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Summary



Both community ecology and evolution span across spatial scales and time‐scales thatmakes them inherently dif"icult to study. Macro‐evolutionary processes that generatenew species typically span over millions of years, well outlasting the typical time of aPhD research project (4 years). Community ecology processes involve changes inecosystems typically well outside the control of the researcher, either due to largetemporal (e.g. long generation times and slow turnover of species in a community), orlarge spatial scales (e.g. long‐distance dispersal). Instead of directly manipulating theseprocesses, or studying these processes in the lab, it is often only feasible to look at theoutcome of these processes in the current composition of communities, and studypatterns caused by underlying processes. Using patterns as a proxy for processesresembles that of a black box approach: imagine having a black box at your disposalthat you cannot open to look inside. If you feed the box input, it readily provides output,but you do not know how the internal mechanics operate. The only way of "inding outhow the inner mechanics of the black box work, is by comparing changes in input andoutput, and by looking at patterns in already produced output that give away theworking of its inner mechanics. In this thesis I have considered evolution and community assembly as the “blackbox”, patterns in DNA or species abundance distributions as output, and species poolsor a single ancestor as the input. I have focused on trying to understand why so manyspecies coexist in savanna tree communities in South Africa, in cichlid "ish communitiesin Lake Tanganyika and in tropical tree communities in Panama. Secondly I havefocused on testing whether changes in the environment have driven diversi"ication incichlid "ish in Lake Tanganyika, and tested a number of underlying assumptionsregarding diversi"ication analysis.In the "irst two chapters of my thesis I have focused on patterns in the distributionof traits of species within a community. Patterns in the trait distribution might pointtowards the underlying driving process: if the environment poses strong restrictionsupon traits, we expect the trait distribution to be narrow because species with extremetrait values are "iltered out of the community. Conversely, if species with similar traitsexperience higher levels of competition, higher predation pressure or higher pathogenload, we expect species with similar traits to be selected against and consequentlytraits to be more evenly distributed and the trait distribution to be relatively broad.Lastly, the observed trait distributions could simply be a random subset of the traits ofall available species able to disperse to the community, regardless of their traits,resulting in a trait distribution without clear patterns. We have combined these threemechanisms into a unifying framework, where species are removed from the metacom‐munity in a stepwise fashion until we obtain the composition of the local community:STEPwise Community Assembly Model (STEPCAM). Stepwise removal occurs eitherdue to environmental "iltering, limiting similarity or dispersal assembly. Using Approxi‐mate Bayesian Computation we "itted STEPCAM upon community composition data,combined with species trait data and inferred the relative contribution of these threeprocesses. We applied STEPCAM to two different communities: savanna trees in South‐
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Africa, and cichlid "ish in Lake Tanganyika. We found that dispersal assembly was themost dominant process in determining community composition in savanna trees. Apartfrom dispersal assembly, habitat "iltering turned out to be more important in areaswith high "ire frequency, whilst limiting similarity was more profound in areas with low"ire frequency and high rainfall. In cichlid "ish we found similar patterns, wheredispersal assembly composed the majority of community assembly, but limiting simi‐larity became more pronounced with an increase in habitat complexity and habitat"iltering became more important with increasing sand cover. In both savanna tree communities and cichlid communities, the majority of commu‐nity assembly was determined by random dispersal. In the third chapter of my thesis Ihave further investigated the impact of differences in dispersal on communityassembly. Differences in dispersal between functionally equivalent species might arisedue to differences in seed size (Muller‐Landau and Hardesty 2005), differences in fruitsize (Seidler and Plotkin 2006) "light prowess (Valtonen et al. 2013) or differences inthe duration of the pelagic larval stage in coral reef "ish (Victor and Wellington 2000,Almany et al. 2007). In this chapter I have focused on tropical tree species, of which73% disperse via animals (e.g. via bats, birds and small mammals) and the remaining27% disperse via wind, water or ballistics (Muller‐Landau and Hardesty 2005). Thesedifferences in seed dispersal might change dispersal ranges and impact dispersal rates,and could impact migration rates between the local and metacommunity. I have modi‐"ied the standard neutral model of biodiversity to include two guilds that differ indispersal and "it the guild‐structured model on a neotropical tree dataset from BarroColorado island, Panama. We "ind that trees that disperse through biotic means (e.g. viabirds, mammals, insects etc.) have a higher dispersal rate than trees that dispersethrough abiotic means (e.g. via wind or water). This could partly be due to the closedcanopy of the rainforest, making dispersal via wind less effective. Furthermore we "indthat adding ecological information about dispersal improves the "it of the neutralmodel, and partially resolves the two‐optima problem previously faced when "itting theneutral model. In the next three chapters in my thesis I have focused on the inference of macro‐evolutionary processes using phylogenetic trees. I have relied on previously publishedphylogenetic trees, but the construction of a phylogenetic tree is an intricate processthat relies on a range of assumptions, which might affect the outcomes of diversi"ica‐tion analysis. In chapter 4 I have set out to test the effect of one of these assumptions:the effect of the prior tree model. When reconstructing a phylogenetic tree from molecular data, a tree branching model is used as prior model to reconstruct the tree.The speci"ics of this model could affect any inferences made at a later stage using thereconstructed tree. If the tree was reconstructed assuming low levels of extinction,perhaps inference made at a later stage has a lower probability of detecting extinction.In this chapter we have compared two different approaches in inferring diversi"icationrates, either using a two‐step approach, where "irst the tree was reconstructed andsecondly diversi"ication rates were estimated or a joint approach, where during tree
