-making tasks (e.g., Helsen & Starkes, 1999; North et al., 

2009; Roca et al., 2011; Vaeyens, Lenoir, Williams, Mazyn, & Phillaerts, 2007). 

Researchers found that, compared to non-experts, experts shifted their gaze 

more frequently toward the positions and movements of other players, as well as 

areas of free space, rather than (the player in possession of) the ball. Based on 

these results, researchers assumed that experts are better able to structure 

relevant, informative game elements into meaningful units, which enhances 

anticipation and decision-making. However, this assumption derives from indirect 

evidence (gaze fixations); a characterization of the actual cognitive structuring of 

the game elements (i.e., the short-term representation) was not provided.  

 Recently, Roca et al. (2011) added a verbal report protocol to their visual 

search method. Soccer players were presented with life-size video clips showing 

an attack of the opponent from a defender viewing perspective. They were then 

asked to retrospectively provide verbal reports on their thought processes during 

the clip. The authors found that experts evaluated the situation on the field more 

frequently, and provided more predictions and intentions for future actions, 

suggesting experts have more complex domain-specific representations (for 

another study combining visual search and verbal reports, see McRobert, Ward, 

Eccles, & Williams, 2011). Comparable findings have been revealed by McPherson 

and colleagues, who exclusively applied verbal protocols (e.g., McPherson, 1993; 

McPherson, 2000; McPherson & Thomas, 1989). For instance, after each point, 

McPherson (2000) asked tennis players about their thoughts when playing the 

previous point, and next, what they were thinking about at the current moment. 

McPherson (2000) also found differences related to evaluation and intentions for 

future actions, in the sense that expert tennis players reported a greater number 

and variety of goal concepts (the goal structure of the game, or means to win the 

game), condition concepts (when or under what conditions actions should be 

carried out to achieve the goals), and action concepts (rules for generating 

patterns to produce goal-related changes). Additionally, the sophistication levels 

of the concepts (i.e., reported details) were higher for experts, and they reported 

more connections and linkages between the concepts (experts used more words 

like ‘as’, ‘if’, ‘then’, ‘to’, ‘so that’, etc. within single phrases). However, Roca et al. 



Complexity of cognitive skills 

34 

(2011) and McPherson and colleagues (McPherson, 1993; 2000; McPherson & 

Thomas, 1989) did not extract a measure reflecting the structuring, or complexity, 

of short-term representations. 

 To summarize, research methods based on visual search behaviors and verbal 

protocols have provided insights into what kind of information experts pay 

attention to, as well as how expert athletes retrospectively evaluate the situation 

more often, and plan future actions more extensively. Yet, focusing on separate 

gazes (e.g., Helsen & Starkes, 1999; North et al., 2009) or frequencies/counts 

based on retrospective evaluations and intentions (e.g., McPherson, 2000; Roca 

et al., 2011) does not provide information on the cognitive structuring of what 

the players actually see and how they integrate this information, which is 

assumed to be a key characteristic of the construction of short-term 

representations (Van Geert & Steenbeek, 2013). Moreover, because the 

participants’ verbal reports were provided after the task (e.g., Roca et al., 2011) 

or in between intermittently played points (McPherson, 2000), the results could 

by definition not reflect the short-term representations the participants 

constructed in real time. For a systematic examination of short-term 

representations, it is thus necessary to have a framework allowing to score 

verbalizations while being exposed to real time actions, and to arrive at a single 

measure reflecting the complexity of the short-term representation being 

constructed.  

Toward a Measure of Short-Term Representations 

 An individual’s short-term representation within a domain can be viewed 

along two dimensions: (1) The dimension of content (e.g., a passing action of a 

soccer player), and (2) the dimension of complexity, that is, the integration of 

multiple actions and/or interconnected elements of the action (Van der Steen, 

Steenbeek, & Van Geert, 2012). To reliably investigate short-term 

representations, the theoretical framework within which they are studied should 

be able to take both dimensions into account. In the field of cognitive 

development, Skill Theory (Fischer, 1980; Fischer & Bidell, 2006) is such a theory. 

Taking into account the continuous interaction between person and context, Skill 

Theory entails a framework for evaluating the cognitive complexity of the ways in 

which people organize their actions and thoughts (Fischer & Bidell, 2006). One of 
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the most powerful characteristics of Skill Theory is that it can extract complexity 

from content, resulting in a content-independent measure of short-term 

representation levels. This means that the representations of the elements (e.g., 

player, ball, opponent in the case of soccer) and the connections between them 

can be assessed in a content-independent way, making it possible to evaluate the 

complexity of short-term representations in various fields. Because of this 

possibility to obtain content-independent measures, Skill Theory enables 

researchers to compare levels of representations across multiple time points, 

contexts, persons, and levels of expertise.    

 Skill Theory characterizes skills as thinking structures formed in a specific 

context, which can be a science class (Van der Steen, Steenbeek, & Van Geert, 

2012), or another achievement context (see Fischer & Bidell, 2006). These 

thinking structures (e.g., short-term representations) can be assessed on a 

hierarchical scale ranging from low to high levels of complexity. The Skill Theory 

complexity scale consists of ten levels, divided into three tiers. The first tier refers 

to sensorimotor skills: Representing simple connections of actions on objects, 

events, or people in the world. The second tier refers to representations, which 

are knowledge structures reflecting components that are independent of specific 

observable actions, although based on them. The third tier refers to abstractions: 

General non-concrete rules that also apply to other situations. Within each tier a 

similar structure of four levels exists, reflecting an increasing complexity of the 

short-term representation. The first level begins with single sets, meaning single 

actions, single representations, or single abstractions. On the second level, these 

sets are coordinated so that they form relations between sets, called mappings. 

On the third level, these mappings are in turn coordinated so that they form 

relations between mappings, called systems. On the fourth level, systems are 

coordinated and form a system of systems, thereby reflecting a single set of a 

new type, the first level of the next tier.  

 Skill Theory has already been applied within educational contexts. For 

example, Van der Steen et al. (2014) examined interactions between a 4-years old 

child and a teacher, while working on different air pressure tasks―e.g., 

connecting two syringes with a transparent tube to explore the effect of air in this 

system―in three separate sessions. The authors showed that, compared to 

session 1 and 2, the child’s answers in session 3 more often reflected higher 
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complexity levels. Furthermore, Yan and Fischer (2002, 2007) used a Skill Theory 

coding system to study how adults’ representations changed when learning to 

use a computer program. They found that the participants’ representations 

moved from fluctuating low complexity levels to higher complexity levels. These 

studies thus suggest that higher complexity levels of real-time representations 

emerge when developing expertise. However, to arrive at such a conclusion, two 

important steps remain to be undertaken: (a) conducting a systematic 

comparison of the construction of Skill Theory complexity levels between 

individuals with different levels of expertise, and (b) show that the relation 

between expertise and complexity is applicable to other contexts (i.e., outside of 

education).   

The Current Study 

 In the current study, Skill Theory was applied in a sports context (i.e., soccer). 

The aim was to examine whether soccer players with different levels of expertise 

can be distinguished on the construction of their short-term game 

representations, as reflected by their scores on the Skill Theory complexity scale. 

In addition, we aimed to explore the complexity levels of the specific contents 

(i.e., type of soccer actions such as passing, and game elements such as the 

players). Therefore, a soccer-specific coding system based on Skill Theory was 

designed to code the verbalizations of soccer players while they watched soccer 

game plays (cf. Van der Steen et al., 2014; Van der Steen, Steenbeek, Wielinski, & 

Van Geert, 2012; Yan & Fischer, 2002; 2007). We used the coding system to 

identify the complexity levels of three groups of soccer players. These three 

groups participated in different leagues (i.e., professional league, national 

amateur league, and regional amateur league) that require different levels of 

expertise. Hence, soccer players participating in the professional leagues were 

considered as experts, whereas the national amateur league players were 

considered as near-experts, and the players from the regional amateur league as 

non-experts (cf. North et al., 2009; Roca et al., 2011; Williams et al., 2006). Given 

the suggestion that complexity levels of representations increase when 

developing expertise (e.g., Yan & Fischer, 2002; 2007), we expected that soccer 

players with higher levels of expertise would construct representations of higher 

Skill Theory complexity levels. Furthermore, since short-term representations not 
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only have a complexity dimension, but also a content dimension, we examined 

content-specific differences among the three groups. That is, we assessed 

whether the higher complexity levels of players with higher expertise were 

particularly related to specific types of actions (e.g., actions of a player with the 

ball, such as outplaying, or actions not including the ball, such as a player’s off-

the-ball movements), and game elements (e.g., moving elements, such as the 

team members, or static elements, such as the goal). In this way, we explored 

additional factors distinguishing expert soccer players from those with less 

expertise. 

2.2  Method 

Participants 

 The participants were 28 Dutch male soccer players, aged 20-34 (Mage = 25.65, 

SD = 3.75), each belonging to one of the following groups: Experts, near-experts, 

and non-experts. The group of experts consisted of seven professional players 

(Mage = 27.71, SD = 4.75), who were active in their respective professional leagues 

in The Netherlands for 7.14 years (SD =  4.34). Four players were members of two 

different teams in the highest professional soccer league, and three players were 

part of a team in the second-highest professional league in the Netherlands. 

These three players also played in the highest national league in the years before 

the data collection, and their current team was ranked first in the second-highest 

league, which resulted in a promotion to the highest professional league a few 

weeks after the data collection. The group of near-experts consisted of 11 

national amateur players (Mage = 23.90, SD = 3.88) from two teams of the highest 

amateur league in the Netherlands. On average, these players were active in this 

league for 5.00 years (SD = 3.92), and none of the players had ever played in a 

professional league. The group of non-experts consisted of 10 regional amateur 

players (Mage = 26.00, SD = 2.11) from two teams participating in the lower three 

amateur leagues in the Netherlands. These players were active in their current 

league for 4.90 years (SD = 2.23), and none of these players had ever played in 

the professional or national amateur leagues. 
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 Participants were provided with an informed consent, and were free to 

withdraw from the study at any stage. Participation was voluntary, and 

participants were assured their contributions would be treated confidentially.  

Procedure 

 The protocol of this study was approved by the Ethical Committee of the 

Department of Psychology, University of Groningen. The players targeted for the 

study were contacted either directly or through their clubs, and asked whether 

they would be willing to watch and describe some soccer game plays at a time 

that suited them. Appointments were made with the players who agreed to 

participate at their home soccer club. Participants were seated in front of a 

laptop, on which the video sequences were played. A video camera was placed at 

a 45° angle behind the participant to record his verbal reports. The participants 

were asked to watch three soccer game plays, and to describe (aloud) the actions 

taking place on the field. The researcher did not give any additional clarifications 

or points of attention, in order to keep the responses as authentic as possible.  

 Before the three game plays were shown, participants watched one practice 

sequence to check whether they (only) described the actions that took place on 

the field. A request to focus exclusively on the game-related actions was given to 

participants who described irrelevant elements, related to the supporters in the 

stadium (e.g., “there are many empty seats”), or the weather conditions (e.g., 

“it’s cloudy”) for example. After the practice sequence, the three soccer game 

plays were played successively with a break of 5 s between them, and were 

presented in a randomized order. Subsequently, all utterances were transcribed 

to facilitate the coding procedure.  

Materials  

 The three videos to which the participants were exposed consisted of 

offensive game plays of 22 s, 17 s, and 34 s, which ended in a goal. The game 

plays were retrieved from matches played at the highest level in Ireland (IFA 

Premier League). They were recorded using a high-definition camera from an 

overview perspective (i.e., above the field), thereby providing a clear view of the 

field and the actions taking place. Only natural surrounding sounds of the game 
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were broadcast, such as the indefinable noise from the players, crowd, and ball-

kicking sounds.  

 None of the participants were familiar with the game plays or players, thereby 

ensuring the absence of familiarity advantages, such as knowing the outcome of 

the match or characteristic movements of particular players.  

The Coding System  

 Based on Skill Theory, we developed a soccer-specific coding system for 

verbalizations consisting of seven complexity levels of game play representations 

(see Table 2 for an illustration of the different levels, from 1―single sensorimotor 

characteristics―to 7―single abstractions).1  

 We proceeded from the fact that the game of soccer consists of game 

elements (e.g., player, ball, team member), which are combined to form specific 

actions (e.g., the player passes the ball to the team member), and which are in 

turn combined to form specific game plays (e.g., combinations of passes and 

other actions in the offensive game play). A higher Skill Theory complexity level 

can be considered to be an increased, more complex representation of the 

interactions between the game elements and actions that unfold during the game 

play.  

 The verbalizations of the participants were coded in eight short phases. In the 

first phase, described soccer actions were separated, to form the basis for further 

analyses. Actions were chosen as unit of analysis, because game elements are 

usually meaningfully connected in actions. Actions were indicated by verbs 

representing a specific act (e.g., shooting, heading, passing), state (e.g., standing, 

having, looking), or occurrence (e.g., covering, getting). For instance, the 

following description, which we will use as an example, consists of four actions: 

“Goal kick of the goalkeeper (1: Kicking), Heads it through (2: Heading), Puts it in 

front of the goal with the inside of his right foot (3: Putting (the ball)), And header 

into the goal (4: Heading)”. 

                                                                 
1 The levels 8-10 were not taken into account, because these levels go beyond single 
abstractions, which is virtually impossible for this specific task (i.e., describing single game 
plays does not require linking multiple abstractions). 



Complexity of cognitive skills 

40 

 In the second phase, each of these separate actions was given a label. Out of 

the seven types of actions that could be distinguished, two types do not include 

the player with the ball: off-the-ball movements―a player who walks, stands, or 

runs on the field without the ball―(L), and defending actions (D). Four types of 

actions do include the player with the ball: Individual actions of a player with the 

ball―not including a team member or opponent―(B), passing actions―a player 

plays the ball to a team member―(P), actions of a player to individually outplay 

his opponent(s) (U), and scoring actions―a player attempts to score the 

goal―(S). The last category includes all other actions, such as looking or asking 

(O). The above-mentioned action description would thus be coded as follows: 

“Goal kick of the goalkeeper (B), Heads it through (P), Puts it in front of the goal 

with the insight of his right foot (P), And header into the goal (S)”.   

 In the third phase, the game elements involved in each action description 

were labeled. Three types of game elements refer to the players on the field: The 

player (S), the player’s team member(s) (M), and the player’s opponent(s) (T). 

Two other game elements refer to the “static” elements that are present, which 

are the goal (D) and the field (V), and the sixth game element is the ball (B). The 

example would be coded as: “Goal kick of the goalkeeper (S,B), Heads it through 

(S,B,M), Puts it in front of the goal with the insight of his right foot (S,B,M,D), And 

header into the goal (S,B,D)”. 

 In the fourth phase, we counted the number of actions that were related or 

coupled in the action descriptions. This is the case when a relation is made 

between two actions taking place at the same time (e.g., “The striker heads back 

(1) to the incoming midfielder (2)”), or when two actions are related that follow 

each other in time (e.g., “The player moves in front of the defender (1), so that he 

can score (2)”). When two or more actions were coupled, a higher complexity 

level was assigned, because this coupling represents a more comprehensive view 

of the action (cf., McPherson, 2000; McPherson & Vickers, 2004). Our example 

description does not include such a coupling between actions. 

 In the fifth phase, a score was given for the complexity of each action based 

on the Skill Theory complexity scale (Fischer, 1980). Actions, such as scoring, can 

be described in a relatively simple way (e.g., “a shot”), but also in a more specific 

way indicating the position of the foot while shooting the ball (e.g., “an instep 

kick”), or indicating the movement(s) of the body while shooting (e.g., “a volley”), 
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or a combination of these two, including an indication of how this influences the 

path of the ball (e.g., “a chip”). Mentioning one or two extra observable details 

was considered level 2 or 3, respectively (sensorimotor system levels), whereas 

statements indicating an understanding of not directly observable relations were 

considered level 4 (single representation level), or higher. In our example, all 

action descriptions involved directly observable details: “Goal kick of the 

goalkeeper (1), Heads it through (1), Puts it in front of the goal with the insight of 

his right foot (2; the insight of the right foot provides an extra observed detail of 

the way the ball was passed), And header into the goal (1)”. 

 In the sixth phase, a score was given for the number of (connected) game 

elements in each action description. Descriptions of actions including more game 

elements indicate a more comprehensive view of the action, and were rewarded 

with a higher score. “Goal kick of the goalkeeper (2 elements; S,B), Heads it 

through (3; S,B,M), Puts it in front of the goal with the insight of his right foot (4; 

S,B,M,D), And header into the goal (3; S,B,D)”. 

 In the seventh phase, a Skill Theory complexity score was given for the way 

game features were described in each action description. For example, a “player” 

can be described as “the player on the left”, which gives extra (yet observable) 

information about the player’s position on the field, and was therefore assigned a 

sensorimotor mapping (level 2) score. On the other hand, the term “the left 

wingback” reflects an understanding about the player’s position that is not 

directly observable, but derived from information about the player’s position on 

the field in relation to the positions of other players. Statements like these were 

assigned a single representation (level 4) score. In our example, all game 

elements were described at level 1 (simple, observable information).  

 In the eighth phase, a final Skill Theory complexity level was assigned to each 

full action description. This overall complexity level consisted of the highest 

complexity level scored in the previous phases. However, if within an action 

description the same level was used twice, this would indicate a qualitatively 

higher understanding of the action, which was rewarded with a higher complexity 

level. For example, if within a single action description a level 4 (single 

representation) was given twice (e.g., “rebound” to indicate the type of action, 

and “number 10” to indicate a player; see Table 3), this would mean that the 

player described the action using a mapping of representations (level 5). This did 
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not occur in our example, thus, based on the different coding phases, the actions 

were assigned the following overall complexity levels: “Goal kick of the 

goalkeeper (2), Heads it through (3), Puts it in front of the goal with the insight of 

his right foot (4), And header into the goal (3)”. Finally, to represent the 

complexity of the entire game play description, we calculated the mean of the 

action descriptions. This number, representing the way in which all the actions 

and game elements were integrated, served as the main unit of analysis.  

Reliability of the Coding System 

 Based on several pilots with soccer players of different levels, a researcher 

with experience in designing Skill Theory coding books constructed the coding 

system together with a soccer player. The reliability of the coding system was 

assessed using a percentage of agreement [(number of same findings) / (number 

of same findings + number of divergent findings)] between two coders. They 

coded nine descriptions given by participants, chosen randomly from among the 

84 described videos. The agreement rate was 97.96% for the types of described 

actions; 91.84% for the complexity levels of the soccer actions; 100% for the 

number of (connected) game features; 98.68% for the types of game features; 

93.88% for the complexity levels of the game features; and 93.88% for the overall 

complexity levels of the game play descriptions.  
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Table 2. Illustration of Skill Theory complexity levels in soccer. 

 

 Complexity level  Description  

1: Single 
sensorimotor 
characteristics 

Single observable characteristics of game features or 
actions that are not related to any other game feature or 
action (The player runs).  

2: Sensorimotor 
mappings 

Observable relations between game features or actions 
(The player kicks the ball).  

3: Sensorimotor 
systems  

Observable causal relations between game features or 
actions (The player passes the ball to his team member).  

4: Single 
representations  

Not directly observable characteristics of game features 
or actions (The player gives a cross pass).  

5: Representational 
mappings  

Relations between not directly observable characteristics 
of game features or actions (The player gives a cross pass 
to the left wingback).  

6: Representational 
systems  

Relations between three or more not directly observable 
characteristics of game features or actions (The left 
wingback gives a cross pass to the striker).  

7: Single abstractions  Holistic inference of the interactions between the actions 
and game features during the game play (They play kick 
and rush soccer).  

0: Error  “Wrong” game features or actions in the game play (The 
striker shoots; while it was the left forward that placed 
the shot).  

 

Data Analysis 

 To test whether soccer players with higher levels of expertise would construct 

short-term representations of higher Skill Theory complexity levels, participants 

of each of the three groups (i.e., experts, near-experts, and non-experts) were 

given a score for overall Skill Theory complexity level over the three game play 

descriptions.  

 Differences in complexity levels between the groups were tested with Monte 

Carlo permutation tests. Monte-Carlo tests outperform traditional parametric 

(e.g., ANOVA) and nonparametric tests (e.g., Kruskal-Wallis) in the case of 

relatively small sample sizes and/or unbalanced data sets (e.g., Ludbrook & 



Complexity of cognitive skills 

44 

Dudley, 1998; Manly, 1997; Roff & Bentzen, 1989; Todman & Dugard, 2001; Van 

Geert, Steenbeek, & Kunnen, 2012). Contrary to ANOVA, the non-parametric 

Monte-Carlo procedure does not assume any underlying distribution or a 

minimum sample size, and one of its characteristics is that it has great 

discriminatory value in the case of smaller sample sizes and different group sizes 

in the study (e.g., Good, 1999; Lundbrook & Dudley, 1998; Manly, 1997; Todman 

& Dugard, 2001; Van Geert et al., 2012). The Monte Carlo test determines the 

probability that an observed result is caused by chance alone, by simulating that 

chance. To test whether experts have a more complex representation than near-

experts, who in turn construct a more complex representation than non-experts, 

we shuffled the scores of all participants’ overall complexity scores to obtain a 

redistributed set of scores; this was repeated 10,000 times. Then, we determined 

the probability (combined p-value; higher complexity for experts than for near-

experts, and higher complexity for near-experts than non-experts) that the 

randomly redistributed scores would show results equal to, or more extreme 

than, the results we observed. If the p-value was low (p < .05), we could conclude 

that the observed results were unlikely to be caused by chance alone. To 

determine the magnitude of the observed outcome, we provided an estimate of 

the effect size by calculating Cohen’s d (observed result divided by the pooled 

SD). According to the guidelines of Cohen (1988), a d-value of .2 to .3 is 

considered as small, around .5 as medium, and .8 or higher as large.  

 Regarding the exploration of complexity levels of specific contents of the 

game play, we focused on the separate actions and game elements. First, we 

calculated the proportion of representations per type of action (complexity levels 

4-6) for each group to assess whether players with higher levels of expertise 

described particular types of actions (e.g., player with the ball, actions not 

including the player with the ball) relatively more often at high complexity levels. 

Second, we assessed whether players with higher levels of expertise described 

particular game elements (e.g., the players on the field) relatively more often at 

high complexity levels. Therefore we calculated a proportion score for 

representations per type of game element for the participants in each group. 

Again, differences between the groups were tested with Monte Carlo 

permutation tests. 
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2.3  Results 

Preliminary Results 

 First, we examined differences among the three groups on other variables 

than the leagues in which they were playing. We found no significant differences 

with regard to age (p > .05). In addition, the groups did not significantly differ in 

terms of the number of active years in their current league (p > .05).     

Skill Theory Complexity Levels 

 Table 3 displays three examples of a game play description of one soccer 

player from each group (expert, near-expert, and non-expert). This table also 

illustrates how we constructed a (final) complexity level for game play 

descriptions based on the different coding phases, and independent of the 

specific content of the descriptions. Based on this procedure, taking the mean 

complexity levels of all participants in each group into account, we found that the 

complexity level of expert players (M = 4.03, SD = .23) was higher than for near-

experts (M  = 3.89, SD = .24), who scored higher than non-experts (M = 3.48, SD = 

.30). The Monte Carlo results showed that the combined p-value was significant 

(pcombined < .001, d = 1.66). These results  support our hypothesis, and indicate that 

it is highly unlikely that the results we found―complexity level of experts is 

higher than of near-experts, who in turn score higher than non-experts―can be 

caused by chance alone.2 In line with the guidelines of Cohen (1988), the effect 

size (> .8) can be considered as large. 

 

 

 

 

 

                                                                 
2 Earlier researchers particularly analyzed the number of described actions or contents 
involved in game plays (e.g., McPherson, 2000; Roca et al., 2011). The counts of described 
actions and game elements also revealed significant differences between the three groups 
in the current study, although less striking than the differences in the complexity scores. 
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Table 3. Illustrations of three game play descriptions; how the complexity levels 

are constructed and analyzed according to their real time expressions; and the 

overall complexity levels based on the structuring of the game elements and 

actions during the game play. 

Phase: 1 2 3 4 5 6 7 8 

 
Expert 
player 
 

Long goal kick of the keeper [type 
of pass] to the side of the field P SBMV 1 4 4 1 5 

Conquered by the striker B SBT 1 1 3 4 4 

Rebound by number 10 P SBM 1 4 3 4 5 

Plays it to the striker on the side P SBMV 1 1 4 4 5 

Striker puts it in front of the goal P SBMD 1 1 4 1 4 

And number 10 can head in S SBD 1 1 3 4 4 

       4.50 

 
Near-
expert 
player 
 

Long goal kick [type of pass] of the 
goalkeeper P SBM 1 4 3 1 4 

Defense at one line V SM 1 4 2 1 4 

Rebound P SBM 1 4 3 1 4 

Plays it through P SBM 1 1 3 1 3 

At the second post, a player is 
uncovered L SD 1 4 2 4 5 

Heads into the goal S SBD 1 1 3 1 3 

       3.83 

Non-
expert 
player 
 

Goal kick of the goalkeeper B SB 1 1 2 1 2 

Heads it through P SBM 1 1 3 1 3 

Puts it in front of the goal with the 
inside of his right foot P SBMD 1 2 4 1 4 

And header into the goal S SBD 1 1 3 1 3 

      3.00 

Note. Phase 1 = separating actions; phase 2 = labeling actions (P = passing, B = 

individual action with the ball, S = scoring, V = defending, L = off-the-ball); phase 3 

= labeling game elements (S = player, B = ball, M = teammate, V = field, T = 

opponent, D = goal); phase 4 = number of (coupled) actions; phase 5 = skill theory 

level assigned to the action; phase 6 = number of game elements within the 

action; phase 7 = skill theory level of game elements; phase 8 = final complexity 

level of each action description, and calculating mean complexity level (in bold).  
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Separate Actions and Game Elements 

 Figure 1 displays the within-group proportions of high complexity levels (level 

4 or higher) for each specific action. The figure shows that the higher the level of 

expertise of a player, the higher the proportion of high-complexity descriptions 

that contain the actions excluding the player with the ball (off-the-ball-

movements and defending actions), and consequently, the lower the proportion 

of descriptions that contain a player in possession of the ball (action of player 

with ball, passing, outplaying and scoring). Specifically, the mean of proportion 

score for ‘off-the-ball-movements’ and ‘defensive actions’ together was highest 

for experts (Mprop = .37) and lowest for non-experts (Mprop = .18); the near-experts 

scored in between (Mprop = .24). Monte Carlo analyses revealed that the 

differences among the three groups were significant (pcombined < .001). 

 

 

 

Figure 1. Proportions for high complexity levels (level 4-6) of the different types 

of described actions, according to level of expertise. The solid filled sections 

correspond to action categories excluding the player with the ball. 

 

 Figure 2 displays the within-group proportions of high-complexity descriptions 

(level 4 or higher) for the separate game elements. The figure shows that players 

with higher expertise described particular game elements relatively more often at 
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high complexity levels. That is, the higher the level of expertise of a player, the 

higher the proportion of high-complexity descriptions for the “moving” game 

elements, i.e., the players on the field (player, team members, and opponents), 

and the lower for “static” game elements (goal and field). Monte Carlo tests 

indicate that the proportion of high-complexity descriptions for the (moving) 

players on the field was higher for experts (Mprop = .74), than for near-experts 

(Mprop = .67), who had a higher proportion than non-experts (Mprop = .23). Monte 

Carlo analyses revealed that the differences between the groups were significant 

(pcombined < .001). 

 

 

 

Figure 2. Proportions for high complexity levels (level 4-6) of the different types 

of described game elements, according to level of expertise. The solid filled 

sections correspond to the moving game elements (the players). High complexity 

levels for the ball were not included in the graph, because a ball is always 

described at sensorimotor level (i.e., a directly observable characteristic, often 

just “the ball”). 
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2.4  Discussion 

 The aim of this study was to examine short-term representations as 

constructed in real time, and in particular whether increasing levels of soccer 

expertise would accompany higher complexity levels of soccer-specific game 

representations. To answer this question, verbal reports of soccer sequences 

generated by expert (professional), near-expert (high amateur), and non-expert 

(low amateur) soccer players were compared, using a coding system that 

distinguishes different complexity levels of short-term representations. In this 

way we were able to demonstrate at what complexity level players with different 

levels of expertise integrate, or structure, the actions and elements they pay 

attention to. 

 Skill Theory (Fischer, 1980; Fischer & Bidell, 2006) provides a useful 

framework to examine the constructions of real-time representations, regardless 

of the specific content of the representations. Based on our soccer-specific coding 

system, we found that higher levels of expertise were associated with higher Skill 

Theory complexity levels of short-term representations. Thus, the short-term 

game representations of soccer players with higher levels of expertise are 

reflected in their ability to integrate the information on the field at higher 

complexity levels. This is in line with the claim that cognitive expertise involves a 

process of increasing complexity (Fischer & Bidell, 2006). Moreover, this indicates 

that players with high levels of expertise not just extract more (task-specific) 

information from the game play than low-skilled players, as was found in previous 

studies (cf., McPherson, 2000; Roca et al., 2011), but that they also structure this 

information differently, at higher complexity levels.  

 The credibility of these results and the sensitivity of our method are 

strengthened by the fact that all participants were soccer players participating in 

official competitions, and that we did not only include experts and non-experts, 

but also a group of near-experts. In contrast, other studies examining 

representations typically involved only pronounced differences in expertise 

between groups. For example, in the study by McPherson (2000), a group of 

experts was included, consisting of players with outstanding junior tennis 

rankings, and a group of non-experts containing novices participating in a 

beginner’s tennis class. 
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 Another interesting finding that emerged from our analysis is that players 

with higher levels of expertise described actions not including the player with the 

ball relatively more often at high levels of complexity than players with lower 

levels of expertise. This result can be considered in line with earlier findings from 

visual search paradigms, showing that expert soccer players more frequently shift 

their gaze away from (the player in possession of) the ball to other cues, such as 

the positions and movements of other players and areas of free space (e.g., 

Helsen & Starkes 1999; North et al., 2009; Roca et al., 2011; Vaeyens et al., 2007). 

However, our results also extend these findings by addressing how players with 

higher levels of expertise oversee, or integrate, the off-the-ball movements and 

defending actions. That is, visual search results indicate which actions participants 

attended to, but they do not reveal whether, and how, players with different 

levels of expertise integrate relationships between multiple sources of 

information to form their representation of the actions they notice. Using the Skill 

Theory complexity scale, we could specifically account for this (e.g., noticing that 

a player “sprints”―sensorimotor level―does not mean that a participant sees 

that the player “chooses position”―representational level). 

 Furthermore, we found that, relative to players with lower levels of expertise, 

players with higher levels of expertise described the players on the field relatively 

more often at high complexity levels. High complexity levels for players on the 

field mainly correspond to positional indications based on the orientations of the 

(described) player in relation to other (moving) players. Researchers working on 

recall and recognition tasks have already suggested that experts generally use 

relational information more effectively in the decision-making process, such as 

the players’ positions on the field and/or the relative movements between the 

players (e.g., North et al., 2009; Williams et al., 2006; Williams & Davids, 1995). 

Our results support these authors’ view that the ability to integrate relational 

information is an important characteristic of experts.  

Theoretical and Practical Implications 

 While early researchers (Chase & Simon, 1973; De Groot, 1946/1965) already 

assumed the importance of cognitive expertise in terms of stored (long-term) 

representations, no attempts have been made to measure complexity levels of 

short-term representations as they are constructed in real time. In this study, we 
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showed that higher levels of expertise accompany higher complexity levels of 

representations formed when players are exposed to soccer game plays. These 

insights can have significant implications for future approaches to perceptual-

cognitive skills. In achievement contexts (whether in education or sports), 

decision making and anticipation also take place in real time. Rather than relating 

decision making and anticipation skills to representations stored in long term 

memory, which is the dominant approach (e.g., Ericsson & Kintsch, 1995; Helsen 

& Starkes, 1999; McPherson, 2000; North et al., 2009; Roca et al., 2011), the 

direct mechanism, or process, underlying superior anticipation and decision 

making of experts may be their superior ability to notice the patterns of ongoing 

interactions among the various elements during game plays. This suggestion 

could be further explored in future research.   

