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Estimation of transient process for singularly perturbgachronization
system with distributed parameters

Vera Smirnova, Anton V. Proskurniko¥ and Natalia V. Utina

Abstract— Many systems, arising in electrical and electronic theory of systems with different time scales, arising in

engineering are based on controlled phase synchronizatioof  different areas of engineering and natural sciences, from
several periodic processes (“phase synchronization” sysms, mechanics to mathematical biology [5]

or PSS). Typically such systems are featured by thgradient- In thi . totic behavi fsi
like behavior, i.e. the system has infinite sequence of equilibria n this paper we examine asymptotic behavior of singu-

points, and any solution converges to one of them. This propy  larly perturbedphase synchronization syster(BSS). The
however says nothing about the transient behavior of the PSSs are based on the principle gifase synchronization
system, whose important qualitative index is the maximal pase  [7]. These systems, sometimes referred to as synchronous or
error. The synchronous regime of gradient-like system may & = hanqyjum-like control systems, involve periodic nonliriea

preceded by cycle slipping, i.e. the increase of the absokiphase . . o o .
error. Since the cycle slipping is considered to be undesice ties and typically have infinite sequence of equilibria pein

behavior of PSSs, it is important to find efficient estimatesdr ~ An important class of PSS is constituted piase-locked

the number of slipped cycles. In the present paper, we addres ~systems, which are based on the seminal idea of phase-
the problem of cycle-slipping for phase synchronization sstems  |ocked loop (PLL) and widely used in telecommunications
described by integro-differential Volterra equations with a small and electronics [9], [8].

parameter at the higher derivative. New effective estimate for R td d t literat - totic b

a number of slipped cycles are obtained by means of Popov’'s _ecen ecades a Va_s lera ure-exammlng asymptotic be-
method of “a priori integral indices”. The estimates are unifiorm havior and other dynamical properties of PSSs has been pub-
with respect to the small parameter. lished, motivated by numerous applications of these system

Index Terms—singularly perturbed systems, Asymptotic in mechanical, electric, electronic and telecommunicatio
properties, Popov-type stability of feedback systems, fiuency-  engineering. Most of these papers address the problem of
response methods. . . . L L. .. .
gradient-like behavior, aiming at obtaining conditionsieth
I. INTRODUCTION guarantee convergence of the solutions to equilibria, whic

means that the generators of the system are synchronized for

A vast range of physical and mechanical systems are | initi : Nt
. : . . i e y initial state. For details and bibliography see e.g.[[I[7d]
described by ordinary differential and integro-diffeiaht and references therein.

equations with a small parameter at the higher derivative. But as a rule the synchronous regime of gradient-like

Such equations are usually caII_ed $ingularly perturbemesi system is preceded by cycle slipping, i.e. the increase of
the order of unperturbed equation is lower than the order ?Iﬁle absolute phase error. Its amplitude depends on thaliniti

the pertqrbed one. 5o in the absencg of speqal S|mp||fy|r}>q te of PSS and is an important characteristic of the gansi
assumptions, the electron generator is described by a th bcess of the system

order differential equation with a small parameter [2], Va The phenomenon of cycle slipping was set forth in the

der Pol equation being the special case when the Sm%'&)ok [16], for mathematical pendulum with viscous friction

pa_:_arl]meter IS ?qtl_JaI to zer?. ¢ sinaularl wurbed 6{)roportional to the square of angular velocity. For mathema
_ 'he asymptolic properties ot singularly perturbed equgg, pendulum the number of full rotations around the point
tions may differ from these of unperturbed ones. So th

bl f stabili d ilati f . X &t suspension was called the number of slipped cycles.
problems of stability and oscillations for various singlya The extension of this notion to PSSs is as follows. Suppose

perturbed integro-differential equations became the exbj that a gradient-like phase synchronization system has-a

for special research_ [4]. The armamentarium of sing_ularlx riodic input and let(¢) be its phase error. They say that
perturbed systems is a backbone of the mathematical e output functiors (¢) has slippedk € N|J {0} cycles if