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reconstruction, diversi"ication rates are simultaneously "itted. We found that bothapproaches yield similar estimates for diversi"ication rates, and did not "ind evidencethat the prior tree model in"luences diversi"ication rate estimates. As diversi"ication models become more complex and capture a larger part of theunderlying complexity of included processes, it becomes more and more challenging toderive a tractable likelihood function, or computationally demanding to evaluate thislikelihood function. Over the past decade, a new Bayesian inference method has beendeveloped that does not rely on the likelihood, but uses summary statistics to attainparameter estimates for the "itted model: Approximate Bayesian Computation (ABC)(Beaumont et al. 2002, Csilléry et al. 2010, Beaumont 2010, Sunnåker et al. 2013). Inthis chapter I have looked at three established summary statistics – tree size, thegamma statistic and phylogenetic diversity and introduced a novel summary statistic:the normalized Lineage‐Through‐Time statistic. I evaluated the performance withinABC of these summary statistics for three models of increasing complexity: the stan‐dard birth‐death model (Nee et al. 1994), the time‐dependent speciation model(Rabosky and Lovette 2008) and the diversity‐dependent speciation model (Etienne et
al. 2012). As it turns out, only the normalized Lineage‐Through‐Time statistic is able toadequately substitute the likelihood within an ABC framework. In the last chapter I have taken a closer look at the interaction between changes inthe environment and speciation. As geographical barriers build, populations might getseparated, which in turn might provide potential for allopatric speciation. Disappear‐ance of geographical barriers can reunite separated populations and counteract anyacquired divergence. These geographical changes can take the form of the formation ofmountains or the movement of continents, processes that stretch over long timeperiods. However, some landscape changes might be on much shorter timescales, suchas the formation of rivers, changes in water level of a lake or changes in connectivitybetween islands as a result of changes in sea level. These relatively rapid changes,coined “dynamical landscapes” (Aguilée et al. 2011) might act as a “species pump”(Rossiter 1995) by continually separating populations, providing potential forallopatric speciation, and reshuf"ling these populations as the separation is lifted. Inthis chapter I have developed a model that captures this waxing and waning ofgeographical isolation and have "itted this model upon a phylogeny of a tribe of cichlid"ish from Lake Tanganyika, Africa. Lake Tanganyika is known to have undergone severalwater level changes over the past few million years. Furthermore, the bathymetry ofLake Tanganyika causes the lake to split up into two smaller lakes if the water leveldrops far enough. These continuous changes in water level could have contributed tothe large diversity of cichlid "ish we observe nowadays in the lake. Using ApproximateBayesian Computation (using the summary statistics validated in chapter 5) I found noevidence for water level changes and associated allopatric speciation. This needs notindicate that water level changes are irrelevant, rather it suggests that water levelchanges at such a large scale do not impact diversity. Interactions on a smaller scale,where the fragmented shore line alters due to relatively small water level changes
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could still impact allopatric speciation and hence diversity. Alternatively the constantrates pure‐birth tree model used to reconstruct the phylogeny of the Lake Tanganyikatribe that I used in my analysis, could have biased our "indings. Although my "indingsfrom chapter 4 suggest that such biases are typically small, the speci"ic branch ratemodel used to reconstruct the phylogeny was not assessed in chapter 4 and could stillbias our "indings. 
ConclusionIn the past six chapters I have shown that even though we cannot observe someprocesses in real time, the patterns they leave in either community composition, or in aphylogenetic tree, allow us to reverse‐engineer these processes. After the mathematicaland computational dust has settled, it appears that there are a number of conclusionswe can draw: "irst of all stochasticity appears to be an important determining factor inshaping community composition, and trait‐based processes are much less importantthan expected. Either effects are truly stochastic, or stochasticity captures underlying,but not yet identi"ied, mechanisms. Furthermore, the habitat does not only act uponcommunity composition, but can also have important interactions with speciation anddrive diversity within a clade, especially when we consider that the habitat alsochanges over time. Lastly I have demonstrated that using computational methods weare not limited to likelihood methods, but we can allow for more complex models thatwere previously outside the scope of analysis. With the current ongoing increase incomputation power, I can only expect these computational methods to increase inimportance and open up new avenues of research in ecology and evolution.
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