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Abstract

In this paper, we consider a single-item, one-machine mtiahrinventory system with compound
Poisson demand. The production facility may be in prodactioidle. While in production, the pro-
duction rate is constant and positive, and is zero while iliestem costs consist of switching costs and
quasi-convex inventory and backlogging costs. We provatelitions when(s, S)-policies are optimal
under the long-run average expected cost criterion. Theséitions are met in particular when the in-
ventory costs are convex. The developed method in the psoefisy to apply to more general cases.
Moreover, the method allows us to compute optimal policiEy efficiently.

1 Introduction.

The Economic Production Quantity (EPQ) model is one of thssital production-inventory models. In
this continuous-time model, demand is assumed to be detistiniand constant, and production alternates
between ‘on’ and ‘off’; if ‘on’, it produces at fixed rate, ibff’, it produces nothing. A fixed set-up cost
K is incurred every time production is switched on, and lifezlding and backlogging costs are accrued
for each unit of stock per unit time. In many logistic envineents, however, the assumption of constant
and deterministic demand is not appropriate. In this paperconsider a stochastic version of the EPQ
model in which demand is compound Poisson rather than deatistin, and the inventory cost function

is quasi-convex rather than linear. The paper has two abgsct The first is theoretical and directed at
structure results, namely, to identify conditions on thst@ructure and the demand distribution such that
(s,.S)-policies are optimal under the long-run average expeatetiariterion. Thus, when the inventory is
below or ats, it is optimal to switch on production, and when the invepisrabove or afs, switch off. The
other goal is numerical and constructive, namely, to dewisemerical procedure to efficiently compute an
optimal policy for general one-product production-invamgtsystems.

A similar, but simpler, production-inventory problem ha&sh considered earlier by Gavish and Graves
[8]. They study the case with unit Poisson demand arrivald feolding and backlogging costs that are lin-
ear in the number of items on stock or in backlog, and derivaraarical procedure to compute optimal
switching levels. This approach depends critically on twsumptions. The first is that the Poisson de-
mands arrive as single units, so that the inventory processredwo-sided skip-free, that is, skip-free to
the rightand skip-free to the left. This assumption allows Gavish and/&g48] to use the optimality result
of Sobel [22] who proves that a two-critical-number policg ( an(s, S) policy) is optimal for such two-
sided skip-free queueing and inventory processes. Thendasdhat the costs are linear in the inventory
and backorder level, so that it becomes possible to exgresost functions as a constant times the average
inventory (backlog) level. Graves and Keilson [10] extelmel nodel of [8] such that the demand sizes are
exponentially distributed rather than deterministic. Amiediate consequence is that the inventory is no
longer skip-free to the left, and the result of Sobel no laragplies. Thus, Graves and Keilson [10] restrict
their search for the optimal policy from the onset to thelai(s, .S)-policies, but do not prove that this
optimal policy is stationary optimal.



To the best of our knowledge, there are as yet no structunésémown for the more general production-
inventory systems with compound Poisson demand with géyetiatributed single demand sizes and
guasi-convex inventory costs. Dropping the skip-freemesperty rules out the use of Sobel’s result.
Moreover, the current numerical methods, which requiraifstantial amount of) ingenious and analytic
work, appear to be incapable to efficiently analyze costtfons other than linear. Thus, the analysis of
the more general inventory system requires a new approaoh the one handghrove structure results for
the optimal policy in the class of stationary policies, amthe other hanaompute the optimal policy by
simple means.

The principal result of this paper is a framework that adsesimultaneously these three challenges,
i.e., structure proofs, computational efficiency, and egmteal simplicity. It achieves this by combining
three critical elements in a new way. First, as in Graves agits&n [10] or, more generally, for Markov-
modulated stochastic processes, the production-invepraicess is defined on two lines to incorporate
the state of production as being on or off. These two linesach that when the state of the production-
inventory processP;, I1) is (1,z), production is on and the inventory levelis and when the state is
(0, ) production is off and the inventory levelis It is quite straightforward to prove that it is optimal at
the on-line to remain on until some critical levgls reached. The second element deals with the hard part:
to prove that at the off-line it is optimal to only switch onatbelow some levet. To establish this, we
formulate the switching decision at the off-line as an oplistopping problem to minimize therevised
holding cost rather than just the holding costs, and proaettiere exists g-revised optimal policy for
generaly > 0. The third element is to use a bisectiongto construct a sequence of optimal policies that
converge to a limiting policy. Since there exists a policy &y g > 0, the limiting policy exists and is
optimal.

The combination in this paper between optimal stoppingmheidth the bisection method is a new and
important extension to the work of Wijngaard and Stidhanj2B, 29] and an essential ingredient in the
optimality proof of (s, .S)-policies. Contrary to our work, Wijngaard and Stidham Jse the bisection
method principally as aumerical means to efficiently compute the long run average cost of-fskip
Markov decision processes on a finite or countable stateespale extend it such that it can be used to
prove structure results for optimal policies. In passing, we edttheir method such that it also applies to
Markov processes on continuous, rather than countabte,gtaces, and we slacken the condition that the
transition probabilitiep; ;1 > 0 for all states.

The marriage between the numerical and theoretical pahedbisection method allows us to achieve
numerous results at the same time. The theoretical partsrithkemethod more generally applicable to
deriving structure results in other settings. For instanoeresults can also be used to prove the optimality
of, so-called,D-policies, c.f. Section 2, in the space of stationary pesdor the workload process of the
M/G/1 queue as studied by Feinberg and Kella [4]. We can adapt iatalle inventory systems with
lost sales under various non-trivial rejection policiagslsas complete rejection (reject the demand when
it cannot be covered from on-hand inventory), complete ptecee (reject only demand that arrives when
the inventory level is negative), or partial acceptancedptthat part of the demand that can be covered
by on-hand inventory, and reject the remaining part of thealed). The method can also be applied to
periodic-review systems. For instance, in Section 5 we dinmwto apply it to a periodic-review inventory
system described by Graves [11], c.f., Section 2.3, andeptfuat an(s, S)-policy is optimal.

With regard to the numerical part of the method, it enableowonstruct optimal policies for a wide
range of problems even when the structure is not simple, mog monotone, and certainly nft, S), as
is the case in one of the examples of Section 7. This is an i@pbcontribution by itself, in that none
of the other methods discussed up to now or below in Sectiaifé, this possibility. Next, the method
is entirely straightforward, and certainly does not reguany of the ingenious insights that have been
developed to obtain numerical results. Thus, it is not resmgsto find expressions for the average costs
and times of regenerative cycle times under sqosited policy structure. This is also a major distinctive
and simplifying feature or our approach. Finally, the nuiceraspect of the bisection method brings the
off-spin that the optimal policy can be computed very effithg typically exponentially fast.

The structure of the paper is as follows. In Section 2 we disealated work. Section 3 introduces
the model. Then, in Section 4, we prove the existence of amapstationary policy under quite general
conditions, and provide insight into when tiis S) policies can be optimal. In Section 5 we show how
to apply our method to a capacitated periodic-review inmgntodel of Graves [11]. Section 6 discusses



some numerical issues. These are used to in the examplestadrSe to illustrate, on the one hand, the
procedure by means of a concrete example, and, on the otheytiogprovide counter examples against the
conjecture thats, S)-policies are optimal for all combinations of demand digition and quasi-convex
inventory costs. Section 8 concludes and provides an dutbmopotential further applications of our
method.

2 Discussion and Related Literature

In this section, we discuss related literature and motiwdmgthe methods developed earlier are not suitable
to obtain the results of this paper. We group in Sections 2.4-the literature in accordance to similarity
in modeling approach, and then, in Sections 2.5— 2.7, inrdecwe to method of proof.

