

University of Groningen

Tonic and Phasic Dopamine Fluctuations as Reflected in Beta-power Predict Interval Timing Behavior

Kononowicz, Tadeusz; van Rijn, Hedderik

Published in: Procedia: Social and Behavioral Sciences

DOI: 10.1016/j.sbspro.2014.02.313

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version Publisher's PDF, also known as Version of record

Publication date: 2014

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA): Kononowicz, T., & van Rijn, H. (2014). Tonic and Phasic Dopamine Fluctuations as Reflected in Betapower Predict Interval Timing Behavior. *Procedia: Social and Behavioral Sciences, 126*, 47. https://doi.org/10.1016/j.sbspro.2014.02.313

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverneamendment.

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Available online at www.sciencedirect.com

t **Procedia** Social and Behavioral Sciences

Procedia - Social and Behavioral Sciences 126 (2014) 47

ICTTP 2014

Tonic and phasic dopamine fluctuations as reflected in beta-power predict interval timing behavior

Tadeusz Kononowicz^{1,2,3}, Hedderik van Rijn³

¹NeuroSpin Center, CEA, DSV/12BM, Gif/Yvette, France ²Cognitive Neuroimaging Unit, Brain Dynamics, INSERM, U992, Gif/Yvette, France ³Department of Psychology, University of Groningen, Groningen, The Netherlands

Abstract

It has been repeatedly shown that dopamine impacts interval timing in humans and animals (for a review, see Coull, Cheng, & Meck, 2012). Particularly, administration of dopamine agonists or antagonists speeds-up or slows down internal passage of time, respectively (Meck, 1996). This co-variations in the dopamine level and clock speed has been typically induced by pharmacological manipulations (e.g., Lustig & Meck, 2005). However, it has not been assessed whether naturally occurring fluctuations in dopamine level are sufficient for altering interval timing performance. Recent advances in neurophysiology suggest that tonic and phasic changes of dopamine levels by measuring the beta power while participants were asked to produce time intervals by two key presses. Both tonic levels of dopamine as measured by the beta power before interval initiation and phasic level of dopamine as measured after the first key-press predict timing performance. These positive correlations between beta power and length of produced intervals support the notion that dopamine plays an important role in interval timing, even in the range of naturally occurring fluctuations.

© 2014 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-ND license. Selection and peer-review under responsibility of the Organizing Committee of the International Conference on Timing and Time Perception.

Keywords: Dopamine; Interval Timing; Beta-Power; EEG

References

Coull, J. T., Cheng, R. K., & Meck, W. H. (2011). Neuroanatomical and neurochemical substrates of timing. *Neuropsychopharmacology*, 36(1), 3-25.

Jenkinson, N., & Brown, P. (2011). New insights into the relationship between dopamine, beta oscillations and motor function. *Trends in Neurosciences*, *34*(12), 611-618.

Lustig, C., & Meck, W. H. (2005). Chronic treatment with haloperidol induces deficits in working memory and feedback effects of interval timing. *Brain and Cognition*, 58(1), 9-16.

Meck, W. H. (1996). Neuropharmacology of timing and time perception. Cognitive Brain Research, 3(3-4), 227-242.

1877-0428 © 2014 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-ND license.

Selection and peer-review under responsibility of the Organizing Committee of the International Conference on Timing and Time Perception.

doi:10.1016/j.sbspro.2014.02.313