*The work was supported by the European Research CounciCE&R- there exists such a moment 0 that
307207) and RFBR, grant 12-01-00808. The example (Sectiprwads ~
supported solely by Russian Scientific Foundation, grar29-00142. |U(t) - U(O)| = kA, (1)
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State University of Architecture and Civil Engineering.eSh also with the however for allt > 0 one has
Department of Mathematics and Mechanics, St.Petersbatg Sthiversity,
St.Petersburg, Russinoot @l 2189. spb. edu lo(t) —o(0)] < (k+1)A. 2
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Management, University of Groningen. He is also with SePsiurg State So to give the_ adequa_te descrlptlon_ for behavior of PSSs
University, ITMO University and Institute for Problems of édhanical one must establish possibly close estimates for the number

Engineering RAS, St.Petersburg, Rusaigp1982@mai | . com  of glipped cycles. And since large number of slipped cycles
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St.Petersburg State University of Architecture and CivihgBeering. 'S undesirable for PSSs the problem of its estimation is
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In the paper [3] the problem of cycle slipping was considThe transfer function fo{7) is defined as follows

ered for multidimensional PSSs. By periodic Lyapunov-like ¢
functions and the Kalman-Yakubovich-Popov (KYP) lemma —hp / ot

. ) ) =— t)e Pt dt C). 8
some frequency-algebraic estimates were obtained. The re- (p) pe A+ [ (e (peC) (®)
sults of [3] were formulated in terms of LMI-solvability 0

in [17]. The estimates of [3] were extended to discrete- Our goal is to estimate maximal deviations
time and distributed parameter PSSs in the paper [15] asdp |0 (t) — 0,.(0)| for a gradient-like system. Precisely,
the monograph [6] respectively. Distributed parametersPS%ieO are going to obtain estimates for the number of slipped
were investigated by the method of a priori integral |nd|cel§.yc|es

with the help of Popov-like functionals of special type. In

paper [11] the generalized Popov-like functionals from][13Ill. FREQUENCY¥ALGEBRAIC ESTIMATES IN CASE OF THE
are exploited for estimation of cycle-slipping for distrtbd NUMBER OF CYCLES SLIPPED FOR UNPERTURBED
parameter PSSs. EQUATION

In this paper we make frequency-algebraic estimates from Consider a distributed parameter system with a periodic
[11] more exact and extend them for singularly perturbeflonlinearity, described by the integro-differential etjora
distributed parameter PSSs. (7). This equation is the unperturbed equation for the equa-

Il. PROBLEM SETUP tion (3). Its transfer function from the inpuyt to the output

Consider a distributed parameter synchronization systegg_r?n) 's defined by[(B). The initial condition fo[7) has the

which is described by the integro-differential Volterrauag
tion with a small parameter at the higher derivative:

u&l;(t) +0u(t) = alt) + pp(ou(t — h))—

o(t)|rej—n,0) = 0 (1) ()]

Let us obtain certain estimates for the number of slipped
cycles for the unperturbed equation. We start with the

— [yt =1)e((ou(r))dr (¢t >0). 3) following technical lemma which is a cornerstone point in
0 estimating the number of slipped cycles.
Here p©>0, h>0, peR, ~v,a:[0,+0)—=R; Lemma 1. Suppose there exist such positive:, J, T that

¢:R—R. The map ¢ is assumedC'-smooth and for all w > 0 the frequency-domain inequality holds:
A-periodic w|th two sw_nple |s_olated roots oo, A). The_ Re{0K (iw) — 7(K (iw) + a7 Hiw)* (K (iw) + a3 "iw)}
kernel functionv(-) is piece-wise continuous, the function N o

