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Chapter 5

Exchange broadening and

non-universal scaling in Lévy

disordered chains

We theoretically study Frenkel exciton chains with uncorrelated diagonal disorder
obeying Lévy stable distributions with a stability index α < 1. These distributions
are characterized by heavy tails and divergent second moments. We show that this
dramatically alters the optical and localization properties of the Frenkel excitons as
compared to those known for Gaussian disorder. In particular, we predict the novel
effect of exchange broadening of the absorption spectra and a nonuniversal local-
ization length distribution, caused by the coexistence of two distinct localization
mechanisms.1

5.1 Introduction

In 1924, Lévy [155] introduced a class of probability distributions that have the
unique property of being stable, i.e., if a random variable x is distributed according
to the probability density p(x), then any linear combination of independent copies

of x, y =
∑N

n=1 anxn, obeys the same type of distribution. This property is well-
known for Gaussian distributions (and then is a special case of the central limit
theorem), but Lévy generalized the stability concept to a class of distributions

1This chapter is based on a manuscript by A. Eisfeld, S. M. Vlaming, V. A. Malyshev, and J.
Knoester, submitted.
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with a divergent second moment, also known as heavy-tailed distributions, which
for large |x| fall off slower than 1/|x|3.

A fascinating aspect of Lévy’s heavy-tailed distributions is that while they were
initially introduced as mathematical curiosities, during the past 20 years it has
been recognized that they frequently occur in physics. Examples are anomalous
diffusion [157] and noise [158] in complex systems, random walks of polymer seg-
ments [159] and chains [160], Lévy flights in trapping of incoherent atomic ra-
diation [161] as well as diffusion of light in materials with strong density fluc-
tuations [162], anomalous stationary states and super-diffusion in non-equilibrium
plasmas [163], and non-Lorentzian spectral line shapes of impurities in glasses [164,
165]. Even in biology (optimal searching strategy for randomly placed target
sites [166]) and economics [167] Lévy’s distributions occur.

In the above examples, Lévy statistics apply to a single random variable x, such
as the displacement of a diffusing particle or the mean-free path of light. Collective
properties of interacting degrees of freedom which individually obey heavy-tailed
Lévy statistics have received little or no attention so far. Several physical situations
can be envisioned for which this would be relevant. For example, this situation may
arise for degrees of freedom that interact with a collection of randomly distributed
multipoles in their surroundings, see Section 4.A. In addition, analogous to the
central limit theorem for distributions with a finite second moment, an average over
parameters described by heavy-tailed distributions leads to a Lévy distribution. As
a result, Lévy disorder might be caused by a large number of interactions which are
described by heavy-tailed distributions. Examples of collective excitations where
this may happen are electrons in heavily-doped semiconductors [168], magnons in
a host with stochastic magnetic impurities, and excitons in molecular aggregates
in a glassy host [165].

In this chapter, we will show that the collective properties in such systems may
be drastically different from those with more traditionally considered types of dis-
order, such as Gaussian or box-like distributions. We will do this by investigating
Frenkel exciton chains for which the site energies are taken from heavy-tailed Lévy
distributions. We will find remarkable collective optical properties that differ even
qualitatively from the well-studied case of Gaussian disorder [65]. Examples are
exchange broadening of the absorption line shape, the appearance of fine struc-
ture in the density of states and the absorption spectrum with increasing disorder
strength, and a nonuniversal disorder scaling of the distribution of exciton local-
ization lengths.
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5.2 Model

The model we consider describes the example of excitons in molecular aggregates
mentioned above. It consists of a linear array of two-level molecules with parallel
transition dipoles, which interact through dipole-dipole transfer interactions. The
optical excitations of this system are described by the eigenstates of the Frenkel
exciton Hamiltonian