2.1 Relation to Controlled Queueing Systems

As mentioned above, Sobel [22] proves that two-criticalnber policies are long-run average optimal
for two-sided skip-free stochastic processes defined ospghee of integers. Examples are birth-death
processes, thé'/G/1 queue length process, and inventory processes that chgrgjedbe units. Gavish
and Graves [8] map the inventory levElt) (in items) at timet to the queue-lengt®(¢t) = S — I(¢) of
the M /D/1 queue, wheré is the inventory level at which production switches off. Tihasing the result
of Sobel [22], it suffices for the identification of the optihpalicy to find an algorithm that computes the
optimal critical numbers. Others, see below, use similgragches.

Given this versatile equivalence between controlled gtiength processes and inventory level pro-
cesses, it is of interest to try to extend it to more genersgsaln particular, the sample paths of (heS)-
controlled inventory level for our production-inventomgstem can be made to correspond in a one-to-one
way to the sample paths of the (virtual) workload processnol & G/1 queue with a removable server
thatis controlled by a, so called-policy. SuchD-policies switch on the server when tiverkload, rather
than thequeue length, exceeds a leveD, and switch off the server until the workload becomes zem. T
establish the mapping, note that the capacity-constrgingdiiction rate of the production-inventory sys-
tem is analogous to the finite service rate of the server,t@{virtual) workload procesg(t) = S — I(t)
at timet when the continuous inventory leveligt) at timet¢. Thus,S—the level at which production is
switched off in the inventory system—is mappeditm the queueing system, and-the level at which
production is switched on—t® = S — s.

In the queueing context, Federgruen and So [1] prove forMie/G /1 queue the optimality ofV-
policies, policies that switch on a removable server whengiheue-length exceeds some intelyerand
switch off when the system becomes empty. Federgruen antl] 8orjjecture thaD-policies are optimal
to control the workload when service becomes known uporarriFeinberg and Kella [4] prove in full
generality the long-run average optimality Bfpolicies in the space of all policies, not just the statigna
policies, for theM /G/1 queue with a controllable server, fixed switching costs efgkrver, and non-
decreasing holding costs.

Given these optimality results for these queueing syst@mguld be nice to try to carry over these
results to the production-inventory system under conatitar. This, for instance, would prove that S)-
policies would be optimal for the case of Graves and Keildd}.[However, this is not possible in general.
Even though the sample paths of workload and inventory |enaesses are in one-to-one correspondence,
the cost structures are certainly not the same. FoMIié&/1 queue, the holding costs is non-decreasing
in the workload (or the queue-length), while the inventoogtcfunctioni(-) for the inventory system is
generally not monotone, but (quasi)-convex(eio, S, and such thak(S) > h(0) = 0 < h(z) for some
sufficiently largez.

Precisely this difference in the cost functions motivatedéfgruen and Zheng [2] to generalize the
gueueing model of Federgruen and So [1] to production-itorgrsystems with unit production and vaca-
tions, and point out that the queueing system is a specialafake inventory system under &0 0)-policy,

i.e., an inventory system that is purely make-to-order,@mdrders are produced to inventory. Similarly,
our model generalizes that of Feinberg and Kella [4] to maneegal cost structures. Our result is not a



full generalization, though, as we consider optimalitytia tlass of stationary policies, while Feinberg and
Kella [4] prove that aD-policy is optimal in the class of all policies.

As a matter of fact, the difference in the cost functions & consequences for the structure of
the optimal policies for the production-inventory systedm. Section 7 we provide a counter example
that shows thats, S)-policies are not optimal for certain combinations of qeamivex inventory costs
and exponentially distributed demand. Thus, the optimalithe D-policy for the D-controlledM /G/1
gueueing system does not imply the optimality &fS)-policies for the production-inventory system, and
as an immediate consequeng£epolicies are not optimal under holding costs that are qoasiex, rather
than non-decreasing, in the workload. Moreover, in fullgmaifity, (s, S)-policies are not optimal for the
production-inventory system under consideration herecbgone of the objectives of this paper is to find
criteria on the demand distribution and inventory cost fiomcsuch that s, S)-policies are optimal.

This brings us to the question why the result of Sobel [22]aapptly do not generalize to, for instance,
the D-controlled workload process of the//G//1-queue. The reason is that Sobel is concerned with
two-sided skip-free processes, i.e., simple random watkshe integers that only make transitions to
neighboring states, When the server is off, the servicerguength procesgS(¢), Q(t)) ‘lives’ on the
off-line1 x {...,—1,0,1,...}. Suppose tha®(t) < M, whereM is the larger of the two-number critical
policy, then, eventually, the queueing process will it the server will switch on, and the server/queue
length process jumps to the on-lihex {—1,0, 1, ...}. As a consequence, the process cannot enter the set
0x {M+1,M+2,...}. Reasoning similarly,S(¢), Q(¢)) will never enter the set such that the server is
off and Q(t) < m, wherem is the smaller of the two critical numbers. Thus, no mattev pathological
the structure of any policy is at the sét {M + 1, M +2,...} andl x {...,m —2,m — 1} (wherem
andM are allowed to be policy-dependent), the characterisfitiseopolicy on these sets cannot affect the
behavior of the process.

In contrast, the inventory level under compound Poissonasiehwith generally distributed demand
sizes (or the workload process of thé/G/1-queue) is no longer two-sided skip-free. In our case, while
indeed the production-inventory will never exceg€dsave an initial transient phase that depends on the
starting condition of the inventory level process), thesimtory level can make transitions of arbitrary size to
the left. Now, suppose that it is optimal on the off-line tatslv on in some finite intervdls —a, s] for some
finite a > 0, remain off in(s — b, s — al, b > a, and on again if—oo, s — b]. When the inventory process
would have been skip-free to the left, it is impossible talé ‘wrong’ sets(s — b, s — a]. However, when
the demand distribution has with infinite support, for imgt, this is not the case. In fact, the example in
Section 7 mentioned before, shows that such alternatingieehre optimal for some production-inventory
systems, hencés, S)-policies are not optimal in general.

2.2 Single-ltem Systemswith General Processing Times

Gavish and Graves [9] and Lee and Srinivasan [16] deriverilfigns to compute the optimal policy in
the class of s, .S) policies for the production-inventory system with stodftggroduction times rather than
constant production times. Thus, they are concerned watptbduction-inventory analogy of thé /G /1-
queue, rather than the/ D /1-queue as Gavish and Graves [8]. Srinivasan and Lee [23]dmrthe more
difficult case of a batch Poisson arrival process in whichdkmands have general processing times and
linear holding costs. Their review model is different in tthlae inter-arrival time between successive
review epochs during off-periods is a random variable. igagan and Lee [23] confine the analysis to
(s,.S)-policies and derive an algorithm to find the optiraand.S.

Production-inventory systems with generally distribupedduction times are similar to our system in
that in both cases it takes a duratibrto replenish the inventory when a demand of dizarrives, but the
difference is that in our case (and that of Feinberg and Hé]lkthe inventory level is physically reduced
by an amount oD while in the other cases itis reduced by just a single item.

2.3 Capacitated Periodic-Review Systems

Attempts have also been made to incorporate bounds on tlee @uantity for periodic-review stochastic
inventory systems. This resembles the finite productioraciyp of the continuous-review production-
inventory process. Federgruen and Zipkin [3] prove thabitémal policy is an order-up-to policy, i.e., an



(s,.5) policy with s = .S when the order quantity is bounded by some numband there are no ordering
cost. In contrast, when the ordering cdstis positive, one would expect the optimal policy to have the
following structure: do not order if the inventof(¢t) > s, and ordemin{A, S — I(t)} if I(t) < s.
However, this is not true, see Wijngaard [26] for a straightfard counterexample. In fact, the general
optimal policy does not have a simple structure as shown layp$hng and Lambrecht [20], Gallego and
Scheller-Wolf [6], and Shaoxiang [19], but is charactediby critical levelsX andY, X < Y, on the
inventory: when/(t) < X orderA, whenI(t) > Y do not order, but wheX < I(t) < Y the decision
structure is more difficult. A related approach is to consaidy full-capacity orders, see Wijngaard [27].
More recently Gallego and Toktay [7] also consider this pEoband show that the optimal policyder
discounting is a threshold policy. Under the long-run average expeabstiaptimality criterion, however,
this inventory problem appears to be somewhat less integesince the ordering cost per time unit simply
becomed{\ E[D]/A, the behavior of the optimal policy does not changg increases. This aspect of this
model is also somewhat undesirable in comparison to theriabperiodic-review model with unlimited
order size. There, i increases, the differencg— s typically also increases, thereby making the trade-off
between ordering cost and inventory cost explicit. If, hegrethe ordering quantity is fixed td, as in
Gallego and Toktay [7], this trade-off is no longer of releva.

