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ABSTRACT

Studies on myelination and oligodendrocyte development are inevitably linked
with demyelinating conditions such as multiple sclerosis (MS), leukodystrophies
or spinal cord injury (SCI). Chronic loss of myelin, subsequently leading to
neurodegeneration, is the ultimate cause of severe and permanent disability.
Thus, fast restoration of myelin (remyelination) is essential for circumventing
demyelination-caused pathologies. Implantation of exogenous remyelinating
cells has been considered as a potential remyelination strategy. Researchers
have examined a variety of cell types endowed with myelin-forming capacity
(oligodendrocytes, Schwann cells, olfactory ensheathing cells etc.) in-vitro
and in-vivo for their potential application as myelin restoring cell grafts. This
review gives a summary of studies on the generation and testing of pure
suspensions of human oligodendrocytes as a clinically relevant, efficient
cellular tool for treating myelin pathology. We start with a brief overview of
the current knowledge on the development of human oligodendrocytes from
the late stages of embryogenesis up to the early postnatal stage. Insight in the
specific extrinsic and intrinsic factors regulating normal oligodendrogenesis is
crucial in order to achieve and maintain a sufficient population of engraftable
functional oligodendrocytes in-vitro. We discuss potential sources of human
oligodendrocytes, including novel oligodendrocyte generation strategies
employing induced pluripotent stem cells (iPSCs) and direct conversion
technology. Finally, we provide a systematic overview of (the outcome of)
experimental studies, in which human oligodendrocytes were tested for their
(re)myelination capacity and efficiency.



INTRODUCTION

Myelination of central nervous system (CNS) tracts has long been recognized
only as the prerequisite for rapid, saltatory transduction of action potentials
along axons. In recent years, however, additional properties of myelin have
been discovered, most of them associated with neuronal support. Myelin
sheaths surrounding axons were identified to protect neurons with trophic,
metabolic and structural support [1]. In myelinated axons, energy-consuming
transmembrane ion pumps are confined to the small nodal areas; it is
hypothesized that they have a much lower energy demand than unmyelinated
ones and are less sensitive to oxidative stress [2], [3]. Loss or dysfunction of
myelin will eventually lead to axonal and (retrogradely) neuronal degeneration
as can be observed in chronically demyelinated MS lesions [4]. In this respect,
myelin dysfunction has been recently indicated as a potential contributor to
motor neuron degeneration in amyotrophic lateral sclerosis (ALS) [5].

Fast remyelination is the best option to stop degeneration of injured axons,
to restore the lost saltatory conduction and to provide long-term neuronal
survival. Spontaneous endogenous remyelination has been shown to be very
efficient in animal models and in early stages of demyelinating disorders [6].
In chronic demyelinating diseases such as MS, endogenous remyelination by
oligodendrocyte precursor cells (OPCs) eventually fails. Grafting of exogenous
remyelinating cells might be a suitable treatment strategy in that case. Apart
from MS, this may also apply for various white matter disorders (WMD),
pediatric (e.g. periventricular leukomalacia in premature infants or hereditary
leukodystrophies) as well as adult types. Most WMDs are primarily characterized
by dysfunction of glia (oligodendrocytes or astrocytes or both), failure to form
or restore myelin, formation of abnormal myelin, or myelin loss (demyelination)
with axonal damage typically occurring secondarily. These WMDs primarily
require replacement of glia (oligodendrocytes or astrocytes or both), preferably
early in the disease course, before axonal loss is extensive and irreversible.

The aim of this review is to provide a comprehensive overview of in-vitro and
in-vivo studies employing human exogenous oligodendrocyte precursor cells
(OPCs) for myelin (re)generation.