Ĥ =

N∑
n=1

En |n〉〈n| − J
N−1∑
n=1

(|n + 1〉〈n| + |n〉〈n + 1|) , (5.2.1)

where for simplicity only nearest-neighbor couplings are included; the transfer inte-
gral J > 0 is taken to be constant. Disorder is included by taking the site energies
En as uncorrelated stochastic variables, drawn from a distribution p(E). Special
for our model, as compared to previous studies, is that we consider heavy-tailed
Lévy distributions for p(E). In particular, we consider the class of symmetric Lévy
distributions with mean zero, given by [156]

p(E) =
1

2π

∫ ∞

−∞
dteiEt exp (−|σt|α) . (5.2.2)

Here, σ > 0 and 0 < α ≤ 2 are called the scale parameter and index of stability,
respectively. The former determines the half-width at half maximum (HWHM)
of p(E) and we will hereafter refer to it as the disorder strength, while the latter
fixes the asymptotic behavior p(E) ∼ 1/E1+α for E � σ and α < 2. For α = 2
and α = 1, p(E) reduces to a Gaussian and a Lorentzian (Cauchy) distribution,
respectively. It may be checked that indeed these distributions are stable for 0 <
α ≤ 2.

It is useful to rewrite the Hamiltonian in terms of the homogeneous exciton
solutions |k〉 of Eq. 5.2.1,

|n〉 =

(
2

N + 1

)1/2 N∑
k=1

sin
πkn

N + 1
|k〉 . (5.2.3)

The above equation is in fact simply the Fourier transform of Eq. 2.1.7. The
Hamiltonian can then be separated in a part containing the homogeneous contri-
bution, and a second part that involves the scatterings between the various exciton
states,

H =

N∑
k=1

Ek |k〉〈k| +
N∑

k,k′=1

ξkk′ |k〉〈k′| , (5.2.4)
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chains

with the homogeneous exciton energies Ek = −2J cos πk
N+1 , and the scattering

amplitudes

ξkk′ =
2

N + 1

∑
n

xn sin
πkn

N + 1
sin

πk′n
N + 1

. (5.2.5)

The second, stochastic part of the Hamiltonian fully accounts for the disorder-
induced effects. In particular, the diagonal elements ξkk correspond to shifts in
the transition energy and its probability distribution describes the inhomogeneous
broadening of the exciton levels. The disorder-induced scatterings between the
homogeneous exciton states ξkk′ leads to localization of the exciton states. Note
that while Eq. 5.2.4 holds generally, the above interpretation in terms of deviations
from the homogeneous situation is only valid if the scattering term in Eq. 5.2.4
does not dominate, i.e. if the disorder amplitude is not too large.

The probability distribution for the scattering matrix elements in Eq. 5.2.5 can
be straightforwardly calculated, which has been done in Section 4.B. Due to the
stability of the Lévy distributions, this again yields a Lévy distribution with the
same stability index α, but a renormalized width. Likewise, the average site energy
for a particular disorder realization on the chain, Ē = N−1

∑N
n=1 En, also obeys

the same type of distribution, with the same index of stability, but a renormalized
disorder strength:

σ∗ = σN
1−α

α . (5.2.6)

For a Gaussian distribution (α = 2) this reduces to the well-known result σ∗ =
σ/

√
N , which reflects the exchange narrowing effect of the optical line shape of

molecular J aggregates [80]: the energy distribution of delocalized excitons is nar-
rower than σ, because they average over the Gaussian energy fluctuations of the
individual sites. By analogy one expects from Eq. (5.2.6) that for α ≤ 1, this effect
does not occur. The Lorentzian case (α = 1) is special, as it yields σ∗ = σ. This
case was studied in Ref. [95] and Chapter 4 of this thesis; while it does not exhibit
exchange narrowing, its main properties still are similar to those for Gaussian dis-
order. Here, we are particularly interested in distributions with α < 1, for which
σ∗ > σ (exchange broadening). We note, however, that the analytical arguments
presented below also hold for 1 ≤ α ≤ 2.