An interesting related model is studied by Graves [11]. Véewls this in considerable detail in Sec-
tion 5.

2.4 Continuous-review Systemswith Stochastic Demand

In the context of continuous-review inventory models withlimnited production capacity (or order-size
independent delivery times), Hordijk and Van der Duyn Sebouy14] show thafs, S)-policies are op-
timal, under the discounted and average cost criterionafoEconomic Order Quantity (EOQ) model
with a demand process that is the sum of a deterministice(stapendent) demand rate and a compound
Poisson process. Presman and Sethi [18] obtain the samisfesiuhe slightly less general system with
constant, rather than state-dependent, deterministi@adémThe main difference with our model is that
these authors consider unlimited production capacityemivid assume finite capacity, and they consider a
more general stochastic demand process as it containdebdbie compound Poisson demand, a constant
demand term. Presman and Sethi [18] show that, in the aveosgjease, the average cost per cycle of the
best(s, S)-policy cannot be improved by any other policy. However rasrtapproach is not constructive,
it might be difficult to apply to more general inventory masll which it may be inferred that the optimal
policy is more complex thafs, S).

Moreover, the method does not require ingenious expres$rthe average cost and cycle times of
regenerative cycles associated with a spe¢ii&)-policy.

2.5 Monotone Policies

In numerous settings, monotonicity properties of can@idgtimal policies have been used to prove struc-
ture results. Such arguments, however, cannot be applma twase. The numerical examples in Section 6
show that, simply put, optimal policies are not monotoneénegral. In one of the examples, the off-line
indeed splits intanultiple disjoint intervals under the optimal policy. On some of thégervals it is op-
timal to stay off, while on the complement of these intervals optimal to switch on. To still establish
the optimality of(s, S)-policies in some of these cases, we can prove that it is aptelows to switch

on, and to stay off anywhere in an interyal S|, and that it is optimal to keep the inventory below or at
S. Since the ‘wrong’ intervals of the off-line lie aboy® these will never be hit again once the inventory
enters the sdt—o0, S].

2.6 Sample Path Arguments

Perhaps, more generally, sample-path arguments may batexitb obtain our results, but it is not so clear
how. In periodic-review systems, Huh and Janakiraman [@&¢assfully apply sample-path arguments to
prove the optimality of(s, S)-policies for the classical period-review inventory systeith stochastic

demand and fixed setup costs, but under the discounted destorr, not under the average-cost criterion.



Fu [5] uses sample-path derivatives to find optimahdsS in the class ofs, S)-policies, but does not prove
the optimality of(s, S)-policies in the space of stationary policies. For g¢G /1 queue, Feinberg and
Kella [4] use sample-path arguments (and coupling) to éstathat, by judiciously switching the server
on and off, (parts of) the sample paths can be shifted dowshv@ince they assume non-decreasing holding
costs, a downward shift in the workload also decreased tsis.cAs a consequence, ‘serve-to-exhaustion’,
i.e., serve until the workload is zero, is long-run averaggnoal. However, this type of argument does not
simply carry over to inventory problems with the more geheoat functions, as discussed above. In such
cases, then, shifting (part of) a sample path downward neecesult in overall lower costs.

2.7 Markov Decision Processes

Finally, we remark that the continuous-review productioventory system can also not be easily formu-
lated as a discrete-time Markov decision problem (MDP). fssrete-time MDP require less technical
detail, it is of interest to try to obtain our results via tlgproach.) The point is that under afwy S)-
policy the decision epoch to switch off is not a jump epochhef demand process. (Sample paths are by
assumption right-continuous. Ashas to be hit from the left, and jumps are also to the leftan never be
hit at jump epochs.) Thus, the controlled production-ineenprocess cannot be formulated as an MDP
with a chain embedded at jump epochs. It seems possiblepaittehis problem by including fast but
small jumps to the right into the Markov chain, and study thguence of MDPs that results when taking
the jump rate larger and the jump sizes smaller. We inferghelh a sequence of Markov decision problems
converges to the production-inventory system, but protiiiggmay not be easy, neither that the structure
of the optimal policies is maintained in the limit, see [2at fletails on such limiting procedures. Hence,
to prove our results as a limit of discrete-time MDPs appeatgo be straightforward.

3 Modd, Notation and Preliminaries.

There is one stock keeping unit. Orders arrive accordingRoiason process with parameterThe order
size D is distributed according té'(-) with meanE[D] > 0 such thatE[D] < 1. Itis assumed that
D is light-tailed, i.e., there exists an > 0 such that/,~ e**G(z)dz < oo, whereG(z) = 1 — F(z) is
the survival function, and tha& (D = 0) = 0. Demand is filled from stock, or backlogged if no stock
is available. Inventory and stock-out costs are repreddnyethe functioni(-), which is assumed to be
quasi-convex, non-negative witl{0) = 0, andh(z) = O(|z™|) for somen > 0 as|z| — cc. The supply
comes from production. When production is on, the supplyasipced continuously at a fixed rate, which
is set tol without loss of generality. When production is off, the pnotion rate i9). Thus, the only way
to control production is by switching it on and off. Each tithe production is switched on, a fixed cdst

is incurred. (In case there is a switch-off cost, this costloa trivially absorbed i.) Switching occurs
instantaneously, so that if production is switched on, thremtory immediately starts to increase. Because
of backlogging, it is possible to relax the assumption toehaviixed throughput time, i.e., the time lag
between the start of production and the inventory startrgyow, but we do not so here.

The state space of the controlled production-inventorgese{ P(t), I(t)} can be visualized as two
lines, the on-line with P(¢), I(t)) = (1,«) and the off-line with(P(¢), I(t)) = (0,z). Any stationary
policy = can be fully characterized by a sub&¥t of the on-line and a subsé¥f of the off-line. If P(t) = 1
and(t) hits OT production is switched off, while iP(t) = 0 andI(¢) hits OF production is switched
on. In the sequel we use this correspondence between politthase subsets interchangeably. Observe
that as production is continuous, any subset of the on4ieafered from the left. Therefore it is necessary
that O for any stationary policyr is left closed, in other worddim inf 2; € OT for any sequencéz; }
in OT. Next, to be able to properly define expected hitting timesregiire the set§®)7 andOT to be
Borel sets. We impose some further conditions(@hand OT to ensure that only recurrent cycles with
finite expected costs can result. First, the skip-freet@gbe-right of the inventory process on the on-line
and the stability condition E[D] < 1 imply that the seD7T has finite expected hitting time if it can be
reached from any initial conditioh(0) = . Second, on the off-line the inventory procdd$t)} behaves
according to a compound Poisson process. We requiréhé such that it is hit with finite expected time
forany I(0) = z. (Providing tight necessary conditions for this to be trmi@dtually quite technical and



dependent on the specific propertieddf). A simple, but certainly more than necessary, conditiohas t
there exists some™ for each policyr such that—oco, 2™ € OF.) Third, OF andOT should be disjoint,
for otherwise it may happen thatt) € OF N OT and production switches on and off incessantly, resulting
in an infinite cost.
In the proof we consider first a space of ‘tamed’ stationarljcs consisting of policies such that

T = [R,o0) for a given, fixed,R, while OF can still be arbitrary. Typical recurrent production cycle
induced by such policies may be assumed to stafPéb), (0)) = (0, R), see Figure 1. The inventory
decreases in jumps at each arriving order udfjlis hit. Then production is switched on. The inventory
increases now continuously, except when an order arrives ithits 2. Then production is switched off
again, and the process returns to the p@int?). We write r to denote the class of policiessuch that

T =[R,00), andH = |J Hr. Thus, the policies ifi{ are such that they control pure jump processes at
the off-line and jump processes with drift at the on-line.