OLIGODENDROCYTE DIFFERENTIATION IN-VIVO

During development of the CNS in mammals, oligodendrocytes originate
from neural progenitor/stem cells in specific, well-defined domains and the
time course of their appearance is tightly controlled. Most of our knowledge
of this process comes from observations and research conducted in rodents.
In the developing mouse nervous system, the first oligodendrocyte progenitor
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cells arise around embryonic day 12.5 (E12.5) from the ventral region of the
neural tube, the so-called pMN domain [7], [8]. This domain is also responsible
for giving rise to motor neurons earlier in embryonic development. The
switch from generation of motor neurons to OPCs occurs mainly due to the
temporal establishment of morphogen gradients across the developing spinal
cord, of which Sonic hedgehog (Shh) and bone morphogenetic protein (BMP)
play a central role (Shh as a positive and BMP as a negative regulator of OPC
emergence) [9], [10]. Exposure to a specific combination of these factors induces
the expression of oligodendrogenic transcription factors (see below). Around
embryonic day 15, OPCs originating from the pMN domain manage to populate
the vast majority of the neural tube [11], [12]. A second, less abundant wave of
OPCsarisesfromthedorsal compartmentofthe neuraltubeinaShh-independent
manner [12], [13]. The first signs of OPC maturation into oligodendrocytes
and myelination can be observed around E17 and these processes continue
after birth [14], [15]. In the developing brain, on the other hand, we can
observe three waves of oligodendrocyte development. The first one emerges
from the ventral telencephalic region called the medial ganglionic eminence
(MGE) at E12.5, the second one arises from the lateral ganglionic eminence
(LGE) around E15 and the third one develops from cortical brain regions only
after birth [16]. This third OPC wave is the most abundant and eventually
gives rise to most of the oligodendrocytes present in the adult brain [17].

Oligodendrocyte lineage specification in human shares many features with
that in rodents. Similarly, there are two waves of oligodendrocyte development
occurring in the neural tube [18], [19] and three in the telencephalon [20]. Also
the process of human oligodendrocyte differentiation from an early progenitor
cell to a fully mature myelin-forming oligodendrocyte is similar to that in rodents.
The major difference between the two species is the time course of this process.
While it takes only around 3 weeks for mouse OPCs to develop, maturate and
start myelination, in human this process can take up to 22 weeks. Human OPC
specification starts around 7.5 weeks of gestation (Buchet et al., 2011). These
cells become functional not earlier than around 11 weeks of gestation in the
spinal cord [22] and 30 weeks of gestation in the forebrain [23] when the first
myelinated axons can be detected.

As mentioned before, in both species the course of oligodendrocyte
differentiation follows the same pattern and can be divided into several, well-
defined stages each characterized by the response to specific external factors,
by the expression of a specific set of transcription factors and protein markers
and by a specific cell morphology (Figure 1). In the spinal cord, the vast
majority of early OPCs originate from neural precursor cells (NPCs) which
express the transcription factors Olig2 and Ngn2 and can develop into both
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oligodendrocytes and motor neurons [24], [25]. In response to Shh signaling,
Ngn2 is downregulated and another transcription factor, Nkx2.2, starts to be
expressed within the pMN domain [26], [27]. Co-expression of Olig2 and Nkx2.2
determines the oligodendrocytic fate of the differentiating cell [28]. The central
role in this “neuron-OPC switch” has been recently ascribed to changes in the
phosphorylation status of Olig2 [29]. OPCs are small, proliferating, bipolar or
multipolar cells endowed with a high migratory potential. Besides the transcription
factors mentioned earlier, they express among others Oligl and Sox10, as well
as a panel of membrane-bound markers: A2B5, platelet-derived growth factor
receptor alpha (PDGFRa) and, at later developmental stages, proteoglycan
NG2 [30]-[32]. As differentiation progresses, they lose their migratory and
proliferative capacity and their morphology becomes more complex with
numerous, long extensions. These so-called pre-myelinating oligodendrocytes
can be identified with an array of markers such as 04, 2’,3’-Cyclic-nucleotide
3’-phosphodiesterase (CNPase) and galactocerebroside (GalC) [33], [34]. Fully
mature oligodendrocytes enwrap axons with compact, multilayer membrane
sheaths, the myelin, in a process called myelination. At this stage, cells express
specific myelin proteins i.e. myelin basic protein, myelin associated glycoprotein,

myelin oligodendrocyte glycoprotein and myelin proteolipid protein (MBP,
MAG, MOG and PLP), involved in the structural integrity of myelin [35], [36].
Interestingly, Oligl transcription factor is redistributed from the nucleus to the
cytoplasm at this final stage of oligodendrocyte development [37], [38].