 Zooming in on the contents of the short-term representations, the results on 

the complexity levels of specific action or game element descriptions extend 

earlier results of visual search studies, as well as recall and recognition studies. 

That is, the results reveal at what complexity level players with different expertise 

integrate, or structure, particular action(s) and elements they pay attention to. 

 From an applied perspective, our outcomes may also have direct implications. 

We showed that characteristics of short-term representations can well be 

examined within the framework of Skill Theory. Part of this theory’s appeal is that 

designing and applying a Skill Theory coding system is inexpensive and relatively 

easy. Indeed, its user friendliness has already been evidenced in the field of 

education, where a percentage of agreement of over 75% was observed between 

researchers and untrained teachers (see Dawson-Tunik, 2006). Furthermore, it 

can be applied using recordings of natural situations, without placing any burden 

on the recorded participants (Van der Steen, Steenbeek, & Van Geert, 2012). This 

is a great advantage compared with more time-consuming and costly techniques 

used in the domain of perceptual-cognitive expertise, such as eye-movement 

recordings, which are also hard to employ in natural situations.  

Limitations and Future Directions 

 The way participants (or people in general) are exposed to information could 

influence the way they construct their representations. For instance, it has been 

suggested that expert soccer players pay even more attention to their team 
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members and opponents when they are presented with a player (ground level) 

viewing perspective (Mann, Farrow, Shuttleworth, and Hopwood, 2009), as 

opposed to the aerial viewing perspective that we used in this study. To advance 

insights into the ongoing construction of short-term representations, future 

research could therefore examine participants’ representations using different 

viewing perspectives, including the actual player perspective.  

 Another interesting point for future research is to examine how the 

complexity of short-term representations develops over time, e.g., from a non-

expert pattern to an expert pattern. Related to this, it would be fruitful to test 

how feedback from the coach, teacher, or manager affects individuals’ 

construction of real-time representations. Fischer and colleagues already 

identified developmental ranges for domain-specific representations. Such a 

developmental range entails that the highest complexity level of a person under 

low support conditions (functional level) can be extended several steps upward 

when support of an expert is offered in the form of a social scaffold offering 

suggestions (optimal level) (e.g., Fischer & Bidell, 2006; Van Geert & Steenbeek, 

2005).  

 Finally, as explained in the introduction, short term representations that are 

constructed during real-time action may leave memory-traces, and change the 

knowledge base (i.e., long term representations) that constitutes the long-term 

representation (Van Geert & Steenbeek, 2013). While long-term representations 

have been used as a causal mechanism for anticipation and decision making, 

future research should explore whether, in real time, anticipation and decision 

making emerge directly from the perception of interacting game elements during 

game plays.  
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Abstract 

The aim of this study was to examine the temporal structures of rowers’ (natural) 

ergometer strokes in order to make inferences about the underlying motor 

organization. Furthermore, we examined the relation between these temporal 

structures and expertise-level. Nine rowers, being part of one elite and one sub-

elite rowing team, completed 550 strokes on a rowing ergometer. Detrended 

Fluctuation Analysis was used to quantify the temporal structure of the intervals 

between force peaks. Results showed that the temporal structure differed from 

random, and revealed prominent patterns of pink noise for each rower. 

Furthermore, the elite rowers demonstrated more pink noise than the sub-elite 

rowers. The presence of pink noise suggests that rowing performance emerges 

from the coordination among interacting component processes across multiple 

time scales. The difference in noise pattern between elite and sub-elite athletes 

indicates that the complexity of athletes’ motor organization is a potential key 

characteristic of elite performance. 
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3.1  Introduction 

 Sport scientists have recently proposed that major advances can be made 

when considering sport and motor performance as emerging from complex 

systems interactions (Davids et al., 2014; Seifert et al., 2013). In this sense, 

coordinated actions such as rowing strokes would emerge from continuous 

interactions between motor processes at different levels and time scales (cell 

activity, muscle contractions, limb movements, etc.), embedded in (and shaped 

by the constraints of) the environment (Davids & Araujo, 2010; Seifert et al., 

2013). In the domain of motor control, researchers have demonstrated that the 

temporal structure of performance variation may provide fundamental insights 

into the nature and effectiveness of the human motor system (e.g., Glass, 2001; 

Goldberger et al., 2002). For instance, random variation in stride intervals signals 

a higher risk of falling among elderly, whereas “healthy” stride intervals involve 

an appropriate ratio between rigidity and random variation (e.g., Goldberger et 

al., 2002; Hausdorff et al., 1997, 2001). Researchers have suggested that the 

latter type of “noise” reveals the presence of complex network interactions 

across brain and body, which means that motor control is distributed over 

cooperative processes at different levels of the motor system (for a review, see 

Wijnants, 2014). Although the complex systems perspective is gaining popularity 

in sport sciences, and researchers assume that effective or skilled sport 

performance requires a form of functional variability (i.e., between rigidity and 

random; see Davids, Glazier, Araújo, & Bartlett, 2003; Phillips et al., 2012; Seifert 

et al., 2013), empirical studies focusing on the temporal structures in sport 

performance are scarce. 

 The study of temporal structures of variation (i.e., noise patterns) and its 

meaning has a relatively long history in physical sciences (e.g., Bak et al., 1987, 

1988), and has gained popularity in the domains of cognitive sciences and motor 

control in the past two decades (e.g., Gilden, Thornton, & Mallon, 1995; 

Goldberger et al., 2002; Hausdorff et al., 2001; Van Orden, Holden, & Turvey, 

2003; Wijnants, 2014). Overall, three types of temporal structures can be 

distinguished, which lie on a continuum from white noise to brown noise (see 

Figure 3). White noise corresponds to purely random variation, and is assumed to 

be typical for component dominant systems (Van Orden et al., 2003). In the 

domain of motor control this would mean that the temporal variability in an 
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action sequence is generated by random fluctuations in the component-

processes (e.g., central pattern generator or motor program), resulting in an  

uncorrelated time series (Figure 3A; see also Diniz et al., 2011; Gilden, 2001; Van 

Orden et al., 2003; Wijnants, 2014). Brown noise corresponds to a stochastic 

function where each subsequent measure is relatively close to each preceding 

measure, which is assumed to be typical for systems composed of components 

that are tightly mutually connected. More specifically, each subsequent action is 

a function of the previous action to which a random increment is added, 

characteristic of a rigid pattern of behavior. Brown noise is reflected in time series 

by short-range correlations between sequential actions (Figure 3C; see also 

Gilden, 2001; Van Orden et al., 2003). In between white noise and brown noise 

lies pink noise, which expresses a subtle mixture of randomness and rigidity. Pink 

noise would be typical for interaction dominant (complex) systems (e.g., Glass, 

2001; Van Orden et al., 2003; Wijnants et al., 2009; Wijnants, 2014). Because of 

the mutual interactions between flexibly coupled system components across 

multiple time scales, time series of interaction dominant systems behavior would 

display long-range dependencies between sequential actions (Figure 3B).  

 

 

 

Figure 3. Three types of temporal structures of variation: White noise (A), pink 

noise (B), and brown noise (C).  
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 Although applications of nonlinear time-series techniques to reveal temporal 

structures are in their infancy in sport sciences (Kuznetsov, Bonette, & Riley, 

2014), signatures of non-random temporal structures have already been found in 

running and cycling performance (Hoos, Boeselt, Steiner, Hottenrot, & Beneke, 

2014; Tucker et al., 2006). Hoos et al. (2014) studied fluctuations in speed, stride 

frequency, and stride length of long-distance runners during a half-marathon 

competition race, whereas Tucker et al. (2006) examined fluctuations of power 

output while cyclists were performing maximally during a time trial on cycle 

ergometers. To summarize, both studies reported non-random temporal patterns 

in performance variation (i.e., signatures of brown and pink noise).  

 However, Hoos et al. (2014) and Tucker et al. (2006) examined athletes’ 

performance in competitive situations, which may have acted as an additional 

constraint on the control of the athletes’ movements. Indeed, according to the 

authors, the noise patterns they found would be typical for athletes’ pacing 

during a competition or time trial. This implies that the situations in which the 

participants performed probably affected the motor system by “pushing” it into a 

more rigid organization, thereby eliciting signatures of brown noise. As indicated 

earlier, research outside sports has shown that time series of natural and healthy 

motor performance exhibit prominent patterns of pink noise, characterized by an 

optimal mixture of randomness (i.e., flexibility) and rigidity (e.g., Glass, 2001; 

Goldberger et al., 2002; Hausdorff et al., 1997, 2001; Wijnants, 2014). Therefore, 

the first aim of the current study was to examine athletes’ temporal structures of 

performance during a sport task in which additional (competition) constraints 

were not imposed. More specifically, we investigated the temporal structures in 

time series of rowers’ ergometer strokes, which were performed at their 

preferred rhythm. Finding pink noise would provide evidence for the notion that 

the natural control of rowing strokes emerges from complex systems interactions 

(cf. Glass, 2001; Van Orden et al., 2003; Wijnants et al., 2009). 

 Furthermore, research outside the field of sports has shown that temporal 

structures of variation are closer to pink noise if the motor skill is better 

mastered. In a study on rhythmical aiming, Wijnants et al. (2009) found patterns 

of pink noise in time series of well-mastered aiming movements, suggesting that 

a high coordinative functioning between motor components had developed. 

When aiming movements were less well-mastered the authors found a whitening 
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of the structure of performance variation, which suggests less coordination 

between the system components. Thus, our second aim was to examine whether 

a relationship exists between temporal structure of performance variation and 

level of rowing expertise. For this aim, we tested whether the temporal structures 

of variation in (natural) ergometer rowing strokes are closer to pink noise for elite 

rowers than for sub-elite rowers. 

 Finally, we chose for rowing on ergometers as a research setup, because this 

allowed detailed and reliable time serial measurements. In addition, because 

cyclical (i.e., repetitive) movements lend themselves well for the analysis of 

temporal structures (e.g., Glass, 2001; Wijnants et al., 2009; Wijnants, Cox, et al., 

2012), this setup was highly suitable for obtaining insights into temporal 

structures of variation in sport performance. 

3.2  Method 

Participants 

 Nine competitive male rowers (Mage = 19.11, SD = .78) signed an informed 

consent form and a medical health form before the start of the study. All 

participants were members of the same rowing club. They started rowing 7 

months earlier, and practiced three times a week in the period of this study, but 

up to five times a week in the period preceding the study. The participants were 

part of two different teams, which we distinguished based on the results of early-

season competitions for first-year students. Five participants were part of a team 

ranked between 50% and 66.67% nationally (Team A: Sub-elite), and four were 

part of a team listed among the best 16.67% nationally (Team B: Elite). Note that 

the terms “sub-elite” and “elite” are relative to the category of (Dutch) first year’s 

rowers, specifically with regard to the attained levels of performance in the 

rowing season. 

Measures and Procedure 

 The research protocol was approved by the Ethical Committee of the 

Department of Psychology, University of Groningen. For the experiment we used 

Concept 2 ergometers, Model E (Inc., Morrisville, VT). Between the handle and 
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the chain of the ergometer, a force sensor (MEAS, France) was attached, which 

was connected to a data acquisition (DAQ) device (NI USB-6009). The DAQ device 

served to transfer the raw signals to a computer via USB, and these signals were 

collected in Volts (V) at a frequency of 100 Hz.    

 Each participant arrived individually for his ergometer session. After the 

participant did his warm-up activities, we instructed him to perform 550 strokes. 

This number was chosen in consultation with a coach of the participants’ rowing 

club, who indicated that a rowing session that takes more than 30 minutes would 

be a burden for the rowers. A sequence of 550 strokes would last between 20 and 

30 minutes (depending on the participant’s stroke frequency), and would provide 

a sufficient amount of data points to perform reliable analyses (see analysis 

section). We asked the participant to perform the strokes at his preferred rowing 

rhythm. Moreover, we set the drag on the ergometer to 120, which corresponds 

to the resistance set by the participants for their usual workouts.  

Analysis 

 The obtained time series data (in V) were first low-pass filtered with the 

Butterworth filter (cut-off frequency 8 Hz). The time intervals between the force 

peaks (maximal force in each stroke) were calculated and formed the unit of 

analysis. This measure was chosen because the coordination of force exertion is 

crucial for rowing performance (Hill, 2002; Wing & Woodburn, 1995).  

Detrended Fluctuation Analysis (DFA; Peng et al., 1993), which is particularly 

suited for non-stationary data and relatively short time series (512 data points in 

the current study; stroke 18 to 530), was applied to each participant’s peak-to-

peak interval series. The result of DFA analysis reveals the relation between 

window size of data and the mean fluctuation of the windowed data. More 

specifically, the time series of intervals between force peaks were divided into 

non-overlapping windows of equal length. The best-fitting trend line was then 

determined and the average fluctuation (root mean square residual) was 

calculated. This procedure was repeated for windows of different sizes, ranging 

from a subset of 4 interval-data points to 128 interval-data points (i.e., ¼ times 

the length of the entire series we analyzed). The relationship between the 

average fluctuation and window size was plotted on log-log scales, whereby the 

slope reflects the DFA exponent. To enhance the interpretation of the results, the 
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DFA exponents were converted into a commonly used fractal dimension (FD) 

scale based on the conversion formula provided by Wijnants and colleagues 

(Wijnants, Cox et al., 2012; Wijnants, Hasselman, Cox, Bosman, & Van Orden, 

2012): 

FD = .4α2 – 1.2α + 2,          (1) 

where α is the dfa exponent. A resulting FD close to 1.5 reflects white noise, close 

to 1.1 reflects brown noise, and close to 1.2 reflects pink noise (e.g., Van Orden et 

al., 2003). 

 For each rower we determined whether the observed FD fell outside the 

limits that we may expect in the case of a white noise pattern. Subsequently, we 

tested whether the temporal structures of the elite rowers (the rowers of Team 

B) were closer to pink noise than those of the sub-elite rowers (the rowers of 

Team A). For this test we used Monte Carlo Permutation, which has high 

statistical power for smaller sample sizes (e.g., Todman & Dugard, 2001; Van 

Geert, et al., 2012). To interpret the magnitude of the difference between the 

teams, Cohen’s d (observed difference divided by the pooled SD) is reported.    

3.3  Results 

 First, to ascertain the validity of our results, for each participant we checked 

whether the log-log relationship between window size and mean fluctuation 

approached a straight line in the selected data range, which was the case (r2 

varied between .97 and 1.00). Then, to determine whether the peak-to-peak 

interval variations deviated from white noise, we reshuffled the force-peak time-

interval series 100 times for each participant (cf. Hausdorff, Peng, Ladin, Wei, & 

Goldberger, 1995). This entails that the mean and standard deviation of the 

original interval series were kept the same, whereas the sequence of interval-

data was randomized. Figure 4 shows that the FD’s based on the reshuffled data 

were characterized by normal curves centered around the value of 1.5, which 

corresponds to white noise. For each participant the actual FD of the measured 

interval series fell outside the 95% confidence limits of the distribution in the 

direction of pink noise (i.e., a FD of 1.2). 
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Figure 4. Fractal dimensions for each participant of Team A and Team B according 

to 100 reshufflings of the interval series data, and the actually observed values 

(indicated by black arrows). 

 

 Furthermore, we tested whether the mean FD of participants in Team B (elite 

rowing team) was significantly closer to pink noise (i.e., lower) than the FD of 

participants in Team A (sub-elite rowing team). Figure 5 shows that for each 

individual team member of Team B the FD was closer to pink noise than for each 

member of Team A. With the Monte Carlo permutation test we determined the 

probability that the observed difference between Team A and Team B could be 

caused by chance alone, by simulating that chance. This was done by repeatedly 

(10,000 times) redistributing the data to determine the probability of finding the 
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same or a more extreme result. We found that the average FD of participants in 

Team A (M = 1.30, SD = .03) and of participants in Team B (M = 1.22, SD = .03) 

dificantly (p = .003, d = 3.06).   

 

 

 

Figure 5. Fractal dimensions of participants in Team A and Team B. The dashed 

line separates the two teams. 

 

3.4  Discussion 

 Variation is an essential feature of motor performance, and its structure is 

assumed to reveal information about the dynamic organization of the human 

motor system  (e.g., Glass, 2001; Goldberger et al., 2002; Van Orden et al., 2003; 

Wijnants, 2014). By applying nonlinear time series analyses, we found an absence 

of a white noise (random) temporal structure in unconstrained rowing-ergometer 

performance (i.e., intervals between peak forces). Overall, this result is in line 

with recent findings on pacing of long-distance runners (Hoos et al., 2014) and 

power output variation of cyclists (Tucker et al., 2006). Considering the 

converging evidence that the current and previous findings provide,, it seems 

unlikely that sport performance is generated by independently operating 

component processes that perform specific (motor) functions in relative isolation. 
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In such a case, each rowing stroke would result from a process unrelated to that 

of the previous stroke, for example when a central pattern generator or motor 

program commands each new rowing stroke (cf. Goldberger et al., 2002; 

Wijnants, 2014).3 

 However, contrary to the previous studies in the domain of sports, which 

reported signatures of brown noise (Hoos et al., 2014; Tucker et al., 2006), we 

found prominent patterns of pink noise. In fact, none of our participants’ force 

peak-to-peak interval series demonstrated a pattern close to brown noise. The 

differences between our research outcomes and those of Hoos et al. (2014) and 

Tucker et al. (2006) are in accordance with our earlier suggestion that additional 

(competition) constraints may result in a different organization of the motor 

system. More specifically, these differences support the notion that the 

competitive situation in the previous studies elicited a relatively rigid organization 

of the motor system. Indeed, the athletes in the studies of Hoos et al. (2014) and 

Tucker et al. (2006) probably exerted more conscious control over their 

performance, which was confirmed by the authors themselves. They stated that 

athletes in their studies generally followed a “fast-slow-fast” strategy (Hoos et al., 

2014) and placed a significant increase in power output near the end of the trial 

(Tucker et al., 2006). This suggests that athletes made minor adaptations during 

short periods, nested in relatively large adaptations over the entire performance 

duration, which is (statistically) typically expressed in a brown noise pattern.   

 Our second major finding was that rowers from the elite rowing team had FDs 

closer to pink noise than rowers from the sub-elite team. This is in line with 

earlier outcomes in the domain of motor control, showing that effective behavior 

expresses more pink noise than less effective or unhealthy behavior (e.g., Glass, 

2001; Goldberger et al., 2002), and that temporal structures of variation show 

more prominent patterns of pink noise when a task is well-mastered (Wijnants et 

al., 2009). Therefore, in line with Wijnants et al. (2009) we propose that the 

coordination among component processes involved in the generation of 

(relatively unconstrained) rowing strokes is more effective as skill level increases. 

                                                                 
3 Although some researchers have proposed that sources of pink noise can be injected in 
particular local components such as central pattern generators (Torre & Wagenmakers, 
2009), researchers have now reached consensus that pink noise does not arise from 
specific components within the system, but from complex interactions among the system 
components across different time scales (Delignières & Marmelat, 2013). 
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This is expressed in a more optimal mixture between rigidity and random 

variation, which may be a key characteristic of elite performance (cf. Davids et al., 

2003; Phillips et al., 2012; Seifert et al., 2013). 

Implications and Limitations 

 To date, assessments of sport and motor performance have mainly focused 

on some potential performance predictor x that may explain a significant portion 

of variance in performance outcome y (Atkinson & Nevill, 2001). Such 

assessments are the result of studies that (a) focus on sample means; (b) do not 

examine the performance process over time, but take snap-shot measures of the 

performance; and (c) treat variation as random (i.e., white noise). However, 

variation during (natural) sport performance can reveal information about the 

complexity of the human motor system and the effectiveness of an athlete’s 

behavior, which should not be discarded. Our finding that the temporal structure 

of variation deviated from white noise for each rower, suggests that single-cause 

mechanisms or a linear causal chain of component processes are unlikely to 

account for the resulting rowing ergometer performance. Hence, applying the 

tools of complex systems science, nonlinear time series in particular, has great 

potential to advance insights into sport performance processes as they unfold in 

real-time (Kuznetsov et al., 2014).  

 One particularly interesting avenue for future research would be to examine 

how behavioral systems organize themselves under different circumstances. In 

this study force-peak interval series of rowers’ (natural) stroke performance 

revealed prominent patterns of pink noise. We have suggested that temporal 

structures of variation in sport performance reveal signatures of brown noise 

when additional (competition) constraints are imposed. In addition, researchers 

have proposed that noise patterns may whiten when random perturbations are 

applied to an individual’s motor behavior (e.g., Diniz et al., 2011; Wijnants et al., 

2009; Wijnants, 2014).  

 Furthermore, we found a clear relation between temporal structures of 

variation and rowing expertise-level. Therefore, in the future, researchers and 

practitioners should consider information on variation in rowing strokes (and 

sport performance in general) as a potentially important performance parameter 

that could be used for monitoring purposes. It might be, for instance, that the 



Complexity of motor organization 

65 

presence of more pink noise in time series of rower’s natural (or preferred) 

rowing strokes is an indicator of the rower’s ability to increase the stroke 

frequency to higher limits. This suggestion follows from findings of Torre (2010) in 

a study on bimanual tapping. She showed that the intensity of long-range 

correlations (i.e., pink noise) is significantly correlated with the movement 

frequency at which individuals shift their pattern of coordination (from anti-phase 

to in-phase). In other words, more pink noise was associated with the ability to 

persist in a particular coordination pattern at a high movement frequency.  

 However, some limitations should be pointed out with respect to the 

generalizability of the present findings. Although ergometer rowing is widely used 

as a mean to test rowers, and as a replacement for on-water practice, clear 

implications of the current study for actual on-water rowing cannot (yet) be 

provided. Furthermore, the sample size was rather small, and larger samples 

including a variety of skill levels could further enrich insights. In the current study 

we chose to focus on rowers from the same club who did not differ in terms of 

age and rowing experience, but who did differ in terms of their achievements in 

recent competitions. Although this resulted in a small sample size, we found 

significant and strong results, which provides promising prospects for a 

complexity perspective on sport and motor performance.  

Conclusion 

 Here, we showed that temporal structures of rowers’ force-peak intervals 

during ergometer rowing are not random, but are close to pink noise. 

Furthermore, we found that rowers of an elite team expressed even more 

prominent patterns of pink noise, which is the hallmark of well-coordinated and 

effective behavior (e.g., Goldberger et al., 2002; Van Orden et al., 2003; Wijnants 

et al., 2009; Wijnants, 2014). We propose that (skilled) rowers’ performance of 

ergometer strokes naturally emerges from an ongoing dynamic interaction 

between various motor processes across multiple time scales, which is in 

accordance with the complex systems perspective in sports (Davids et al., 2003, 

2014; Seifert et al., 2013). We believe that future applications of the complexity 

perspective will advance insights in the domain of sport and motor performance. 
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Abstract 

In business and sports, teams often experience periods of positive and negative 

momentum while pursuing their goals. However, researchers have not yet been 

able to provide insights into how psychological and behavioral states actually 

change during positive and negative team momentum. In the current study we 

aimed to provide these insights by introducing an experimental dynamical 

research design. Rowing pairs had to compete against a virtual opponent on 

rowing ergometers, while a screen in front of the team broadcasted the ongoing 

race. The race was manipulated so that the team’s rowing avatar gradually 

progressed (positive momentum) or regressed (negative momentum) in relation 

to the victory. The participants responded verbally to collective efficacy and task 

cohesion items appearing on the screen each minute. In addition, effort exertion 

and interpersonal coordination were continuously measured. Our results showed 

negative psychological changes (perceptions of collective efficacy and task 

cohesion) during negative team momentum, which were stronger than the 

positive changes during positive team momentum. Moreover, teams’ exerted 

efforts rapidly decreased during negative momentum, whereas positive 

momentum accompanied a more variable and adaptive sequence of effort 

exertion. Finally, the interpersonal coordination was worse during negative 

momentum than during positive momentum. These results provide the first 

empirical insights into actual team momentum dynamics, and demonstrate how a 

dynamical research approach significantly contributes to current knowledge on 

psychological and behavioral processes during goal pursuit.  
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4.1  Introduction 

 During the 34th America’s cup (September 2013), the American catamaran 

came backfrom a 1-8 disadvantage to 8-8. Then, in the winner-takes-all deciding 

race, Team USA started lagging behind Team New-Zealand, but turned the 

momentum and sailed to a historical victory. While in the ancient Greek times 

Homer suggested that momentum shifts are controlled by Gods’ interference in 

human affairs (see Adler, 1981), current researchers acknowledge that positive 

momentum―progressing in relation to the goal―and negative 

momentum―regressing in relation to the goal―elicit psychological and 

behavioral changes, termed psychological momentum (PM) (Gernigon et al., 

2010). Still, researchers have not yet been able to capture how psychological and 

behavioral states actually change when teams acquire positive or negative 

momentum. In the current study, we propose a paradigm advocated by complex 

dynamical systems theorists (e.g., Haken et al., 1985; Schöner & Kelso, 1988), 

allowing us to experimentally examine changes in psychological and behavioral 

performance variables during positive and negative momentum.  

Earlier Research on Team Momentum 

 Periods of positive and negative momentum can be observed in various 

achievement contexts, such as presidential campaigns and business, but are 

probably most apparent in sports (Adler, 1981; Briki, Doron, Markman, Den 

Hartigh, & Gernigon, 2014; Markman & Guenther, 2007). Hence, most research 

on team momentum has been conducted in this domain. Quantitative studies 

conducted so far have increased insights into which psychological variables are 

higher as a result of positive momentum, compared to negative momentum or no 

momentum (Eisler & Spink, 1998; Miller & Weinberg, 1991; Stanimirovic & 

Hanrahan, 2004). For example, providing members of volleyball teams with 

questionnaires containing either a hypothetical positive momentum scenario 

(their team came back from behind) or a no-momentum scenario (the score kept 

close), researchers found that participants in the positive momentum scenario 

reported more momentum, confidence, and control, but also lower levels of 

anxiety and discouragement than participants in the no-momentum condition 

(Eisler & Spink, 1998; Miller & Weinberg, 1991). Moreover, effects of the positive 

momentum scenario were found to be stronger if the momentum occurred in a 
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crucial phase of the competition (Miller & Weinberg, 1991) and if the team 

members felt highly cohesive (Eisler & Spink, 1998).  

 In an experimental study that took into account negative momentum as well, 

volleyball teams had to perform three competitive trials (Stanimirovic & 

Hanrahan, 2004). After each trial the experimenter indicated whether the team 

performed better (positive momentum condition) or worse (negative momentum 

condition) than the opponent team. The authors found that momentum 

perceptions, collective efficacy―team members’ perceptions of their team’s 

ability to successfully perform the task (Bandura, 1997)―and positive affect were 

higher in the positive momentum condition, whereas negative affect was higher 

in the negative momentum condition. In line with this, perceptions of momentum 

and collective efficacy generally increased over the three positive momentum 

trials, whereas negative affect decreased. In contrast, momentum perceptions, 

collective efficacy, and positive affect decreased over the negative momentum 

trials, whereas negative affect increased.  

 These previous studies showed that positive team momentum leads to 

various positive feelings and perceptions, and negative momentum to negative 

feelings and perceptions. However, it remains unknown how the psychological 

changes occur over the course of positive and negative momentum. Furthermore, 

it is unclear how momentum relates to performance change, because studies 

investigating the momentum-performance relationship have revealed mixed 

results. That is, researchers have suggested that performance improves with 

positive momentum (Miller & Weinberg, 1991), but several studies did not find 

this effect (Miller & Weinberg, 1991; Stanimirovic & Hanrahan, 2004; Taylor & 

Demick, 1994). Likewise, negative momentum is typically assumed to result in 

performance deterioration (Taylor & Demick, 1994), but has also been linked to 

performance improvement (Stanimirovic & Hanrahan, 2004). This positive effect 

of negative momentum has been explained in terms of a negative facilitation 

tendency (Cornelius, Silva, Conroy, & Peterson, 1997; Perreault, Vallerand, 

Montgomery, & Provencher, 1998), or in terms of reactance (see Briki, Den 

Hartigh, Hauw et al., 2012 in individual sports). According to both explanations, 

team members (or individual athletes) would increase their efforts in order to 

overcome their negative momentum. 
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 Taken together, previous research has demonstrated that both psychological 

variables and performance are influenced by momentum (positive or negative), 

but it remains unknown how these variables change over time. This could be 

attributed to the primary focus on snapshot measures after manipulated or 

naturally occurring momentum periods during a fixed time (or scoring) span. That 

is, team momentum studies examined psychological variables and performance 

outcomes at only one point in time (for an exception, see Stanimirovic & 

Hanrahan, 2004; in this study measures were taken after three volleyball tasks, 

however, this does not allow for a true analysis of trajectories of psychological 

and performance changes). In the current study, we therefore conducted a 

process-oriented study aimed to provide the first insights into the nature of 

psychological and behavioral performance changes during positive and negative 

team momentum. These aims are in direct accordance with early (Adler, 1981) 

and recent (Gernigon et al., 2010) theoretical propositions stating that PM is a 

dynamical phenomenon.   

The Dynamical Nature of Team PM  

 According to early theoretical assumptions, positive and negative (team) PM 

states can emerge and disappear, and their intensity may increase or decrease 

(Adler, 1981; Adler & Adler, 1978). Based on qualitative results in handball, 

researchers recently suggested that positive and negative team PM involve 

multiple psychological (e.g., emotions, feelings of confidence and cohesiveness) 

and behavioral (e.g., level of energy and activity) factors, that both undergo 

upward and downward changes over time (Moesch & Apitzsch, 2012). This 

suggestion supports the most recent theoretical definition of PM as “a positive or 

negative dynamics of cognitive, affective, motivational, physiological, and 

behavioral responses (and their couplings) to the perception of movement 

toward or away from either an appetitive or aversive outcome” (Gernigon et al., 

2010, p. 397). Gernigon et al. (2010) proposed that PM can be conceived as a 

complex dynamical system.  

 Simply put, a complex dynamical system is a set of interconnected elements 

that undergoes change (Nowak & Vallacher, 1998). According to the dynamical 

systems perspective, the state of a system does not merely vary as a function of 

the value of one or a few independent variables, but also as a function of its 
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preceding states (e.g., Van Geert, 1997; 2009a). That is, an event may change the 

state of a system (or not), depending on the history of the states of that system. 

Related to this, the change in the system’s state can be nonlinear (e.g., Kelso, 

1995; Nowak & Vallacher, 1998). For instance, when the system finds itself in a 

stable negative state―e.g., being desperate after some errors―, one or a few 

positive events such as experiences of success may not directly boost one’s PM. 

On the other hand, when the stability of the system’s negative state is low―e.g., 

making errors, but knowing your form is not bad―, one positive event can be 

sufficient to give rise to a positive PM experience (for more theoretical 

explanations of the dynamical systems approach in psychological and social 

sciences, see Kelso, 1995; Nowak & Vallacher, 1998; Thelen & Smith, 1994; Van 

Geert, 1994).  

 In individual sports, indications that PM can indeed be considered as a 

complex dynamical phenomenon have recently been found. In a qualitative study 

researchers found that positive and negative PM experiences involve a complex 

interplay between perceptions, emotions, cognitions, and behaviors (Briki, Den 

Hartigh, Hauw et al., 2012). Furthermore, in a recent experiment in which cyclists 

were competing, it was found that progressing in relation to the goal (i.e., victory) 

gives rise to a positive PM experience that develops relatively late, whereas a 

negative PM experience develops rapidly when regressing in relation to the goal 

(Briki et al., 2013).  