/_\ -
On

Off --

Figure 1: The state space of the inventory process. The tidclon the on-line represents the subset at
which the policyrr decides to switch production off. The off-line is dashedni¢ate that the inventory
does not decrease continuously, but in jumps.

4 Analysis.

In Section 4.1 we present an outline of the proofto clarifwladl steps of the proof relate and provide a list
of steps that require further proof. These technical p@reasaddressed in the subsequent Sections 4.2—-4.5.

4.1 Notation and Proof Outline.

We start with introducing some concepts related to the naifg-revised cost. Take some arbitrarf and
consider some arbitrary policy € Hg. Let

7™ (x) = inf{t > 0; (P(¢),I(t)) = (1,2)},
whereE,, is the expectation of functionals of tiecontrolled proces§P(t), I(¢)} given that P(0), I(0) =

(0,z), x < R. By the assumptions of Section 3, the s@fsandO] are such that, 7™ (z) < oco. Let
CT™(x) denote the expected cost (inventory, stock-out and sebsg) for the process to move from state

(0,z)to (1,2), i.e.,
/T . h(I(t))dt
0

We define the (expected)revised cost to move from{0, =) to (1, x) as

C™(z) = E, +K. (1)

Cg(x) = C™(x) — g Eu7™ (), ()

whereg > 0 is some arbitraryevision rate. Clearly,C7(z) = E, UOTW(””)(h(I”(t)) -9) dt} + K, and

we may interpret theg-revised cost as the expected cost resulting from an invgrtisth(z) — g rather
thanh(x).



We next introduce thg-minimizing policy inH. Suppose that

Colw) = _inf  {CF(@)} ®3)
exists. TherC,(x) is theleast g-revised cost to move frorf0, z) to (1, ). Assume further that for any
giveny, C, ()attams it (finite) minimum, and let, be the left-most minimizer. The@i,(S,) is theleast
overall g-revised cost to move from some level on the off-line to theasdevel on the on-line. Suppose
finally that there exists a policy, that establishes the infimum in (3) 8§, so that it follows that

Cg?(Sg) = Cy(Sg) = Hgn Cy(z) = Inacinfreurgi;iHR Cy (). (4)
We callr, theg-minimizing policy.

It is interesting to note that’y (S) is not just the expected cost of to move frgm S) and to stop at
(1,5) under policyr. As the cost to switch off is absorbed Iti, C7 (.S) can also be seen as the long-run
expected cost of eecurrent cycle that starts and stops (0, .S). This insight allows us to relate the revision
costg to the expected recurrence cost of a cycle under the pslityis well known, see for instance Tijms
[24], that the average recurrence cg8tequalsC™(R)/Er7™ (R), where the cost functiof is defined
in (1), for a cycle induced by policy € Hr. Rewriting this in the form of (2), it means that andr are
related such that

Cix(R) =C™(R) — g"ErT"™(R) = 0. (5)

To find the recurrence cost by this approach, fitgiose some policyr, and thencompute the cost rate
g™ such that (5) is satisfied. Now observe that in the reasomiadihg to (4) we actually reverse this
procedure. There we firghoose some initialg, and therconstruct the policyr, € H that achieves the
minimal costCy? (S,). If we can find ag* > 0 and a policyr,- such that

Cgi (8g+) =0, (6)

then, by (4),C7.(x) > 0 for any otherr € H and any other. Next, by takingg™ = g*, 7 = m,~ and
R =54 in (5) it follows from (6) thatg* is the long-run cost rate associated witfs. All in all these
observatlons imply, in words, that,- is the optimal policy irf{ with minimal long-run average expected
cost rateg*, andS,- is the optimal switching level (from on to off).

To actually findC}, in (3) and thej-minimizing policy inH we derive a dynamic programming equation
(DPE) thatC, has to satisfy. It turns out that this DPE has a nice form arah#y to solve numerically
for anyg. To identify the ‘right’ g, i.e., the revision cost that solves (6), we use bisectidmdSe some
arbitraryg. It may then happen that this choice fgis not equal to the recurrence cgsbf the cycle
induced byr,. If g > g, which intuitively would mean that the cost compensatide gais larger than the
actual average running cagtthen

C’:;Tg (Sg> = C’:;Tg (Sg> - gESgTﬂg (Sg>
< CFe(Sy) — gEs, 7™ (Sg) = 0.

As a second trial we choose a smaller valylesay, as a revision rate, and construct the associated policy
Ty € H. WhenC "(S,) > 0, the next choicey” say, must be larger thai, while |fC "(Sy) < 0,9
is still too large, and SO on.

Now that we have described the overall procedure of the peofnumerate the steps that need to be
filled in to obtain the structure results. In Section 4.2 wstfiterive a useful expression for the derivative
~(+) of the expected cost to move on the on-line from some levtel a levelz > r for quite general
inventory cost functions(-). We next show, in Section 4.3, that theminimal costC,(x) of (3) is the
unique solution of a DPE related to an optimal stopping pobWith cost-to-go function(-), and that
a policy exists that achieves the minimum. This optimal @ofirescribes to switch on production if the
inventory is less thag,, which is the left-most root of. We then show that’; (x) attains its minimum for
all g > 0, and that the left-most minimizef, of C, lies in the intervals,, t, ] wheret,; is the right-most
root of v. In Section 4.4 we show thd,(S,) can be made arbitrarily small, hence there exisgssach
thatCy(S,) < 0. SinceCy(Sy) is continuous iny andCy(Sp) > 0 we conclude that there must exisga



such thatCy- (S,-) = 0. As there exists g-minimizing policy for eacty, this implies there must exist a
g*-minimizing policyr,- € H. Thus, the bi-section ogindeed yields most of the results. The last step
of the procedure, c.f. Section 4.5, is to prove that no statip policy can improver,-, hencer?- is an
optimal stationary policy. A simple corollary of the abosgethat wherh.(-) is convex;y is convex, hence
has two roots. It is then immediate that the optimal policy &a(s, S) structure.

In the rest of this section, we deal with the technical detailprove the structure results. In Section 6
and Appendix A we discuss some numerical points of concahjraSection 7 we illustrate the bisection
procedure for a concrete example, and provide some coarénples.

4.2 Costson theOn-line.

Consider a policyrr € Hg. If the process starts in some stéfe(0), 7(0)) = (1,r) with r < R, 7g
prescribes to continue producing until state R) is reached, and then to switch off. In this section we
are concerned with the cost functidf{r, z) underr of ‘moving’ on the on-line from(1, r) to (1, z) for
r<z<R.

Consider a given cost rate functieft) € B, g, whereB, r, a > 0, is the Banach space of real-
valued continuous functiong such that the weighted supremum ndfifi| = sup{|f(z)e**|;z < R} is
finite. LetV"(r, ) be the cost incurred to start (i, ) and continue producing until either poifit, x) is
reached or the-th order arrives, whichever is first; 18t°(r, z) = [ c(y)dy. Whenn > 0, we have for
sufficiently smallA,

V(r,z 4+ A) = V™(r,z) + c(z)A + NAE[V" Yz — D, z)] + o(A).

By induction it follows that’™ (r, -) is differentiable, and its derivativg®(-) satisfies

x

Y (z) = c(x) + A\E M 7" (2) dz] . (7)

—D
Observe that™(x) is independent of.

Lemma 4.1. Asthe demand is light-tailed, there exists v > 0 such that 8 := A [ e**G(z)dx < 1. If
¢(-) € Bo,r and ¢(z) — oo as|z| — oo, the sequence {y™} convergesto alimit function € B, r, which
is the unique solution of the integral equation

v(x) = ¢(x) + AE[V(z — D, x)]
=c(z) + \E [/I_D ~v(2) dz} (8)
=c(x) + /\/0 v(x — 2)G(z) dz,

where V (r,z) = f:” ~(z)dz. Thefunction ~ is decreasing (increasing) in a neighborhood of —co (+00).