5.3 Numerical results

We analyzed our model by numerical simulations. We used the algorithm described
in Ref. [169] to generate the random energies En, after which the Hamiltonian was
diagonalized numerically and the optical and localization properties of the exciton
eigenstates were determined [65]. The results presented in Figs. 5.3.1 - 5.4.1 were
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obtained for α = 1/2, using chains of N = 200 sites and averaging over tens of
thousands of disorder realizations.
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Figure 5.3.1: DOS (a) and absorption spectra (b) for Lévy disorder with α = 1/2
and disorder strengths σ = 0.01J , 0.1J , 0.2J , 0.5J , and J . The arrows mark the
curves in order of increasing σ.

Figure 5.3.1 shows the DOS and the absorption spectrum for various disorder
strengths σ. The DOS exhibits a typical one-dimensional (1D) shape, with peaks at
the band edges E = ±2J that are smeared by disorder. However, three additional
features are visible: one at the band center, E = 0, and two more at E = ±J .
The relative importance of these three features strongly depends on σ, revealing a
transition from a 1D excitonic DOS to a mostly monomeric DOS with increasing
σ. The origin of the extra features, which we found to get more pronounced upon
decreasing α, will be explained below.

The additional structure in the DOS is also reflected in the absorption spectrum
[Fig. 5.3.1(b)]. While this spectrum is dominated by the intense band edge peak,
characteristic for J aggregates, two much less intense features occur at E = −J and
E = 0. For Gaussian or Lorentzian disorder these features cannot be discerned.
Figure 5.3.1(b) also reveals another new effect, with increasing value of σ, the J
band shifts to the blue, while for Gaussian disorder a red-shift occurs [65].

Figure 5.3.2 displays the HWHM of the absorption band as a function of σ,
for α = 1/2 (crosses) and for comparison also for α = 2 (Gaussian; circles). This
plot confirms the most fascinating effect of heavy-tailed Lévy distributions, an-
ticipated above, namely the occurrence of exchange broadening: While for Gaus-
sian disorder the HWHM is smaller than the bare disorder σ, for α = 1/2 it is
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chains

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

σ(J)

H
W

H
M

 o
f 
a
b
s
o
rp

ti
o
n
 p

e
a
k
 (

J
)

Figure 5.3.2: The HWHM of the absorption spectrum as a function of σ for Lévy
disorder with α = 1/2 (crosses) and for Gaussian disorder (circles). The corre-
sponding power law fits are plotted as a solid and a dashed line, respectively. The
thin solid line HWHM = σ is plotted for reference.

larger (for 0 < σ < 0.6). The best power-law fit to the data for α = 1/2 reads

HWHM = 0.85J (σ/J)
0.6

(solid line), which differs markedly from the well-known

scaling HWHM ∝ J (σ/J)
4/3

for the Gaussian case (dashed line) [65]. While the
broadening effect qualitatively agrees with Eq. (5.2.6), we will see below that the
quantitative explanation of the scaling exponent 0.6 is more subtle.

Finally, Fig. 5.3.3 characterizes the distribution P (Nloc) of the localization
length of the exciton states that occur in the energy interval [−2.1J,−1.9J ], i.e.,
around the lower band edge Eb = −2J , the region that dominates the opti-
cal response and low-temperature exciton transport. Shown are the numerical
data (symbols) and their power-law fits (lines) for the average, N̄loc, (crosses and
solid line) and the standard deviation, δNloc, (dots and dashed line) of P (Nloc)
as a function of σ. The power-law fits represent the data very well, and read
N̄loc = 2.56(J/σ)0.36±0.01 and δNloc = 0.91(J/σ)0.43±0.02. The scaling exponents
will be discussed in more detail Section 5.4. Thus, the ratio δNloc/N̄loc is not con-
stant, implying that, in contrast to Gaussian and Lorentzian disorder (see Chapter
4), Lévy disorder with α < 1 does not lead to a universal function for P (Nloc) in
the σ-range considered. This can be clearly observed from the inset of Fig. 5.3.3,
where P (Nloc) is plotted for σ = 0.001J and σ = 0.1J , after scaling the horizontal
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Figure 5.3.3: The average, N̄loc, (crosses) and the standard deviation, δNloc, (dots)
of the localization length distribution P (Nloc) as functions of σ for Lévy disorder
with α = 1/2. The thick solid and dashed lines are power-law fits, respectively
(see text). The thin solid line gives 10(δNloc/N̄loc), while the inset shows the
localization length distributions for σ = 0.001J (dashed) and for σ = 0.1J (solid).