Examining Team PM Dynamics  

 The conception of team PM as a dynamical phenomenon and the analogy 

between PM and complex dynamical systems, implies that the dynamical systems 

theory (DST)―”an approach to the description and explanation of change” (Van 

Geert, 2009a, p. 243)―should be used to study this topic. Because it is impossible 

to measure all variables related to changes in team PM (these are numerous, see 

Briki, Den Hartigh, Hauw et al., 2012; Moesch & Apitzsch, 2012), an important 

step in obtaining an understanding is to track the development of global level 

variables that can best describe team PM (i.e., collective variables, see Arrow, 

McGrath, & Berdahl, 2000; Nowak & Vallacher, 1998). Literature on team 

performance considers collective efficacy as a crucial global team variable, which 

is related to team momentum and may dynamically fluctuate over time. Indeed, 
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an earlier study already found a general increase in collective efficacy in a positive 

momentum scenario and a decrease in a negative momentum scenario 

(Stanimirovic & Hanrahan, 2004), which is in line with the suggestion that teams 

can enter a positive and negative efficacy-momentum spiral during a competition 

(Bandura, 1997). 

 Another global psychological team variable is task cohesion, which is the 

degree to which team members work together to achieve a task or goal (Carron & 

Hausenblas, 1998). Task cohesion is considered a powerful team attribute highly 

related to performance (Carron, Brawley, & Widmeyer, 1998; Carron, Bray, & Eys, 

2002). Moreover, it is considered a dynamical construct, which may vary from 

second to second during a competition (Buton, Fontayne, Heuzé, Bosselut, & 

Raimbault, 2007) and is related to team momentum (Adler, 1981; Eisler & Spink, 

1998). Positive and negative dynamics in both team efficacy and task cohesion 

may thus reflect the development of team’s positive and negative PM 

experiences. 

 The ongoing performance process during positive and negative team 

momentum has not yet been empirically studied. As discussed earlier, research 

has mainly focused on performance outcome measures of momentum (e.g., 

Miller & Weinberg, 1991; Stanimirovic & Hanrahan, 2004). However, the earliest 

theoretical work on momentum already suggested that the performance process 

in terms of effort exertion undergoes typical changes over the course of positive 

and negative momentum. More specifically, according to Adler’s (1981) theory, 

the start of positive momentum can be characterized by momentum building, a 

phase in which efforts are high. Once momentum is established, a phase 

characterized by an economy of efforts or ‘cruising’ would be observed, during 

which a moderately strong level of exertion is sustained. With the goal within 

reach, effort exertion may naturally decrease, called coasting (see also Briki, Den 

Hartigh, Hauw et al., 2012). Then, as the goal to be reached is near, a re-

momentum is common, during which more efforts are exerted than previously, as 

a kind of ‘kick towards the finish’. Next to this dynamic development of effort 

exertion, the theory also states that positive momentum accompanies high 

coordination and rhythmicity of movements (Adler, 1981).  

 On the other hand, the performance tendency during negative momentum 

would generally be negative. However, at the start of the negative momentum 
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period, a team may exert high efforts to overcome this (for a comparable 

tendency in individual momentum, see Briki, Den Hartigh, Hauw et al., 2012; 

Perreault et al., 1998), which carries the risk of an overabundance of efforts 

(Adler, 1981). Subsequently, voluntarily abandoning the activity is a common 

response when the negative momentum persists. When this is impossible (e.g., 

during a sports match), people may continue sinking until the end of the activity. 

Furthermore, movements would be more erratic during negative momentum 

(Adler, 1981).  

 Thus, based on the earlier literature on team momentum, we considered 

collective efficacy, task cohesion, exerted efforts, and interpersonal coordination 

as crucial performance, and team PM-related variables that may display specific 

dynamics during positive and negative momentum. To provide a first empirical 

examination of the team PM dynamics, we used a rigorous experimental 

dynamical systems method, originally intended to study how different 

coordination patterns form in biological systems (Haken et al., 1985; Schöner & 

Kelso, 1988). According to this method, a parameter (i.e., control parameter) 

should be scaled upwards and downwards to examine how the system moves to 

its different collective states. Given that positive and negative PM develop when 

progressing or regressing in relation to the goal, experimentally scaling a team’s 

position (progress and regress) would allow a thorough examination of the 

psychological and behavioral team dynamics during positive and negative 

momentum. For the current study, team rowing was chosen as a research 

context, because team members are highly interdependent in this type of sport, 

both psychologically and behaviorally. In addition, objective measures of force 

exertion and interpersonal coordination could directly be obtained in an 

experimental setting (i.e., on rowing ergometers).  

4.2  Method 

Participants 

 To optimize the validity of our design and the resulting outcomes, we 

recruited a sample consisting of participants for whom reaching a goal during a 

rowing task would be meaningful. Hence, we contacted a board member of a 

rowing club to approach competitive rowers. Twenty-two Dutch rowers (18 male 
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and 4 female) of four different rowing teams participated. Their mean age was 

20.14 years (SD = 1.86), and on average the participants were active rowers at a 

rowing club for 1.14 years (SD = 1.02). All four teams practiced together several 

times a week for about five months. In the current study, eleven teams of two 

rowers were formed by pairing the participants randomly with one team 

member. 

Experimental Design 

 The study took place in a room of the university, in which a research setup 

was built for this study (see Figure 6). The setup included two rowing ergometers 

(Concept 2, Model E, Inc., Morrisville, VT), a table with a monitor in front of the 

ergometers, a table with two computers behind the ergometers, Nintendo Wii 

remotes above the ergometers, and force sensors (MEAS, France) attached 

between the handles and the chains of the ergometers. On both ergometers we 

set the drag factor at 120 with PM4 performance monitors. This drag factor value 

corresponds to the resistance set by rowers for their workouts. While one of the 

computers behind the ergometers served to register the data from the Wii 

remotes and force sensors (see measures section), the other computer served to 

create the positive and negative momentum scenarios with race simulation 

software. This software enabled to program races involving (moving) avatars of 

two rowing boats that could be displayed on the screen in front of the 

ergometers. Furthermore, the software allowed entering items (i.e., questions 

the participants had to answer) at fixed intervals during the race.  
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Figure 6. Research setup. 

 

Race Scenarios 

 To program credible race scenarios for our participants, we constructed the 

races in consultation with (inter)national rowers and rowing coaches, and we 

pilot tested some scenarios with four rowers and four other athletes in eight 

sessions. When rowing against an opponent of comparable level, a time-gap of 8 

seconds was perceived as considerable, but manageable, while more than 8 

seconds would become unrealistic to overcome. The maximum duration of a 

strenuous rowing exercise turned out to be between 10 and 13 minutes. Taking 

this information into account, we programmed momentum scenarios that 

followed the experimental guidelines as set by earlier researchers (Haken et al., 

1985), and included three phases: A priming phase, a momentum phase, and a 

completion phase (see Figure 7).  
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Figure 7. Illustration of the constructed positive and negative momentum 

scenarios. 

 

 The priming phase covered the first 3.20 min. During the start of this phase, 

the avatars kept in step and one of the avatars took a short lead to add credibility 

to the scenario. Then, the avatar of the participants either moved to a lag of 6 

seconds, or to a lead of 6 seconds, which was the starting point for the positive or 

negative momentum phase, respectively. During the momentum phase that 

followed, the team’s boat gained 2 seconds each minute until they led by 6 

seconds (positive momentum), or lost 2 seconds each minute until they lagged 

behind by 6 seconds (negative momentum). This phase lasted 6.40 minutes. 

During the completion phase, which lasted 1 minute, the final time-gap between 

the avatars was reached, which was between a 6-second lag and a 6-second lead. 

This phase was not included in the data analyses, but was added to avoid 

participants thinking that they were involved in identical race scenarios (although 

they were kindly requested not to discuss their race with other participants). 

However, none of the races ended in a (full) victory or defeat for the participating 

teams (i.e., winning or losing by 8 seconds).  
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Procedure 

 The study protocol was approved by the Ethical Committee of the Department 

of Psychology, University of Groningen. Each team (pair) participated in two 

sessions―one positive momentum session and one negative momentum 

session―in random order, spread over one to two weeks. Upon their arrival for 

their first session, the participants signed an informed consent form and a 

physical health form. Subsequently, we gave the participants a quick tour through 

the experiment room, during which we showed how we were able to capture 

their exerted efforts and coordination, and explained that we could connect their 

real-time performance to racing software. This tour served to avoid suspicion 

about possible manipulations during the study, and preceded the participants’ 

warm-up activities. After the warm-up, we explained to the participants that they 

would be connected to the racing software. We told them that the race would be 

displayed on the screen in front of them, and we provided them with a clear goal: 

To beat the opponent by taking an 8-second lead. We added that if the race 

would become too long, it would be stopped to avoid too much exhaustion (note 

that in reality the race was already programmed at 11 minutes with no ultimate 

winner, and that the elapsed time was not displayed).  

 We explained to the participants that they would see two rowing boats on the 

race screen, a green and an orange boat. The green boat represented the 

participants’ boat, whose speed would be based on a combination of their shared 

effort exertion and their coordination, as continuously collected by the racing 

software. We said that the speed of the other boat was based on the 

performance of another team at a comparable level, whose data had already 

been collected and uploaded into the software. Furthermore, we told the 

participants that the screen changed regularly to display two questions, and that 

the race screen would be shown again when both participants had verbally 

answered the questions. To avoid participants being able to hear each other and 

be influenced by each other’s item answers during the race, we gave them 

soundproofed headsets. The participants’ answers were recorded by voice 

recorders attached to their t-shirts.  

 When the participants were ready, a research assistant counted down and the 

race, along with the data collection from the force sensors and the Nintendo Wii 

remotes, were started. While they were rowing, the participants followed the 
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(manipulated) development of the race on the screen. After the second session, 

we asked the participants to fill out a questionnaire including a manipulation 

check. All participants indicated a period corresponding to the actually 

manipulated momentum phases in their answers to the questions: “Was there a 

period you were moving toward the victory?”, “Was there a period you were 

moving toward the defeat?”, and “if yes, when was this period?”.  

Measures of Psychological Variables 

 To minimize the possible interfering influence of answering questions during 

the race, we only picked one collective efficacy item and one task cohesion item, 

which could be verbally answered on a 9-point scale while rowing. The items 

appeared on the race screen 15 s after each change in time gap between the 

avatars (i.e., each minute). Collective efficacy items generally include team 

members’ confidence in their team’s abilities to produce specific attainments 

(e.g., bounce back from performing poorly) (Bandura, 2006; Feltz & Lirgg, 1998). 

Often, one general measure of collective efficacy is included in questionnaires as 

well, which reflects the team members’ confidence in the team’s abilities to win 

the competition, or outperform the other team (e.g., Feltz & Lirgg, 1998; 

Stanimirovic & Hanrahan, 2004). Therefore, we included such an item in the 

software, namely “Now, at this moment I am confident in our abilities to win this 

race” (1 = not at all confident, 9 = very confident).  

 A widely used cohesion questionnaire in achievement contexts, and in sport in 

particular, is the Group Environment Questionnaire (GEQ). We picked the item 

with the highest loading on the (group integration) task cohesion dimension 

found in a validation study of the questionnaire (Heuzé & Fontayne, 2002). The 

original item is “The members of my team are united in their efforts to reach the 

performance goals”, which we adapted to our research context by formulating 

the item as “Now, at this moment we are united in our efforts to win this race” (1 

= strongly disagree, 9 = strongly agree).      

Measures of Performance Variables  

 Pre-calibrated force sensors were attached between the handles and the 

chains of the ergometers to provide continuous data of effort exertion. The two 
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force sensors were connected to a data acquisition card (DAQ), made by National 

Instruments (NI USB-6009). The DAQ served to transfer the data of the two force 

sensors to the computer via USB. A Matlab script was written to save the data in 

Volts (V) at a frequency of 100 Hz.  

 Nintendo Wii remotes, attached to the ceiling above the ergometers, contain 

infrared (IR) camera sensors (PixArt Imaging, Inc., Santa Clara, CA). The camera 

sensors tracked a light, which we placed on the handlebar of each ergometer, and 

which (also) emitted infrared light. This system provides accessible, high 

resolution and high-speed movement tracking (Lee, 2008). The temporal accuracy 

of the IR camera sensors was 100 Hz. We determined the spatial accuracy of the 

sensors by putting a light (the same as those placed on the handles) on a big 

rotating record turntable, placed at the same height as the handlebar. As the light 

continuously visited the same coordinates during each rotation, the Nintendo Wii 

IR camera sensors measured each coordinate within an error margin of 0 to 2 

millimeters. Given the length of a rowing stroke―about 150 centimeters―we 

considered a spatial accuracy of 2 millimeters to be acceptable.  

During the experiment, an application written in C allowed us to collect the 

(changing) positions of the lights in pixels (pix) via Bluetooth, while 

simultaneously collecting the exerted effort data.  

Analyses 

 Before analyzing the data, the responses to the psychological items collected 

with the voice recorders were (double) checked by research assistants and 

entered in Microsoft Excel. The mean scores of the two members of each team 

were used for the analyses. The data in V from the force sensors were 

transformed to Newton units (N) according to a linear transformation provided by 

the manufacturer of the sensors. The mean force exertions per team in N were 

then taken into account for the analyses.  

 The positions of the handle bars as tracked by the Wii remote IR cameras in 

pix were transformed to centimeters (cm). Subsequently, we used a low-pass 

Butterworth filter in Matlab on the two time series of the positions, with a cut-off 

frequency of 4 Hz. We standardized the time series signals, and with the following 

formula we calculated the continuous relative phase (ϕ) via a Hilbert 
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transformation (Pikovski, Rosenblum, & Kurths, 2003) to obtain accurate 

quantifications of the interpersonal coordination between the participants:    

)()()()(
)()()()(arctan)()(

2121

2121
21 tstststs

tststststt
HH

HH ,     (2) 

where )(1 t and )(2 t are the phases of each separate signal; )(1 ts and )(2 ts

correspond to the real signals; and )(1 tH and )(2 tH correspond to the Hilbert 

transformations of )(1 ts and ).(2 ts  

 We then applied Monte Carlo permutation tests for the actual analyses. The 

Monte Carlo test determines the probability that an observed outcome is caused 

by chance alone, by simulating that chance (e.g., Todman & Dugard, 2001; Van 

Geert et al., 2012). This is based on a repeated redistribution (e.g., 5,000 times) of 

the collected data, to determine the possibility that a similar or more extreme 

result can be found by chance. A great advantage of this technique is that the test 

statistics are based on the observed data distribution, rather than on a presumed 

(normal) distribution. Therefore, this procedure often has better explanatory 

value than conventional statistical techniques in the field of behavioral and social 

sciences, such as ANOVAs, particularly in the case of smaller sample sizes and 

skewed data distributions (Van Geert et al., 2012). In addition, the Monte Carlo 

technique is well suited to answer research questions that are difficult, or 

impossible to answer with conventional statistical techniques. One example is the 

calculation of a combined p-value, which we conducted for the mean relative 

phase and its standard deviation, in order to determine the quality of the 

coordination (see below).   

 Before running the Monte Carlo procedure, we divided the time series of the 

mean force exertion, the relative phase in degrees (ϕ), and the standard 

deviation of the relative phase (SDϕ) into seven sections, corresponding to the 

seven periods in which there was a specific time-gap between the avatars on the 

screen, and to the number of psychological measures. Subsequently, we ran the 

Monte Carlo procedure, for which we shuffled the data of the different variables 

within the teams (pairs), rather than over the entire sample. The reason for this 

was that different teams could not be considered as one homogeneous sample 

(Arrow et al., 2000; McGrath, Arrow, & Berdahl, 2000). This choice thus enabled 

us to find regularities in the team dynamics, despite the heterogeneity of the 
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teams (e.g., some teams had more power than other teams, which could obscure 

the presence of dynamical trends in exerted efforts shared between teams). With 

the Monte Carlo procedure, the observed outcome was compared to the 

outcome of the redistributed data after each round of shuffling. In this way, we 

tested 1) the overall change in the variables during positive and negative 

momentum separately, 2) differences between the overall changes in the positive 

and negative momentum scenarios, 3) time-gap to time-gap differences in mean 

exerted force during positive and negative momentum, and 4) differences 

between the scenarios in terms of collective efficacy, task cohesion, and a 

combination of the mean relative phase (ϕ) and its standard deviation (SDϕ). A 

low probability (p-value) that the randomly redistributed data generate the same, 

or more extreme, results than those actually observed indicates that the 

observed results are unlikely to be caused by chance alone. Finally, with regard to 

the average differences between the scenarios on the variables collective efficacy 

and task cohesion, we divided the averages by the standard deviations for each 

team. In order to provide a conservative effect size, we determined the average 

effect size (ES) based on the individual team results.  

4.3  Results 

 Our results are based on the positive and negative momentum sessions of 

eight male teams (for an overview of the sample means and standard deviations 

of the psychological and behavioral variables, see Table 4). One member of a 

female team mistakenly believed that, during the first session, her team was the 

orange boat, despite the instruction that they were the green boat. Furthermore, 

one female team and one male team literally gave up rowing during their first 

(negative) momentum session. The data of these three teams could therefore not 

be included in the analyses of the dynamics over both the positive and negative 

momentum session. Results of the psychological and behavioral dynamics will be 

reported separately.
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Psychological Dynamics 

 Figure 8A shows the dynamics of collective efficacy. Monte Carlo tests 

revealed that this variable significantly increased during positive momentum 

(Mchange = 3.13, SD = .92, p < .001), and decreased during negative momentum 

(Mchange = -4.81, SD = 1.58, p < .001). The decrease during negative momentum 

was significantly steeper than the increase during positive momentum (Mdiff = 

1.69, p < .01). In addition, collective efficacy was higher during positive 

momentum (M = 6.29, SD = .63) than during negative momentum (M = 5.20, SD = 

.60, p < .001, ES = .67). Significant differences (p < .05) between the scenarios 

were found at time gap values from -6 s until +2 s.  

 The dynamics of task cohesion are displayed in Figure 8B. This variable 

increased significantly during positive momentum (Mchange = 1.31, SD = .70, p < 

.001), and decreased significantly during negative momentum (Mchange = 3.00, SD 

= 1.56, p < .001). The decrease during negative momentum was significantly 

steeper than the increase during positive momentum (Mdiff = 1.69, p < .01). 

Moreover, task cohesion was generally higher during positive momentum (M = 

6.87, SD = 1.28) than during negative momentum (M = 6.10, SD = 1.09, p < .001, 

ES = .75), and local differences were found at time gap -6 s and -4 s (p < .05).  

Behavioral Dynamics 

 Figure 9A displays the dynamics of exerted efforts. Based on the Monte Carlo 

tests we found that exerted efforts significantly decreased during positive 

momentum (Mchange = -10.36, SD = 8.38, p < .001) as well as negative momentum 

(Mchange = -18.78, SD = 11.13, p < .001). Overall, the decrease was steeper during 

negative momentum than during positive momentum (Mdiff = 8.41, p < .01). 

Accordingly, exerted efforts did not differ between scenarios at the start of the 

momentum periods―i.e., at +6 s in the negative momentum scenario and -6 in 

the positive momentum scenario―, whereas force exertion was significantly 

higher at the end of the positive momentum scenario―i.e., at +6 s―than at the 

end of the negative momentum scenario―i.e., -6 s―(p < .05).  

 Looking at the dynamics within the scenarios, pairwise comparisons between 

successive time gaps in the positive momentum scenario showed that effort 
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exertion significantly decreased from time gap -6 s to -4 s and from time gap +2 s 

to +4 s (p < .05). A significant increase in efforts was found from time gap +4 s to 

+6 s (p < .05). During negative momentum, significant decreases were found from 

time gap +6 s to +4 s and from +4 s to + 2 s (p < .05). 

 

 

 

Figure 8. Dynamical trends of collective efficacy (A) and task cohesion (B) during 

positive and negative momentum. Grey double arrows indicate at which time-

gaps there is a significant difference (p < .05) between the positive and negative 

momentum scenario. 

 

  The dynamics of the relative phase (ϕ) and its standard deviation (SDϕ) are 

shown in Figure 9B. Overall, the combination of the mean continuous relative 

phase (ϕ) and its stability (SDϕ) was better (i.e., closer to 0) over the course of 

positive momentum (ϕ = 3.49, SDϕ = 7.43) than during negative momentum (ϕ = 

3.79, SDϕ = 7.79, pcombined < .05). However, no significant differences were found 

between the scenarios at same values of time gaps. Within the scenarios 

separately, we found a decreasing trend in SDϕ during positive momentum, 

which significantly differed from the slight increasing trend during negative 

momentum (Mdiff = 1.35, p < .05). Regarding the mean relative phase (ϕ), we 

found no significant increasing or decreasing trends during either positive or 

negative momentum. 
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Figure 9. Dynamical trends of exerted efforts (A) and interpersonal coordination 

(B) during positive and negative momentum. Exerted efforts are expressed in 

Newton (N). The grey double arrows in Graph A indicate significant changes (p < 

.05) from time-gap to time-gap. The mean relative phase and its standard 

deviation (Graph B) are expressed in degrees. 

 

4.4  Discussion 

 Previous empirical research has demonstrated that psychological states and 

performance are often influenced by positive and negative team momentum 

(Eisler & Spink, 1998; Miller & Weinberg, 1991; Stanimirovic & Hanrahan, 2004). 

Insights into the nature of psychological and behavioral performance changes 

during positive and negative team momentum are still lacking, however. To 

provide such insights, we used the dynamical systems approach to examine 

psychological (collective efficacy and task cohesion) and behavioral (exerted 

efforts and interpersonal coordination) changes by experimentally varying the 

position in relation to the team goal of winning the race (cf. Haken et al., 1985). 

This approach is in concordance with theoretical propositions stating that PM is a 

dynamical phenomenon (Gernigon et al., 2010), which, as we will discuss below, 

is supported by our data on the psychological and behavioral dynamics.  
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Psychological Dynamics 

 With regard to collective efficacy, we found an increase during positive 

momentum and a decrease during negative momentum, which supports the 

theoretical assumption that teams may enter a positive or negative efficacy-

momentum spiral during performance (Bandura, 1997). In addition, these results 

are in line with the earlier finding that team members’ collective efficacy 

increased and decreased when they experienced repeated success and failure, 

respectively (Stanimirovic & Hanrahan, 2004).  

 A similar fluctuating pattern was observed for task cohesion: An increase was 

present during positive momentum and a decrease during negative momentum. 

In an earlier study, it was already found that task cohesion is related to team PM 

(Eisler & Spink, 1998). However, in that study the authors treated task cohesion 

as a “static” team attribute influencing the extent to which teams are sensitive to 

positive momentum periods, whereas the current study shows that task cohesion 

is also actually involved in the PM process. We therefore propose that task 

cohesion is a dynamical, fluctuating variable (Buton et al., 2007) that undergoes 

positive and negative changes during positive and negative momentum. All in all 

these results of collective efficacy and task cohesion suggest that the upward and 

downward dynamics of these variables characterize the psychological experience 

of positive and negative team PM, respectively.   

 Interestingly, the nature of the changes in collective efficacy and task 

cohesion was different depending on whether momentum was positive or 

negative. More specifically, decreases in collective efficacy and task cohesion 

during negative momentum were steeper than the increases during positive 

momentum. This asymmetry could not be detected in earlier snapshot studies on 

team momentum (e.g., Eisler & Spink, 1998; Miller & Weinberg, 1991), and was 

therefore not anticipated. Yet, the asymmetry supports the general assumption 

that negative events have a bigger psychological impact than equivalent positive 

events (Baumeister, Bratslavski, Finkenauer, & Vohs, 2001; Kahneman & Tversky, 

1979). Moreover, it is in line with results from individual sports, showing that 

negative PM was triggered more easily than positive PM (Briki et al., 2013). 

Related to this asymmetry, collective efficacy and task cohesion were generally 

higher in the positive momentum scenario than in the negative momentum 

scenario. Given that the scenarios were exactly symmetrical, this finding suggests 
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that team PM experiences are not only dependent on the static situation within 

the competition, but also on the history of progress or regress (cf. Briki, Den 

Hartigh, Markman, & Gernigon, 2014; Briki et al., 2013; Gernigon et al., 2010). 

This thus suggests that team PM is history dependent—a typical dynamical 

property—, which supports the proposition that PM could be considered a 

complex dynamical system (Gernigon et al., 2010). 

 It is noteworthy that the history of progress or regress particularly played a 

role when being behind (i.e., at negative values of time gap). This means that 

having gained the lead at the start of the race―the start of the negative 

momentum scenario―accompanied approximately the same levels of collective 

efficacy and task cohesion, as having gained the lead after being behind―end of 

the positive momentum scenario. On the other hand, lagging behind after having 

had the lead―end of the negative momentum scenario―accompanied lower 

collective efficacy and task cohesion than lagging behind at the start of the 

race―start of the positive momentum scenario. This suggests that in particular 

losing while having been close to the goal (i.e., winning) has a disproportionally 

strong psychological impact compared to losing while one has never been close 

to the goal. This finding is in accordance with the well-known phenomenon that 

perceiving an outcome as nearly (but ultimately not) occurring has powerful 

psychological consequences, because almost attaining the desired outcome 

makes the counterfactual outcome (e.g., I could have won) more salient 

(Kahneman & Tversky, 1982; Markman, Elizaga, Ratcliff, & McMullen, 2007; 

Medvec & Savitsky, 1997; Medvec, Madey, & Gilovich, 1995).  

Behavioral Dynamics 

 The dynamics of the behavioral performance variable effort exertion were not 

characterized by straightforward upward or downward trends during positive and 

negative momentum. Strikingly, exerted efforts followed a pattern that has been 

proposed by Adler’s (1981) early social theory of momentum. In the positive 

momentum session we found high exerted efforts at the start, which corresponds 

to a ‘building momentum’ phase according to Adler (1981). Subsequently, when 

winning two seconds efforts decreased and moved to a relatively stable exertion, 

which corresponds to a ‘cruising’ phase. Then a short significant drop in efforts 

occurred, which is in line with a coasting tendency, a tendency that has also been 
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found in research on individual PM (Briki, Den Hartigh, Hauw et al., 2012). Finally, 

effort exertion increased, which is in line with the ‘final kick’ phase, reflecting a 

last boost in efforts when perceiving that the goal is near (Adler, 1981). 

 Negative momentum involved a steeper overall decrease in exerted efforts 

than positive momentum. Moreover, the effort exertion decreased over the 

entire negative momentum phase, which corresponds to a sinking tendency 

according to Adler’s (1981) momentum theory. The decrease in exerted efforts 

was rapid between time gap values of +6 s and +2 s, which could be interpreted 

as an early dropping tendency because of losing hope in a positive outcome (see 

also Briki et al., 2013). Noteworthy, two teams in our original sample showed an 

even more striking dropping tendency, these teams literally gave up when 

perceiving the opponent was coming back. This latter tendency supports the idea 

that people sometimes voluntarily drop the activity when they reach a point at 

which they become certain that they will fail (Adler, 1981). 

 This study’s second performance variable was interpersonal coordination. 

Again in line with Adler’s (1981) theory of momentum, we found that the quality 

of interpersonal coordination was higher during positive momentum than during 

negative momentum. Moreover, the stability of the coordination (relative phase) 

improved during positive momentum. We did, however, not find clear patterns 

with regard to the mean relative phase over the course of positive and negative 

momentum. The absence of such patterns could be explained by the robust 

finding that people automatically coordinate their movements over time when 

they are performing a comparable rhythmical task (Coey, Varlet, Schmidt, & 

Richardson, 2011; Issartel, Marin, & Cadopi, 2007; Richardson, Marsh, Isenhower, 

Goodman, & Schmidt, 2007; Richardson, Marsh, & Schmidt, 2005; Schmidt, 

Bienvenu, Fitzpatrick, & Amazeen, 1998; Schmidt, Carello, & Turvey, 1990; 

Schmidt & O’Brien, 1998). This continuous synchronization tendency could have 

been further strengthened by the fact that our sample consisted of rowing teams 

that were trained to stay coordinated.  

Conclusions and Future Directions 

 In conclusion, in the current chapter we introduced a complex dynamical 

approach to study the team PM process. We showed that, relative to positive 

team momentum, negative momentum elicits stronger (opposite) psychological 
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changes and accompanies different (less adaptive) behavioral regulation. The 

asymmetry between positive and negative psychological team momentum 

dynamics, depending on the history of progress and regress, points to the 

relevance of pursuing a dynamical approach. Within the domain of social 

sciences―and team dynamics in particular―patterns of change often remain 

unnoticed, because optimal standardization and ruling out the role of history are 

common practice in mainstream experimental designs (Arrow et al., 2000). In 

addition, the results of exerted efforts and interpersonal coordination brought 

insights into the actual performance dynamics during positive and negative 

momentum. The lack of consistent results with regard to the momentum – 

performance outcome relationship in earlier research might be explained by our 

findings that performance processes are non-stationary during positive and 

negative momentum. Indeed, if we would have taken single snapshots of exerted 

force at some time-gap value in the positive or negative momentum session, for 

instance, we could have observed values reflecting relatively high, medium, and 

low performance.  

 Our results provide the first quantitative insights into the dynamical process 

of team PM. One may object that the sample size on which our insights are based 

is rather small. However, when studying processes, small samples can be very 

valuable provided that the cases (i.e., participants) are well-chosen (Van Geert, 

2011). In the current study, we selected competitive rowers for whom reaching a 

goal during an ergometer competition was meaningful. This selection was 

necessary to ensure that progressing and regressing in relation to that goal would 

elicit a positive and negative PM experience. Obviously, giving priority to a high 

quality sample often has consequences for the quantity of the sample.  

 Another point that should be noted is that the dynamical experimental 

method we applied is often used to find classical dynamical patterns in terms, 

stability and metastability (see Haken et al., 1985; Issartel et al., 2007; Schmidt et 

al., 1990, 1998; Schöner & Kelso, 1988), which we did not primarily focus on. 

Rather, we described and interpreted our results in terms of asymmetric and 

history-dependent patterns which, according to us, can be considered interesting 

dynamics underlying human psychological and behavioral functioning. Indeed, 

while the “classical” dynamical patterns are often found in physics and motor 

control, human psychological and behavioral systems could often be 
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characterized by various dynamical trajectories (Van Geert, 1994). Related to this, 

we may conclude that future researchers who aim to study psychological and 

behavioral processes would benefit from an approach that is specifically focused 

on describing and explaining change. A complex dynamical systems design as we 

applied (but also model simulations and dynamical research in natural situations, 

see Arrow et al., 2000; McGrath et al., 2000) could greatly aid in getting a better 

grip on the dynamical nature of social and performance-related phenomena such 

as team psychological momentum. 
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Abstract 

Psychological momentum (PM) is a well-known experience in sports and other 

achievement settings, and may develop on the long-term (across a series of 

tasks), as well as on the short-term (during one particular task). Applying a 

complex dynamical systems perspective, the current study provides the first 

experimental attempt to test whether PM processes across these two time scales 

are interconnected. In this experiment, competitive athletes were striving to win 

a prize during a rowing-ergometer tournament (long-term), consisting of multiple 

races (short-term). In the positive momentum condition, the participants won the 

first two races, whereas in the negative momentum condition, they lost the first 

two races. In the third race, all participants took a lead at the start, after which 

they gradually moved toward a defeat. The results show that in the positive 

momentum condition, the participants had increasing long-term perceptions of 

momentum and self-efficacy, whereas these long-term perceptions decreased in 

the negative momentum condition. Furthermore, relative to the negative 

momentum condition, in the positive momentum condition participants' short-

term perceptions of momentum, self-efficacy, and exerted efforts were higher in 

the third race, and their perceptions of momentum and self-efficacy decreased 

less rapidly. Theoretically, the interconnection between long- and short-term PM 

provides evidence that PM is a dynamical phenomenon spanning multiple time 

scales. From a practical perspective, managers, teachers, and coaches should be 

aware that their subordinates, students, or athletes are likely to carry their 

performance history into the next task. 
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5.1  Introduction 

 Periods of momentum are reported in various performance contexts, such as 

presidential campaigns, business, and sports in particular (e.g., Adler, 1981; Iso-

Ahola & Dotson, 2014; Markman & Guenther, 2007). The term psychological 

momentum (PM) refers to the psychological and behavioral changes that occur 

when actors perceive that they are progressing (positive momentum) or 

regressing (negative momentum) in relation to their goal (Adler, 1981; Gernigon 

et al., 2010; Markman & Guenther, 2007; Vallerand et al., 1988). Previous studies, 

mostly using written or audiovisual scenarios in a sports context, found that 

psychological states are more positive for athletes who progress in relation to 

their goal (i.e., the victory) than those who regress or keep up with their 

opponent  (Briki, Doron, et al., 2014; Eisler & Spink, 1998; Markman & Guenther, 

2007; Miller & Weinberg, 1991; Vallerand et al., 1988). In line with these findings, 

research in which an actual sport task had to be performed (i.e., a cycling contest) 

demonstrated that participants who came from behind to tie their opponent had 

more positive psychological perceptions, in terms of optimism, confidence, 

energy, and control, than participants who kept up with their opponent 

throughout. In addition, the participants who came back from behind exerted 

more efforts, i.e., pedaled faster (Perreault et al., 1998). Thus previous literature 

has shown that progression or regression affects PM, both at the psychological 

and behavioral level (for a review on PM across performance domains, see Iso-

Ahola & Dotson, 2014).  