; : . . . —|K(iw)|*—=d >0 (i*=-1).
a(+) is continuous. For each the solution of [(B) is defined (10)

by specifying initial condition Then the following quadratic functionals

O';L(t)|t€[fh.,0] = Uo(t)7 (4)
wherec?(-) is continuous and (0 + 0) = ¢°(0). It = / {ve(t) ) +ed?(t) + 9% (o (t))+
We assume for definiteness that .
A +T(a1 p(a(t)) — (1)) (ag " ¢(a(t) — o (t)) } dt
/cp(cr) do < 0. (5) are uniformly bounded along the solution bf (7):
0 IT S Q7 (11)
We assume also that the linear part[df (3) is stable:
where @) does not depend of'. Proof: Let o(¢) be
la(t)] + [y(#)] < Me™™  (M,r > 0). (6) the solution of [[V),[[9) and(t) = ¢(o(t)). Let T be an
Let arbitrary positive number. If(0) # 0 we determine
o1 = inf ;i_cp Qs = sup ZSD. 0 for t<O,
o€l0.a) do o€f0.a) 47 v(t)={ t for te0,1], ,
Then 1 for t>1
dy
a S o-<a, VoER. in casen(0) = 0 we putu(t) = 1.

Notice thata; < 0 < ao. We introduce auxiliary functions

In paper [10] some sufficient frequency-algebraic condi- oo(t) :== a(t) + (1 —v(t — h)pn(t — h) —
tions for gradient-like behavior of equatiohl (3) were ob- t
tained, uniform with respect to the parameterThey are / (1 — v(r)y(t — 7)n(r)dr,
formulated in terms of the transform function of the linear
part of the unperturbed Volterra equatigm = 0) 0
Cr(t) = { n(t) t<T, }
vt —7)e((o(7)) dr. U@ T=D t>17 (A>0) [°

(7) nr(t) = v(t)Cr(t),

o(t) = at) + pplo(t —h)) —

[SYE



t

72(t)i= pne(t =) = [ 2= Ty (7).
0
Fort € [0,T] we have

(1) = oo(t) + or(t).

For anyT > 0, consider a functional
+oo

pT 22/{190T(f)77:r

Fr(or(t) — oy e () (o (1) — o i ()

(12)

(t) 4+ onF(t) + co(t)+

bt

It is demonstrated in [6] by means of the Popov method

Introducing the constant

\ = /5|0¢1|a2’
T

it can be shown that

I4T > — / LQ . 772(T)82>\(T7t)dt
- 4(e+T) ’
T

whereW =9 + /78| | (o]

Iyt > Q3(5 19 T, al,ag)

(18)

' +ay'), and hence

VT W? max ? (o)

8(5 + T)\/5|041|O[2

(19)

of “a priori integral indices” [14] that the frequency-doma The inequalities[{25)[{16)[{17), and {19) yield that

inequality [I0) implies

pr <0 VT >0. (13)
It can be easily shown that
pr = It + I + Loy + Iy, (14)
where the addendg 1, I>7, Iy are defined by
Ly = — /{191—@ V() + (1 — 22 () +

. 2
Tarlag () - <v<t>n<t>> arlag'r+

41 (a4 a3 500) (400 — o000 )

with/=T,ifT<1,andl=1,if T >1;

Lop = / (—doo ()t

+ (r+e)dp(t) +7 (a7

(t) —2(e + 71)d(t)oo(t)+

+ayt) oo(t)i(t)} dt;

Lip = / [or(E)nr(t) + 51 (t) + (e + )02 (t)—

T
— (al_l + a;l) Tor(t)nr(t) + Tag 1042_177% } dt.
From [I13) and[(14) it is immediate that
It < —Iir — Ly — I4T. (15)

As can be seen froni](6), the functiondls- and I, are
uniformly bounded:

| < q1(0,9,7, 01, 2), (16)

17)

whereg; andg, do not depend off’. By definition ofn (),

|12T| S QQ(ﬁv g, T,01, QQ)?

o0

Lir = / {ﬁUT(t)n(T)ek(T_t) + 62 (T)eM T 1
T
+(e+ 7)ok ) + Aoyt + a5 ') Tor (En(T)er =D+

+ 2217 ag tn?(T)e2MT—1) }dt.

It <1+ q+q3=Q(0,0,e,7,a1,a3), (20)

which finishes the proof of Lemma 1. ]
The value of@ from (11) may be found explicitly.
Lemma 2. Let|a;i| = az and ¢(c(0)) = ¢(a(T)) = 0.

Then if the conditions of Lemma 1 are fulfilled the following

estimate holds

)+ e+,

1(19Mm—|—2(5—|—7’)Mm(%—i—
r r %21)

It <q:=

where
m = sup ¢(o).