Proof. Define the linear operator
PH@=x[" [ feaarw.
r—y

and rewrite (7) ag™(z) = c(z) + (Py"~V)(z), with 1° = ¢. The operatorP is a contraction on the
Banach spacB, g, thatis,||P|| = sup {||Pf]| : ||f]| = 1} < 5. To see this, note that

@ = [" [ s@aarw = [" - 966

which implies

(Pf)(w)e™ = /\/O f(x = 2)e DG 2) dz < || /0 e G(z)dz =B 1],
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hencd|Pf|| < g f||. From this it follows thaty™ — v € B, g. This limit function+ is the fixed point of
the operator + P, that is, is the unique solution of the integral equation (8). As affartconsequence,
V™ (r,z) convergestd/(r,z) = [ y(z)dz.

Sincec(z) — oo if z — Fo00 by assumptiony must also be decreasing (increasing) in a neighborhood
of —oo (+00). O

4.3 Minimal Expected Costsfrom (0, x) to (1, x).

We next characterize the minimal c@sfz) to move from stat€0, x) to (1, z).

Suppose thatP(0), I(0)) = (0,x), i.e., the process starts at inventory lexednd production is off.
ChooseR > z. Let us compare the expected costs of two alternative raotesve from(0, z) to (1, z).
The first alternative is to switch on immediately, which sodearly K. The second alternative is to wait
for the next arrival, switch on, and then replenish the inegnto levelx again. The cost for this second
route is

c(@)A\'+ K+ EV(z — D,x) = y(x) ]\ + K,

where the equality follows from (8) and the definition B{r, ). Now observe that ifc is such that
~(z) < 0, it must be better to await a new arrival than to switch on irdiately. We therefore write

C'(z) = min {K, y(z)/ A+ K}, 9)

for the cost to move fronf0, z) to (1, x) associated with the policy that either switches on immedijat
or awaits at most one arrival before switching on, whichasdrest. This reasoning applies of course
recursively. Rather than awaiting just one arrival, it mayifiteresting, cost-wise, to await two arrivals.
This would result in a cost(z)/A + E[C!(xz — D)] for the second term in the minimization in (9) rather
thanvy(z)/\ + K. Continuing like this, we arrive at a sequence of cost fumst{ C(-)} which satisfy the
recursions

C'(z) = min {K,y(z)/A\+ E[C* 'z = D)]}, i>1, (10)

where we defin€?(z) = K for all x.

In the sequel of this section, assume that the costcfatés such thaty(z) < 0 for at least one:, for
otherwise production will be switched on everywherg eno, R], which is relatively uninteresting. Since
~ is continuous and increasesdo as|z| — oo, it then has at least two roots. Letndt be its left- and
right-most roots, respectively.

Lemma 4.2. The sequence {C"(-)} hasthe following properties:
1 C¥z)=Kforalz <s.
2. {C%(-)} ispoint-wise decreasing asi — oo, i.e,, C*(z) < C*~1(z).
3. {C%(-)} isbounded from below, i.e., there exists M > —oo such that C%(z) > M.
4. C(-) iscontinuousfor all i on (—oc, R)].

Proof. (i) This follows immediately from combining(x) > 0 for all x < s with the recursion (10), and
(9) which gives that'! (z) = K whenever < s.
(i) If z < s,Ci(z) = K, for alli. Forz > s we use induction. Suppos®’ (z) < C7~1(z) for all
j < i. Use (10) to see thdt’(z) — C*~1(z) < EC*~!(x — D) — EC*~%(z — D). Then, by induction
C'(z) — C"Y(x) < EC" Yz — D) — EC*?*(z — D)
< ECYz—-D; 1) - K (11)
<0,

by (9), where we writeD;_; to denote the cumulative demandiof 1 orders.
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(iii) Define [|v|| = sup{|v(z)|;z € [s, R]}. We prove that|C® — C*~1|| — 0 geometrically fast.
Using (11),]|C* — C*71|] < SUD, (s, ] |ECY(x — D;_1) — K|. By (9), ECY(x — D; 1) — K =
J min{0,v(z — y)}dF*~ 1( ), whereF(-) is thei-fold convolution of F'(-). Sincey(z) > 0 for z < s,

this integral becomeﬁ) *min{0, y(x — y)}dF*~1(y). Therefore,

T—s R—s
lc—c < sw [ he-plartw <l [ ar).
z€[s,R] JO 0

Now take some arbitrarg > 0, and writeF’(3) for the Laplace transform df (). Then,
. . R_S .
e el AT )
0
< IIWIIemR‘S’/ e AR (y) < []y]e” T (F(B))
0

SinceF(8) < 1, ||C? — C*~!|| — 0 geometrically fast. Therefor€(z) > —oo.
(iv) C* is continuous as follows from the recursion (10) and the faat v is continuous ag <
B, R- O

Now Lemma 4.2.ii,ii imply thatC'(-) = lim; C?(-) exists. If we can show that in (10) the limit in
and the expectation can be reversed, the limit funafigr) is a solution of aroptimal stopping problem
with v(-)/\ as thecost-to-go, K as thestopping cost, and (—oo, s] as stopping set. Moreover, @(-) is
the unique solution it must represent the minimal cost to enfoem (0, ) to (1,z). The next theorem
provides an answer in the affirmative.

Theorem 4.3. The limiting function C(z) = lim;_,., C*(x) is the unique solution of the dynamic pro-
gramming equation

K, ifzx <s,
Clx) = {min{K,w(x)/)\—i— EC(x — D)}, ifx>s. (12)

Proof. Firstfix someR > min{x, s}. Lemma 4.2.(ii, i) imply the existence and uniqueness lifngting
function C(-). Lemma 4.2.i shows thaf'(z) = K for 2 < s. To see that’(-) satisfies (12) we use
monotone convergence to justify the interchange of limd arpectation. The only formal condition to
verify here is that"?(z) < oc for all i, which is satisfied as from (10) it follows thét (x) < K for all i
and allz < R. Thus, the existence of a solution of (12) is established.

To prove thatC(+) is the unique solution we use that the oper&tpdefined as

(Tv)(z) = min{ K, vy(z)/\+ Ev(z — D)},

is a contraction on the Banach space of bounded functi@rss, R] with norm||v|| = sup{|v(z)|;z €
[s, R]}. By the above we already have ti{d@itC')(z) = C(x) for = € [s, R]. To see thaf" is a contraction,
observe that sincemin{ K, a} — min{ K, b}| < |a — b| for anya, b,

(Tv)(z) = (Tw)(2)| < |Efo(z — D) — w(z = D)]| < |jo — wl|e” T F(p),

by similar arguments as used in the proof of Lemma 4.2.iie Tbntraction follows sincﬁ(ﬁ) < 1.

The form of (12) shows thaf'(«) is in fact independent aR for all z < R. Hence, we can tak® as
large as necessary, and in particular larger than the ginivéinizer ofC(-). (Recall that in (4) we need to
find the global minimum of’(-).)

O

In the sequel we need two further propertie€gf).

Lemma 4.4. C(-) iscontinuousand attains its minimum. Itsleft-most minimizer S € (s, t].
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Proof. With regard to the continuity, use the triangle inequalitgi(z) — C(y)| < |C(z) — Ci(x)| +
|Ct(x) — C(y)| + |C¥(y) — C(y)]. SinceC® — C (by Lemma 4.2) it suffices to takiesufficiently large to
make the left and right term arbitrarily small. Use the couity of C?(-) to make the middle term small.
Next, C' is bounded from below as follows from Lemma 4.2.iii. The dounity and boundedness imply
thatC attains its minimum.