 The above mentioned findings on PM are in line with the general literature on 

goal striving, in particular with regard to the role of ‘discrepancy’, ‘acceleration’ 

and ‘quasi-acceleration’ in relation to a desired goal (e.g., Carver & Scheier, 1990, 

1998; Higgins, 1987; Hsee, Salovey, & Abelson, 1994). According to these authors, 

positive and negative affect are caused by high or low goal discrepancies (Higgins, 

1987), and changes in affect are determined by changes in velocity (i.e., 

acceleration or deceleration) in relation to the desired goal (Carver & Scheier, 

1990, 1998; Hsee et al., 1994). A principal difference between these goal striving 

theories and PM is that, already since its first conceptualization, PM has been 

described as a dynamical process embracing both psychological and behavioral 

changes, which may emerge and disappear during task performance (Adler, 1981; 

Adler & Adler, 1978), and entails typical properties of complex dynamical systems 
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(Gernigon et al., 2010)4. Simply put, a complex dynamical system is a set of 

interconnected components that undergoes change, and is characterized by some 

defining properties such as emergence of self-sustaining patterns (attractors), 

non-linear transitions between attractors, history-dependence, and 

interconnected time scales (Kelso, 1995; Nowak & Vallacher, 1998; Thelen & 

Smith, 1994; Van Geert, 1994).  

 Previous studies have provided evidence for some of these dynamical 

properties of PM, looking at nonlinearity and history-dependence in particular 

(see next section). However, the defining property of interconnected time scales 

has never been empirically examined, and studying this may provide deeper 

insights into the complex dynamic nature of PM. Approaching PM as a complex 

dynamical system entails that this interconnection should be detected. That is, 

we should find that single performances (e.g., one sport match) influence the 

long-term PM development (e.g., during a tournament), which in turn influence 

the short-term PM dynamics in the next performance. To provide novel insights 

into PM dynamics, we designed an experiment to examine the development of 

long- and short-term PM, and the interconnection of these two time scales.   

Dynamical System Properties of Psychological Momentum 

 Indications for the emergence of PM out of the interactions between multiple 

components can be derived from qualitative studies, showing that several 

personal, environmental, and social factors in interaction shape a PM experience 

(e.g., Briki, Den Hartigh, Hauw et al., 2012; Jones & Harwood, 2008; Moesch & 

Apitzsch, 2012; Taylor & Demick, 1994). Furthermore, experimental studies have 

found evidence of nonlinear transitions between positive and negative PM that 

are history-dependent. That is, during sport performance a change in PM depends 

on the history of successive PM states as shaped by the continuous course of 

events (Briki et al., 2013; Den Hartigh, Gernigon, Van Yperen, Marin, & Van Geert, 

2014; Gernigon et al., 2010). In one study, Briki et al. (2013) examined cyclists 

who competed with each other on home trainer bicycles in a (manipulated) race. 

One competitor started moving toward the defeat, but then gradually progressed 

                                                                 
4 Note that Carver and Scheier also attempted to merge their goal striving theory with the 
theory of complex dynamical systems (Carver & Scheier, 2002). However, empirical 
demonstrations of this proposition are lacking. 
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toward the victory (positive momentum scenario), whereas the opponent 

underwent the exact opposite (negative momentum scenario). Briki et al. (2013) 

found an asymmetrical pattern: The positive change in PM perceptions in the 

positive momentum scenario was delayed, whereas there was a rapid negative 

change in PM perceptions in the negative momentum scenario. These results 

imply that transitions between positive and negative PM are nonlinear, and that a 

relatively long history of progressing in relation to the victory seems to be needed 

to enter positive PM, whereas a short history of regressing already triggers 

negative PM. At the behavioral level, the authors found that exerted efforts 

decreased quite rapidly when regressing in relation to the victory. Taken 

together, Briki et al.’s (2013) findings imply that negative PM is a stronger 

attractor than positive PM, that is, negative PM is entered more rapidly and is 

harder to escape (see also Den Hartigh et al., 2014; Gernigon et al., 2010).  

Interconnected Time Scales 

 One defining property of dynamical systems that has not been studied in 

relation to PM is the interconnection of time scales. Theoretically, this property 

entails that processes associated with faster changes in the system influence 

processes that govern slower changes of the system, and vice versa (e.g., Newell 

et al., 2001; Wijnants, Cox et al., 2012). More specifically, it would imply that 

short-term (e.g., daily) events shape the psychological and/or behavioral 

processes that develop on the long term, which in turn feed into the dynamical 

processes on the short term (e.g., Granic & Patterson, 2006; Newell et al., 2001; 

Thelen & Smith, 1994; Van Geert, 2009b).  

 To date, theoretical and empirical demonstrations of the interconnection 

between time scales (unrelated to PM) are primarily found in the domain of 

learning (e.g., Newell et al., 2001; Steenbeek et al., 2012; Van der Steen et al., 

2014; Zanone & Kelso, 1992). For instance, single learning sessions in a teaching 

context have been found to shape a child’s learning development across 

successive sessions, which in turn shapes the learning dynamics within (next) 

sessions (Steenbeek et al., 2012; Van der Steen et al., 2014). For instance, 

Steenbeek et al. (2012) found that a suboptimal session between a teacher and a 

child (short-term) influences the (problematic) learning trajectory across sessions 

(long-term), which in turn influences the dynamics between the teacher and child 
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in the next session (short-term), and so forth. In the domain of motor learning, 

Newell et al. (2001) described how single motor-learning events change the 

movement repertoire of an individual so that, after some interim-period, new 

movement solutions are available during a next motor-learning event. The 

theoretical explanation for these findings would be that repeated events (e.g., 

performances) change what is called the attractor landscape, that is, the range of 

stable patterns to which the system may converge (e.g., Granic & Patterson, 

2006; Newell et al., 2001; Thelen & Smith, 1994; Zanone & Kelso, 1992).  

 Given that the development of PM is inherently related to the goal in relation 

to which an actor progresses or regresses (e.g., Adler, 1981; Gernigon et al., 2010; 

Markman & Guenther, 2007; Vallerand et al., 1988), the time scale should be 

defined at the level of the goal that is pursued. This goal can be a typical short-

term goal (within a task, such as winning a match) or a longer-term goal (across 

multiple tasks, such as winning a tournament) (Adler, 1981). Hence, long- and 

short-term PM would develop when progressing or regressing in relation to the 

goals at the respective time scales. In accordance with the analogy between PM 

and complex dynamical systems, we expected that these time scales would be 

interconnected, as expressed in a mutual influence between long- and short-term 

PM processes.  

The Current Study 

 In order to explore the interconnection between long- and short-term PM, we 

examined (a) whether single performances influence the development of 

individuals’ long-term PM, and (b) whether the individuals’ long-term PM feeds 

into their short-term PM dynamics. Given that PM embraces a wide range of 

psychological and behavioral features (Briki, Den Hartigh, Hauw et al., 2012; 

Gernigon et al., 2010), we identified the essential variables describing the PM 

dynamics. First, at the psychological level, PM was reflected by the direct 

perception of momentum (i.e., of progress in relation to the goal), which is an 

emergent perception during goal striving (e.g., Briki et al., 2013; Briki, Den Hartigh 

et al., 2014; Carver & Scheier, 2002). Second, we focused on another emergent 

variable during goal striving that is assumed to be related to momentum: Self-

efficacy (confidence in one's abilities to reach a goal; Bandura, 1997; Shaw, 

Dzewaltowski, & McElroy, 1992). Both these psychological variables were thus 
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examined in relation to individuals’ long- and short-term goals. At the behavioral 

level we focused on exerted efforts, which have been found to undergo typical 

changes during positive and negative PM on the short-term, that is, during task 

performance (Briki et al., 2013; Den Hartigh et al., 2014; Perreault et al., 1998). 

Hence, changes in perceived momentum, self-efficacy (long- and short-term) and 

exerted efforts (short-term) can provide qualitative insights into PM dynamics.  

 Accordingly, we designed an experiment in which meaningful long- and short-

term goals could be defined, repeated psychological measures could be collected 

within and across tasks, and objective measures of effort exertion could be 

collected during task performance. More specifically, individuals pursued a long-

term goal (winning a prize) in a rowing-ergometer tournament, consisting of 

multiple races in which the individuals were striving for a short-term goal 

(winning the race). Our first hypothesis was that races that end in winning or 

losing would lead to the development of positive or negative long-term PM, 

respectively. This would provide evidence for an influence of the short-term time 

scale (single task-performances) on the long-term time scale (long-term 

tournament PM) (cf. Granic & Patterson, 2006; Newell et al., 2001; Van Geert, 

2009b). 

 Furthermore, with regard to short-term PM dynamics, one of the most 

evident findings is that negative PM develops relatively rapidly, suggesting that 

negative PM is a strong attractor (Briki et al., 2013; Den Hartigh et al., 2014; 

Gernigon et al., 2010). However, recall that the theory of dynamical systems 

implies that successive real-time events or performances change an individual’s 

attractor landscape (e.g., Granic & Patterson, 2006; Newell et al., 2001; Zanone & 

Kelso, 1992). Accordingly, our second hypothesis was that repeated successful or 

unsuccessful races would affect the PM attractor landscape, so that individuals 

enter negative PM less rapidly within a race after previous successes (i.e., when 

having developed long-term positive PM), compared to athletes with a history of 

failure (i.e., who have developed long-term negative PM). In other words, the 

short-term negative PM attractor would be weaker for athletes who have 

developed long-term positive PM. If both hypotheses are confirmed, this would 

provide empirical support for an interconnection between short- and long-term 

PM processes, and thereby deeper insights into the dynamics of PM. 
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5.2  Method 

Participants 

 We approached male competitive athletes from different sports clubs, and 

asked whether they would be willing to participate in a rowing-ergometer 

tournament in which they could win money. Twenty-five athletes consented to 

participate, who were active in the following sports: Squash (n = 3), basketball (n 

= 1), swimming (n = 6), hockey (n = 5), speed skating (n = 1), floorball (n = 3), 

soccer (n = 3), and tennis (n = 3). The mean age of the participants was 24.05 

years (SD = 2.26), and on average the participants practiced 4.72 times a week 

(SD = 4.39).  

Experimental Setup and Procedure  

 The protocol of the study was approved by the ethical review board of the 

Department of Psychology, University of Groningen. The research setup included 

two rowing ergometers that were placed next to each other (see Figure 10). A 

force sensor was attached between the handle and the chain of each ergometer, 

and a curtain was placed in between the two ergometers to prevent the 

participants being able to see each other during the races. An HD screen was 

placed on a table in front of the ergometers, serving to broadcast the ongoing 

race as well as the psychological items that were displayed at repeated intervals 

during the races. Behind the ergometers was a table with two computers: One 

computer served to register the data from the force sensor, the other was 

connected to the HD screen and contained the software used to program the 

races and display the psychological items.  
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Figure 10. Research setup. 

 

 The participants were successively involved in four ergometer trials, at 

intervals of about one session each week. The first trial was a baseline session, 

which served to obtain information about the participants’ demographics and 

ergometer performance. Subsequently, participants were assigned to a positive 

momentum or negative momentum condition, and completed one race in the 

second and one race in the third trial, which they either won (positive momentum 

condition) or lost (negative momentum condition). Finally, in the fourth trial, the 

participants in the positive momentum and the negative momentum condition 

were involved in a race that was programmed so that all participants gradually 

moved from a lead to a defeat (see Table 5). After the fourth trial, the 

participants were debriefed. 
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Table 5. Race configurations (8 minutes each) in the positive and negative 

momentum conditions.  

 

Condition Competition Points 
at start Race configuration per minute 

Positive 
Momentum 1 0 0 -3 0 +3 0 +3 +6 +9 

Negative 
Momentum 1 0 0 +3 0 -3 0 -3 -6 -9 

 

 

 

Condition Competition Points 
at start Race configuration per minute 

Positive 
Momentum 2 +1 0 0 +3 0 -3 / 0 +3 +6 +9 

Negative 
Momentum 2 -1 0 0 -3 0 +3 / 0 -3 -6 -9 

 

 

 

Condition Competition Points 
at start Race configuration per minute 

Positive 
Momentum 3 +2 0 +3 +6 +3 0 -3 -6 -9 

Negative 
Momentum 3 -2 0 +3 +6 +3 0 -3 -6 -9 

 

First Trial 

 The first trial was a baseline session that we conducted with each participant 

individually. Upon his arrival in the experiment room for the first time, the 

participant signed an informed consent form, a physical health form, and filled 

out his demographic information. Then, we gave the participant a tour through 

the experiment room, we demonstrated the devices that enabled us to collect 
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detailed information about his performance (e.g., force sensor), and we explained 

that we could connect the two ergometers to organize races. Subsequently, the 

participant did a warm-up on the ergometer for 5 minutes, after which he did a 1-

minute, maximum-effort test. During this test we collected the participant’s 

exerted efforts with the force sensor, as well as the distance he rowed according 

to the performance monitor (PM 4) of the ergometer.  

 Based on the baseline information, we grouped the participants according to 

rowing performance and height. This procedure served to organize credible races 

between competitors of comparable level and posture. In addition, to avoid a 

priori expectations about the outcome of the race, participants who were from 

the same sports club were not scheduled to compete with each other, and none 

of the participants competed against the same opponent twice. The participants 

were randomly assigned to the positive momentum or negative momentum 

condition (see Table 5). Finally, three individuals (two regular exercisers and one 

rower) were added to provide sufficient flexibility in the tournament schedule. 

These individuals were used to fill in possible gaps in the schedule and were 

available to replace possible drop-outs.  

Second and Third Trial 

 The second and third trials were two races in which participants directly 

competed with each other (head-to-head). When participants arrived for their 

race, they were introduced to each other, and did their warm-up activities. Then, 

the experimenter gave the instructions. He reminded the participants that they 

were involved in an ergometer tournament, which had been developed with our 

unique equipment. We told the participants that they would compete in a 

maximum of five races. Their goal was to win 3 points, which would mean they 

would obtain a money prize (we told them that we had 300 euros to distribute 

over the winners). Winning the first, second or third race resulted in 1 point each, 

whereas 1 point would be subtracted when losing. We also told them that 2 

points could be won or lost in the fourth and fifth race (i.e., in total 4 points could 

be won or lost in these races). Note that in reality there was no fourth and fifth 

race, but that we provided this information so that participants in the positive 

and negative momentum group would, in theory, both be able to reach the long-

term goal in the third race (i.e., the fourth and last trial). Thus, the only difference 
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between the conditions was that, before the fourth trial, participants in the 

positive momentum condition had progressed in relation to the long-term goal of 

winning 3 points and the money prize (having collected +2 points), whereas the 

participants in the negative condition had regressed (having -2 points).  

 We informed the participants that they would win the race by taking a 9-

second lead on the opponent. Thus, the short-term goal was winning by taking 

this lead. We told the participants that their performance, which we continuously 

monitored, was projected on the moving avatars on the screen (a green and an 

orange rowing boat), so that they could follow the race. In reality, however, the 

scenarios of the races were programmed beforehand. The first and second race 

started with a five-minute period in which the competitors alternated leads of 3 

seconds. Then, between the 5th and 8th minute, one of the competitors gradually 

progressed toward the victory (i.e., a 9-second lead) in steps of 3 seconds per 

minute, whereas the other moved to the defeat (see Table 5). Before the start of 

each race, we assigned an avatar to each participant by showing a green or 

orange paper, corresponding to the color of the participant’s avatar on the screen 

(using a colored paper to inform the participant about the color of his avatar was 

particularly important for the fourth trial, see next sub-section). Depending on 

the condition the participant was in, his avatar either won or lost the first and 

second race (i.e., the second and third trial). 

 Furthermore, the experimenter informed the participants that the screen 

would regularly change to display two questions, and that the race would be 

displayed again after both participants had answered the questions aloud. To 

register the item answers, we attached voice recorders to the participants’ t-

shirts. Moreover, to avoid participants being able to hear each other and be 

influenced by each other’s item answers during the race, they wore 

soundproofed headsets.  

 Once the participants were ready, the experimenter counted down and 

launched the race, along with the data collection by the force sensor. Finally, to 

assess long-term PM (whether the experience of the first race carried over to the 

end of the first interim-period), we gave participants a questionnaire before the 

second race (i.e., third trial). 
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Fourth Trial and Debriefing 

 The fourth trial was the last (third) race. Upon their arrival, participants filled 

out the long-term PM questionnaire again, in order to test the influence of the 

earlier race(s) on the long-term PM development (see hypothesis 1). 

Subsequently, we gave the instructions. Contrary to the previous two races, in the 

third race we showed a green paper to both participants before the start (note 

that the participants did not see the color that was shown to the opponent, 

because of the curtain that separated them). Doing this, we thus indicated to 

both participants that their performance was projected on the green avatar 

(neither of the participants was the orange avatar).  

 The scenario of the third race followed the methodological guidelines of 

Haken et al. (1985), who stipulated that changes in the behavior of a dynamical 

system (PM in this case) should be studied under the gradual variation of a 

control parameter that may lead the system to another state. More specifically, 

during the race, the participant’s avatar first moved to a lead of 6 seconds, after 

which it gradually moved to a defeat―a lag of 9 seconds―in steps of 3 seconds 

per minute. Hence, the position in the race (relative to the victory) was our 

control parameter, whose gradual variation may elicit a change from positive PM 

to negative PM. The scenario of the third race thus allowed us to test whether 

participants in the positive momentum condition would enter negative PM less 

rapidly than the participants in the negative momentum condition (see 

hypothesis 2). 

  Directly after the third race, we gave participants a questionnaire including 

manipulation checks. After this questionnaire, we fully debriefed the participants 

about the manipulation of the races and the purpose of the study. None of the 

participants suspected that the races were manipulated. Finally, because 

participants could not actually win money as they thought, we rewarded them 

with 20 euros for their participation. 

Measures of Long-Term Psychological Momentum 

 Questionnaires were used to assess participants’ PM experiences with regard 

to the long-term (tournament) goal. One item was a direct measure of the 

perception of momentum, which was adapted from Vallerand et al. (1988): At 
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this moment I am progressing towards winning 3 points and the money prize. This 

item could be answered from -3 (Not at all) to +3 (Very much). The second item 

was a self-efficacy measure, which we formulated according to Bandura’s 

guidelines that self-efficacy items should represent an actor’s perceived abilities 

to attain given accomplishments that pertain to the situational context (Bandura, 

2006). Our self-efficacy item was: At this moment, I am confident in my abilities to 

win 3 points and the money prize, which could be answered from -3 (Not at all 

confident) to +3 (very confident). Based on the outcomes of our pilot study with 

competitive athletes, more items related to the perception of momentum and 

self-efficacy were not included, because this could make the participants 

suspicious (i.e., think they were being psychologically manipulated). In addition, 

note that the response scales were not the same as the ones traditionally used 

for momentum and self-efficacy items. The reason for choosing scales ranging 

from -3 to +3 was to stay consistent with the scales used during the races, and to 

obtain reliable responses throughout the study (see next sub-section). 

Measures of Short-Term Psychological Momentum 

 The questionnaire items were adapted so that they pertained to the short-

term goal of the race. The items were: Now, at this moment… I’m progressing 

towards the victory (perception of momentum; -3 = Not at all, +3 = Very much), 

and Now, at this moment, I am confident in my abilities to win this race (self-

efficacy; -3 = Not at all confident, +3 = Very confident). These questions appeared 

each minute during the race (i.e., 15 seconds after each change in time-gap 

between the avatars). The choices for only two items and a response scale from -

3 to +3, solved the issue that the experiment would be too cognitively demanding 

and that we would obtain less reliable item answers. In the pilot studies, athletes 

had difficulties providing accurate responses when being exposed to more than 

two questions and to response scales ranging from 1 to 7 or 9. 

 Exerted efforts were registered with the force sensors that were attached 

between the handles and chains of the ergometers. We collected the data in units 

of volts in Matlab, at a frequency of 100 Hz. Subsequently, we transformed the 

data to Newton units according to a linear transformation (see also Chapter 4). 

Given the continuous nature of the force-sensor measures, we divided the data 

into five sections before the analysis, corresponding to the periods in which there 
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was a specific time-gap between the avatars on the screen. Hence, as for the 

perceptions of momentum and self-efficacy, we had one measure of efforts for 

each time-gap between the avatars. Moreover, to allow reliable comparisons, 

each participant’s effort exertion was calculated relative to his average output 

during the 1-minute maximum-effort test in the baseline session.  

Analysis   

 To examine the influence of single performances on individuals’ long-term PM 

development (hypothesis 1), and how this feeds into the short-term PM dynamics 

in the third race (hypothesis 2), we used Monte Carlo permutation tests. The 

Monte Carlo test determines the probability that the observed result is caused by 

chance alone, by simulating that chance. This is based on a repeated shuffling of 

the collected data (i.e., 10,000 times across participants or time gaps, depending 

on the type of question), and a calculation of the probability that the same, or 

more extreme, result can be found by chance. Relative to traditional parametric 

(e.g., ANOVA) and nonparametric tests (e.g., Kruskal-Wallis), Monte Carlo tests 

are more appropriate in the case of relatively small sample sizes and/or skewed 

data distributions, and are highly suited to study patterns of change (Todman & 

Dugard, 2001; Van Geert et al., 2012). Furthermore, to provide a measure for the 

magnitude of our results, we calculated Cohen’s d.  

5.3  Results 

Preliminary Analyses 

 Of the 25 competitive athletes, three were not taken into account for the 

analysis. One participant incurred a (soccer) injury before the fourth trial (i.e., 

third race). Another participant could not finish the fourth trial; his race was 

suspended because his opponent stopped rowing before the end of the race (this 

opponent was a regular exerciser who was added to the sample). Finally, one 

participant did not provide item-responses reflecting his momentum and self-

efficacy perceptions during the fourth trial. Of the remaining 22 participants that 

finished the study, 11 were in the positive momentum condition and 11 in the 

negative momentum condition. We first tested whether participants in the two 

conditions differed on variables that may influence our results: Age, height, hours 
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of practice per week, number of meters in the baseline session, and exerted 

efforts in the 1-minute maximal-test. No significant differences were found on 

any of these variables (ps > .05).  

Long-Term Psychological Momentum 

 To determine the influence of single performances on the long-term PM 

development, we first compared the participants in the positive and negative 

momentum conditions at their levels of perceived momentum and self-efficacy 

before race 2 (i.e., after a victory or defeat in the first race) and before race 3 

(i.e., after two victories or defeats). The results are displayed in Figure 11. Monte 

Carlo permutation tests revealed that the momentum perception before race 2 

was higher for participants in the positive momentum condition (M = .64, SD = 

.50) than for those in the negative momentum condition (M = -.73, SD = .90; p < 

.001, d = 1.86). Before the third race, the momentum perception was also higher 

in the positive momentum condition (M = 1.18, SD = .75) than in the negative 

condition (M = -1.91, SD = .94; p < .001, d = 3.62). With regard to self-efficacy, 

measured before race 2, the participants in the positive momentum condition 

scored higher (M = .45, SD = .82) than those in the negative momentum condition 

(M = -.45, SD = 1.21; p = .03, d = .88). Before the third race, participants’ self-

efficacy was also higher in the positive momentum condition (M = 1.18, SD = .75) 

than in the negative condition (M = -1.55, SD = 1.13; p < .001, d = 2.85).   

 Furthermore, we tested whether perceived (long-term) momentum and self-

efficacy increased and decreased for participants within the positive and negative 

momentum condition, respectively. The increase in the perception of momentum 

approached significance for the participants in the positive momentum condition 

(p = .06, d = .85), whereas the momentum perception significantly decreased for 

those in the negative momentum condition (p = .007, d = 1.28). Furthermore, 

participants’ self-efficacy significantly increased in the positive momentum 

condition (p = .04, d = .92) and significantly decreased in the negative momentum 

condition (p = .03, d = .93). Taken together, these results support our first 

hypothesis that races that end in winning or losing lead to the development of 

positive or negative long-term PM, respectively.  
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Figure 11. Long-term results of momentum perception (A) and self-efficacy (B) for 

the positive momentum condition and the negative momentum condition. 

 

Short-Term Psychological Momentum  

 The short-term PM dynamics were examined in the third race when the 

participants were regressing from a lead of 6 seconds―close to victory―to a lag 

of 6 seconds―close to defeat. The changes in perceived momentum, self-efficacy, 

and exerted efforts are displayed in Figure 12. To examine whether the negative 

PM attractor was weaker for participants who developed long-term positive PM 

(see hypothesis 2), we first compared the participants in the positive and negative 

momentum conditions on the average values. Results showed that participants in 

the positive momentum condition had higher momentum perceptions (M = .45, 

SD = .69) than those in the negative momentum condition (M = -.65, SD = .65; p < 

.001, d = 1.66). Furthermore, self-efficacy was higher in the positive momentum 

condition (M = .31, SD = .65) than in the negative momentum condition (M = -.58, 

SD = .53; p < .001, d = 1.50). Finally, the relative efforts were higher in the positive 

momentum condition (M = 71.87%, SD = 4.51) than in the negative momentum 

condition (M = 67.73%, SD = 6.69, p = .05, d = .73). 

 Second, we tested differences between participants in the positive and 

negative momentum conditions in terms of the rate of decrease in perceived 

momentum, self-efficacy, and exerted efforts. We found that the decrease was 

significantly less steep (i.e., less rapid) in the positive momentum condition than 
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in the negative momentum condition with regard to the perception of 

momentum (Mdiff = 1.73; p < .001, d = 2.11) and self-efficacy (Mdiff = 1.55; p < 

.001, d = 1.65). The decrease in efforts was not significantly less steep for the 

participants in the positive momentum condition (p = .12). Together, these results 

support our second hypothesis that the negative PM attractor is weaker for 

athletes who have developed long-term positive PM, compared to those who 

have developed long-term negative PM. 

  

 

 

Figure 12. Short-term results of momentum perception (A), self-efficacy (B), and 

exerted efforts (C), according to time-gap and experimental condition. 

 

5.4  Discussion 

 Recently, researchers have drawn a parallel between PM and complex 

dynamical systems, and have found that PM may develop nonlinearly, depending 

on the ongoing history of events (Briki et al., 2013; Briki, Den Hartigh et al., 2014; 
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Den Hartigh et al., 2014; Gernigon et al., 2010). More specifically, recent studies 

showed that, within a single sport contest, a state of negative PM develops 

rapidly, whereas positive PM develops after a relatively long history of positive 

events (e.g., winning seconds on the opponent). This suggests that negative PM is 

a stronger attractor than positive PM (Briki et al., 2013; Den Hartigh et al., 2014; 

Gernigon et al., 2010). Although the dynamical approach has improved the 

understanding of the PM process, one defining dynamical property has remained 

unexamined: Interconnected time scales (i.e., the connection between the long- 

and short-term PM process).  

 To fill this void, we first examined whether single performances affect 

athletes’ long-term PM experiences. Compared to participants in the negative 

momentum condition who successively lost races, the participants in the positive 

momentum condition had higher perceptions of momentum and self-efficacy, 

before both the second and third race (i.e., after having won the first and second 

race). This finding is in line with the suggestion that PM may develop across 

successive tasks (Adler, 1981). We also found increases and decreases in 

perceptions of momentum and self-efficacy in the positive and negative 

momentum condition, respectively, although the increase in momentum 

perception approached significance in the positive momentum condition. This 

suggests that negative PM is not only triggered more easily during a task (Briki et 

al., 2013; Den Hartigh et al., 2014; Gernigon et al., 2010), but also across a series 

of tasks. Taken together, these results provide empirical support for our first 

hypothesis that single races that end in winning or losing lead to the development 

of positive or negative long-term PM, respectively.  

 Secondly, we examined whether the long term PM that athletes developed 

over the course of multiple races feeds into the athletes’ short-term PM (i.e., the 

psychological and behavioral dynamics within the subsequent (third) race). We 

found that perceptions of momentum and self-efficacy, as well as exerted efforts, 

were higher when participants had developed long term positive PM than when 

they had developed long-term negative PM. Moreover, perceptions of 

momentum and self-efficacy changed (decreased) less rapidly when participants 

had a history of successful races. The finding that participants who developed 

long-term positive PM were less sensitive to the gradual regression within the 

race, suggests that the previous successful or unsuccessful races affected the PM 
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attractor landscape (cf. Granic & Patterson, 2006; Newell et al., 2001; Thelen & 

Smith, 1994; Zanone & Kelso, 1992). Our results thus imply that, in this case, the 

negative PM attractor had become weaker following successful races, which 

supports our second hypothesis.   

 In line with propositions to apply a complex dynamical systems perspective to 

the study of PM (Gernigon et al., 2010), the observed connection between short- 

and long-term PM suggests that PM is a dynamical phenomenon spanning 

multiple interconnected time scales. A limitation may be that our sample size was 

relatively small, which was due to the labor-intensive nature of the study and to 

the tournament schedule. To account for this, we used statistical analyses that 

are highly suited to dealing with smaller sample sizes (i.e. Monte Carlo tests). The 

credibility of our results is further strengthened by the large effect sizes we found 

(according to Cohen’s (1988) guidelines, a d higher than .8 can be considered 

large). Another limitation may be that our study did not involve a control group 

that neither won nor lost the first two races. Because of the size of our sample, 

and for an optimal comparison, we decided to make two experimental groups 

that were exposed to exactly opposite scenarios in the first two races, and to the 

exact same scenario in the last race. 

 To conclude, this experiment provides the first demonstration of a connection 

between long-term and short-term PM. Short term (single task) performances 

shape individuals’ long-term PM, which in turn constrain the PM dynamics within 

the next task. Because individuals pursue long-term goals, as well as short-term 

goals in virtually any achievement domain (e.g., sports, business, education), 

more insights could be gained when examining psychological and behavioral 

processes across, and within, task performances in natural situations (e.g., during 

a business project, or actual sport tournaments, cf. Minbashian & Luppino, 2014). 