Proof: Let us exploit Lemma 1 forp(o(0)) = 0 and
¢(o(T)) = 0. In this casel;7 = 0 and Iu7 > 0. So it
follows from (IB) that

It < —Irr. (22)

Since|a;| = as

Ir < / Wa(t)p(o(t)) +
0

(pplo(t — 7)) = 2(r +2) / Y (t = T)p(o(r))dr)|dt
’ (23)

(T 4+ €)a?(t) + 2(1 + €)a(t)-

Hence it follows that the estimate_(21) is true.
[ |

The next two theorems give estimates for the number of

slipped cycles. To start with, we introduce auxiliary fuoos

(o) = /(1 — a7 '@ (0))(1 — a3 '¢/(0)),

P(e,1,0) = /e +792(0),
f(p )do + (— )ﬁ

rij(k, 06,7, x) = (=12
f|(p )| P(e, T,0)do



Theorem 1. Suppose there exist such positiee, §, 7 It is true that

and naturalk that the following conditions are fulfilled: o(T) o(T)
1) for all w > 0 the frequency-domain inequalit_{10) It =da [ Fj(o)do+vay [ ¥,(0)+
holds; o(0) o(0)
2) i
) + [{9e(t)p(o(t)) +e5(t) + 3¢ (o (t)— (26)
0

9> Pk ten Q) (=13, 29 LIaE (o )6(0) — dag¥, (o) 1)+

whereQ is given by[(Il1). Then any solution &1 (7) slips less , .
than k cycles, that is, the inequalities hold +7a?(O)®(o(t) }dt (5 =1,2).

In virtue of condition 2) of the theorem, the third term in

|0(0) —o()] <kA Vt20. (25)  the right hand part of(26) is the integral of positive deénit
guadratic form. So
The proof of Theorem lis present.ed in [11]. _ Iy >0 (a f;((o:;) Fj(0)do + ag f;f((oi;) \I/j(a)do—) 27)
To proceed with the next result, we introduce the following G=1,2)

functions forj = 1,2
Suppose that

A .
Jo(o)do + (—1)7 & o(t1) = o(0) + kEA.
0
rj(k, 0, 2) == A ’ Then
[ le(o)ldo o(tr) A 1
0 / Fl(a)da:k/ Fi(o)do = =(Q + €o),
A o(0) 0 v
Je(o)do + (—1) 57 oli) e 1
o ,2) = | / ., W=k | wior = 5@+
J ®(0)l¢(0)ldo Then
’ I, >Q+¢c > Q. (28)
Fj(0) = (o) —rile(o)l, which contradicts with[{20). So our hypothesis is wrong.

With the help of F»(0) and U2 (o) we prove that
o(t) # a(0) — kA.

As a result for allt > 0

V(o) = p(o) = rojlp(o)|@(0)

and matricesl; (k, 9, x) :=

. w 0 o(0) — kA < o(t) < o(0) + kA.
|| ari(k,9,x) 5 aoVro; (k, ¥, ) Theorem 2 is proved. [ ]
2 2 ’ Theorem 3Let|a;| = as ando(0) = oy wherep(oy) =
0 aoVro; (k, ¥, x) - 0. Suppose there exist such positi¥e:, 6, 7, a € [0,1] and
2 natural k£ that the following conditions are fulfilled:
wherea € [0,1] andag := 1 — a. 1) for all w > 0 the frequency-domain inequality{10)
Theorem 2. Suppose there exist positive ¢, §, 7, a €  N0ldS; . . _ .
[0,1] and naturalk satisfying the conditions as follows: 2) the matricesT;(k,v,q) (j = 1,2), with ¢ defined by
1) for all w > 0 the frequency-domain inequality{10) 1), are positive definite. _
holds: Then for any solution of{7) the estimale](25) holds.
2) the matricesT;(k, ¥, Q) (j = 1,2) where the value of Proof: Let us repeat the proof of Theorem 2 with
Q is defined by[(T1), are positive definite. r; =r;(k,9,q+ o),
Then for the solution of{7) the inequalify_{25) holds. B _—
Proof: Let o(t) be the solution of[{7)[{9). roj = 10;(k, ¥, + €o).
Let ¢ > 0 be so small that matrice;(Q + ¢o) are Then
positive definite. We consider the functio$(c), ¥,(o) I, >q (j=1,2). (29)
(j =1,2) with