We next show thaf' € (s,t]. By the above’(z) = K for x < s. ThereforeS > s. Furthermore,
S < t, for suppose the contrang. > ¢. SinceS is a minimizer it must be that'(S) < K. Therefore (12)
implies thatC'(S) = v(S)/A + EC(S — D). Sincey(S) > 0, asS > t, it then follows thatC(S) >
EC(S — D). But EC(S — D) > inf,<s{C(y)}. This would imply thatC'(S) > inf,<s{C(y)}, but this
is impossible sinc€’(+) attains its minimum af. Contradiction. O

4.4 Structure of Optimal Policy in .

In this section we use the properties of the solution of theadyic programming equation (12) to obtain
insight into structural properties of the optimal policy#f

We now take as cost functiatiz) = h(x) — g whereh € B, g (o asin Lemma 4.1). By Lemma 4.1
there exists a unique solutiog(-) of (8) with this cost function. Write”, (-) for the solution of (12) with
cost-to-go functiony,(-). We next prove that there is a revision rgteand a policyr,« such thatg* is
equal to the average cost rate of a recurrent cycle induceg-byecall the reasoning in Section 4.1.

Theorem 4.5. Thereexist g* > 0 suchthat Sy~ € (sg4+, -], theminimal revised cost function Cy- (x) > 0
for all z, and Cy- (S,-) = 0. Moreover, there exists an optimal (g*-minimizing) policy w4+ € 7, and this
policy issuch that Oy°" O (—00, s,+] and O7*" =[S+, 00).

Proof. We first show that, for fixed, ~,(z) can be made arbitrarily negative as a functiom ofnserting
the relationy,(z) = ~o(z) + « into both sides of (8), wherg, is the solution of (8) withy = 0, and
solving fora results ine = —g/(1 — AE[D]), since) [~ aG(y)dy = AE[D]a. Therefore,

'yg(x) =0(z) — %Em] (13)

Thus, we can assure there existggsuch thaty, (z) < 0 for at least one:. The continuity ofy,(-) ensures
then thaty, has at least two roots, witf, and¢, as its left-most and right-most roots.

We next prove that there existg/&such thaC,- (z) > 0 for all z, andCly- (Sy4+) = 0. By Lemma 4.4
C,(+) attains its left-most minimum at sont,. The continuity ofy,(z) in g implies the continuity of
Cy(x)ing. If Cy(S,) < 0for sufficiently largey the continuity ing implies the existence of @ such that
Cy+(S4+) = 0. (Recall thatifg = 0, Co(z) > 0 for all x.) A sufficiently largeg can be found by noting
that~,(z) can be as small as we like by (13). Next, by subtractinffom both sides of (12), we see that
Cy(Sg) — K = v4(S,4) + E[C4(Sy — D) — K]. Now (12) implies also thaE[C, (S, — D) — K] < 0.
ThereforeCy(S,) — K < 74(S,). HenceCy(S,) is negative if we chosg such thaty,(S,) < —K.

By applying Theorem 4.3 the existence of the optimal potigy is guaranteed. From Lemma 4.4
we conclude thab,- € (sy-,t,-]. SinceC,-(S,-) = 0 it is best to switch off atS,-, so thatO7*" =
[Sg, +00), andOy?” D (o0, s54+] aSCy« (z) = K for z < sy-. O

From the above we can conclude that the optimal patigyin # prescribes to switch off when the
inventory level is larger than or equal &~ and to switch on when the inventory level is less thgn

Corollary 4.6. If Cy-(x) < K onz € (s4+,S4+] the optimal policy 7y« € H hasan (s, .S)-structure with
s=s5g-and S = Sg-.

Proof. An immediate consequence of theorem 4.5. O
Corollary 4.7. If v4-(x) < 00nz € (sq4+, Sq+] the optimal policy 7y« € H isan (s, .S)-policy.

Proof. Use (12) to see that,« (z) < 0 onz € (sg+, Sy« ) impliesCy«(x) < 00Nz € (s4+, S+ ). Nextuse
Corollary 4.6. O
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Theorem 4.8. The optimal policy 74« € H hasan (s, S) structureif h(-) is convex.

Proof. If h(-) is convex, the function(-) = h(-) — g is convex. From (7) and induction we see thgt:)
is also convex for alh. This in turn implies thatim,, v (-) = v,(-) is convex for allg. The convexity
implies thaty, has has precisely two rootg andt, for sufficiently largeg. Sincev,(S,) < 0 it follows
thatv,(z) < 0forall z € (s,S4]. Now invoke Corollary 4.7. O

45 Structure of the Optimal Stationary Policy.

The first goal of this section is to show that no policy in thassl of all stationary policies can improve
me- € H; thus there exists at least one optimal stationary politychvism,-. It then follows trivially from
Theorem 4.8 that,- has an(s, S)-structure when the inventory functid-) is convex.

Theorem 4.9. The optimal policy 74« € H is also optimal in the class of stationary policies. If h(-) is
convex, thispolicy hasan (s, S)-structure.

Proof. DefineS™(z) = min {OF N [x,00)}. Thus,x < S7(x) for all z, and if (P(t), I(t)) = (1, z) for
somet, production will eventually switch off ab™ (z), and the inventory can never exce&®(z) again.
Note thatS™ (z) < oo for all z, for otherwise the inventory would drift to infinity if thewwentory were to
start at or above; since it is also not optimal for the inventory to drift toco, S™ = lim, o S™(z) =
min{z;z € OT} > —oc for any sensible stationary policy.

If F has infinite support the sét-co, S™) will be hit eventually, and from then on, lev8I" will not be
crossed any more, so thacannot improve the minimizing policy iH g~ .

If F has finite support, however, the process may get stuck in smeral (S™(x), S (y)] if I(t) =
y > x for somet. Let S™ = argmin {Cy(S™ ()}, i.e.,S™ is the inventory level at whicld, (-) achieves
it global minimum. The stationary policy can again not improve the best policy#g-.

Theorem 4.8 implies that,- has ar(s, S)-structure ifh is convex. O

5 An Application to Capacitated Periodic-review Inventory models

As the production-inventory model introduced by Graveg fEh be seen as the periodic-review analogon
of the model presented in Section 3, we discuss in this sehtiov to prove structure results for this model.

The model is as follows. At the beginning of each period tlagesof production is chosen to be on or
off. If production is off at the end of a period, it can be swiigdl on at the beginning of the next period at
the expense of a setup cdst However, when production is on in a period, keeping it omégf Hence,
setup costs are only incurred at the first period of a run ofeoutive periods during which production is
on. Production capacity is, without loss of generality, imyte units. The demand size is distributed as
a generic random variable defined on the integers. Demand is met by end-of-period tovgnand, if
necessary, backlogged. Thus, if the inventory levél & the beginning of a period, production is on, and
the demand ig, the inventory i + 1 — d at the end of the period. Inventory costs are accrued at tthe en
of a period according to the functidr(-). We assume that(-) and D are such thaEh(z — D) < oo for
all z.

Graves [11] conjectures th@t, S)-policies are optimal for this model. Here we show how to rthis
conjecture under the assumption that inventory costs areezcand the expected inventory cdsh(z —
D) < oo forall z.

Similar to Section 4.2, leV (z,y) be the cost to move from inventory levelto level y along the
on-line. Then

V(zg,y+1)=V(z,y)+ Eh(y+1-D)+ EV(y+1—D,y+1).

Letting

the above can be rewritten as

v(y) = Eh(y — D)+ EV(y — D,y).
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Next, letC(x) be the minimal cost to move fromat the off-line to level: at the on-line. Thed must
satisfy the dynamic programming equations

C(z) = min{K, Eh(x — D)+ EV(z — D,z) + EC(z — D)},

since either production is switched on at cé&tor production remains off for at least one more period.
The latter decision costEh(xz — D) due to the inventory, plu¥V (z — D, z) to return to level: after
the demand occurred, plus the minimal c@f'(x — D) that will be incurred after the demand while
production is off. Using the above definition¢f we can rewrite this such that

C(x) = min{K,y(z) + EC(z — D)}. (14)

Observe the similarity to Eq.(12).