Furthermore, it is worthwhile to explore whether the interconnection of time 

scales extends towards even longer-term processes (e.g., successive projects or a 

sports season). Finally, from an applied perspective, managers, teachers, and 

coaches should be aware that their subordinates, students, or athletes are likely 

to carry their performance history into the next task (see also Markman & 

Guenther, 2007). Although this carry-over effect could be advantageous when 

building positive PM, long-term negative PM seems to affect the short-term 

(within-competition) psychological and performance processes in a negative way. 
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Therefore, it may pay off to provide subordinates, students, or athletes with 

strategies to ‘bounce back’ after unsuccessful task performance (e.g., Galli & 

Vealy, 2008; Margolis & Stoltz, 2010; Tugade & Frederickson, 2004). For example, 

managers or coaches may offer a resilience training in order to improve the 

ability to overcome (successive) setbacks (Galli & Gonzalez, in press; for a specific 

outline of an existing resilience training program in the US army, see Reivich, 

Seligman, & McBride, 2011). 
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Chapter 6: Excellent Performance Likely 
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Abstract 

For over a century, there exists an ongoing debate about the mechanism(s) 

explaining the development of excellent human performance. In the current 

chapter we demonstrate that excellence is likely to emerge out of individual 

dynamic network-structures. The nodes consist of personal and environmental 

variables relating to a particular ability domain, and the connections are 

supportive or competitive effects of one variable on another. The network model 

we propose predicts typical developmental properties such as idiosyncratic 

routes to excellence, and predictive indicators of later ability, the reliability of 

which increases with age. In addition, the model accurately predicts the highly 

right-skewed distributions of productivity across the population, which occur in 

virtually any achievement domain (e.g., publications of scientists, medals won by 

athletes, etc.). Finally, we illustrate how the model can be fine-tuned to generate 

plausible predictions in the domain of sports (i.e., soccer and tennis). The finding 

that excellence likely emerges from individual compositions of dynamic networks 

has implications for future approaches to the detection and stimulation of 

excellence in different achievement domains.  
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6.1  Introduction 

 Relatively few people develop excellence, and in rare instances individuals 

reach exceptional levels of success, such as Albert Einstein, Mozart, and Roger 

Federer. Excellence refers to domain-specific superiority, and is a topic that has 

been extensively studied in the domains of science, music, technological 

creativity, and sports (e.g.,  Ericsson & Charness, 1994; Howe, Davidson, & 

Sloboda, 1998; Kaufman, 2013; Macnamara et al., 2014; O’Boyle & Aguinis, 2012; 

Simonton, 1999, 2001). Ever since the topic was introduced, debate has existed 

on the origins of excellence. This debate already started in the 1860s, when 

Galton published his work on the genetics of genius, claiming that excellent 

performers are born (Galton, 1869). In 1873, following Galton’s work, De Candolle 

wrote a book in which he stated that environmental resources (e.g., family, 

education, facilities) are the major factors explaining the development of 

excellence (De Candolle, 1873). In addition to these classical nature and nurture 

points of view, Ericsson and colleagues demonstrated more recently that 

prolonged and intensive practice, often more than 10 years, is necessary to reach 

excellent levels of performance (e.g., Ericsson, 2006; Ericsson & Charness, 1994; 

Ericsson et al., 1993).  

 While the debate on the exact role of nature and nurture continues (e.g., 

Detterman, 2014; Kaufman, 2013), most researchers agree that all such factors 

(genetic endowment, tenacity, parental support, help from coach or teacher, 

practice, etc.) contribute to the development of excellence (e.g., Abbott, Button, 

Pepping, & Collins, 2005; Abbott & Collins, 2004; Barab & Plucker, 2002; Gagné, 

2004; Elferink-Gemser, Jordet, Coelho-E-Silva, & Visscher, 2011; Hambrick & 

Tucker-Drob, in press; Howe et al., 1998; Kaufman, 2013; Phillips et al., 2010; 

Simonton 1999, 2001, 2003; Vaeyens, Lenoir, Williams, & Philippaerts, 2008). 

However, how the different factors actually combine to shape excellence over 

time remains unknown. In the current chapter, we focus on the underlying model 

principles that explain, and predict, some major properties of excellence. That is, 

rather than attempting to determine the specific contribution of factors related 

to excellence across the population, we will focus on the kind of (generic) model 

that gives rise to typical characteristics of excellence as they are found in 

different achievement domains. We will propose that excellence is likely to 

emerge out of idiosyncratic networks of connected personal and environmental 
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variables that are in continuous interaction. In addition, we will demonstrate how 

the network model can be fine-tuned to fit with a specific performance domain, 

namely sports. 

Properties of Excellence Development 

 The emergence of excellence covers a developmental range from the moment 

that a domain-specific ability starts to grow (i.e., beginner level) until the point 

that superior performance is (repeatedly) demonstrated (e.g., Abbott & Collins, 

2004; Howe et al., 1998; Simonton, 2001; Phillips et al., 2010). Recent literature 

stipulates that, across achievement domains, the developmental trajectories 

leading to excellence are characterized by a number of qualitative properties (for 

an overview, see Simonton, 2001). First, in different individuals a similar ability 

can emerge at different ages, evidence for which is found in the domains of music 

(e.g., Howe, Davidson, Moore, & Sloboda, 1995; McPherson & Williamon, 2006; 

Sosniak, 1985; 1990), arts (e.g., Sloane & Sosniak, 1985), mathematics (e.g., 

Gustin, 1985), and sports (e.g., Abbott et al., 2005; Abbott & Collins, 2004; Davids 

& Baker, 2007; Elferink-Gemser et al., 2011; Gulbin, Weissensteiner, Oldenziel, & 

Gagné, 2013; Phillips et al., 2010; Vaeyens et al., 2008). Second, the underlying 

constituents of a particular ability can change during the individual’s life span 

(e.g., Abbott et al., 2005; Abbott & Collins, 2004; Davids & Baker, 2007; Elferink-

Gemser, Huijgens, Coelho-E-Silva, Lemmink, & Visscher, 2012; Howe et al., 1998; 

Simonton, 1999, 2001; Phillips et al., 2010). Third, the level of domain-specific 

ability is not necessarily monotonically rising or stable: Its development can take a 

variety of forms including gradual, S-shaped, stepwise, and sudden changes (e.g., 

Abbott et al., 2005; Abbott & Collins, 2004; Dai & Renzulli, 2008; Davids & Baker, 

2007; Elferink-Gemser et al., 2011; Gulbin et al., 2013; Simonton, 1999; 2001; 

Phillips et al., 2010; Simonton, 2000; Vaeyens et al., 2008). Fourth, early 

indicators of ultimate excellent abilities are often absent, which means that 

demonstrating better skills than peers at a young age is often weakly related to 

later excellent abilities (e.g., Abbott et al., 2005; Abbott & Collins, 2004; Ericsson 

& Charness, 1994; Howe et al., 1998; Phillips et al., 2010; Simonton, 1999, 2001; 

Vaeyens et al., 2008). In line with the latter three properties, 

research―particularly in the domain of sports and exercise―has shown that 

individuals may have diverse ways to achieve similar ability levels, thereby 



Network model of excellence 

119 

emphasizing the idiosyncratic nature of the pathways to excellence (e.g., Davids 

& Baker, 2007; Elferink-Gemser et al., 2011; Gulbin et al., 2013; Phillips et al., 

2010; Simonton, 2000; Vaeyens et al., 2008).  

 Validated tests to determine domain-specific excellence hardly exist, and 

researchers often focus on assumed correlates of a particular ability (e.g., 

dribbling test-scores of soccer players, Huijgen, Elferink-Gemser, Post, & Visscher, 

2009). Here, we proceed from the argument that excellent abilities are domain-

specific and that they are manifested in, and measured by, performance 

accomplishments (Aguinis & O’Boyle, 2014). In many domains (e.g., arts, science, 

sports, technology, music, etc.), performance accomplishments can be 

operationalized by individuals’ productivity as defined by consensual expert 

assessment (e.g., Amabile, 1982, 1983, 1996). The consensual assessment 

technique implies that the quality of human performance can be judged by 

experts in a particular domain (e.g., reviewers of a research article, coaches of 

sport teams) and/or based on countable expressions of particular excellent 

abilities, such as produced scientific articles, musical compositions, and 

tournaments or medals won in sports (e.g., Aguinis & O’Boyle, 2014; Huber, 2000; 

O’Boyle & Aguinis, 2012; Simonton, 1999, 2003, 2014). A measure of productivity, 

based on consensual expert assessment, thus emphasizes what a performer has 

realized in a particular performance domain, and is a widely used 

operationalization of excellent abilities. In line with Ericsson and Lehman’s (1996) 

definition of expertise, this measure reflects who displays (or has displayed) 

consistent superior performance. Productivity is also considered a valid indicator 

of domain-specific ability in practice, in that it is used as a selection criterion in 

job interviews, decisions about grant proposals, and national selection of athletes 

for international competitions. For instance, to select soccer players for the 

national team before the world cup, the coach will not let players perform a 

(standardized) test of an assumed soccer-ability correlate. Probably, the coach 

will select players based on relevant productivity indicators (e.g., number of 

matches played, number of goals scored).  

 Previous studies have shown that the distribution of performance productivity 

across the population is highly right-skewed in virtually any achievement domain 

(e.g., Huber, 2000; O’Boyle & Aguinis, 2012; Simonton, 1999, 2001, 2003). Earlier 

studies based on archival data have shown that the relationship between a 
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particular number of products―e.g., medals won in sports, scientific publications 

in high-impact journals, patent inventions―and the number of individuals 

generating that number of products, approaches distributions described by 

power laws or stretched exponentials (e.g., Aguinis & O’Boyle, 2014; Davies, 

2002; Huber, 2000; Huber & Wagner-Dobler, 2001; Laherrere & Sornette, 1998; 

Lotka, 1926; O’Boyle & Aguinis, 2012; Redner, 1998; Sutter & Kocher, 2001). This 

finding entails that the great majority of performers has few products (often only 

one), whereas the truly exceptional performers are in the extreme right tail of the 

asymmetric distribution. As an illustration, Figure 13 displays the distributions of 

two (historical) datasets, one of which concerns the number of international 

matches played by Dutch soccer players in the National team (retrieved from 

Voetbalstats.nl), and the other the number of ATP tennis tournaments won by 

tennis players (retrieved from ATP Performance Zone). In line with earlier 

literature, these distributions are highly skewed, and on a natural log-log scale 

they approach a linear plot (power law) or curved plot (stretched exponential). 

 

 
 

Figure 13. Distributions of the number of international matches a soccer player 

played in the national team (A), and the number of ATP tennis tournaments won 

by tennis players (B). The natural log-log plots of these datasets are displayed in 

Graph C and D. 
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Towards a Model of Excellent Human Performance 

 Based on the accumulated knowledge with regard to talent and excellence 

development, the challenge is to establish a model that is multidimensional 

(Abbott et al., 2005; Abbott & Collins, 2004; Barab & Plucker, 2002; Davids & 

Baker, 2007; Elferink-Gemser et al., 2011; Gagné, 2004; Kaufman, 2013; Phillips et 

al., 2010; Simonton, 2001), and able to predict and explain the growth of domain-

specific abilities that lead to a level at which products are generated. Hence, our 

aim is to provide insights into what kind of model drives the emergence of the 

typical idiosyncratic developmental properties, as well as the highly skewed 

productivity distributions across the population, at the level of excellent human 

abilities and performance.   

 Because excellence typically develops over time (often over more than 10 

years; Ericsson, 2006; Ericsson et al., 1993; Ericsson, Roring, & Nandagopal, 2007), 

we propose a dynamic model of growth to account for a performer’s ability 

development (cf. Van Geert, 1991, 1994). Such models have not yet been applied 

to talent and excellence development, although some authors already hinted 

toward their value (e.g., Aguinis & O’Boyle, 2014; Abbott et al., 2005; Abbott & 

Collins, 2004; Araújo & Davids, 2011; Ceci, Barnett, & Kanaya, 2003; Dai, 2005; 

Dai & Renzulli, 2008; Davids & Baker, 2007; Phillips et al., 2010). In line with the 

consensus that excellence is shaped by various (interacting) personal and 

environmental variables, we will demonstrate a dynamic network model, 

according to which excellent abilities emerge from the iterative interactions 

among sparsely―and across the population randomly―connected network 

variables, which may correspond to domain-specific ability, motivation, parental 

support, teaching and coaching, practice, and so forth.  

A Dynamic Network Model Representation of Ability Development 

 An ability network consists of one node (i.e., variable) representing the 

domain-specific ability, and other nodes consisting of components that positively 

or negatively affect the ability (and each other). In line with the existing models in 

the field of talent and excellence development (e.g., the Differentiated Model of 

Giftedness and Talent; Gagné, 2004), the nodes can be of an internal or of an 

external nature, such as domain-specific interest and family support, respectively. 
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Connections between the variables may be supportive or competitive, symmetric 

or asymmetric, and direct or indirect. An example of a direct, symmetric 

connection is the positive feedback-loop between the growth of an ability (e.g., 

tennis ability), and the amount of practice (Figure 14A). However, connections 

can also be indirect or asymmetric, for instance when the coach positively affects 

the tennis ability, which in turn positively affects parental-support; in this case 

the support of the coach and the support of the parents are indirectly connected 

(Figure 14B). We propose that any variable in the network is directly connected 

with a relatively small number of other variables and indirectly connected with a 

considerably greater number of other variables (cf. Watts & Strogatz, 1998). 

 

 

 

Figure 14. Examples of a direct, symmetric connection between two variables 

(Graph A) and an indirect asymmetric connection (Graph B). Such compositions 

form the building blocks of the entire dynamic network. 

 

 The network is dynamic in the sense that the values of the nodes (the levels) 

change, among others as a consequence of the interactions with other nodes, 

and nodes may appear or disappear over developmental time (cf. Barabási, 

2009). The nature and strength of the relationships between the ability 

component, the internal components, and the external (environmental) 

components are assumed to be idiosyncratic and characteristic of a particular 

person’s dynamic network profile (specificity of ability profile and individual 

differences are characteristic of excellent performance in general, e.g., Achter, 

Lubinski, & Benbow, 1996; Elferink-Gemser et al., 2011; Phillips et al., 2010; 
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Robertson, Smeets, Lubinski, & Benbow, 2010; Vaeyens et al., 2008; Webb, 

Lubinski, & Benbow, 2002; for a general discussion of the importance of 

idiosyncratic models, see Molenaar, 2004; Molenaar & Campbell, 2009).  

 To provide an example, a dynamic ability network can be visualized as follows. 

Imagine that a particular child has a particular interest in tennis. The parents of 

the child recognize this and strongly stimulate this interest. To the extent that 

their child shows more interest, the parents tend to buy a new racket, take the 

child to the tennis court, pay his training/coaching, etc. The child’s practice and 

tennis ability are reciprocally related: As the child's tennis level increases, practice 

increases and vice versa. Furthermore, the child also experiences considerable 

pleasure because of playing tennis, and is very persistent. This pleasure and 

tenacity increase as the tennis ability increases. Then, at secondary school, the 

child meets new friends who like to hang out after school. After having joined 

once, the child obtains more support from the friends, for instance in the form of 

increasing popularity in the group. In this particular network, hanging out with 

friends competes with tennis ability development, for instance through a 

competition for available time or through a competition between motivation for 

gaining popularity and motivation for playing tennis. 

 If we now take a look at this individual’s tennis ability network, the 

interconnected variables can be displayed in the form of a directed graph 

consisting of nodes and arrows (Figure 15). The nodes specify the relevant 

variables, such as the child’s motivation to hang out with friends after school or 

the pleasure it experiences when playing tennis, that influence or are influenced 

by other variables in the network. The sizes of the nodes reflect the levels (or 

strength) of the variables. Each directed edge between two nodes represents a 

supportive (solid) or competitive effect (dashed) of one variable on another. The 

strength of the relationships between the variables is reflected in the thickness of 

the edges.  
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Figure 15. Graphical representation of an individual’s tennis ability network 

structure.  

 

Mathematical Principles of the Dynamic Network Model 

 When focusing on the mathematical principles of the network structure, the 

various nodes and their connections are expressed in the form of equations. The 

domain-specific ability corresponds to one equation, and its growth depends on: 

(1) the ability level (L) already attained, (2) available resources that remain 

relatively constant during ability development (K) such as genetic endowment of 

the ability, (3) resources that vary on the time scale of ability development (V), 

such as parental, teaching or coaching support, practice, and tenacity, (4) the 

degree in which an ability profits from the constant resources (r), (5) the positive, 

negative, or zero weights of the connections (s) with the variable resources, and 

(6) a general limiting factor (C) (Van Geert, 1991; 1994). The C-parameter is the 

carrying capacity, which specifies the ultimate or physical limits of growth of a 

particular variable. In other words, the C-parameter keeps the variables within 

(physically) realistic limits, in the relatively unlikely case that too many 
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relationships are strongly positive and drive a variable (e.g., ability) into an 

exponential explosion (e.g., Van der Maas et al., 2006). Within the ability 

network, the variable resources (V) are potentially co-dependent on the ability 

and on any arbitrary subset of all other variables. Taken together, our model thus 

implicitly follows a gene × environment approach, that is, the model specifies a 

multiplicative relationship between the ability-specific K-parameter (genetic 

endowment), and the influence of the support-competition factors in terms of 

the variable resources (V). 

 The dynamic network model can be mathematically defined as a set of 

(sparsely coupled) logistic growth equations, each of which represents the growth 

of a single variable (A, B, C, and so forth), and one of which is the domain-specific 

ability. The number of variables to which a particular variable is connected, is 

represented by i, j, etc: 

  (3)  

 From a model building perspective, we asked ourselves what are the minimal 

properties the network model should have for it to generate the qualitative 

features of the trajectories, as well as the highly skewed product distributions. To 

cover the structure of realistic domain-specific networks, our model has the 

following properties (note that a person’s entire network may consist of multiple 

clusters, each representing a different performance domain, connected by 

variables functioning as hubs). In order to mathematically simulate individual’s 

domain-specific networks, we start with a set of 10 nodes.5 Within this network 

the nodes are sparsely connected with an average degree of connectivity of 25%, 

and the connections are randomly distributed over the nodes. This means that 

excellent abilities could emerge from different network configurations. For 

simplicity, for each simulation of an individual the initial parameter values are 

randomly drawn from symmetric distributions. The weights of the edges s are 

                                                                 
5 Network simulations based on up to 50 nodes reveal qualitatively similar results as 
simulations based on 10 nodes.  
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variable and randomly distributed with an average of zero. We identified one 

node (node 3) as the target variable whose change reflects the ability-

development over time (for information about the specific parameter settings, 

see Method section).  

The Current Study 

 In this study we aimed to test whether the typical properties of excellence 

emerge out of the dynamic network model described above, in order to discover 

the underlying principles of talent and excellence development. More specifically, 

if excellence emerges out of dynamic network structures, simulations of 

individual performers would reveal that: (a) similar ability levels can develop at 

different ages, (b) the underlying constituents of a the ability can change during 

the individual’s life span, (c) the ability-development can take a variety of forms 

(e.g., gradual, S-shaped, stepwise, abrupt), and (d) early indicators of ultimate 

excellent abilities are often absent (e.g., Abbott et al., 2005; Abbott & Collins, 

2004; Howe et al., 1998; Phillips et al., 2010; Simonton, 1999, 2001). 

Furthermore, ever since the topic of excellent human performance was 

introduced, debate has existed on the contribution of heredity (for a recent 

intensive debate, see Ericsson, 2013; Ericsson, Roring, & Nandagopal, 2013; 

Gagné, 2013). Given that our model implicitly follows a gene × environment 

approach, in addition to examining the qualitative properties described above we 

also tested what the model predicts with regard to the role of genetic 

endowment.  

 Apart from testing the above-mentioned qualitative properties, by simulating 

many individuals we tested whether our dynamic network model predicts a major 

quantitative property of excellent performance, namely the highly 

skewed―power law and stretched exponential―distributions of productivity that 

are demonstrated by empirical data across many achievement domains (e.g., 

Aguinis & O’Boyle, 2014; Davies, 2002; Huber, 2000; Huber & Wagner-Dobler, 

2001; Laherrere & Sornette, 1998; Lotka, 1926; O’Boyle & Aguinis, 2012; Redner, 

1998; Sutter & Kocher, 2001). Additionally, we determined whether the 

distributions of excellent performance productivity can be (or are better) 

predicted by a null-hypothesis model based on the standard statistical 
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assumption that abilities are normally distributed across the population, and are 

supported by the additive effects of all supporting variables. 

 Finally, apart from a general test of the dynamic network model, we 

considered it worthwhile to test the applicability of the model to a specific 

performance domain. For this aim, we took the empirical data that are displayed 

in Figure 13, and we tested whether the dynamic network model is able to 

predict the productivity distributions in the domain of sports (i.e., soccer and 

tennis). 

6.2  Method 

Default Model Settings 

 Each model simulation consists of 500 steps. The specific real-time duration of 

a single step thus depends on the domain of interest (e.g., a step length of about 

five weeks could be chosen for the domain of arts or science, in which ability 

growth and maintenance may cover a duration of about 50 years―around 2500 

weeks―, whereas the step length can cover a shorter period in sports). For each 

simulation we defined the values of the parameters specified in the equations, by 

randomly drawing from predefined distributions. The actual parameter values 

have no intrinsic or absolute meaning, but are chosen in such a way that the total 

set of parameters allows us to run feasible simulations of lifespan trajectories, 

given the chosen number of simulation steps (e.g., Netoff, Clewley, Arno, Keck, & 

White, 2004; Van der Maas et al., 2006). Accordingly, the values of the 

parameters have their meaning in relation to each other, rather than to some 

absolute standard (Van Geert, 2014). This rationale follows from our aim to 

discover the general underlying model principles―such as the general connection 

structure of the network of components―from which excellence emerges, rather 

than already specifying the more or less exact values of the components as they 

may exist in domain-specific populations of excellent performers. Table 6 displays 

the default distributions from which the parameter values were drawn for each 

variable in the network.   
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Network Model Predictions of Developmental Properties 

 First, we ran network simulations of individual performers to examine the 

developmental patterns, including the growth curves (e.g., linear, S-shaped, 

stepwise growth; Van Geert, 1994) and the (changing) values of the network 

variables. This would provide information about the fit with the first three 

properties of excellence: Similar ability levels can develop at different ages; the 

underlying constituents of a specific ability can change over the individual’s life 

span; and the ability-development can take a variety of forms. To test the fourth 

property―early indicators of ultimate excellent abilities are rare―, we 

determined the correlation between the end-ability levels and earlier levels. 

More specifically, we simulated 1,000 individuals and calculated correlation 

coefficients (Pearson r) between the end-level of node 3 (the ability component) 

and the level of node 3 at earlier simulation steps. 

 Finally, to explore the role of genetic endowment, we simulated 1,000 

individuals and calculated the correlation (Pearson r) between the K-parameter of 

node 3 (the ability) and the actual ability level, during the simulated life-span of 

ability development.  

 

Table 6. Default parameter values used for the dynamic model simulations.  

 

Parameter Average Standard deviation 

r (resource consumption rate) .05 .01 

Connection strength with other variables 0 .02 

K (stable resources) 1.00 .15 

Connection probability with other variables .25 - 

Minimum Maximum 

L (initial level) 0 .05 

Time of initial emergence of a variable 1.00 350.00 

C (carrying capacity) 10.00 25.00 
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Network Model Predictions of Productivity Distributions 

 We assume that the domain-specific productivity of a performer is a function 

of the performer’s (developing) ability level. However, apart from the ability level, 

a myriad of accidental events can occur with highly variable probabilities, which 

may or may not result in a product (e.g., Elferink-Gemser et al., 2011; Simonton, 

2003). For instance, Steven Bradbury won the gold medal at the 2002 Olympic 

games, because the other competitors fell before the finish line, or imagine a 

researcher who finds unexpected results that lead to a high-impact publication 

(Simonton, 2003). Thus, in order to examine what the network model predicts 

concerning the productivity distributions we not only need a model of the 

underlying abilities, but also a model of how abilities lead to the products, which 

takes into account the stochastic nature of product generation.  

 The simplest model in this regard is the Poisson model, which states that the 

probability P that a particular product (e.g., a scientific paper or a tournament 

victory) will occur during a fixed time interval t, is the mathematical product of a 

domain-specific Poisson parameter (φ) and the individual’s current level of the 

underlying ability L (Huber, 2000; Huber & Wagner-Dobler, 2001; Simonton, 

2003). Hence, for each step in the simulation, there is a small probability that a 

product will be generated, and the number of products generated will 

accumulate across the simulated life spans. Because, in accordance with the 

empirical distributions, the majority of (excellent) performers in a specific domain 

has one product (e.g., Davies, 2002; Huber, 2000; Lotka, 1926; O’Boyle & Aguinis, 

2012; Sutter & Kocher, 2001), the probability that a product is released during 

each time step is chosen in such a way that the average productivity during an 

entire life span is 1. The Poisson parameter that corresponds with this lifetime 

average is .002, since the simulation length was set at 500 steps. At a particular 

moment during ability development, the probability of generating a product is 

thus predicted based on the following equation: 

.                                   (4) 

To determine the validity of the dynamic network model, we compared the 

simulation results with the properties of the empirical product distributions as 

found across domains (i.e., sports, science, music, etc.).  
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Null-Hypothesis Predictions of Productivity Distributions 

 To provide an additional test of the dynamic network model, we compared 

the network model predictions with predictions based on simulations of a null-

hypothesis model. If the null-hypothesis model generates a comparable (or 

better) fit with the empirical data, we should opt for the null-hypothesis model in 

view of its greater simplicity. The null-hypothesis model rests on the standard 

statistical assumptions that abilities are normally distributed across the 

population, and are supported by the additive effects of all supporting variables, 

such as tenacity, coaching, and practice. We therefore reduced the connection 

strength with other variables in the network to 0, and we treated the K-

parameter of the ability variable as the parameter including all resources to 

develop excellence: 

                  (5) 

Network Model Predictions of Domain-Specific Distributions 

 In order to test the applicability of the dynamic network model in a specific 

performance domain, we focus on the domain of sports. In sports, support 

resources (e.g., parental and coaching support, facilities) play a relatively large 

role in athletes’ developments (e.g., Baker, Horton, Robertson-Wilson, & Wall, 

2003). Moreover, apart from the ability component, the tenacity component 

(goal commitment, perseverance in a specific sport) is assumed to be a major 

determinant of productivity (Abbott et al., 2005; Abbot & Collins, 2004; Van 

Yperen, 2009). Accordingly, we adapted the default parameter settings displayed 

in Table 6 by reducing the K-parameter from 1.00 to 0.50 (SD = 0.15) and 

extending the range of the variable support contribution (SD = 0.10). This means 

that we increased the influence of the variable support resources relative to the 

stable resources (e.g., genetic endowment). Furthermore, in the network model 

we selected one node (node 4) as the tenacity component, and we used an ability 

(L) × tenacity (T) product model (Huber, 2000; Huber & Wagner-Dobler, 2001). 

This means that the probability of generating a product at time t is a function of 

the combination of ability (L) and tenacity (T):  

,                  (6)  

where the Poisson parameter was set at 0.005.  
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 We focused on productivity measures in two major sports: Soccer and tennis. 

In both sports we assessed historical productivity data based on consensual 

expert assessment, namely the number of matches played in the Dutch national 

team by soccer players, and the number of ATP tournaments won by tennis 

players, which are displayed in Figure 13. To optimally compare the generated 

distributions, we plotted the data on natural log-log scales, and we set the 

number of players with one product equal to 1. 

6.3  Results 

Developmental Trajectories towards Excellence 

Figure 16 provides a representative illustration of two simulated individuals who 

reach high ability levels. The Figure illustrates that the same type of ability can 

emerge at different ages, and that the same ability can be the product of 

different (changing levels of) underlying variables. In addition, we can observe 

that the ability levels are not monotonically rising or stable. Note, however, that 

the ability levels are latent variables here, which cannot be observed directly. As 

noted earlier, levels of (excellent) ability that individuals attain are manifested 

stochastically via the number of products they are associated with (see next 

section). 

 In Figure 16, Graph A displays an individual’s simulated ability network in 

which the ability level reaches a value of 3.91 (2.85 standard deviations above the 

average simulated population ability level of 1.26), and Graph B shows an 

individual’s ability network in which the ability level reaches a value of 4.48 (3.46 

standard deviations above the average simulated population ability level). The 

simulated individual in Graph A displays a clear increase in ability level early in 

development, which stabilizes around step 320, whereas the ability level of the 

individual in Graph B starts to rise slowly, and shows a steep increase around step 

320. In addition, the simulations revealed that new variables can emerge at 

various moments during development, which may influence the trajectory of 

ability development. For instance, variable 10 emerges relatively late in individual 

B, and seems to contribute to an abrupt increase in the ability in this specific 

individual. Finally, the growth curve of individual A resembles a gradual stepwise 
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growth, whereas individual B displays an S-shaped growth including abrupt 

change. 

 

 
 

Figure 16. Simulations of the ability networks of two individuals (A and B). The 

black solid lines in the graphs represent the abilities, the other lines reflect the 

dynamic network variables that have supportive, competitive, or neutral 

relationships with the ability.  

 

 To test what the model predicts with regard to early indicators of later 

performance, we simulated 1,000 different individuals. For simplicity, we 

expressed the simulation steps in terms of age (i.e., an age range from 0 to 44 

years, which is typical for domains such as science and arts). Results show that 

the correlation between the end-level of the ability and its level in early 

childhood is virtually absent (Figure 17). However, we can also observe that 
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around the simulated age of 12, the correlation has increased to 0.5, after which 

it further increases to approximately 1. Thus, although we find a low correlation 

between the end level and early levels of ability, we also find that the correlation 

between the end ability-level and earlier levels increases with age. 

 

 

 

Figure 17. Correlations between the final ability level and earlier levels.  

 

 Finally, to determine the model predictions with regard to the role of genetic 

endowment, we calculated the correlations (Pearson r) between the K-parameter 

of node 3 and the ability level. Simulation results revealed that the correlation is 

around 0 at the beginning, increases to about 0.5, and then falls back to stabilize 

around 0.4 (Figure 18).  
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Figure 18. Correlations between the K-parameter and the ability level at different 

simulated age-steps.  

 

General Predictions of Productivity Distributions 

 Our simulations based on 100,000 runs with the default parameter values 

show that the network model generates highly right-skewed product 

distributions. In order to determine whether the predictions are specific to the 

dynamic network model, we compared the results with simulation results of the 

null hypothesis model. To guarantee that the null hypothesis model would 

produce the same average ability level as the network model, the level of K was 

augmented to 1.26, which equals the average ability level resulting from the 

network model (note that the average ability level resulting from the network 

model simulations was 26% higher than what would be genotypically expected 

based on the settings of the K-parameter; a value of 1). Although the simulations 

based on the null-hypothesis model also produced skewed product distributions, 

they did not generate the typical power law or stretched exponential 

distributions that were generated by the dynamic network model. Figure 19 also 

shows that the right tail of the product distribution generated by the network 

model is considerably longer than that of the null hypothesis model (a maximum 

of 25 versus 8 products). 
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Figure 19. Simulated product distributions of the network model and the null-

hypothesis model. Graph A displays the raw frequencies; in Graph B the data are 

plotted according to the natural logarithmic scales.  

 

 Additionally, we tested whether the parameters of the null-hypothesis can be 

adapted in a way that it would also produce the highly skewed distribution in line 

with the empirical data. In order for the null hypothesis model to generate 

maximum number of products comparable to that of the network model, we had 

to set a seven-times bigger Poisson parameter, but also an average value of the K 

parameter that is 25% higher, and a standard deviation of the K parameter that is 

twice as big. However, with these parameter settings the average number of 

products in the population would be about 10 times bigger than generated by the 

network model, with a distribution that is almost symmetrical. 

Domain-Specific Predictions of Productivity Distributions 

 Figure 20 displays the log-log plot of the empirical productivity measures in 

soccer and tennis and the predictions of the network model simulation, as based 

on the adapted parameter values (see Method section). In line with the empirical 

data of the number of matches played in the Dutch national team (soccer) and 

the number of ATP tournaments won (tennis), the simulation revealed a highly 

comparable distribution that approaches a straight line (i.e., a power law).  
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Figure 20. Ln-Ln graph of productivity in soccer, tennis, and according to 

simulation.  