Nanog Nestin Olig2 04 MBP

Oct4 Pax6 PDGFRa 01/GalC PLP

SSEA4 Sox10 NG2 RIP MAG

Sox2 PSA-NCAM Nkx2.2 CNPase MOG

Tra-1-60 Musashi A2B5 Olig1(cytoplasm)
Tra-1-81 Olig1(nucleus)

Figure 1. Stages of oligodendrocyte differentiation from pluripotent stem cells (iPSCs/
ESCs) and markers commonly used for their characterization. Note, some markers might be
expressed also in adjacent differentiation stages. ESCs/iPSCs: typical morphology of human
embryonic stem cell /induced pluripotent stem cell colony; NSCs, OPCs, Pre-OL, Myelinating
OL: Immunofluorescent stainings of neural stem cells, oligodendrocyte precursor cells, pre-
oligodendrocyte and myelinating oligodendrocyte respectively.
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POTENTIAL SOURCES OF HUMAN OPCs FOR MYELINATION STUDIES

For cell-based remyelination research, several sources of human OPCs have
been proposed: OPCs can be isolated directly from embryonic human tissue or
derived from neural stem cells (NSCs) isolated from embryonic human brain;
they can be generated from human embryonic stem cells (hESCs) (commonly
differentiated via an NSC stage) and more recently from human induced
pluripotent stem cells (hiPSCs). We will present current strategies to induce
the differentiation of stem cells into OPCs. An interesting, novel alternative
might be the use of direct cell conversion technology for the generation of
OPCs directly from somatic cells. Each of these possible cell sources has its
specific advantages and disadvantages that will be shortly discussed within
this paragraph.

OPCs ISOLATED FROM HUMAN TISSUE

OPCsisolated directly from human tissue have hardly been used in myelination
experiments. Nonetheless, the rationality of such an approach has been first
described by Gumpel et al. in 1987. In this study, however, the authors did not
intend to isolate a pure population of OPCs but instead used small fragments
of human embryonic brain for transplantation. Still, human OPCs migrating
out from these fragments managed to differentiate and myelinate axons in
a hypomyelinated mouse model [39], [40]. More recently, a number of papers
were published describing in detail the procedure of OPC isolation from human
tissue [41]-[44]. The major restriction of such an approach is certainly the
limited availability of embryonic human tissue for OPC derivation. Another
problem is the great heterogeneity of samples obtained from different human
donors and different fetal ages making comparison of results very difficult.
Moreover, knowing the limited proliferation potential of isolated OPCs in-vitro,
the acquisition of a sufficient number of cells for experimental studies may be
troublesome. Another, more frequently used source of human oligodendrocytes
for myelination research are tissue-derived NSCs. NSCs with oligodendroglial
lineagedifferentiationpotentialhavebeenisolated frommultiplefetal CNSregions
including forebrain [45]-[47], subcortical white matter [48], cortex [49], [50],
ganglionic eminences [51] and spinal cord [52]-[55], as well as adult postmortem
brain samples [56]-[58]. These cells can be relatively easily ex-panded in-vitro
as monolayer or in the form of floating cultures (so-called neuro-spheres) in the
presence of specific growth factors such as FGF2 and EGF [46], [52], [59]-[61];
in some cases LIF [46], [52], [61]-[63] and PDGF [57], [59], [64] are also
added to the medium. Importantly, human NSCs amplified in-vitro retain
their multipotency, i.e. the ability to give rise to neurons, astrocytes and
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oligodendrocytes, even after long-term culturing [46], [50], [65], [66]. Oligo-
dendrocyte differentiation of the human NSCs is commonly achieved by growth
factor withdrawal [33], [46], [47], [51], [67]-[70] or/and supplementation
with a panel of induction and growth factors including Shh, PDGF, T3, NT-3,
BDNF, CNTF and IGF-1 [47], [50], [68], [70]-[72]. An alternative approach
for oligodendrocyte fate induction from NSCs has been recently presented
by Wang et al. After comparing the gene expression profile of FACS-sorted
human NSCs and OPCs, they came up with a panel of transcription factors that
are significantly upregulated during OPC fate acquisition. Overexpression of
one of these factors, Sox10, in human NSCs resulted in their oligodendrocyte
commitment [73].

In most transplantation experiments, human NSCs are indeed differentiated
into OPCs, or at least into glia restricted precursors. Yet, in some experimental
set-ups multipotent NSCs have been used [21], [52], [54], [71], [74]-[80]. In
these cases, experimental results largely rely on the intrinsic (default) NSC
differentiation program. An interesting example of such a study is provided
by Brustle et al., in which human NSCs were implanted into the ventricle of
embryonic rat brains. The human cells appeared to incorporate into all major
compartments of the host cerebrum and differentiated into neurons, astrocytes
and oligodendrocytes, generating animals with CNS chimerism, a model for
studying human neural development in a functional nervous system [81].
Unfortunately, derivation of NSCs from human tissue suffers from the same
drawbacks as previously described for derivation of OPCs, i.e. limited accessibility
to human samples and a vast heterogeneity. Yet, the relatively uncomplicated
large-scale expansion of NSCs in-vitro should be considered a great advantage.