The last step is to replade(-) in the above by the-revised cost.(-) — g. With these notions well-
established, the rest of the procedure as explained in gwquis sections can be applied straightaway.

Issues related to the existence and uniqueness of (optualak functions are simpler now since the
process here is a discrete-time, discrete state processfils step, sincé(-) is convex;y is also convex.
Take anyx smaller than the left root of v. Sincey(z) > 0 for all x < s and the inventory process can
only drift to the left, it is evident from (14) that it is optahto switch on immediately. Thug(z) = K
for all z < s. Then, onthe set € {s,s+ 1,...,t}, wheret is the right root ofy, the optimal control
problem can be seen as the problem to minimize the expecgtdintl the target sefz < s} hit. Since
the cost-to-goy on the set{s, ..., ¢} is not positive, provided is chosen suitably, stopping before the
set{x < s} is not optimal. Finally, since the hitting time to the dat < s} has finite expectation for
any policy andy is finite betweers andt, the cost to the seftz < s} has finite expection for any policy.
The rest of the details are easy to provide. Finally, extegtlie above to rational-valued demand is also
straightforward.

6 Numerical Considerations.

From the procedure explained in Section 4 and the resulthebiems 4.5, 4.9, and 4.8 it is apparent that
the optimal cost and the optimal policy can be determineditsebtion. Suppose we have numbegrand
gu Such thaty; < ¢* < g,. Letg = (¢i + g.)/2. Equations (8) and (12) can then be used to calculate
vg(-) With ¢(-) = h(-) — g andCy(-). If the minimumCy(S,) < 0 (C4(Sy) > 0) the revised cost of
the corresponding policy is smaller (larger) than or eqogl, tandg should become the new upper-bound
(lower-bound).

Obtaining initial values fog; andg,, is easy. Pertaining to the former, sineer) > 0 forall z, g; = 0
is a proper choice. With respect to the latter, the averagewuder any feasible stationary policy is an
upper-bound on the optimat. Hence, we can take the policy #, that switches the production on after
the first order arrival and switches off as soon as pdind) is reached again. The expected cost fidno)
until (1, 0) is in this case equal t +~(0)/A. The expected recurrence time is equalt§(1— A E[D])A}.
Hence, the average cost under this policy is equékfo + v(0))(1 — AE[D]). Settingg,, to this value
would do for our purpose.

With respect to the computation of (z) at some point:, observe that (8) requires to knoyy(y)
for all y < z, which complicates the computational procedure. Whehis a (convex) polynomial, this
problem is still relatively easy to resolve. By assumpthoattains its minimum at = 0. Then substitute
in (8) a polynomial of suitable degree fgy(y) for y < 0 and solve for the coefficients on the half-line
(—00,0]. For instance, ik(z) = bx, b < 0, onz < 0, this results in

 betg A bE[DY
79(x)__1_AE[D] 2 (1 - AE[D])?’

onz < 0. (15)

Now we can use this part of, to obtainy,, possibly numerically, o1i0, co). However, wherh(-) is not

a polynomial, solving (8) is more complicated. To handlessituations we refer to the appendix for an
approximation method based on a discretization of the mddedre we also prove that this approximation
converges exponentially fast (as a function of a suitabtarpater) to the correct solution of (8).
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7 Examples

In this section we first illustrate the procedure to find ariropt policy as described in Section 4 We then
discuss two examples from the literature. As a fourth exanmg show that the optimal policy to switch on
is not monotone in general. The final example is a countemel@against the claim that, S)-policies
are optimal for general quasi-convex inventory cost fuordi.

7.1 Bisecting the Revision Cost

As a first example, consider inventory cost
h(z) = bmin{—=z,0} + hmax{z, 0}, (16)

with b = 3, h = 1, arrival rateh = 3/2, setup cosf = 5, and uniformly distributed demand ¢, 1] so
that E[D] = 1/2 and E[D?] = 1/3. In this case, (15) becomes(z) = 12(1 — ) — 4gonz < 0. The
(numerical) evaluation of (8) and (12) is now easy for giver{We useA = 0.005 for the integrations.)
Figure 2 shows the graphs ¢f(-) andCy(-) for g = 2.1, g = 2.3 andg = 2.5. The left panel shows that
g = 2.1 is sufficiently small fory,(-) to have two roots, and indee@, (x) < K for somez. Apparently,
g = 2.1is not large enough to ensure that there existsuch thatC,(S,) = 0. As a next guess, we try
g = 2.5. The right panel shows now thaf, has two roots, implying thaj = 2.5 must be too large. By
bi-sectiong = 2.3 should be the next guess. Indeed, the middle panel show§'$hd1Ss 3) is nearly0.
Continuing the iteration leads ultimately §6 ~ 2.31, s = s« = 0.480 andS = Sy = 2.610.

g=2.1 g=2.3

5 /. 5 | ) -
‘ \
0 B / C.(J - 4 0 ~ Cg A 0
S Yg B / Yg

h—g h—g - -

-5 1 1 1 -5 | 1 1 -5
0O 2 4 6 8 0O 2 4 6 8 0o 2

Figure 2: Graphs of,(-) andC,(-) for g € {2.1,2.3,2.5}.

7.2 Computing the optimal D for an M/G/1 Queue

As a second example, we show how to compute the optimal tbieé$br the D-policy considered by
Feinberg and Kella [4]. We take as inventory cost funcfigm) = oo for > 0, and non-increasing for
2 < 0 such that:(0) = 0. In this way,S = 0, and—I(t) equals the workload of th#//G /1 queue, and
the levels below which production switches on is equal to (minus) thekload level D above which the
server switches on. Now, it is easy to see that, sineenon-increasingy has just one left-most root for
all ¢ > 0. This optimal roots* for the inventory system is equal to the optimal lexdD for the queueing
system.

7.3 Resultsof Gravesand Keilson [10]

Graves and Keilson [10] consider exponentially distriduiemands with cost function (16) for various
values ofb, h = 1, setup costs and arrival rates. Our results corresponetisthout slightly improve the

1The source code (in python/numpy) and all examples aresdlaikt the first author's homepage [25]
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minimal average costs since we do not limiand S to the integers as is the case in Graves and Keilson
[10]. There appears to be a small typo in one of their examplamely the case with = 0.9, b = 2

in (16), andK = 25. They claim thats = —1, while we gets =~ 5.1. For the same case withi = 50,
they finds = 6. The results = —1 whenK = 25 is also at variance with their remark that an increase in
K should result in an increase f1— s, and should hardly affeect Thus, in both cases thes should be
roughly the same.

7.4 An Optimal Policy that isnot Monotone

The fourth example, see the left panel of Figure 3, provdstttsnot true that for ally the optimal decision
structure on the off-line is monotone. Here the demand uniform on[1.02,1.12], A = 0.2, h(-) is given

by (16) withb = 4 andh = 1, K = 5 andg = 1.7. Clearly,C,(x) < K for z € (s, S]. Next, note that
Cy(3) = K, butC, < K at the small dent at the right ef= 3. Thus, atr = 3 it is optimal to switch on,
but at the dent it is optimal not to switch on. Thus, the decisitructure is not monotone, but alternates
between on and off several times. Sir€g(x) < K for z € (s, S] the optimal policy does not alternate
between on and off ifis, S], so that the optimal policy still has dg, S)-structure. Note also that, is not
monotone decreasing betweeands.

g=2.5 g=2.5
15 N T T T T 15 ~ T T T
N Cy . Cy
10 Sy Yy . 10 foobod Y
5 _ h—g : c \‘ h _:,,g,,r ,,,,,, e
\ S \j N o
0 R 0 PN A T
-5
-5
5 4 3 -2 -1 0 1 2 3 4 5 -4 -2 0 2 4 6 8 10

Figure 3: The left panel shows, when the demand is determinisfic = 1. The appearance of the small
dent at the right of implies that the optimal policy is not monotone. The rightelshows’, for quasi-
convex holding costs. The fact that the value function hitbetweens and.S implies that the optimal
policy is not(s, S).