 

6.4  Discussion 

 Since the 1860s, philosophers, researchers, and policy makers have been 

intrigued by the question how excellent human performance can be explained 

and predicted (Kaufman, 2013). Although research has advanced insights into the 

components (i.e., nature, nurture) that contribute to excellence (e.g., Abbott et 

al., 2005; Abbott & Collins, 2004; Barab & Plucker, 2002; Davids & Baker, 2007; 

Ericsson & Charness, 1994; Ericsson et al., 1993; Howe et al., 1998; Kaufman, 

2013; Phillips et al., 2010; Simonton, 1999; 2001; 2003; Vaeyens et al., 2008), 

debate continues to exist on the exact role of nature and nurture (Kaufman, 

2013). Related to this, the dominant research practice has been based on finding 

associations between individual and environmental predictor variables on the 

one hand and performance on the other, as they statistically exist within the 

population (Abbott et al., 2005; Abbott & Collins, 2004; Barab & Plucker, 2002; 

Elferink-Gemser et al., 2011; Howe et al., 1998; Kaufman, 2013; Simonton, 1999; 

2001; 2003; Vaeyens et al., 2008). As yet, however, researchers have not been 

able to capture and explain the time serial, individual-based developments 

towards excellence. Here, we propose a dynamic network model to explain the 

qualitative properties of excellence development, which are (a) in different 
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individuals a similar ability can emerge at different ages; (b) the underlying 

constituents of a particular ability can change during the individual’s life span; (c) 

the level of domain-specific ability is not necessarily monotonically rising or 

stable: Its development can take a variety of forms; and (d) early indicators of 

ultimate excellent abilities are often absent (e.g., Abbott et al., 2005; Abbott & 

Collins, 2004; Simonton, 1999; 2001; Phillips et al., 2010; Vaeyens et al., 2008). In 

addition, we tested whether the network model predicts a typical quantitative 

property, namely the highly right-skewed distribution of productivity that occurs 

in virtually any achievement domain, and that can be described by power laws 

and stretched exponentials (e.g., Huber, 2000; O’Boyle & Aguinis, 2012; Simonton 

et al., 1999; 2001; 2003). 

Developmental Properties of Excellence 

 The model simulations revealed idiosyncratic routes to excellence, and more 

specifically that the same ability level can be attained in different ways; that the 

values of the (in)directly coupled (supportive or competing) variables change over 

time; and that the ability growth curve can take different forms for different 

simulated individuals. These model predictions correspond exactly to the first 

three properties of excellence development (e.g., Abbott et al., 2005; Abbott & 

Collins, 2004; Simonton, 1999; 2001; Phillips et al., 2010; Vaeyens et al., 2008). 

Furthermore, we found that the relationship between early ability levels and the 

end level was virtually absent, which  supports the fourth property of a lack of 

early predictors of later excellence (Abbott et al., 2005; Abbott & Collins, 2004; 

Ericsson & Charness, 1994; Howe et al., 1998; Phillips et al., 2010; Simonton, 

1999; 2001; Vaeyens et al., 2008). However, the simulations also revealed that 

the relationship increases with age, and is around 0.5 at the simulated age of 12. 

This is in accordance with several studies, mostly in the domain of scientific 

talent, that showed at least moderate to good predictability of later excellence 

around adolescence (e.g., Lubinski, Benbow, Webb, & Bleske-Rechek, 2006; 

Lubinski, Webb, Morelock, & Benbow, 2001; Wai, Lubinski, & Benbow, 2005). 

 When examining the role of genetic endowment, we found that the 

relationship between the genetic (K) component and ability first increased to a 

value around 0.5, after which it decreased and stabilized around 0.4 during the 

remainder of ability development. This model prediction is qualitatively in line 
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with several studies, mostly on cognitive and scientific talent, having 

demonstrated an increase in heritability during childhood (Devlin, Daniels, & 

Roeder, 1997; Haworth, Dale, & Plomin, 2009). A recent extensive twin-study 

found that the heritability of scientific performance increases to 64% around the 

age of 9, after which it decreases to 47% around the age of 12 (Haworth et al., 

2006). The authors suggested that the drop is caused by the increase in 

environmental effects on performance over time. This finding and the suggested 

explanation are consistent with the network model, in which potentially 

competitive or supportive variables are added to the network as age increases 

(see Table 6). 

 Thus, based on model simulations, we find that the characteristic 

developmental properties of excellence emerge out of idiosyncratic networks of 

mutually supporting or competing variables, such as abilities, tenacity, external 

support, and practice. Furthermore, as the network-model predictions suggest, 

internal, environmental, and practice components should not be considered as 

separate mechanisms to explain excellence, but as factors whose functional role 

is embedded in a network consisting of multiple dynamic and sparsely connected 

variables. Although our simulation results thus support the plausibility of the 

dynamic network model to explain excellence development, we shall also discuss 

the extent to which the network model predicts existing empirical data on 

population distributions of excellent performance in different domains.  

Distributions of Excellent Performance Across the Population 

 A major property of excellence at population-level, is that the distributions of 

performance productivity are highly right-skewed. Simulating a population of 

(excellent) performers, the network model predictions revealed a highly-skewed 

productivity distribution that can be fitted by power law and stretched 

exponential functions, and is qualitatively similar to the distributions found in 

wide variety of domains, including science, music, arts, technology, and sports 

(e.g., Aguinis & O’Boyle, 2014; Davies, 2002; Huber, 2000; Laherrere & Sornette, 

1998; Lotka, 1926; O’Boyle & Aguinis, 2012; Redner, 1998; Simonton, 1999; 2003; 

Sutter & Kocher, 2001). The simulations of a null-hypothesis model, based on the 

assumptions that abilities are normally distributed across the population, and are 

supported by the addition of relevant resources (e.g., teaching and coaching, 
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practice, tenacity), generated productivity distributions that did not come near 

the distributions of the empirical data. Moreover, the parameter settings could 

not be adapted in a way that also the null-hypothesis model revealed the highly 

skewed product distributions. These results provide strong additional indications 

for the validity of our dynamic network model of excellence. 

 In addition to testing the dynamic model predictions based on the default 

parameter settings, we also fine-tuned the settings to the domain of sports. In 

line with the universality of highly right-skewed distributions of performance 

productivity across domains, the product distributions―based on consensual 

expert assessment―in soccer and tennis were also highly skewed. To predict the 

distributions of the number of matches played in the national team (soccer) and 

the number of ATP tournaments won (tennis), we adapted the model settings 

according to the sports literature (e.g., Abbott et al., 2005; Abbott & Collins, 

2004; Baker et al., 2003; Van Yperen, 2009). With an ability – tenacity Poisson 

model connected to the network model, the predictions closely corresponded to 

the empirical data. This suggests that the dynamic network model not only 

qualitatively fits across domains, but is also applicable within specific 

performance domains, including sports.  

Conclusion and Future Directions 

 The relatively simple dynamic network model we propose seems to provide a 

comprehensive framework to understand the kind of principles, or mechanism, 

underlying the development of excellence across different domains, such as 

science, arts, music, and sports. The model suggests that excellence emerges 

from intra- and inter-individual variations in the composition of idiosyncratic 

dynamic networks. Although we departed from a general foundational model, the 

model can be used and fine-tuned to discover the more specific dynamic 

principles underlying excellent performance in one particular domain of interest 

(e.g., sports).  

 The discovery that excellence likely emerges from idiosyncratic network 

structures may have widespread implications for theory and practice. For 

instance, it casts doubt on the assumption that the ability to reach excellence can 

be detected ‘in the individual’, and must be discovered at an early age. This 

perspective still dominates the talent detection programs in research and practice 
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around the world (for comparable accounts, see Abbott et al., 2005; Abbott & 

Collins, 2004; Ericsson et al., 1993; Howe et al., 1998; Phillips et al., 2010; 

Vaeyens et al., 2008). However, in line with several authors’ propositions (Abbott 

et al., 2005; Abbott & Collins, 2004; Ericsson & Charness, 1994; Howe et al., 1998; 

Lubinski et al., 2006; Lubinski et al., 2001; Simonton, 1999; 2001; Vaeyens et al., 

2008; Wai et al., 2005), our network model predictions show that early indicators 

of later performance are virtually absent (yet increase with age), and that various 

kinds of direct and indirect multiplicative relationships between dynamic 

variables may exist and lead to idiosyncratic routes to excellence.  

 Although empirical studies that focus on individual developmental patterns 

toward excellence are scarce, researchers start to acknowledge that idiosyncratic 

patterns are the rule rather than the exception (e.g., Elferink-Gemser et al., 2011; 

Gulbin et al., 2013). For instance, in the Groningen talent studies, athletes have 

been longitudinally followed to study the development of several ability-related 

variables. Various papers based on this research program reported average 

differences between ultimately successful (professional) and non-successful 

athletes. To give an illustration, ultimately successful soccer players would 

outperform their non-successful counterparts on dribbling skills by the age of 14 

(Huijgen et al., 2009), on interval endurance capacity from the age of 15 

(Roescher, Elferink-Gemser, Huijgen, & Visscher, 2010), and on tactical skills at 

the age of 17 (Kannekens, Elferink-Gemser, & Visscher, 2011). However, the 

researchers acknowledge that the athletes had their own unique patterns toward 

successful (excellent) performance, which should not be omitted (Elferink-

Gemser et al., 2011). In order to advance research on excellent performance, 

future studies should thus focus on the individual developmental patterns (see 

Gulbin et al., 2013), and acknowledge that these emerge from continuous mutual 

interactions between network variables, rather than from the addition of causal 

variables that explain a significant portion of performance variance at the sample 

level.  

 Finally, from a practical standpoint, although it is not easy to detect (or 

manipulate) what is inherently complex, it is possible to create conditions under 

which the probability of developing excellence can be increased. Accordingly, the 

basic practice of the ‘sowers of excellent performers’ (e.g., coaches, teachers, 

parents) should reside in: (a) their creativity of combining possibilities into a 
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pattern that is optimally excellence-eliciting, such as by providing appropriate 

support (e.g., Van Geert & Steenbeek, 2005) and (b) their ability to see the signs 

in the individual, and in the individual’s environment—e.g., enthusiasm, goal 

commitment, social support—that signal the opportunities for creating the 

(network) conditions under which excellence may develop. 
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Chapter 7: Summary and General Discussion
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7.1  Introduction 

 In this thesis a diversity of topics related to human performance processes has 

been discussed in light of one common denominator: Complexity (see Table 1 in 

the Introduction section). More specifically, the main focus was on the 

emergence of coherent states or patterns out of the interactions between lower-

order components. These processes were primarily studied in sports, a typical 

context in which ongoing psychological and performance processes take place 

that can relatively easy be observed and measured (Day et al., 2012). We 

proposed that complex processes could be captured using specific research 

designs and methods inspired by the theory of complex dynamical systems (e.g., 

Davids et al., 2014; Kelso, 1995; Nowak & Vallacher, 1998; Van Geert, 1994). 

 Although the complexity approach differs from the conventional reductionist 

paradigm to the study of human behavior―in which explanations for behavior 

can be reduced to some underlying causal components―, the complexity 

perspective touches on fundamental theoretical assumptions already proposed in 

the previous century. For instance, Lewin (1935) emphasized that individual and 

environmental factors do not operate independently; they interact. Moreover, he 

stated that the relationships between these factors change over time, which is 

why we may characterize them as complex dynamical processes. In general, 

researchers will probably not deny that behavior takes place in a context of many 

interacting personal and environmental factors that undergo change. Most 

researchers, however, would argue that this complexity makes precise prediction 

of behavior nearly impossible (Gill & Williams, 2008). Therefore, in order to 

explain and predict human psychological and performance states as accurately as 

possible, most studies examine a selection of potential determinants in isolation, 

either at one moment or across a few time points. That is, the conventional 

approach is to untangle the complicatedness of a certain state by reducing the 

explanation of that state to the additive influences of (isolated) causal 

components (see Introduction).  

 Rather than studying (potential) determinants in isolation, this dissertation 

proceeded from the viewpoint that individual and environmental factors 

continuously interact and change over time, which results in particular 

psychological and behavioral patterns. That is, we assumed that the underlying 
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mechanism that explains human performance processes is complex. Chapter 2 

started with a study on the complexity of cognitive skills, embedded in 

verbalizations while watching video clips of game plays. In Chapter 3 we 

proceeded with a study on the underlying dynamic organization while athletes 

are performing an actual sports task. In the Chapters 2 and 3, we thus extracted a 

complexity measure of two different kinds of processes, and we examined how 

these were related to expertise. In Chapter 4 and 5 we proceeded from the 

assumption that psychological momentum (PM) is a complex phenomenon 

emerging during goal striving. We examined patterns in collective psychological 

and behavioral performance variables that are characteristic of PM, during 

periods in which athletes progressed or regressed in relation to their goal. Finally, 

in Chapter 6 we focused on macro-level patterns, that is, developmental 

trajectories of excellence, and on the specific underlying dynamics in the form of 

mathematical equations. In this way we tested our assumption that excellent 

human performance emerges out of complexity, that is, ongoing interactions 

between multiple performance-related variables (e.g., motivation, practice, 

family support). Together, the different chapters thus shed light on the 

complexity of performance-related processes across different levels and time 

scales (from bodily processes during a single sports task to ability development 

over the course of a career). The next section provides a brief overview of the 

findings of each chapter. 

7.2  What Did We Find? 

Chapter 2 

 We started with an empirical study on the complexity of representations as 

they are constructed in real-time by soccer players, who were exposed to 

offensive game plays. Such representations are assumed to emerge from the 

integration of pieces of information, such as the positions and movements of 

other players on the soccer field (e.g., Helsen & Starkes, 1999), or details of the 

actions carried out (e.g., McPherson, 2000). Previous research found that expert 

soccer players generate a greater number of verbal report statements, evaluate 

the situation more often, and look at informative locations on the field (e.g., 

scanning elements or areas surrounding the player having the ball). Hence, 
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previous research primarily focused on specific components that expert players 

notice, and which potentially explain their superior perceptual-cognitive skills 

(e.g., Roca et al., 2011). Yet, how soccer players integrate the components at 

particular levels of complexity has remained unknown and may shed a new light 

on cognitive skills, and their relation with expertise. 

 We used Skill Theory (Fischer, 1980; Fischer & Bidell, 2006) to construct a 

coding system (De Meij, Van der Steen, & Den Hartigh, 2012), so that we could 

reliably determine the complexity levels of the representations that were formed 

by soccer players with different levels of expertise: Experts (professionals), near-

experts (high amateurs), and non-experts (low amateurs). Based on verbalizations 

that soccer provided while watching soccer game plays, we were able to assess 

players’ short-term representations. We found that players with higher levels of 

expertise constructed their representations at higher complexity levels. In 

addition, when constructing their representations, players with more expertise 

described information excluding the player with the ball (off-the-ball movements, 

defending actions) relatively more often at high complexity levels.  

 Thus, Chapter 2 illustrated how the complexity of athletes’ cognitive skills can 

be measured and evaluated in terms of the higher-order structure, rather than 

the specific content of these representations. Our findings suggests that the skill 

to perceive game information―the players, the ongoing actions, etc.―in a more 

complex way, is characteristic for players with higher expertise levels. This 

suggestion fits with Fischer’s (1980) notion that cognitive skills become more 

complex over the course of human (cognitive) development. 

Chapter 3 

 In Chapter 3 we shifted our focus from a task that targeted cognitive skills to a 

task in which athletes actually had to perform a sports task. More specifically, we 

examined the temporal structure of variation in ergometer rowing performance, 

in order to draw inferences about the complexity of the underlying dynamic 

(motor) organization. The central limit theorem implies that when a large amount 

of measures are independently collected in a sample, and each of these measures 

consists of the sum of independent components, we would observe a normal 

distribution of these measured values (see Kello et al., 2010). In time series of 

actual task performance, this would mean that successive measurements are 
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independent of previous measurements, that is, the temporal structure of 

variation would consist of random fluctuations around some mean value (i.e., 

white noise). However, we assumed that sport performance emerges from 

complexity, that is, rather than being determined by independent component 

effects, it emerges from the ongoing interactions between components across 

multiple time scales throughout the system. Such a complex dynamic 

organization would typically result in a more structured pattern of variation (i.e., 

pink noise) (e.g., Kello et al., 2010; Van Orden et al., 2003).  

 In order to test our assumption, we asked rowers to perform 550 strokes at 

their preferred rowing rhythm. Then, we examined the temporal structures of 

variation of the rowers’ force peak intervals between stroke 18 and 530, in order 

to assure a sufficiently long time series to analyze. The structure in the time series 

was assessed based on a specific nonlinear time series technique: Detrended 

fluctuation analysis (DFA; Peng et al., 1993). As expected, for each rower the 

temporal structure deviated from white noise, and was close to pink noise. In 

addition, time series of rowers who were members of a first-year’s team that was 

ranked among the best 16.67% nationally, revealed more pink noise than the 

time series of rowers who were members of a team ranked below-average (i.e., 

ranked between 50% and 67% nationally). 

 Taken together, the findings of Chapter 3 make it likely that motor 

performance in sport, specifically ergometer rowing, emerges from complexity. 

Indeed, pink noise in human behavior is assumed to be an expression of self-

organizing system-components across multiple time scales, rather than the 

activation of components operating independently, or in a serial manner (e.g., 

Diniz et al., 2011; Gilden, 2001; Van Orden et al., 2003; Wijnants, 2014). In 

addition, more prominent patterns of pink noise were associated with higher 

rowing expertise in terms of recent team-results in (on-water) rowing 

competitions. The complexity of the dynamic organization underlying the 

generation of rowing strokes may thus be a reflection of rowing expertise, or 

more specifically of rowers’ ability to continuously and functionally adapt their 

behavior to satisfy task constraints (see Seifert et al., 2013). 
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Chapter 4 

 The previous chapters provided insights into the (measurement of) complexity 

in situations in which we aimed to keep perturbing, outside influences to the 

minimum. These studies revealed that complexity at the level of cognitive skills, 

as well as the entire motor system underlying sport performance, is likely related 

to athletes’ expertise levels. In Chapter 4, we shifted the focus to a complex 

phenomenon―Psychological momentum (PM)―, which is observed in various 

achievement contexts in which people are striving for specific goals. Positive and 

negative PM can emerge through interactions among a variety of precipitating 

events (e.g., scoring, referee decision, crowd behaviors, opponent behavior, etc., 

see Taylor & Demick, 1994), provided that they give rise to the perception that 

one is progressing or regressing in relation to a desired goal or outcome 

(Gernigon et al., 2010). In order to obtain the first insights into the emergence of 

positive and negative PM in teams, we studied the evolvement of a few collective 

psychological and behavioral variables (i.e., collective efficacy, task cohesion, 

exerted efforts, and interpersonal coordination). We did so by directly 

manipulating the position (progress or regress) in relation to the team goal, in 

order to examine how PM moves from its positive to its negative state, and the 

other way around. This strategy is in accordance with the guidelines defined by 

the HKB method (Haken et al., 1985). 

 In our study we made pairs of rowers, who formed a team. We placed them in 

a performance context (i.e., ergometer competition), and provided them with a 

clear goal to pursue: Beating the opponent by taking an 8-second lead. In the 

negative momentum race, we let the team take a lead of 6 seconds at the start, 

after which the team gradually moved toward a lag of 6 seconds. This scenario 

was the exact opposite in the positive momentum race. During the races we 

measured collective efficacy and task cohesion at fixed intervals of one minute, 

while we continuously measured the exerted efforts and interpersonal 

coordination. We found decreases in collective efficacy and task cohesion in the 

negative momentum scenario, which were relatively stronger than the increases 

in collective efficacy and task cohesion in the positive momentum scenario. It 

thus seems that, psychologically, teams converge more rapidly to a negative PM 

state than to a positive PM state. However, note that the pattern we found does 

not correspond to a typical hysteresis pattern, according to which we should have 
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observed a resistance to change from positive to negative PM and vice versa (e.g., 

Bardy, Oullier, Bootsma, & Stoffregen, 2002; Hock, Kelso, & Schöner, 1993). We 

found asymmetrical dynamics, in which teams reacted more strongly to a 

scenario in which they start to lose seconds while they almost won. This is in line 

with Kahneman and Tversky’s (1979) prospect theory according to which losses 

hurt more than gains feel good. Related to this, in our study exerted efforts 

decreased more rapidly in the negative momentum scenario than in the positive 

momentum scenario, while the interpersonal coordination was better in the 

positive momentum scenario.  

 In Chapter 4, we thus demonstrated an asymmetry between positive and 

negative PM in teams. Given our research setup, involving two exactly 

symmetrical (manipulated) scenarios, we may conclude that team PM is not only 

determined by some independent variable (e.g., the team’s position in the race). 

If this were the case, we should have observed symmetrical linear increases and 

decreases in the variables under study during positive and negative momentum. 

The fact that we found significant differences between the scenarios suggests 

that team PM is a dynamical phenomenon demonstrating properties that are also 

found in complex dynamical systems, history-dependence in particular.      

Chapter 5   

 While past studies on PM dynamics, including Chapter 4, have focused on 

psychological and behavioral changes within a race or match, athletes’ PM may 

extend over a single match and develop over the course of a tournament or 

longer (Adler, 1981). The theory of complex dynamical systems postulates that 

processes taking place at different time scales are interconnected and mutually 

influence each other (e.g., Newell et al., 2001; Thelen & Smith, 1994). Given the 

evidence that PM is a complex and dynamical phenomenon (Briki et al., 2013; 

Briki, Den Hartigh et al., 2014; Gernigon et al., 2010; see also Chapter 4), we 

experimentally tested the property of interconnected time scales in PM 

processes.  

 The participants in this study were involved in a tournament, in which they 

competed in three (manipulated) races against a direct opponent on rowing 

ergometers. During the tournament, participants thought they could win a money 

prize by getting three points, which could be accomplished by winning three races 
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(i.e., gaining 9 seconds on the opponent in each race). The races were 

manipulated, so that one group of participants lost the first two races (negative 

momentum condition), whereas the other group won the first two races (positive 

momentum condition). Before each subsequent race we assessed participants’ 

perceptions of momentum and self-efficacy, to determine the influence of the 

previous race(s) on their long term PM development. Overall, on the long term, 

we found that perceptions of momentum and self-efficacy increased in the 

positive momentum condition and decreased in the negative momentum 

condition.  

 In the third race, the scenario was similar for all participants: From an almost 

victory―a lead of 6 seconds―they moved toward the defeat (i.e., losing 9 

seconds on the opponent). To assess the PM dynamics, we measured the 

participants’ perceptions of momentum and self-efficacy at fixed intervals of one 

minute, while we continuously collected their exerted efforts. We found that 

momentum and self-efficacy perceptions decreased less rapidly in the third race 

for participants who won the previous races (i.e., who developed positive long-

term PM), than for participants who lost the previous races (i.e., who developed 

negative long-term PM). Furthermore, exerted efforts were higher for the 

participants in the positive momentum condition than for those in the negative 

momentum condition. 

 The finding that long-term PM was shaped by (short-term) races, and that the 

long-term PM seemed to shape the dynamics of short-term (within race) PM, 

supports the proposed interconnection between long- and short-term PM 

processes that is typical for complex dynamical systems. More specifically, PM 

dynamics within a task (i.e., race) seem to be constrained by the PM process on 

the long term, in a way that an athlete’s state within a task converges less rapidly 

to negative PM when experiencing positive PM on a longer time scale. 

Chapter 6  

 In the previous chapters we provided insights into complex processes taking 

place in relatively standardized situations, in which psychological and behavioral 

processes could directly be observed. Processes that take place across longer 

periods of time (e.g., years), and are distributed over a range of situational 

contexts, are more difficult to observe directly. One of the most debated long-
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term processes with regard to human performance, is the development of talent 

and excellence. So far, the debate has primarily focused on the nature of the 

underlying (causal) mechanisms of ultimate excellent performance, and its early 

indicators. While this discussion started in the 19th century (De Candolle, 1873; 

Galton, 1869), it is still ongoing (for hot recent debates on the roles of heritability 

and deliberate practice, see for instance Ackerman, 2014; Ericsson, 2014; 

Ericsson, 2013; Ericsson et al., 2013; Gagné, 2013; Hambrick et al., 2014; Plomin, 

Shakeshaft, McMillan, & TrzasKowski, 2014). Rather than focusing on specific 

components that may explain why some reach excellence, whereas others do 

not, Chapter 6 took a complexity approach. We aimed to construct a plausible 

model that predicts some typical properties of talent and excellence development 

across the domains of business, arts, science, and sports. Simonton (2001) has 

defined these properties as follows: (a) In different individuals a similar ability can 

emerge at different ages, (b) the underlying constituents of a particular ability can 

change during an individual’s life span or career, (c) an individual’s ability 

development over time can take a variety of forms, and (d) early indicators of 

later excellence are often absent. Another typical finding in the literature on 

talent and excellence is that the distribution of performance in terms of 

individuals’ ultimate productivity is highly right-skewed across the population in 

virtually any performance domain (e.g., O’Boyle & Aguinis, 2012). To illustrate 

this, consider the following: In total, 404 professional tennis players have won at 

least one ATP tournament, 74 of them won only one tournament, whereas three 

exceptional players were able to win more than 80 tournaments: Federer, Lendl, 

and Connors (www.atpworldtour.com, accessed at 5 November 2014).  

 In order to discover the kind of model that reveals the typical properties of 

excellence, we simulated different kinds of models on a computer (cf. Nowak et 

al., 1990; 2000; Van Geert, 1991). We proceeded from the idea that excellence 

develops over time―from a beginner level up to the level at which excellent 

performance is demonstrated―and that a variety of factors are involved that 

influence, or are influenced by the changing ability level, such as practice, family 

support, coaching, etc. (e.g., Abbott et al., 2005; Phillips et al., 2010). In line with 

this idea, we simulated networks consisting of sparsely connected components. 

We found that the resulting trajectories corresponded to the typical 

developmental properties proposed in the literature (Simonton, 2001). 

Furthermore, the network model generated highly skewed productivity 
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distributions across populations of performers, which has been consistently found 

across achievement domains (e.g., O’Boyle & Aguinis, 2012). While the network 

model produced highly plausible results in light of the current literature on talent 

and excellence development, the null-hypothesis model did not. More 

specifically, we were unable to detect the properties of talent and excellence 

when we simulated models in which abilities were normally distributed across the 

population, and were supported by the additive effects of all supporting factors. 

 Taken together, the results of our simulations suggest that excellence 

emerges from dynamic network structures. More broadly we showed that talent 

and excellence likely develop out of complexity―the ongoing interactions 

between sparsely connected components―rather than complicatedness―the 

additive influences of ability-related components.   

7.3  How Do Our Findings Advance Insights in Human Performance    

       Processes? 

 In this thesis, we assumed that performance-related states cannot be 

explained by linear relationships with specific underlying components, because 

such states are generated by a complex underlying process involving ongoing 

interactions between continuously changing components. This assumption had to 

be taken into account in our choice of methods, which should be able to draw 

inferences about the complexity of human performance processes.  

 As noted earlier, the processes we studied took place across different levels 

and time scales (from motor processes during a rowing ergometer session to 

person-environment interactions during excellence development). However, in all 

studies we found emergent patterns at a higher level, out of the underlying, 

dynamically interacting components at the lower level. The most comprehensive 

demonstration was provided in Chapter 6 on the development of excellence 

across a career. In this chapter we demonstrated higher-order patterns emerging 

out of specified (coupled) mathematical equations. Based on the network model 

we proposed, we could explain a) intra-individual trajectories from a beginner’s 

level up to an excellent performance level, and b) inter-individual differences in 

the output, in terms of productivity, of excellent performers. Apart from Chapter 

6, the findings of the other chapters also suggest that networks of interacting 

components are at work that a) form the basis for the ongoing representations 
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that soccer players construct during game plays (Chapter 2), b) underlie the 

coordination of rowers’ rowing strokes (Chapter 3), and c) move toward positive 

or negative PM during goal pursuit (Chapter 4 and 5); see Figure 21 for a 

schematic presentation. However, some elaboration may be needed about what 

our findings specifically mean in terms of the causality of human behavior, and  

performance processes in particular. 

 

 

 

Figure 21. Schematic representation of the complexity at work in the different 

chapters. The numbers correspond to the numbers of the different chapters, and 

the processes take place across the time scale of excellence development to 

which the studies are connected. 

 

7.4  What Do the Findings Suggest about Causality? 

 Given that none of the studies answered questions related to which 

components cause a particular psychological or performance state, one may 

conclude that none of the studies in this thesis identified the specific causal 

mechanisms underlying human performance. Yet, this does not entail that our 

studies, and the findings derived from them, hold no explanatory power. More 

specifically, based on the kinds of patterns we observed in the studies, we can 

provide plausible explanations on the kinds of processes (rather than the kinds of 
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components) underlying the patterns (cf. Beek, Peper, & Stegeman, 1995). Below 

I will briefly clarify what our conclusions in terms of the underlying complex 

processes imply for the explanation of psychological and performance states.  

 For example, Chapter 3 focused on patterns of peak-to-peak interval series of 

rowing strokes. While debate has existed on the exact meaning of pink noise, or 

long-range correlations in time series (Diniz et al., 2011), researchers seem to 

have reached a general agreement that pink noise reflects the complexity of the 

system, in terms of the flexible and adaptive coordination between multiple 

components (Delignières & Marmelat, 2013; Delignières, Marmelat, & Torre, 

2011). Because only knowing the output of the system, that is, the temporal 

structures of performance, could be considered as indirect evidence for the 

nature of the underlying system, Delignieres and colleagues recently performed 

computer simulations of different kinds of systems. The authors showed that pink 

noise time series are generated when distinct networks of components are 

simultaneously involved in the generation of performance (Delignières & 

Marmelat, 2013; Delignières et al., 2011). This interaction-dominant model is at 

odds with models that assume localized central pattern generators (e.g., 

Dimitrijevic, Gerasimenko, & Pinter, 1998). This pleads for a model that explains 

performance based on simultaneously interacting components, rather than a 

causal chain involving a control mechanism (e.g., the brain) that activates the 

actions to be performed.   

 In the Chapters 4 and 5 we proceeded from the assumption that PM is a 

dynamical and complex process, evidence for which has been provided in 

different recent studies (Briki, Den Hartigh, Bakker, & Gernigon, 2012; Briki et al., 

2012; 2013; Briki, Den Hartigh et al., 2014; Gernigon et al., 2010). With this 

assumption in mind, the main focus in these studies was to examine how the 

dynamics of PM can be characterized, by scaling a control parameter that moves 

PM from its positive to its negative state. In other words, we focused on the 

properties of the patterns in PM-related variables when athletes undergo 

progress and regress in relation to their desired goal, which is in line with the HKB 

method (Haken et al., 1985). Our finding in Chapter 4 that team members’ 

psychological and behavioral states converge more rapidly on a negative PM than 

a positive PM, suggests that positive PM is a weaker kind of equilibrium state 

than negative PM (i.e., negative PM would be a stronger attractor than positive 
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PM; see also Briki et al., 2013). Subsequently, Chapter 5 demonstrated a higher 

resistance to enter a negative PM when having experienced successes in previous 

competitions compared to having experienced losses in previous competitions. 

An additive model involving independent variables to explain PM at a certain 

moment is therefore unlikely to provide an explanation for the PM process. More 

specifically, the rate at which our thoughts, perceptions, and behaviors converge 

to a positive or negative PM state, is embedded in a performance history that 

takes place within a competition (Chapter 4), but also across multiple competition 

rounds (Chapter 5). To date, an actual dynamic systems (mathematical) model of 

PM has not been proposed, this remains a challenge for future research. One 

possibility might be to use the HKB-model, which allows the modeling of attractor 

dynamics and has already been successfully applied to the domains of postural 

coordination (Bardy et al., 2002), human locomotion (Diedrich & Warren, 1995), 

economics (Barnett & He, 1999), and speech categorization (Tuller, Case, Ding, & 

Kelso, 1994). 