OPCs DERIVED FROM HUMAN PLURIPOTENT STEM CELLS

Since their first successful isolation in 1998 [82], human embryonic stem cells
(hESCs) held great promise for fundamental research as well as for potential
clinical applications in cell-based therapies. As an almost unlimited source
for all kinds of differentiated cell types, they were considered the solution
for the restricted access to human tissue-derived material/cells. With time,
various strategies and protocols for the generation and differentiation of
specific cell types from hESCs emerged, including cells of oligodendrocytic
lineage. Up to date, several protocols have been established for the generation
of oligodendrocytes from hESCs [68], [69], [83]-[86]. Strikingly, despite the
common endpoint, different approaches were used among these protocols, each
of them recapitulating the in-vivo conditions during embryonic and postnatal
oligodendrogenesis (Figure 1). They reflect the fact that there are at least three
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different waves of oligodendrocyte development in-vivo each characterized by
distinct inductive stimuli from the environment of the neural stem cells. For
instance, protocols proposed by Nistor et al. [83] and Izrael et al. [69] do not
include Shh at any stage during differentiation pointing towards a more “dorsal
origin” (Shh-independent) type of oligodendrocytes produced with their
approach. Moreover, combinations of growth factors and morphogens used at
specific differentiation checkpoints differed remarkably. In some protocols,
certain differentiation stages with their own specific requirements of growth-
and induction factors were not distinguished or recognized. Additionally,
there appeared to be considerable differences in the time course of OPC
differentiation of hESCs, varying from 25 days in the shortest [84] to 98 days in
the longest scenario [85].

Indeed, hESCs may serve as a very adequate source of oligodendrocytes for
basic research and transplantations. However, the actual use of these cells comes
with considerable drawbacks. First of all, in many cases the oligodendrocyte
differentiation procedures are very long and complicated; often they appear to be
difficult to reproduce in other labs, although this difficulty might, at least in part,
originate from intrinsic differences between the used hESC lines. Apart from the
ethical concerns associated with hESCs, significant problems with their clinical
use in future transplantations may arise from the fact that grafts of OPCs derived
from hESCs will be allogenic, introducing a significant risk of graft rejection and
hence the need for life-long immunosuppressive treatment.

The solution for the latter has come from a groundbreaking, Nobel prize
winning development in stem cell research, the generation of human induced
pluripotent stem cells (hiPSCs) [87]-[91]. iPSCs are equivalents of ESCs and are
derived from somatic cells by forced expression of specific pluripotency-related
transcription factors. Although the original use of integrative viral vectors for
reprogramming and the need for (xenogenic) feeder layers for cell culturing
were thought to hamper the potential clinical use of patient-derived iPSCs, the
latest advancements in reprogramming now allow generation of xeno-free, zero-
footprint hiPSCs without any genomic integrations of foreign DNA (hiPSCs
generation strategies reviewed in [92]). hiPSCs may serve as an excellent
autologous source for human oligodendrocytes, especially for disease modeling
and transplantation studies (Figure 2). Several laboratories have reported the
differentiation of oligodendrocytes from hiPSCs. In some cases oligodendrocytes
were just a minor “byproduct” of differentiation into other CNS cell types
(mostly NSCs or various types of neurons) [93]-[95]. A few research groups,
however, particularly focused on establishing specific and effective protocols for
the differentiation of hiPSCs into functional oligodendrocytes [70], [96]-[99]
though with varying degrees of success. In the first documented attempt to
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Disease modeling

transplantation

Autologous cell @
0. 0O

Differentiation
oligodendrocyte
precursor cells

Reprogramming vector ooo
(e.g. plasmid containing o -

Oct4, Sox2 and Kif4 genes)

iPSCs

Cell acquisition

Reprogramming
(e.g. skin biopsy)

Somatic cells (e.g. fibroblasts)

Figure 2. Potential use of patient-specific iPSCs for MS treatment and disease modeling.
Somatic cells (e.g. fibroblasts) are acquired from MS patient and reprogrammed into iPSCs.
Following differentiation, iPSCs-derived OPCs may be utilized as autologous grafts, or used
for disease modeling in-vitro.