Thus, even when the cost function is convex, the value fands for genera not monotone.

7.5 An Optimal Policy that isnot (s, 5)

The last example shows that the combination of the demamdbditon and the cost function determine
the structure of the optimal policy. In this particular cabe optimal policy is nots, S) but more difficult.
The parameters are the same as the previous example, thadiemexponentially distributed with mean
2 and the inventory cogt(-) is given by the quasi-convex function

hz) = (4{z < 0} + {2 > 0})[],

where{-} is the indicator function anflz] is the smallest integer equal to or larger tharThe results are
shown in the right panel of Figure 3.

We see that* = 0.61, and the minimum o’y occurs atS* = 2., but Cy-(z) = K for some
x € (s*,5*), forinstance at: ~ 1.. This implies that the optimal policy cannot be @n.5)-policy since
at it is optimal to switch on betweesrf and.S*.

Interestingly, when the demand is exponentially disteduvith meanl, the optimal policy is(s, S)
again. Hence, convexity of the cost function is sufficient,ly no means necessary.
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8 Summary and Suggestionsfor Further Research.

We summarize the basic elements of the procedure we devkiofigis paper to prove thas, S)-policies
are long-run average optimal in the class of stationarycmdifor the stochastic EPQ model. As this
procedure allows the analysis of more general inventorplpros with restricted production capacity,
which we discuss below, we enumerate the involved steps.

1. Subtract a revision ratg from the inventory cost rate(-) to obtain theg-revised inventory cost.
Formulate the minimal cost problem to move from lewedt the off-line to levelz on the on-line
under some given cost raté) as an optimal stopping problem on the off-line. Prove thatfbg a
g-minimizing policy and functiorCy () for this optimal stopping problem exists.

2. Use properties of the optimal stopping problem to find theimmal overall cost to move from the
off-line to the on-line, i.e., find, suchCy(S;) = min, Cy(x). If there is more than one such point,
take S, as the left-most point. AB, it is best to stop producing when production is on. This, in
effect, starts a new production cycle.

3. Exploit other structural properties of the optimal stioyggproblem to find the best poig}, at which
to switch on production. For our problem we takeas the left root of the cost-to-gg (-), provided
the conditions of Corollary 4.7 are satisfied.

4. Then use bisection overto show that a policy can be found that performs arbitrarisely to
the optimal policy. In the limit an optimal policy results.h@& structural properties derived in the
previous two points can be finally used to prove theS)-structure of the optimal policy.

Interestingly, this procedure not only enables us to déaumal results, it also provides an efficient method
to compute the optimals, S)-policy to arbitrary precision. In fact, while completinget above steps
typically involves numerous technical arguments to shog e@Ristence and uniqueness of solutions of
dynamic programming equations, proper limits, and so onpfonerical purposes there appears no harm
in simply skipping these technical desiderata. Simple lgicgh arguments involving the interplay between
the revision ratgy and the resulting numerical solutiay, (-) of the optimal stopping problem, such as
in Section 7, generally provide considerable insight ifi@ $tructure of the optimal policy. For instance,
as Corollaries 4.6 and 4.7 make clear, the convexity(ef is quite more than we actually need to prove
that an(s, S) policy is stationary optimal. Any other argument, possiblymerically, that ensures that
Cy- () < K onzx € (sq+, Sg+], Wwheresy- is the left-most root of the cost-to-go functigg- (-) andSy- is

the left-most most minimizer of'y- (-), suffices.

The above procedure seems to open roads to explore moreicataglsituations, such as more general
arrival processes (e.g., Markovian Arrival Processes (B)ABtate dependent production rates or setup
costs, or other control rules such as order acceptanceduntmg an order acceptance mechanism brings
the system studied here closer to the stock rationing syiskeastigated by Ha [12, 13]. Ha uses a queueing
approach, but it seems also possible to use our on-off ptmsfuapproach. The case without set-up cost
is non-trivial already, but maybe our approach makes itiptesso combine stock rationing with set-up
cost. Other directions for future research are to includeipgimes and vacations. Incorporating multiple
production levels is also an interesting theoretical esitam c.f., Lu and Serfozo [17], but it is unclear
whether in such systems our approach with cycles and stgppoblems still works.
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A A Numerical Approximation for ~,(-).

To cope with a situation in which(-) is not a polynomial forz < 0 we use the following scheme to
compute a numerical approximation feg(-) First, discretize the inventory process (and the demand) to
take values on a grid with points separated by some stnall 0, and writeg; = G((i + 1)A) — G(iA),

d; = v4(iA), etc., where we temporarily drop the dependence for notational convenience. Second, as
in Shaoxiang [19], assume that the demand has an upper-psutitht there exists a finite := min{s :

g; = 0}. Third, for giveng > 0, choose some considerably smaller than the left rogt of i(-) — g.
Finally, let

d; =0, oni<z,
and define recursively
Ji:hi—g—i—)\Zczi_jgj, oni > z. (17)
j=0

Observe that it is easy to transform this into a simple recars

5 hi—g A N .
d; = + di_ig;i, 1> 2.
T=Ag ' 1= ; 79

We next show that the differende = d; — d; for i fixed converges exponentially fasti@sz — —oo.
Therefore, by taking sufficiently small we can make the differengeas small as we wish in the region
of interest.

Subtracting (17) from the discretization of (8) leads to

~ ; ;<
0;=d; —d; = i n L=
/\Zj:O 5i—j9ja 1> Z.
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We therefore have to prove that— 0 exponentially fast as — —oc.

This convergence is actually not immediate for the follagvireason. By the boundary conditions,
§; = d; fori < z. The assumption, € B, g, i.e, sup{|yy(z)e**|;z > 0} < oo, gives the bound
d; < Me—>*» for someM. Thus,d, may increase exponentially fastas+ —oo.

The main ideais to prove that = O(:cgi) fori > ~ for some constant, > 1to be determined below.
Then it follows from the boundary conditien = d, thatd; = O(5Z:c§_i). Sincey, € B, r italso follows
thatd, < Me—>*2 for some)M . Combining these two estimates we see that M’ (:z:oe*O‘A)z :cgi for
someM’. The last step is to show that® < z(, soe~**z, > 1, and indeed; — 0 asz — —oo.

To obtainz, take theZ transform of both sides of the equation = )\Z;’:O di—jg;, and write
A(w) = Y72, 6w". Some algebra leads to the equatittw) = N(w)/D(w) where the numerator
N (w) is some polynomial inv, and the denominatdp(w) has the form

D(w)=1- )\Zgiwi.
i=0

Let o € R solve D(xo) = 0. Provided thatz, is the root with the smallest modulus, it follows that
0; = O(:cgi), see e.g. WIilf [30, Theorem 2.4.3]. To see that indeed themiw insideC = {z €
C;|z|] = xo} such thatD(w) = 0, we apply Rouché’s theorem. Recall that this states ttateife exists
some analyticf such that f(w) — D(w)| < |f(w)]| for all w on some simple closed contour, théf)
andD(-) have the same number of zeros within this contour. In our,dake f = 1, take the contour as
C. = {z € C;|z| = z¢ — €} for somee > 0, and takew € C.. Then,|1 — D(w)| = [A>I_, giw’| <
AT gilw'| < AT gih = 1 = | f(w)]. Sincef has no zeros if, ande is arbitrary, we are done.

To see thatry > 1, note that sincg; > 0 the restriction ofD(w) to the real line must be decreasing
whenw > 0. Hence, sincé)(1) =1 - XY ;gi =1 — p > 0, its rootzy > 1.

We finally show that®® < z,. By the model assumptionsis such that\ Z?:O(eaA)igi =p8<1,
that is D (e**) > 0. SinceD is decreasing off0, c0) (ande®® is real), this impliese®® < g, as
D(zg) = 0, andzy is the root with smallest modulus.

The proof is complete.
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