Since ¢(c(0)) = 0 we conclude thatp(c(t1)) = 0 and
r; = r;(k,9,Q + &), @(o(tz)) = 0. Then it follows from Lemma 2 that

Itj S q (.] = 172)’

which contradicts[(29).
and the functionald+ from Lemma 1. [ |

roj = ro;(k, 9, Q + €o)



IV. EXAMPLE Let us consider the PLL witth = K (0)5 [3]. Then by
tional integral lowpass filter, a sine-shaped characteraft  €an be defined by the formula
phase frequency de_te_ctor_ and a time-delay in the loop. Its g = T*(A + Bho + Ch2), (33)
mathematical description is borrowed from [1]:

1 where ;
6(t) + =0 (t) + @(o(t — h) + sT@(o(t —h) =0, (30) A= (56 +3),
B=3(1-s)(1+p)(36+1), (34)

(o) =sinoc — 3, s € (0,1), € (0,1], h >0, T > 0. C = %(1 —5)2(1 + B)2.
The differential equation[(30) can be reduced to integrat follows from (33), [33) that the number of slipped cycles
differential equation[{[7) with increases together with, with 5 or with hg. Let for example

0, t<h, h():l,820.4,T=0.1.Then7°0=1f0rﬁ=0.9, rog =2
v(t) = { (1- s)e*t}h, t>h } ) for 5 =0.92, andrg = 5 for 8 = 0.95.

a(t) _ e—%(b . (1 . S)J) V. ESTIMATES FOR THE NUMBER OF CYCLES SLIPPED
’ FOR SINGULARLY PERTURBED EQUATION

whereb = 5(0) + sT'p(o(~h)) and Equation[(B) can be reduced to integro-differential Voker
t—h equation

/ e T p(a(N)dN, t < h, :
g={ | ult) = ault) = [ ult = D)plu(r)dr (> 0),
/ T p(o(N)dA,  t>h ’ (35)
e where
The transfer function of the lowpass filter here has the o L, P
form: an(t) = 6(0)e 7 + = / Ao+ 2 (36)
Tsp+1 _ 1% %
K(p)=T e ? 0
Tp+1
—h
We suppose thap(c(0)) = 0 and apply Theorem 3. ' Adh—t
Let ag = —a3 =1, 9 = 1, a = 1. The assumption 1) of / e p(a(N)dr, t<h,
Theorem 3 shapes into Jo=4{ "
Qw) = 7T%w* + W (T3s coswh — T*s% (e + 7)+ / Ath—t J
" t>h
+7 = 8T?) — T?(1 — s)wsinwh + T cos wh— (31) c plo(N)dA,t>h,
—(e+1)T?-56>0 Yuw; —h
. . t
whereas condition 2) may be rewritten as 1 At P 6%7 > h,
9B + ok Yu(t) =— [ e 7 y(A)dA — = 0 o (37)
2Vzd > 2 (32) wy I :

4(Barcsin B+ /1 — ﬁz)'

. The transfer function for equatioh (35) is as follows
Notice that for allw € R one has

Qw) > Qo(w) = (112 = FT?sh?)w* + (1T%s— Ko(p) = 220 (38)
—Ts*(e +7) + 7= 0T% = 3Th? — (1 = $)T*h)w?+ 1+ pp
HT = (e +7)T7 =0), W Let
M
andQ(w) = Qo(w) whenwh << 1. qo =q+ (Im+2(c+ T)m(7 +p))pmh + (e + 7)p2m>2h,