generate OPCs from hiPSCs, based on the protocol of Nistor et al. designed for
hESCs [83], Ogawa et al. reported differentiation efficiencies aslow as 0.01% [96].
Pouya et al. in contrast, while using a similar differentiation strategy, claimed
an efficiency of ~80% for generating cells expressing OPC markers such as
NG2 and PRGFRa [97], though their immunohistochemical evidence for that
appeared to be inconclusive. The first truly successful generation of oligodendro-
cytes from hiPSCs can be ascribed to Wang et al. [98]. Utilizing a differentiation
strategy adapted from another hESC-based protocols [69], [85], they not only
managed to produce OPCs with a high efficiency (up to 79% based on Olig2/
Nkx2.2 double-staining), but also demonstrated the functionality of these oli-
godendrocytes after transplantation into hypomyelinated animals [98]. Re-
cently, a further optimized version of this protocol has been developed by Dou-
varas et al., who used it to generate oligodendrocytes from iPSCs derived from
primary progressive MS (PPMS) patients [100].

Although hiPSC-oriented research carries a great promise for autologous
cell replacement therapy, a number of issues still remain to be solved before
introducing this new technology into clinical use. Firstly, the absolute safety
of the current hiPSC production methods needs to be proven and established.
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Additionally, ways to speed up the differentiation protocol for human OPCs need
to be developed, since the present duration (in total ~150 days [98] or ~75 days
[100] provides severe practical and logistical concerns. Eventually, the protocol
needs to comply with the current good manufacturing practice (GMP) standards,
entirely avoiding the use of xenogenic products throughout the procedure.
Ultimately, contamination with undifferentiated hiPSCs should be excluded
by stringent purification steps and verified before actual transplantation into
a patient to eliminate the risk of teratoma formation.

Another method to obtain oligodendrocytes from human cell sources might
come from the development of direct cell conversion technology. Two studies
demonstrated the possibility to convert mouse somatic cells directly into OPCs
using forced expression of specific transcription factors [101], [102]. Importantly,
these directly converted OPCs behaved like normal primary OPCs, showing
asimilar gene expression profile and similar ability to myelinate axons in-vitro and
in-vivo [101], [102]. Direct conversion technology is a relatively novel approach
for generating clinically relevant cell types and the long-term functionality and
stability of the converted cells need to be established. Safe, non-integrating, more
efficient direct conversion methods need to be developed and most importantly,
the applicability of this technique needs to be demonstrated for human OPCs.

APPLICATION OF HUMAN OLIGODENDROCYTES IN (RE)MYELINATION
RESEARCH

The most prominent aspect of oligodendrocyte physiology during development
is their ability to form compact myelin sheaths around axons. For regenerative
medicine, however, the capacity of the cells to restore myelin within areas
of demyelination, caused either by an acute insult (e.g. spinal cord injury),
a chronic disorder (e.g. MS) or in WMDs, might be of even greater interest. In
many pathological cases, rapid and efficient remyelination needs to be assured
in order to rescue affected axons, prevent retrograde neuronal degeneration and
with that irreversible disability. This goal can be achieved either by stimulating
endogenous remyelination (reviewed elsewhere in details [103], [104]) or by
grafting exogenous remyelinating cells (reviewed in [105], [106]). The latter
strategy requires extensive characterization of the cell populations to be grafted
with all available laboratory techniques and analysis methods, before one may
proceed to a clinical trial with human subjects. Researchers have a number
of model systems, both in-vitro and in-vivo, at their disposal to test the major
functional aspects of oligodendrocyte physiology, i.e. migration, differentiation
and (re)myelination. In the following paragraphs, examples of studies will be
described that characterize human oligodendrocytes (tissue-isolated and stem
cell-derived) in various model systems.
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IN-VITRO MODEL SYSTEMS FOR MYELINATION STUDIES

Various model systems have been developed for studying (re)myelination
in-vitro: co-cultures of oligodendrocytes with dorsal root ganglion (DRG)
[107], [108] or CNS neurons [109], brain slice cultures from wild-type and
mutant mice [110], [111], or CNS spheroids [112]. Oligodendrocytes were also
shown to be able to enwrap artificial materials such as carbon [113], glass
[114] and vicryl microfibers [115], polylactic acid nanofibers [116], or even
paraformaldehyde-fixed axons [117] demonstrating that electrical activity of
neurons, although beneficial, is not mandatory for myelination. While the vast
majority of literature utilizing these models concerns rodent OPCs, also human
oligodendrocytes have been tested for their myelination capacity in-vitro in
several studies listed in table 1.

IN-VIVO EXPERIMENTS UTILIZING HUMAN OLIGODENDROCYTES

The functionality of human OPCs in-vivo has been thoroughly studied using
numerous animal models. A list of in-vivo experiments with human OPCs
derived from various sources is assembled in table 2.