 One chapter in which we explicitly modeled the emergence of performance 

processes, was chapter 6. Based on a coupled logistic growth equation, we 

simulated networks consisting of sparsely connected components, and we found 

that the patterns of ability growth corresponded to typical characteristics of 

talent and excellence development according to previous literature. In this study 

we also manipulated the network in a way that we removed the links between 

the components, thereby simulating a model in which ability development is 

influenced by the sum of ―rather than the interactions among―the components. 

Because this latter model did not reveal patterns resembling characteristics of 

excellence according to the literature, our approach provides a new, and 

plausible notion of the process underlying talent and excellence development, 

based on a comparison of earlier literature and archival data with model 

simulation results. 

 Taken together, theoretically, findings of this dissertation do have explanatory 

power in terms of revealing the kind of model that can explain the emergence of 

psychological and performance states, and/or how psychological and 

performance patterns converge towards another pattern when being perturbed 

(i.e., from positive to negative PM and vice versa; see Chapters 4 and 5). Given 

that our findings suggest that the principle explanation of human performance 
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processes may lie in the ongoing interactions between (causal) components, to 

which specific dynamical models apply (e.g., dynamic network models), the future 

research agenda can be adapted accordingly. In other words, instead of trying to 

fit additive linear models involving sets of determinants, we should (also) explore 

alternative models that account for the interaction-dominant processes in which 

the components are involved. I therefore recommend a three-pronged research 

strategy consisting of theory development, computer simulations, and empirical 

studies, each of which should inform the other two and lead to the improvement 

of the dynamic model explaining complex human performance processes across 

different levels and time scales (cf. McGrath et al., 2000).  

7.5  Implications for Practice 

 Although this thesis was of a fundamental nature, and we have not 

investigated practical applications in this thesis, suggestions can be made that are 

specifically focused on positively altering psychological and performance patterns 

in terms of complexity or stability. For instance, with regard to Chapter 2, 

particularly expert soccer players seem to have the skill to construct complex 

representations of the actions taking place, which means that they are superior in 

extracting higher order patterns of information from the game plays. This is in 

line with Savelsbergh and colleagues, who stipulated that it is not so much a 

matter of gaze behavior per se (i.e., the kinds of information players look at, such 

as the ball or players on the field), but rather of how soccer players are able to 

use the information they perceive that distinguishes the elite adult players 

(Savelsbergh, Haans, Kooijman, & Van Kampen, 2010; Savelsbergh, Onrust, 

Rouwenhorst, & Van der Kamp, 2006). Although we have not examined the actual 

actions and decision making of the soccer players during an actual game, it is 

plausible that the skill to integrate information during game plays at higher 

complexity levels goes hand-in-hand with successful actions and decision making. 

For example, perceiving that a player ‘chooses position’ probably affords the 

action to chase or cover that player, whereas perceiving that same action as a 

player who ‘sprints’ may not afford such actions. In order to monitor or evaluate 

players’ ability to integrate the information on the field at high complexity levels 

(i.e., perceive patterns during ongoing game plays), coaches could apply the user-

friendly coding system that we constructed (De Meij et al., 2012).  
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 Chapter 3 showed that elite athletes display a pattern of variation suggesting 

that the motor system finds itself in a critical state allowing different modes of 

behavior (Van Orden et al., 2003). This is in line with the assumption that athletes 

should be flexible yet stable in their behaviors, in order to execute coordinated 

movements, while at the same time adjust in an ongoing athlete-environment 

interaction (e.g., Davids et al., 2003; Seifert et al., 2013). In the specific case of 

rowing, we may therefore cast doubt on a training practice in which athletes have 

to learn to repeatedly reproduce the exact same or ideal movement, and to 

minimize the variation from stroke-to-stroke. Following the results we found, 

another strategy could be considered, namely to let rowers practice at “the edge” 

or in a pink noise rhythm in order to stimulate complexity (cf. Chow et al., 2010; 

Marmelat, Torre, Beek, & Daffertshofer, 2014). Marmelat et al. (2014) have 

recently provided gait training to participants, which consisted of walking in line 

with an auditory metronome. The authors varied the pattern of interval variation 

of the metronome and found that (only) a pink noise pattern of variation elicited 

a pink noise gait pattern. Hence, to improve (coordination in) cyclical 

performance, which includes rowing, training according to a pink noise pattern 

could be a potential strategy.   

 If we take the above-mentioned idea one step further, we might speculate 

that adaptive behavior could be facilitated when coaches help athletes to explore 

the meta-stable regions of their performance landscape (e.g., Chow et al., 2011). 

In order to do so, rather than prescribing an athlete to practice the same 

movements repeatedly, a coach could place an athlete in a situation in which 

different (creative) performance solutions are available. For instance, Hristovski, 

Davids, Araújo, and Button (2006) showed that boxers were able to perform a 

diversity of actions (hooks, jabs, uppercuts) when they were at a certain 

(medium) distance from their target, thereby minimizing “mode-locked” 

behaviors and maximizing the possibility to learn different action patterns. Taken 

together, in order to stimulate the coordinated, yet flexible behaviors that elite 

athletes should develop, and which are typical for complex dynamic systems, 

practitioners such as coaches could attempt to introduce adaptive noise (i.e., 

functional variability) in the practice regimen (Chow et al., 2011). 

 Regarding PM (Chapters 4 and 5), practical implications could be focused on 

the (in)stability of PM. Findings from different studies, including Chapter 4, 
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suggest that negative PM is triggered relatively easy compared to positive PM 

(Briki, Den Hartigh, Hauw et al., 2012; Briki et al., 2013; Gernigon et al., 2010). 

Strategies or interventions should thus attempt to improve the stability of a 

positive PM pattern in order to delay the emergence of negative PM. One 

strategy that can be applied within a sports match is to ask for a time out when 

one starts moving away from the victory. This time out may interrupt the 

formation of a (strong) negative PM attractor and provide the time and 

opportunity to recover a positive state (cf. Briki, Doron et al., 2014). Another 

strategy within and outside sports may be to endorse Mastery-approach (MAp) 

goals, that is, aiming to do better than before, or performing a task well (Elliot & 

Church, 1997; Van Yperen, 2003). A recent qualitative study on PM showed that 

MAp goal endorsement helped athletes to maintain positive PM, but also to 

overcome negative PM during a table tennis match or swimming race (Briki, Den 

Hartigh, Hauw et al., 2012). This is in line with general findings across sports, 

business, and education that MAp goals promote self-regulation, the 

maintenance of efforts, and the immersion in task (e.g., Elliot & Church, 1997; 

Elliot & McGregor, 2001; Van Yperen, 2006; Van Yperen, Blaga, & Postmes, 2014, 

in press). 

 Finally, considering talent and excellence development, the practical 

implications should focus on the structure of the individual ability networks 

rather than the components that generally relate to excellence across the 

population6. More specifically, the potential interactions between the 

components should be a principal focus of attention, which means that the 

probability of establishing positive feedback-loops between various ability-

supporting components should be enhanced. This could be attained if the 

‘supporters’ of talent in the child’s environment (coach, family, teacher) 

recognize their role as being (just) one component in the network, and if they 

stimulate ‘complexity’ rather than a mono-disciplinary life-style and/or training 

practice. This means that a coach or teacher, but also parents, should be sensitive 

                                                                 
6 According to recent advances in network science, specific components (driver nodes) 
may guide the dynamics of the network. Importantly, in these cases the controlling 
influence of driver nodes is embedded in, and dependent on, the structure of the dynamic 
network (Liu, Slotine, & Barabási, 2011). A discussion of the potential role of driver nodes 
in an individual’s ability-network is beyond the scope of this dissertation, but can be a 
fruitful avenue for future research. 
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to the child and its environment (e.g., the enthusiasm, engagement in school or 

sports) that signal supportive or competing influences for excellence to develop. 

In other words, the coach or teacher should be adaptive, because he or she is 

situated in an idiosyncratic and changing network that is typical for a particular 

athlete, artist, or scientist, and which involves mutual interactions between 

components. 

 The positive consequences of establishing a complex and rich ability network 

can be twofold. First, a network involving multiple (sparsely) coupled components 

may increase resilience. Although this speculation was not tested as such in 

Chapter 6, it follows from recent advances in network sciences that the higher the 

degree of a node, the less responsive it is to perturbations, or to changes in other 

nodes to which it is connected (Barzel & Barabási, 2013). Indirect support for this 

idea is also provided in earlier literature, showing that psychological and 

environmental variables, such as goal commitment, coping skills, parental 

support, and adequate coaching, influence the development of excellence, and 

more specifically that parental support may act as a buffer to alleviate 

performance-related stress and deal with setbacks (e.g., Baker et al., 2003; Côté, 

1999; Van Yperen, 1995a, 1998, 2009). A second argument is that excellence 

development may generally benefit from hobbies and interests outside the 

performance domain in which the performer wants to excel (Simonton, 2014). 

Examples of this idea include Galileo, who was fascinated by arts, literature, and 

music (Simonton, 2012), the finding that the most creative scientists pursue a 

large number of different (and loosely-related) projects (Gruber, 1989), and the 

proposition that children would benefit from sampling different sports and 

activities in order to facilitate excellence development in a specific sports domain 

at a later age (e.g., Abbott & Collins, 2004; Baker, 2003; Côté, Lidor, & Hackfort, 

2009).   

 Finally, note that the above-mentioned propositions with regard to the 

development of excellence do not correspond to the idea that, primarily, 

deliberate practice should be accumulated in order to develop excellence 

(Ericsson et al., 1993). To date, the talent development policies of some countries 

(e.g., the China policy on developing gymnastics talent) still proceed from the 

idea that children’s ability development benefits most from stimulating the 

ability-development with much deliberate practice in environments that are 
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deprived from many other components. That is, in these programs children are 

often (temporarily) cut from their family and friends, and there seems to be less 

care for the general psychological well-being of the child. Because the network 

model assumes that excellence can be “fed” by multiplicative relationships 

between a variety of components, we may cast doubt on a policy that emphasizes 

just one, or very few, links (e.g., only between ability, coach, and practice). 

However, new empirical studies and simulation studies should be conducted to 

more explicitly test the consequences of different kinds of network structures 

with regard to the development of excellence. 

7.6  Concluding Remarks 

 “Everything is related to everything else, but near things are more related 

than distant things” (Tobler, 1970, p. 236). This quote reflects Tobler’s first law of 

geography, which entails that at the level of the globe, patterns of change are a 

function of (in)directly interrelated components, such as climate, population, land 

use, industries, which are in an ongoing interaction across multiple scales of time 

and space. Tobler’s (1970) law also seems to apply to the relatively small scale of 

human performance. In this thesis we found that (a) ongoing representations 

formed by soccer players involve the structuring of directly observable 

components (e.g., the player with the ball), but also more distant and not directly 

observable components, in particular for expert soccer players; (b) components 

of the human motor system, spanning multiple scales (e.g., processes at the 

levels of cells, muscles, limbs), are in continuous interaction, and the interactions 

are better coordinated for elite rowers; (c) in a performance context PM is 

characterized by ongoing psychological and behavioral changes that are shaped 

by the history of events within and across performances (i.e., competitions); and 

(d) excellence develops over a career or life span through ongoing interactions 

between proximal (directly connected) and more distal (indirectly connected) 

components pertaining to different personal and environmental factors.  

 The idea that everything is related to everything else fits with the premise we 

started from, namely, that the principal mechanism to explain human 

performance processes lies in the underlying complexity. In this thesis we have 

shown that complex performance processes, involving ongoing interactions 

between multiple components, can be captured by applying a complex dynamical 
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systems approach, ranging from empirical studies zooming in on temporal 

processes during specific sport tasks to life-span simulation and archival research 

across sports, arts, business, and science. In all studies we came to the conclusion 

that the patterns we found are likely generated by a set (or network) of 

interacting components, which sheds a new light on the way we should explain 

performance-related processes in real-time and on longer time scales (e.g., during 

excellence development over years). Therefore, I hope that the methods and 

results derived from this thesis open up new lines of research and ultimately lead 

to practical interventions focused on developing and adjusting the dynamical 

structures that shape human performance.  
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Chapter 8: Nederlandse Samenvatting 
(Summary in Dutch) 
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8.1  Overzicht 

 Het leveren van prestaties wordt door vele factoren beïnvloed, die op hun 

beurt kunnen veranderen over tijd en elkaar over en weer beïnvloeden. Zo 

hebben sporters tijdens een wedstrijd allerlei gedachten en gevoelens (bv. 

zelfvertrouwen), die in interactie met omgevingsfactoren (bv. het niveau van de 

tegenstander, beslissingen van de scheidsrechter) tot prestatieveranderingen 

kunnen leiden, wat vervolgens weer kan leiden tot veranderingen in de 

gedachten en gevoelens van de sporter, etcetera. Over de tijdspanne van een 

carriere is een zelfde soort proces te zien. Denk aan een kind dat tennistalent lijkt 

te hebben. De ouders zullen het kind waarschijnlijk stimuleren en trainingen 

betalen. Door het trainen nemen de tennisvaardigheden van het kind toe en 

daarmee bijvoorbeeld ook zijn of haar motivatie om door te gaan. Dit kan 

vervolgens weer invloed hebben op de ondersteuning die het kind krijgt van de 

ouders. Prestatieprocessen zijn dus complex en spelen zich voortdurend af op 

verschillende tijdschalen (korte en lange termijn).  

 De gangbare benadering in de sociale en sportwetenschappen is om de 

verklaring van bepaalde toestanden, zoals psychologische toestanden of prestatie 

uitkomsten, te reduceren tot een aantal specifieke, factoren. Deze benadering 

gaat er dus impliciet vanuit dat psychologische en prestatietoestanden 

veroorzaakt worden door een optelsom van componenten, waarvan de bijdragen 

los van elkaar bestudeerd kunnen worden. Bijvoorbeeld, in vergelijking met niet-

topsporters, heeft de populatie topsporters in het algemeen een betere 

lichamelijk fitheid én betere begeleiding én meer natuurlijke aanleg én betere 

motorische vaardigheden én meer tactisch inzicht is én meer trainingsuren 

gemaakt (Van Rossum & Gagné, 1994). Op basis van ons idee dat psychologische 

en prestatietoestanden waarschijnlijk emergent zijn, stellen we in dit proefschrift 

echter ander soort modellen en technieken voor. In algemene zin wordt met 

emergentie bedoeld dat orderlijke en adaptieve toestanden ontstaan vanuit 

voortdurende interacties tussen verschillende componenten over tijd, waardoor 

de (veranderlijke) toestanden niet direct terug te leiden zijn tot de bijdragen van 

de individuele componenten (Kelso, 1995; Nowak & Vallacher, 1998; Van Geert, 

1994). In dit proefschrift hebben we daarom een complexiteitsbenadering 

toegepast, die uitgaat van de aanname dat toestanden zich niet laten verklaren 
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uit geisoleerde componenten, maar zich ontwikkelen en aanpassen vanuit 

continue interacties tussen componenten (Ottino, 2004). 

 De methoden die we hebben gebruikt zijn relatief onbekend binnen de 

sociale- en sportwetenschappen, maar zijn binnen andere domeinen (bv. 

natuurkunde, economie, biologie) met succes gebruikt om de complexiteit en 

dynamiek van processen in kaart te brengen. Door methoden en technieken van 

de complexiteitsbenadering toe te passen, trachtten de studies in dit proefschrift 

nieuwe inzichten te geven in de processen die ten grondslag liggen aan 

verschillende psychologische toestanden en prestaties op verschillende niveaus 

en tijdschalen (zie Tabel 1 in de Introductie en Figuur 22), zoals (a) de (cognitieve) 

representaties die voetballers continue vormen tijdens fragmenten van 

voetbalwedstrijden, (b) de bewegingen van roeiers tijdens het ergometer roeien, 

(c) veranderingen in psychologische en prestatievariabelen tijdens positief en 

negatief momentum en (d) de ontwikkeling van excellente prestaties 

(talentontwikkeling). De afzonderlijke studies en bevindingen worden hieronder 

uitvoeriger besproken. 
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Figuur 22. Overzicht van het proefschrift. De verschillende hoofdstukken 

behandelen complexiteit op verschillende niveaus en tijdschalen: Hoofdstuk 2 

richt zich op de complexiteit van cognitieve vaardigheden op basis van 

verbalisaties tijdens voetbal spelfragmenten; Hoofdstuk 3 belicht de complexiteit 

van de dynamische organisatie die ten grondslag ligt aan roeislagen gedurende 

een ergometer sessie; Hoofdstuk 4 richt zich op de ontwikkeling van een complex 

fenomeen―psychologisch momentum (PM)―binnen een wedstrijd op roei-

ergometers; Hoofdstuk 5 test de connectie tussen PM binnen een wedstrijd en 

PM over verschillende wedstrijden; Hoofdstuk 6 verklaart de lange termijn 

ontwikkeling van excellente prestaties vanuit een complex, dynamisch model.  

 

Hoofdstuk 2 

 In hoofdstuk 2 hebben we de complexiteit onderzocht van de representaties 

die voetballers vormen tijdens het kijken naar voetbalfragmenten. Deze 

representaties vormen zich door componenten te integreren, zoals de posities en 

bewegingen van de spelers op het veld (Helsen & Starkes, 2000), of de acties die 
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uitgevoerd worden door de spelers, zoals de acties van de speler in balbezit, 

verdedigende acties, etcetera (Roca et al., 2011). Eerder onderzoek heeft al 

aangetoond dat experts (professionele voetballers) meer componenten lijken te 

zien, zoals de speler met de bal en de (vrije) ruimtes rondom de speler. Het is 

echter nog onbekend hoe voetballers verschillende componenten aan elkaar 

koppelen, wat de basis vormt voor het spelinzicht (de representaties) gedurende 

de wedstrijd, of fragmenten daarvan (Roca et al., 2011). In deze empirische studie 

hebben we een codeerboek ontwikkeld gebaseerd op Skill Theory (Fischer, 1980; 

Fischer & Bidell, 2006). Skill Theory veronderstelt dat complexere inzichten of 

representaties gebaseerd zijn op het koppelen van simpele componenten (bv. “de 

speler schiet de bal naar de ander”) tot complexere structuren (bv. “de linksback 

geeft een steekpass op de nummer 10”; hiervoor is inzicht vereist in de posities 

van de spelers op het veld, de posities van de medespeler en het soort pass dat 

gegeven wordt). De complexiteit van de representaties, zoals deze voorturend 

worden gevormd tijdens het kijken naar spelfragmenten, hebben we op basis van 

ons codeerboek onderzocht bij experts (professionele voetballers), bijna-experts 

(hoofdklasse spelers) en niet-experts (spelers in een lagere amateurklasse).  

 De resultaten lieten zien dat spelers met meer expertise representaties 

vormen op een hoger complexiteitsniveau. Daarnaast vonden we dat spelers met 

meer expertise relatief vaker een hoger complexiteitsniveau scoorden op acties 

buiten de speler in balbezit (loopacties en vededigende acties). Samenvattend 

illustreert dit hoofdstuk hoe de cognitieve vaardigheden van voetballers gemeten 

kunnen worden in termen van complexiteit; het integreren van interacties tussen 

verschillende componenten bij het vormen van (voortdurende) representaties.  

Hoofdstuk 3 

 Terwijl hoofdstuk 2 zich vooral richtte op cognitieve vaardigheden tijdens het 

kijken naar sportfragmenten, keken we in hoofdstuk 3 naar de complexiteit van 

de motorische organisatie die ten grondslag ligt aan de daadwerkelijke uitvoering 

van een sporttaak.  Specifiek hebben we in dit hoofdstuk de variatie over tijd in 

de roeislagen van roeiers tijdens een ergometer sessie onderzocht. Volgens de 

literatuur geven temporele structuren van variatie namelijk inzicht in de 

onderliggende dynamische organisatie (Van Orden et al., 2003). Als 

opeenvolgende metingen onafhankelijk zijn van voorafgaande metingen, zullen er 
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willekeurige variaties te zien zijn van meting tot meting (‘white noise’). Een 

dergelijk patroon zal naar voren komen als iedere volgende roeislag opnieuw 

wordt aangestuurd door opeenvolgende processen (denk aan een motorisch 

programma, een opeenvolging van spiercommando’s; Keele, 1968). Zoals eerder 

aangegeven vertrokken we in dit proefschrift echter vanuit het standpunt dat 

prestaties (in dit geval de roeislagen) ontstaan vanuit complexiteit, wat betekent 

dat de componenten voortdurend met elkaar in interactie zijn op verschillende 

tijdschalen. Een dergelijk proces laat zich uitdrukken in een meer gestructureerd 

patroon van variatie, dat ‘pink noise’ wordt genoemd (Kello et al., 2010; Van 

Orden et al., 2003). Wanneer een serie metingen pink noise laat zien, zijn de 

metingen lange-termijn afhankelijk (Diniz et al., 2011). In deze studie zou dat 

bijvoorbeeld betekenen dat de 400ste roeislag niet onafhankelijk is van de 300ste 

slag, de 100ste slag, etcetera. 

 Om deze aanname te testen hebben we roeiers van twee roeiploegen 

gevraagd om 550 roeslagen te maken in hun voorkeursritme. Vervolgens hebben 

we de variatie in de tijdsintervallen tussen de krachtpieken van de roeislagen 

genomen als analysemaat en hierop een nonlineaire tijdserie-analyse toegepast 

(detrended fluctuation analysis; Peng et al., 1993). De resultaten lieten zien dat 

de temporele structuur van de variatie voor iedere deelnemer significant afwijkt 

van ‘white noise’ en dat met name de roeiers in de beste roeiploeg een patroon 

hebben dat dichtbij ‘pink noise’ ligt. Deze resultaten ondersteunen het idee dat er 

een complexe motorische organisatie ten grondslag ligt aan de uitvoering van 

cyclische sportbewegingen (i.e., roeislagen). Omdat de tijdseries van de roeiers in 

de betere roeiploeg daarnaast meer ‘pink noise’ lieten zien, zou de complexiteit 

van de motorische organisatie een indicator kunnen zijn van de expertise van een 

roeier. Dit zal echter verder onderzocht moeten worden. 

Hoofdstuk 4 

 In de vorige hoofdstukken onderzochten we complexiteit in situaties waarin 

de onderzoeksdeelnemers (sporters) zo min mogelijk werden beïnvloed door 

andere factoren tijdens de metingen. Binnen een prestatiecontext (op school, in 

een organisatie, op het sportveld) streven mensen echter vaak specifieke doelen 

na en de voortgang kan door allerlei factoren beïnvloed worden, zoals het scoren 

van een punt in een sportwedstrijd, beslissingen van de scheidsrechter, het 
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publiek, de acties van de tegenstander, etcetera. Wanneer een persoon of team 

ziet dat het doel (bv. het winnen van de wedstrijd) dichterbij komt, of juist verder 

weg raakt, kan de persoon of het team in een soort positieve of negatieve spiraal 

komen, dit wordt positief of negatief psychologisch momentum (PM) genoemd 

(Briki, Den Hartigh, Hauw et al., 2012). In Hoofdstuk 4 hebben we getracht om de 

eerste inzichten te verschaffen in hoe de dynamiek van team PM er uitziet, op 

basis van een methode om complexe dynamische processen experimenteel te 

onderzoeken (de HKB-methode; Haken et al., 1985). 

 In deze studie namen teams, bestaande uit twee roeiers, het op tegen een 

virtuele tegenstander in een ergometer race. Tijdens de race maten we 

voortdurend de inspanningen van de roeiers―de kracht van de roeislagen―en de 

coordinatie tussen de roeislagen van de roeiers. Om inzicht te krijgen in de 

dynamiek van belangrijke psychologische teamvariabelen, verschenen er tijdens 

de race iedere minuut twee vragen op het scherm: Een vraag over taakcohesie en 

een vraag over ‘collective efficacy’. Taakcohesie is de mate waarin teamleden 

samenwerken om een specifiek doel te bereiken (Carron & Hausenblas, 1998), 

collective efficacy is de mate waarin teamleden vertrouwen hebben in hun 

vaardigheden om de teamtaak succesvol te uit te voeren. De teams namen deel 

aan twee races en voorafgaand aan iedere race gaven we aan dat het doel was 

om een voorsprong van 8 seconden te pakken op de tegenstander. De races 

waren echter vooraf geprogrammeerd. In een positief momentum race kwamen 

de teams langzaam terug van een bijna nederlaag (een achterstand van 6 

seconden) tot het punt dat zij vlakbij het doel waren (een voorsprong van 6 

seconden). In de andere race, een negatief momentum race, was het scenario 

exact het tegenovergestelde.  

 De variabelen taakcohesie en collective efficacy lieten neerwaartse 

veranderingen zien in de negatief momentum race, die sterker waren dan de 

opwaartse veranderingen in de positief momentum race. Het lijkt erop dat teams 

sneller een negatieve PM ervaring ontwikkelen dan een positieve PM ervaring. Dit 

werd bevestigd door de uitkomst dat de inspanningen van de teams sneller 

afnamen in de negatief momentum race en dat de coördinatie tussen de roeiers 

beter was in de positief momentum race. De bevinding dat de exact 

symmetrische race scenarios verschillende resultaten opleverden, suggereert dat 

PM een dynamisch fenomeen is dat typische eigenschappen laat zien―met name 
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tijdsafhankelijkheid―die kenmerkend zijn voor complexe dynamische systemen. 

We vonden namelijk dat de psychologische toestanden en prestaties van de 

teams niet alleen door de positie in de race werden gevormd, maar door de 

positie in de race in functie van de recente geschiedenis (winnen of verliezen van 

seconden eerder in de race).  

Hoofdstuk 5  

 Tot nu toe heeft onderzoek naar PM vooral gekeken naar psychologische en 

(soms) prestatieveranderingen binnen sportwedstrijden (zie Hoofdstuk 4). PM 

kan zich echter ook ontwikkelen over wedstrijden heen, bijvoorbeeld tijdens een 

toernooi of gedurende een seizoen (Adler, 1981). Volgens de theorie van 

dynamische complexe systemen, zijn processen die zich op korte termijn afspelen 

gekoppeld aan processen die zich op langere termijn afspelen (Newell et al., 

2001). Omdat wij veronderstellen dat PM een complex dynamisch fenomeen is, 

hebben we in dit hoofdstuk getest hoe lange termijn PM zich ontwikkelt op basis 

van “losse” wedstrijden en hoe de dynamiek van PM gedurende een wedstrijd 

gevormd wordt door het opgebouwde lange termijn PM.    

 Voor deze studie hadden we sporters gevraagd om deel te nemen aan een 

toernooi op roei-ergometers. We vertelden de deelnemers dat zij geld konden 

winnen wanneer zij drie punten haalden, die ze konden verdienen door middel 

van het winnen van wedstrijdraces. De winnaar van een race was diegene die als 

eerste een voorsprong van 9 seconden pakte op de tegenstander. Van tevoren 

hadden we de races echter al geprogrammeerd en de deelnemers werden 

verdeeld over twee groepen: Eén groep won de eerste twee races (positief 

momentum groep) en de andere groep verloor de eerste twee races (negatief 

momentum groep). Om de lange termijn PM ervaring te meten, gaven we de 

deelnemers voorafgaand aan de tweede en derde race een korte vragenlijst met 

daarin vragen gerelateerd aan PM: De perceptie van momentum en self-efficacy. 

Over de races heen vonden we dat de groep die de eerste twee races won 

positief PM ontwikkelde, terwijl de groep die de races verloor negatief PM 

ontwikkelde. 

 In de derde race van het toernooi was het raceverloop gemanipuleerd volgens 

de richtlijnen van de HKB methode (Haken et al., 1985). In deze race gingen alle 

deelnemers van een bijna overwinning (een voorsprong van 6 seconden) 
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langzaam op de nederlaag af (een achterstand van 9 seconden). Om de dynamiek 

van PM in de race te onderzoeken, beantwoordden de deelnemers iedere minuut 

tijdens de race een vraag gericht op hun perceptie van momentum in deze race 

en hun self-efficacy. Daarnaast maten we voortdurend hun inspanningen (i.e., de 

kracht van de roeislagen). De resultaten lieten zien dat de momentumperceptie 

en self-efficacy sneller afnamen voor de groep die de eerste twee wedstrijden 

had verloren (de groep die negatief PM had ontwikkeld over de wedstrijden 

heen) dan voor de groep die de eerste twee wedstrijden had gewonnen (de groep 

die positief PM had ontwikkeld over de wedstrijden heen). Daarnaast lagen de 

inspanningen tijdens de race hoger voor de groep die positief PM had ontwikkeld 

gedurende het toernooi.   

 De bevindingen samen geven een dieper inzicht in de tijdsafhankelijkheid van 

PM dan eerdere studies (Briki et al., 2013; Gernigon et al., 2010; Hoofdstuk 4), 

door te laten zien dat korte termijn PM processen (binnen een race) gekoppeld 

zijn aan langere termijn PM processen (over races heen). Specifieker, een sporter 

ontwikkelt tijdens een wedstrijd minder snel negatief PM als deze een postitief 

PM heeft ontwikkeld op de lange termijn (i.e., over wedstrijden heen).  

Hoofdstuk 6 

 In de voorgaande hoofdstukken lag de nadruk op het onderzoeken van 

complexe dynamische processen op relatief korte tijdschalen (tijdens prestaties 

zelf en over enkele wedstrijden heen). Dit soort processen kan vaak onderzocht 

worden binnen de specifieke omgeving waarin de prestaties plaatsvinden. Bij 

processen die een langere tijd in beslag nemen en die verspreid zijn over 

verschillende omgevingen is dit echter lastig. Denk hierbij aan talentontwikkeling, 

of de ontwikkeling van excellente prestaties. Onderzoekers en filosofen hebben 

zich bijna 150 jaar beziggehouden met de vraag welke factoren ten grondslag 

liggen aan de ontwikkeling van excellentie. Terwijl deze discussie nog steeds aan 

de gang is (Ericsson, 2013; Ericsson et al., 2013; Gagné, 2013), kozen we in 

hoofdstuk 6 voor een andere aanpak. Zonder direct in te gaan op specifieke 

voorspellende factoren, was het doel van dit hoofdstuk om te onderzoeken 

vanuit welk soort model excellentie zich ontwikkelt. We hebben modellen 

gesimuleerd op een computer, op basis waarvan individuele 

talentontwikkelingstrajecten verklaard kunnen worden, maar ook interindividuele 
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verschillen met betrekking tot domein-specifieke verdelingen van excellente 

prestaties.  

 We startten vanuit het idee dat excellentie zich ontwikkelt over tijd van een 

beginnersniveau tot een uiteindelijk (excellent) niveau. Daarnaast gingen we er in 

ons model vanuit dat verschillende factoren een rol spelen, die veranderen over 

tijd en elkaar direct en indirect kunnen beïnvloeden, denk bijvoorbeeld aan de 

tennisvaardigheid van een kind, training, ondersteuning van de ouders, steun van 

de coach, etcetera (Abbott et al., 2005; Baker et al., 2003; Phillips et al., 2010). 

We hebben daarom modellen gesimuleerd in de vorm van netwerken, die 

bestaan uit 10 componenten, waarbij ieder component direct of indirect 

gekoppeld is aan een aantal andere componenten (bv. de coach beïnvloedt de 

vaardigheid van een kind, die vervolgens de ondersteuning van de ouders 

beïnvloedt, de ondersteuning van de ouders beïnvloedt de vaardigheid ook weer 

positief, etcetera).  