We consider the cas& < 0.9, hy = % < 1, since
for small T and smallh the PLL is gradient-like for all whereq is defined by[(211).
B € (0,1] [1]. Let us choose: = %, 0 = T, 7 = Theorem 4Letas = |ay| ando(0) = o¢ wherep(og) =
T3, As Q(0) = Q0(0) it is necessary thaty + 8y + 0. Suppose there exist such positi¥es, 6, 7, a € [0,1] and
vwT* < 1. Then the optimal values foryy and By are natural k that the following conditions are fulfilled:
ag = o = %(1 — y0T*), whence2ved = 1 — ~,T*. For 1) for all w > 0 the frequency-domain inequality{10)
Yo = max {1sh, 3(ho + 1 — 5)?} the polynomiaky(w) is  holds;
nonnegativeyw. It follows from (32) that the numbek, of 2) the matriced;(k, 9, o) (j = 1,2) are positive definite.

cycles slipped satisfies the inequality Then there exists such valye that for all © € (0, o)
ko < g = [q2(8\/5([3 arcsin f + \/ﬁ) _omB)L, tehst:irzoallltc;vsvmg assertion is true: for any solution ¢fl (7) the

where |z stands for the integer floor of. |0, (0) —ou(t)| < kA V>0 (39)



hold.
inequality [10) takes the form

(w) > 0, (40)

where

M(w) == T3¢ 2w? + YRe{K (iw)} — (¢ + 7)|(K (iw)|* — 4.
(41)
Considers < § andTl(w) = II(w) + J — 5. We have

Ow) >0 V. (42)

Let us substitute in matrice®;(k, v, qo) the values by 5
and denote the new matrices By(k,J, qo) Let § — ¢ be so
small thatT;(k, 9, o) are positive definite.

Proof: Let |a;| = as = . In our case the where

= (Im+ 2(e -+ Tmlp + T (Ul O)] + o+ pmb)+

e L T
+He+7)(50 (0))+2(1_w)2(u 1_erT)Jr
2,2 o
+p*m*(h 4+ pe”® — p)).
(49)
It is clear that
lim g, = qo (50)

asp — 0.

Since matriceq;(k, 9, qo) are positive definite there exists
a valuei: small enough that fop < i matricesT}(k, ¥, q,,)
are positive definite. Thus if. < po := min{g, g} the
frequency inequality of Theorem 3 for the transfer function

For integro-differential Volterra equatio (35) one cank,(p) and the algebraic restrictions on the varying parame-
apply Theorem 3. For transfer functidn [38) the frequencyters are fulfilled. So fow,(¢) the estimate[(39) is true. m

domain inequality[(T10) with9, ¢, §, T takes the form

II,(w) := Re{V K, (iw)} — (¢ + T)|(K#(i(iu)|2+

472202 - 6> 0. (43)

or

M(w) + JpwIm{K (iw)} + 722w — p2w? > 0.
(44)
Introduce a constant

Q= %\/E.
T

Let us fix a certaini > 0. Since the value ofK (iw)| is

(45)

VI. CONCLUSION

The paper is devoted to the problem of cycle-slipping
for singularly perturbed distributed parameter phase lssoic
nization systems. The PSSs described by integro-diffedent
Volterra equations with a small parameter at the higher
derivative are addressed. The case of differentiable neatt
ities is considered. The problem is investigated with thip he
of the method of a priori integral indices. In the paper new
effective multiparametric frequency-algebraic estiraater
the number of slipped cycles of the output of the system are
established. The estimates obtained are uniform with otspe
to a small parameter.

bounded forw € R we can assert that there exists such

numbery >  that the inequality[{44) is true for >
QOv 12 < la Let

51 = inf TI(w),
w€[0,90] (46)
L1 =2 sup [YwIm{K(iw)}|.
w€[0,Q0]
Then if
_ ! 2017 .
,u<m1n{L—1, %—25,#}, (47)

the inequality [(44) is true for any < z and allw > 0.

Consider now the functionalr from Lemma 1 for the
solution o, (t) of equation [(3b) and the nonlinear function [

p(a,(1)).

The estimate[(23) for nonlinear functigr{c,,(¢)) and the

term o, (t)) takes then the form

oo

hs/w%mﬂﬁwww+a@m+
0

+2(r+¢) /%L(t — T)(p(O'H(T)dT)’dt
0

Hence

IT < us (48)
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