A vast majority of the in-vivo experiments did confirm the applicability of
human oligodendrocyte transplantation, demonstrating that human OPCs were
able to survive, migrate and differentiate into mature functional oligodendrocytes
after implantation. In many cases, formation of thick, compact myelin by
transplanted cells was observed, accompanied by long-term beneficial effects
on the “diseased” phenotype (table 2). Additionally, an interesting, myelination-
independent effect of NSC/OPC transplantation was identified in EAE models,
where significant alleviation of disease symptoms could be attributed to indirect,
immunomodulatory/neurotrophic activity of grafted cells, presumably through
secretion of specific bioactive factors [79], [134], [135].

Despite the promising outcome of most of the cited transplantation studies,
the actual relevance of the used animal models for a specific human demyelination
disorder and the extrapolation of findings from these studies to potential clinical
application should be critically considered. The newborn shiverer mouse and
other newborn transgenic mice may mimic various pediatric leukodystrophies
(reviewed in [137] but apparently have less significance for studying MS-related
demyelination and loss of myelin due to spinal cord injury in adults. More studies
in novel, relevant, adult animal models are required for that, mimicking as closely
as possible the specific characteristics, disease processes and myelin pathologies
of the adult demyelination disorder under investigation.
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CONCLUSIONS & FUTURE PERSPECTIVES

Apart from re-establishing proper saltatory signal conduction, ensuring
axonal rescue and neuronal survival are the key targets in the treatment of
demyelinating disorders. Remyelination induced by grafting of exogenous
myelinating cells has proven its efficacy in numerous animal models, justifying
trials for clinical application.

A first 1-year open-label phase 1 study on the implantation of remyelinating
cells has been conducted in 4 patients with the early severe form of Pelizaeus-
Merzbacher disease (PMD) a rare leukodystrophy caused by a mutation of the
PLP1 gene [63]. In this trial, human central nervous system stem cells (hCNS-
SCs) were used, isolated from a single donated fetal brain and purified by
fluorescence-activated cell sorting on CD133-positivity and CD24-negativity,
characteristic for multipotent neural stem cells (NSCs). They were extensively
characterized and expanded in vitro as neurospheres to obtain a sufficient
number. The ability of these hCNS-SCs to produce functional myelin had been
demonstrated before [76]. Production of the hCNS-SCs was under current GMP
regulations. Each of the 4 patients received 3.0 x 10® hCNS-SCs, injected in
4 equal aliquots into each of the 4 frontal lobe sites. The findings from this phase 1
study indicated a favorable safety profile for hCNS-SCs in patients with PMD.
The MRI results suggested durable cell engraftment and donor-derived myelin in
the transplanted host white matter. Presently, clinical trials with the implantation
of similar hCNS-SCs as remyelinating cells are being prepared for the treatment
of spinal cord injuries.

The phase 1 study in the PMD patients illustrates the major drawbacks of
this therapeutical implantation strategy. The PMD patients received injections
with allogenic cells and so had to be exposed to a stringent immunosuppressive
regimen. Obviously, if autologous NSCs would have been available, they would
have required correction of the PLP1 mutation with the use of novel gene editing
technologies (e.g. CRISPR/Cas9 editing). Moreover, long term culture of NSCs
as neurospheres for multiplication can change the identity of the NSCs and may
affect the ability to differentiate into a proper oligodendrocytic cell lineage.

It is clear that the iPSC technology provides an unprecedented source for
an indefinite number of autologous OPCs that may be genetically modified/
corrected if necessary. Specialized laboratories for the GMP production of
well-characterized pure, xeno-free, zero-footprint hiPSCs are presently set up
for the generation of patient-specific iPSCs. As yet, a major obstacle, as far as
their application in remyelination-directed cell transplantation is concerned, is
formed by the limited efficiency, the complexity and the long duration of current
OPC differentiation protocols. Once these problems are solved, treatment of
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specific pediatric leukodystrophies may be most suitable for a first trial with
iPSC-derived OPCs. Clinical application of autologous iPSC-derived OPCs in
chronic demyelination disorders such as MS will require careful planning and
determination of the proper mode and time-point of administration. Moreover,
since MS pathology comprises a complicated interaction between intrinsic
neurodegenerative processes and an aberrantly reacting immune system,
a remyelination strategy with implanted iPSC-derived autologous OPCs can only
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succeed in combination with current, efficient anti-inflammatory therapeutics.
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