 De modelsimulaties genereerden een aantal patronen die kenmerkend zijn 

voor de ontwikkeling van talent en excellentie volgens eerdere literatuur (zie 

Simonton, 2001), zoals (a) een bepaald talent kan op verschillende leeftijden naar 

boven komen bij verschillende individuen, (b) de onderliggende componenten die 

talentontwikkeling beïnvloeden kunnen veranderen over tijd, (c) de 

ontwikkelingstrajecten kunnen verschillende vormen aannemen voor 

verschillende individuen en (d) vroege indicatoren van latere excellente 

vaardigheden zijn vaak afwezig. Daarnaast genereerden de modelsimulaties 

rechtsscheve verdelingen van uiteindelijke prestatie output, die in vrijwel ieder 

prestatiedomein voorkomen (O’Boyle & Aguinis, 2012). Om dit laatste punt te 

verduidelijken, het volgende voorbeeld illustreert een dergelijke rechtsscheve 

verdeling van prestatie-output in sport. In totaal hebben 404 tennissers hebben 

ooit een ATP toernooi gewonnen. Van deze spelers hebben 74 spelers één 

toernooi gewonnen en slechts drie uitzonderlijk goede spelers hebben meer dan 

80 toernooien gewonnen: Federer, Lendl en Connors (www.atpworldtour.com, 

geraadpleegd op 5 november 2014).  

 De resultaten van de simulaties maken het zeer aannemelijk dat de 

ontwikkeling van excellentie gekenmerkt kan worden als een complex dynamisch 

proces. Met andere woorden, excellentie ontwikkelt zich waarschijnlijk vanuit 

dynamische netwerkstructuren. Om het model concreet te kunnen gebruiken 



Summary in Dutch 

174 

voor bijvoorbeeld de praktijk, zal toekomstig onderzoek zich meer moeten 

verdiepen in de eigenschappen van bepaalde individuele netwerkstructuren. 

Hierbij kan gedacht worden aan welk soort talentnetwerk het beste “klappen” 

kan opvangen, hoe verschillende netwerken reageren op bepaalde 

veranderingen, zoals een andere school of een andere coach, etcetera.    

8.2  Conclusie 

 Dit proefschrift heeft laten zien hoe prestatie-gerelateerde processen, waarbij 

meerdere componenten met elkaar in interactie zijn en veranderen over tijd, 

onderzocht en begrepen kunnen worden door een complexiteitsbenadering toe 

te passen. We hebben gebruik gemaakt van Skill Theory (hoofdstuk 2), 

nonlineaire tijdserie-technieken (hoofdstuk 3), de HKB methode (hoofdstukken 4 

en 5) en computersimulaties (hoofdstuk 6). De resultaten van de verschillende 

studies lieten zien dat (a) voetballers met meer expertise complexere 

representaties vormen terwijl zij naar spelfragmenten kijken, (b) er een complexe 

motorische organisatie ten grondslag lijkt te liggen aan de uitvoering van 

roeislagen, met name voor de betere roeiers, (c) PM gekenmerkt wordt door 

psychologische- en prestatieveranderingen die tijdsafhankelijk zijn en (d) 

excellente prestaties waarschijnlijk ontwikkelen vanuit voortdurende interacties 

tussen direct en indirect gekoppelde componenten.  

 De resultaten van dit proefschrift tonen aan dat een complexiteitsbenadering 

waardevolle technieken biedt om tot nieuwe inzichten te komen in hoe, wanneer 

en waarom bepaalde psychologische toestanden en prestaties veranderen. De 

uitgevoerde studies waren met name fundamenteel van aard, maar kunnen 

concrete handvatten bieden voor toekomstig onderzoek en praktische 

toepassingen. Relevant lijkt met name een focus op de interactie tussen 

componenten over tijd, of de structuur van het netwerk waarin de componenten 

actief zijn. Dit betekent dat het van belang is om te bekijken hoe op een positieve 

manier ingegrepen kan worden op de interacties of de eigenschappen van de 

structuren. Bijvoorbeeld, in hoofdstuk 3 suggereerden we dat er een complexere 

dynamische organisatie ten grondslag ligt aan de roeislagen van de betere 

roeiers, waardoor zij stabiel zijn in hun roeislag, maar tegelijk flexibel om zich aan 

te passen. Onderzocht kan worden of deze stabiele flexibiliteit getraind kan 

worden, bijvoorbeeld door roeislagen te oefenen volgens een ‘pink noise’ 
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patroon met behulp van een metronoom (zie Marmelat et al., 2014). Een 

dergelijke strategie kan afgezet worden tegen een meer gangbare strategie, die 

vooral het ‘inslijpen’ van roeislagen benadrukt volgens vaste slagritmes. 

 In het geval van PM kan bekeken worden welke strategieën ervoor zorgen dat 

psychologische en prestatievariabelen minder snel convergeren naar een negatief 

PM patroon (Briki, Den Hartigh, Hauw et al., 2012). In dit geval kan gedacht 

worden aan het vragen van een time-out in een wedstrijd. Door een time-out 

krijgt kan het systeem (de PM toestand) de tijd krijgen om zich te 

‘herorganiseren’ (cf. Briki, Doron et al., 2014).  

 Met betrekking tot de ontwikkeling van excellentie lijkt een belangrijk 

aandachtspunt om positieve koppelingen te introduceren of te versterken in het 

netwerk, om op die manier de ontwikkeling te stimuleren en een vangnet te 

hebben voor tegenslagen. Het belang van het vestigen van een optimale 

netwerkstructuur is bijvoorbeeld terug te zien in het werk van Van Yperen. Terwijl 

de meeste studies op het gebied van talentontwikkeling gericht waren op het 

belang van natuurlijke aanleg en training, heeft Van Yperen aangetoond dat 

ondersteuning van ouders en bepaalde psychologische componenten zoal doel 

commitment, een belangrijke rol spelen in de ontwikkeling van een sporter (Van 

Yperen, 1995a; 1998; 2009). In netwerktermen lijkt het van belang dat de 

vaardigheid van een sporter zich ontwikkelt in een rijk netwerk, waarbinnen de 

kans op positieve links tussen verschillende componenten wordt vergroot (voor 

een interessant praktijkvoorbeeld, zie Van Yperen, 1995b). Hiermee 

samenhangend is het aannemelijk dat rijke netwerken samengaan met een 

positieve ontwikkeling tijdens en na de sportcarrière (maar ook carrières in 

andere prestatiedomeinen), in vergelijking met opleidingen waarbinnen kinderen 

bijvoorbeeld in een internaat wonen, hard worden aangepakt en de voornaamste 

focus op slechts één component ligt: veel trainen.  

 Samenvattend heeft dit proefschrift verschillende toepassingen van een 

complexiteitsbenadering gedemonstreerd. Op basis van deze benadering zijn we 

tot nieuwe inzichten gekomen in de complexiteit en dynamiek van 

prestatieprocessen, zowel tijdens de uitvoering van (sport)taken als gedurende 

de langere termijn waarop talent zich ontwikkelt. Een volgende uitdaging is om 

de complexe en dynamische processen, die ten grondslag liggen aan 
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psychologische- en prestatieprocessen, verder te specificeren en te vertalen naar 

concrete toepassingen voor de praktijk.    
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Chapter 9 : Résumé en Français        
(Summary in French) 
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9.1  Vue d’Ensemble 

 La performance est influencée par de nombreux facteurs qui évoluent au 

cours du temps et s’influencent mutuellement. Par ailleurs, en cours de 

performance, un athlète passe par de nombreux états psychologiques. La 

confiance en soi, par exemple, associée aux facteurs environnementaux tels que 

le niveau de l’adversaire ou les décisions des arbitres, peut induire des variations 

dans la performance de l’athlète, elles-mêmes pouvant déclencher l’irruption de 

pensées et de sentiments particuliers, et ainsi de suite. Tout au long d’une 

carrière, un processus similaire est observable. Prenons le cas d’un enfant 

semblant avoir des prédispositions pour le tennis. Les parents encourageront 

probablement leur enfant en lui offrant des entraînements. Ceux-ci engendreront 

des progrès en termes d’amélioration de ses compétences, laquelle nourrira une 

motivation supplémentaire et l’envie de continuer dans ce sport. À son tour, 

cette motivation, pourra influencer le soutien de ses parents. Les processus 

entraînant la performance sont donc complexes et constamment influencés par 

des paramètres agissant tant à court qu'à long terme. 

 L'approche traditionnelle en psychologie et sciences du sport consiste à 

réduire l'explication de l’occurrence de certains états, comme par exemple les 

conséquences psychologiques d’un succès, à un certain nombre de facteurs 

spécifiques et essentiellement indépendants. De ce fait, cette approche considère 

implicitement que les états psychologiques et les performance sont déterminés 

par une addition d’éléments dont les contributions peuvent être analysées 

indépendamment les unes des autres. Par exemple, l’appartenance à l’élite 

mondiale de certains athlètes de haut niveau est classiquement imputée à une 

meilleure forme physique, des meilleurs entraîneurs, davantage de talent naturel, 

des facultés motrices supérieures, une meilleure vision stratégique, ainsi qu’un 

plus gros volume d'entraînement, comparativement aux autres sportifs (Van 

Rossum & Gagné, 1994). D’autres modèles et approches, basés sur notre 

hypothèse que les états psychologiques et la performance sont probablement 

émergents, sont exposés dans cette thèse. De manière générale, l’émergence est 

décrite par des états adaptatifs organisés émergeant de l’interaction de plusieurs 

composants au cours du temps. Un état (changeant) ne peut donc être 

directement corrélé aux valeurs des composantes individuelles du système 

duquel il émerge (Kelso, 1995; Nowak & Vallacher, 1998; Van Geert, 1994). Par 
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conséquent, une approche de la complexité est adoptée dans cette thèse, fondée 

sur la supposition qu’il est virtuellement impossible d'expliquer les différents 

états par des facteurs isolés, mais qu’ils évoluent et s'adaptent aux interactions 

continues entre différents éléments d’un système complexe (Ottino, 2004). 

 Certaines méthodes utilisées dans cette thèse sont relativement peu connues 

en psychologie, que celle-ci soit appliquée au sport ou non. Mais ces méthodes 

sont employées avec succès dans d'autres domaines, tels que la physique, 

l'économie ou la biologie, pour rendre compte de la complexité et de la 

dynamique des processus. En appliquant les méthodes et techniques de 

l'approche de la complexité, ce travail de recherche tente d’apporter de 

nouveaux éclairages aux phénomènes sous-jacents aux divers états 

psychologiques et de la performance, ce à différentes échelles temporelles (cf. 

tableau 1 et figure 22), tels que (a) les représentations (cognitives) que les 

footballeurs élaborent en continu lors de séquences de match, (b) les 

mouvements des rameurs sur ergomètre, (c) les changements des variables 

psychologiques et des performances lors de l’expérience  d’un momentum positif 

(spirale ascendante) ou d’un momentum négatif (spirale descendante), et 

finalement, (d) le développement de la performance excellente (développement 

du talent). Les recherches spécifiques menées à ces fins ainsi que leurs résultats 

sont développés ci-dessous. 
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Figure 23. Vue d'ensemble de la thèse. Le chapitre 2 se concentre sur la 

complexité des capacités cognitives, telle que capturée via la verbalisation sur des 

extraits de vidéo de matches de football. Le chapitre 3 traite de la complexité de 

l'organisation dynamique de mouvements effectués par des rameurs lors d’une 

tâche d’aviron sur ergomètre. Le chapitre 4 est consacré à l’étude du 

développement d’un phénomène complexe―le momentum psychologique―lors 

d’une course d’aviron sur ergomètre. Le chapitre 5 teste la relation entre le 

momentum psychologique expérimenté lors d’une course et le momentum 

psychologique expérimenté sur plusieurs courses. Le chapitre 6 propose une 

explication du développement à long terme de la performance excellente basée 

sur un modèle dynamique et complexe. 

 

Chapitre 2 

 Dans le chapitre 2, la complexité des représentations que les joueurs de 

football élaborent lors du visionnage d’extraits vidéo est étudiée. Ces 

représentations sont formées par intégration d’éléments tels que les positions et 
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mouvements des joueurs sur le terrain (Helsen & Starkes, 2000) ou les actions 

réalisées par ceux-ci, comme les actions de joueurs en possession du ballon, les 

actions défensives, etc. (Roca et al., 2011). Des recherches ont démontré que les 

experts (joueurs de football professionnels) ont tendance à percevoir davantage 

d’éléments, tels que le joueur possédant la balle et les espaces (libres) autour de 

celui-ci que les non experts (Roca et al., 2011). Cependant, la façon dont les 

joueurs de football font le lien entre différents éléments, qui forme la base de la 

vision du jeu et de sa compréhension (i.e., les représentations) pendant un match 

ou un extrait de match, reste incomprise. Lors de notre étude empirique, un 

système  de codage a été développé sur la base de la « théorie de l’habileté » 

(Skill Theory ; Fischer, 1980 ; Fischer & Bidell, 2006). Cette théorie suppose que 

les représentations ou impressions plus complexes sont fondées sur la liaison 

d’éléments simple (e.g., "le joueur envoie la balle à un autre joueur") en une 

structure plus complexe (e.g., "l'arrière gauche fait une passe au numéro 10", ce 

qui requiert une connaissance des positions des joueurs sur le terrain, des 

positions des coéquipiers ainsi que des types de passes). La complexité des 

représentations, telles que celles élaborées en continu lors du visionnage 

d'extrait de match, a été analysée de manière comparative parmi une population 

de joueurs professionnels et non professionnels (joueurs d'une ligue amateur) à 

l’aide du système de codage développé. 

 Les résultats ont montré que les joueurs possédant une plus grande expertise 

élaboraient des représentations d’un niveau de complexité supérieure. De plus, 

ces joueurs étaient capables de comprendre des actions de relativement plus 

grande complexité, au-delà du joueur possédant la balle (e.g., une relance ou une 

action défensive). En résumé, ce chapitre illustre la façon dont les facultés 

cognitives des joueurs peuvent être mesurées en termes de complexité ainsi que 

l’intégration des interactions des différents éléments par la formation (constante) 

de représentations. 

Chapitre 3  

 Alors que le chapitre 2 s’est intéressé aux compétences cognitives à l’œuvre 

au cours de visionnages d'extraits vidéos, le chapitre 3 aborde la complexité de 

l’organisation du comportement moteur à la base de l’exécution d’un exercice 

sportif. Plus spécifiquement, ce chapitre est consacré à l’étude des variations des 
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coups de rame au cours du temps lors d’une épreuve sur un ergomètre. Selon la 

littérature, la structure temporelle des fluctuations des mouvements fournit un 

aperçu de l’organisation dynamique sous-jacente (Van Orden et al., 2003). Si les 

mesures successives sont indépendantes des mesures précédentes, des variations 

aléatoires, appelées « bruit blanc », entre les mesures doivent être observables. 

Ce type de patron est censé apparaître au fil de mouvements contrôlés par un 

processus séquentiel, tels un programme moteur (Keele, 1986). Cependant, 

comme indiqué précédemment, nous avons commencé cette thèse avec le point 

de vue selon lequel la performance (dans ce cas les mouvements d’aviron) résulte 

de la complexité, ce qui signifie que les différents éléments impliqués dans la 

production motrice interagissent constamment entre eux, à différentes échelles 

temporelles. Un tel procédé peut être exprimé en un patron de variation plus 

structuré, appelé « bruit rose » (Kello et al., 2010 ; Van Orden et al., 2003). 

Lorsqu'une série de mesures montre du bruit rose, les mesures effectuées sur un 

grand intervalle de temps sont dépendantes à long terme (Diniz et al., 2011). 

Dans cette étude, par exemple, cela veut dire que le 400e coup de rame n'est pas 

indépendant du 300e, du 100e, etc.  

 Afin de tester cette hypothèse, nous avons demandé à des rameurs de deux 

équipes d'aviron de réaliser 550 coups de rame à leur cadence préférée. Les 

variations des intervalles de temps entre les pics de force de mouvements ont été 

relevées afin d'effectuer une analyse comparative, puis une analyse non linéaire 

des séries temporelles enregistrées (Detrended Fluctuation Analysis ; Peng et al., 

1993). Les résultats ont montré que pour chaque participant la structure 

temporelle de la variance s’écartait significativement du bruit blanc, et plus 

particulièrement, que les rameurs de la meilleure équipe développaient un 

patron de variation proche du bruit rose. Ces résultats supportent l’hypothèse 

selon laquelle une organisation motrice complexe est à la base de l'exécution des 

mouvements sportifs cycliques (i.e., aviron). Par ailleurs, comme les séries 

temporelles des rameurs de la meilleure équipe montrent davantage de bruit 

rose, la complexité de l’organisation motrice, telle que reflétée par le bruit rose, 

peut être un indicateur de l’expertise d’un rameur. Cependant, ceci devra être 

examiné plus profondément. 
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Chapitre 4  

 Dans le chapitre précèdent, nous avons examiné la complexité de situations 

hors contexte de compétition. Cependant, le contexte de compétition (à l'école, 

au travail, en sport), fournit aux acteurs des scénarios originaux d’évolution de 

leur progression (ou regression) à l’égard des buts qu’ils poursuivent, notamment 

au travers de l’évolution du score ou de la performance, des actions de 

l’adversaire, d’événements marquants comme les décisions arbitrales, du 

comportement du public, etc. Lorsqu’une personne ou une équipe voit son 

objectif de victoire s'approcher ou au contraire s’éloigner, cette même personne 

ou équipe peut entrer dans une spirale positive ou négative, appelée le 

momentum positif ou négatif (Briki, Den Hartigh, Hauw et al., 2012). Dans ce 

chapitre 4, nous cherchons à montrer cette dynamique du momentum 

psychologique au sein d'équipes de deux rameurs, telle qu’elle peut se manifester 

en termes de synchronisation motrice interpersonnelle, de performance, de 

cohésion perçue et de sentiment d’efficacité collective. Ce travail s’appuie sur 

une méthode d’investigation développée par Haken et al. (1985) – la méthode 

HKB – dans le but d’examiner expérimentalement la dynamique des processus 

complexes.  

 Dans cette étude, des équipes de deux rameurs sur ergomètre affrontaient un 

adversaire virtuel en compétition. Durant la course, les efforts – la force des 

coups de rame – et la coordination des mouvements des rameurs ont été 

mesurés continuellement. Afin de capturer la dynamique de variables 

psychologiques importantes pour une équipe, deux questions apparaissaient à 

l’écran toutes les minutes au cours de la course : une question sur la cohésion 

opératoire et une sur le sentiment d’efficacité collective. La cohésion opératoire 

représente le degré de coopération des membres d'une équipe pour atteindre un 

objectif commun (Carron & Hausenblas, 1998) ; l’efficacité collective représente 

le degré de confiance des membres de l’équipe dans leur capacité à exécuter 

avec succès la tâche collective. L’équipe a participé à deux courses avant 

lesquelles nous leur indiquions que le but était de battre l’adversaire en prenant 

une avance de 8 secondes sur celui-ci. Cependant, les scénarios de course étaient 

manipulés à l’insu des participants. Dans une des courses, les participants 

expérimentaient un scénario de momentum positif selon lequel l’équipe 

remontait progressivement d’une presque défaite (un retard de 6 secondes) 
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jusqu’à être proche de l’objectif (une avance de 6 secondes). L’autre course 

faisait vivre à l’équipe une expérience de momentum négatif sous la forme d’un 

scénario symétriquement inverse du précédent.  

 Les variables cohésion opératoire et efficacité collective ont montré une 

tendance à la baisse pour la course à momentum négatif. Cette baisse était plus 

prononcée que la hausse observée lors de la course à momentum positif. Il 

semble donc que les équipes développent plus rapidement un momentum 

psychologique négatif qu’un momentum positif. De plus, les efforts de l’équipe 

diminuaient plus rapidement dans la course à momentum négatif et la 

coordination des rameurs était meilleure dans la course à momentum positif. Le 

fait que deux scénarios de course exactement symétriques soient associés à des 

patrons d’évolution des réponses non-symétriques suggère que le momentum 

psychologique est un phénomène dynamique qui montre des caractéristiques de 

dépendance temporelle typiques des systèmes dynamiques complexes. Nous 

avons montré que les états psychologiques des équipes ne sont pas seulement 

influencés par la position dans la course, mais aussi par le scénario selon lequel 

cette position a été acquise (i.e., avoir commencé par perdre ou gagner des 

secondes avant de remonter ou de se faire remonter). 

Chapitre 5  

 Jusque-là, les recherches sur le momentum psychologique se sont 

principalement intéressées aux fluctuations psychologiques et (parfois) et aux 

variations des performances au cours d’une même compétition (cf. chapitre 4). 

Cependant, le momentum psychologique peut se développer à travers plusieurs 

compétitions, par exemple lors d’un tournoi ou sur une saison entière (Adler, 

1981). Selon la théorie de la dynamique des systèmes complexes, les processus 

prenant place à court terme sont liés aux processus apparaissant à plus long 

terme (Newell et al., 2001). Basé sur le principe que le momentum psychologique 

est un phénomène complexe dynamique, ce chapitre avait pour but d’examiner la 

manière dont le momentum psychologique à long terme se développe à partir 

d’une série de matches distincts, ainsi que la manière dont le momentum 

psychologique intra-match est façonné par le momentum psychologique qui s’est 

développé sur le long terme. 
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 Dans cette étude, nous avons demandé à des athlètes de participer à un 

tournoi d’aviron sur ergomètre se déroulant sur plusieurs courses. Nous avons 

informé les participants qu’ils pouvaient gagner de l’argent s'ils marquaient trois 

points sur le total des courses à réaliser, ces points dépendant du nombre de 

victoires. Pour chaque course, le vainqueur était le premier rameur à prendre une 

avance de 9 secondes sur  son adversaire. Les scénarios de course étaient 

manipulés de sorte à répartir les participants sur deux groupes : un groupe 

gagnant les deux premières courses (groupe du momentum positif), le second 

perdant les deux premières courses (groupe du momentum négatif). Nous avons 

demandé aux participants de répondre à un item mesurant le momentum 

psychologique et un item mesurant le sentiment d’auto-efficacité, avant les 

deuxième et troisième courses. Les résultats ont montré que le groupe ayant 

gagné ses deux premières courses développait un momentum psychologique à 

long terme positif, alors que le groupe ayant perdu ses deux premières courses 

développait un momentum psychologique à long terme négatif. 

 Lors du troisième tour du tournoi, le cours de la course fut manipulé selon les 

principes de la méthode HKB (Haken et al., 1985). Dans cette course, tous les 

participants passaient progressivement d’une presque victoire (une avance de 6 

secondes) à une défaite (un écart de 9 secondes). Dans le but d'examiner la 

dynamique du momentum psychologique durant cette dernière course, les 

participants ont répondu toutes les minutes de la course à des questions relatives 

à leurs perceptions de momentum psychologique à leur sentiment d’auto-

efficacité. De plus, l’effort physique exercé par les rameurs a été continuellement 

mesuré. Les résultats ont montré que les perceptions de momentum et d’auto-

efficacité diminuaient plus rapidement au sein du groupe ayant perdu les deux 

premières courses (le groupe ayant développé un momentum psychologique à 

long terme négatif) que pour le groupe ayant remporté les deux premières 

courses (le groupe ayant développé un momentum psychologique à long terme 

positif). En outre, les efforts des participants appartenant au groupe ayant 

développé un momentum psychologique à long terme positif pendant le tournoi 

étaient supérieurs. 

 Ces résultats fournissent une meilleure explication de la dépendance 

temporelle des réactions psychologiques que les précédentes recherches (Briki et 

al., 2013 ; Gernigon et al., 2010 ; chapitre 4) en démontrant que les processus à 
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court terme (au fil d’une course) sont liés aux processus à long terme et vice et 

versa. Plus spécifiquement, un athlète développe moins aisément un momentum 

psychologique négatif s’il a développé un momentum psychologique positif à long 

terme (e.g., sur plusieurs compétitions). 

Chapitre 6 

 Les chapitres précédents portaient sur l’analyse des processus dynamiques 

complexes sur une échelle temporelle relativement courte (pendant un match et 

sur plusieurs matchs). Ce type de processus peut généralement être analysé dans 

l'environnement spécifique dans lequel la performance a lieu. Cependant, pour 

des processus prenant plus de temps et s’étendant sur plusieurs environnements, 

cela devient malaisé. Prenons exemple sur le développement du talent ou le 

développement de la performance excellente. Les chercheurs et les philosophes 

s'interrogent sur les facteurs entraînant le développement de la performance 

depuis près de 150 ans. Bien que le débat sur l’identification de ces facteurs a 

toujours cours (Ericsson, 2013; Ericsson et al., 2013; Gagné, 2013), nous avons 

choisi une approche différente dans le chapitre 6. Sans nous intéresser davantage 

aux facteurs pronostiques spécifiques, nous avons, dans ce chapitre, examiné à 

partir de quel genre de modèle l'excellence se développe. Nous avons simulé 

différents modèles sur ordinateur, susceptibles de rendre compte des trajectoires 

de développement du talent individuel, mais aussi des différences 

interindividuelles associées à des distributions d’excellence spécifique à un 

domaine. 

 Nous avons supposé que l'excellence évolue au fil du temps, de débutant à un 

niveau final (excellent). Hormis cela, dans notre modèle, nous avons également 

émis l’hypothèse que plusieurs facteurs peuvent jouer, pouvant eux-mêmes 

varier avec le temps et s’influencer directement et indirectement. Par exemple, le 

don d'un enfant pour le tennis, le soutien de ses parents et de son entraîneur, 

etc. (Abbott et al., 2005; Baker et al., 2003; Phillips et al., 2010). Nous avons donc 

simulé des modèles sous forme des réseaux composés de 10 éléments, dans 

lesquels chaque élément est directement ou indirectement lié à d'autres 

composants (e.g., l'entraîneur influence les capacités de l’enfant, ce qui par la 

suite influence le soutien des parents, ce soutien à son tour influe positivement 

sur les capacités de l’enfant, etc.). 
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 Le modèle de simulation a généré un certain nombre de patrons de 

trajectoires de développement du talent et de l’excellence conformes à la 

littérature sur le sujet (Simonton, 2001), tels que (a) un talent spécifique peut 

naître à des âges différents pour des individus différents, (b) les facteurs pouvant 

influencer le développement du talent peuvent changer avec le temps, (c) le 

processus de développement peut adopter plusieurs forme pour différents 

individus, (d) les indicateurs précoces annonciateurs de compétences excellentes 

futures sont souvent absents. De plus, les simulations de modèles ont généré des 

distributions asymétriques positives du rendement final de la performance, ce qui 

apparaît dans presque tous les domaines de performance (O’Boyle & Aguinis, 

2012). Afin de clarifier ce dernier point, l’exemple suivant illustre une distribution 

asymétrique positive du rendement de la performance en sport. Seul 404 joueurs 

ont gagné un tournoi ATP. Parmi ceux-ci, 74 d’entre eux n’en ont gagné qu’un et 

uniquement trois joueurs exceptionnels ont gagnés plus de 80 tournois : Federer, 

Lendl et Connors (www.atpworldtour.com, consulté le 5 novembre 2014). 

 D’après les résultats des simulations, il est probable que le développement du 

talent puisse être considéré comme un processus complexe et dynamique. En 

d’autres termes, l'excellence se développe probablement à partir des structures 

de réseaux dynamiques. 

9.2  Conclusion 

 Cette thèse s’est attachée a montrer comment les processus liés à la 

performance, impliquant plusieurs composants interagissent et évoluent avec le 

temps et peuvent être étudiés et compris en appliquant une approche de la 

complexité. Nous avons utilisé la « théorie de l’habileté » (chapitre 2), les 

techniques de séries temporelles non-linéaires (chapitre 3), la méthode HKB 

(chapitres 4 et 5) et la simulation informatique (chapitre 6). Les résultats des 

différentes études ont montré que (a) les joueurs de football les plus experts 

forment des représentations plus complexes lorsqu’ils visionnent des extraits de 

matches, (b) il semble qu’une organisation motrice complexe est sous-jacente à 

l’exécution des coups de rame en particulier pour les meilleurs rameurs, (c) le 

momentum psychologique est caractérisé par des changements dans les facteurs 

psychologiques et la performance qui sont dépendants du temps, c’est-à-dire de 

leur propre histoire, et (d) les excellentes performances se développent 
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probablement par l’interaction continue entre composants personnels et 

environnementaux directement et indirectement liés. 

 Les résultats de cette thèse montrent qu’une approche de la complexité 

fournit des techniques précieuses pour acquérir de nouvelles connaissances sur le 

quand, le pourquoi et le comment certains états psychologique changent. Les 

études effectuées étaient pour la plupart de nature fondamentale, mais peuvent 

offrir des suggestions concrètes pour les recherches futures et les applications 

pratiques. Ainsi, il semble particulièrement pertinent de mettre l’accent sur 

l’interaction entre les composants au cours de temps, ou sur la structure du 

réseau dans lequel les composants sont actifs. Cela signifie qu’il est important de 

considérer la manière dont nous pouvons intervenir d’une façon positive sur les 

interactions ou les propriétés des structures. Dans le chapitre 3, par exemple, 

nous avons proposé qu’une organisation dynamique plus complexe soit 

impliquée dans les coups de rames des meilleurs rameurs, comparativement à 

ceux de rameurs de niveau moins élevé. Ainsi, les meilleurs rameurs sont stables 

dans leurs mouvements, mais suffisamment souples pour s’adapter. La possibilité 

d’entraîner cette « stabilité souple » pourrait être étudiée, par exemple, en 

pratiquant  des coups d’aviron selon un patron de fréquence à bruit rose en 

utilisant un métronome (Marmelat et al., 2014). Une telle stratégie pourrait être 

comparée à une stratégie plus classique basée sur la fixité et la rigidité des 

rythmes. 

 Dans le cas du momentum psychologique, il devrait être possible d’identifier 

les stratégies les plus à même de faire converger moins rapidement les variables 

psychologiques et la performance vers un patron de momentum psychologique 

négatif (Briki, Den Hartigh, Hauw et al., 2012). La manière de demander des  

temps mort dans un match pourrait relever de telles stratégies testées 

empiriquement (cf. Briki, Doron et al., 2014). Les temps morts seraient alors 

considérés comme des temps de relaxation (Haken et al., 1985) nécessaires au 

système pour se restabiliser après avoir été déstabilisé par un scénario 

événementiel de momentum négatif.  

 En ce qui concerne le développement des talents, il semble important 

d’introduire ou de renforcer des liens positifs au sein du réseau, favorisant ainsi le 

développement tout en protégeant des éventuels échecs. L’importance d’établir 

une structure optimale du réseau est par exemple illustrée par les travaux de Van 
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Yperen. Alors que la plupart des études ont misé sur l’importance du talent 

naturel et de la formation, Van Yperen a montré que le soutien des parents et 

certains éléments psychologiques, comme l’engagement envers un objectif, 

jouent un rôle important dans le développement d’un athlète (Van Yperen, 

1995a; 1998; 2009). En termes de réseau, il semble important que les 

compétences d’un athlète se développent dans un réseau riche, dans lequel la 

probabilité de développer des liens positifs entre les différents éléments est 

maximisée (pour un exemple pratique intéressant, voir Van Yperen, 1995b). De ce 

fait, comparativement à des programmes où les enfants vivent en pensionnat, 

sont traités durement et dans lesquels l’accent est mis sur un seul élément (e.g., 

entraînement intense), il est probable que les réseaux riches entraînent une 

évolution positive pendant et après la carrière sportive, mais aussi dans des 

carrières relatives à d’autres domaines de performance (e.g. professionnelle). 

 En résumé, cette thèse a démontré plusieurs applications d'une approche de 

la complexité. Sur la base de cette approche, nous sommes arrivés à des 

nouvelles connaissances sur la complexité et la dynamique des processus de 

performance, à la fois lors de l’exécution des tâches (sportives) ainsi que sur du 

long terme au cours duquel le talent se développe. Le prochain défi sera de 

spécifier et de traduire les processus complexes et dynamiques sous-jacent aux 

processus psychologiques et de performance dans des applications concrètes 

pour la pratique. 
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