axis to the average localization length appropriate for the σ value considered. We
note that the scaling relations described here, only weakly depend on the choice of
the energy interval around Eb.

5.4 Discussion

The explanation of all phenomena found above, lies in the interplay between two
mechanisms for localizing the exciton states around Eb by heavy-tailed Lévy dis-
order. For Gaussian disorder only one such mechanism exists, namely the fact
that random site energies create local effective potential wells in which the states
localize. It has been shown that the typical localization length N∗ of these states
can be obtained from comparing their level separation to their mixing rate [66] (see
also Section 4.2.3). Generalizing these arguments to the case of Lévy distributions
yields

N∗ =

(
3π2J

ξασ

) α

1+α

, (5.4.1)
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where ξα is a numerical factor of order unity (ξ1/2 ≈ 0.7). For α = 1/2, this gives

N∗ ∝ (J/σ)1/3. We note that the scaling exponent 1/3 is very close to the one
obtained above for N̄loc (which was 0.36±0.01), confirming the applicability of the
simple scaling arguments discussed in Ref. [66] and Section 4.2.3. However, the
second moment is observed to scale with a different exponent; this implies that the
shape of the localization length distribution is not universal, but varies for different
values of the disorder strength. Combining Eq. 5.4.1 with the renormalized disorder
strength Eq. 5.2.6 allows us to express the exciton HWHM in terms of the HWHM
of the monomer distribution,

σξ/J ∝ (σ/J)
2α

1+α . (5.4.2)

For Gaussian disorder, N∗ is the only length scale relevant to the band edge
states and the optical response. In the case of the heavy-tailed Lévy distributions,
however, a second localization mechanism - and corresponding length scale - exists.
The long tails lead to a high concentration of outliers, i.e., sites with energy |En| >
2J . These fluctuations are so large that the interaction J cannot overcome them;
they therefore break up the chain in segments of length Nseg, capped by two outliers,
which form the maximum intervals over which excitons may delocalize. A similar
situation occurs in the case of Lorentzian disorder (α = 1), as in Section 4.3,
however, for decreasing α values this effect gets stronger. Indeed, in the case
of Lorentzian disorder, outliers will also occur, but are too infrequent to have a
noticeable effect on the localization length distribution. It is straightforward to
show that for α ≤ 1 the segment length distribution is exponential (see Section
5.A), with mean

N̄seg =
π

2Γ(α) sin(πα/2)

(
2J

σ

)α

. (5.4.3)

N̄seg is the second length scale in the problem.

The existence of two different localization mechanisms is nicely confirmed by
Fig. 5.4.1, which for α = 1/2 and σ = 0.1J shows a typical realization of the
exciton wave functions and energies in the neighborhood of the lower exciton band
edge and well below it. We first note that, indeed, we observe quite a few outliers,
with positions indicated by the vertical dashed lines. Each outlier has a strongly
localized s-like exciton state outside of the band associated with it (lower panel);
not all these states are seen, as several of them have energies outside the range of
the plot. With regards to the two localization mechanisms, three situations may
be distinguished, each of which occurs in Fig. 5.4.1.

(i) N∗ < Nseg. This is the situation common for Gaussian disorder. Near the
lower band edge one then typically finds doublets of s- and p-type states, roughly
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Figure 5.4.1: Exciton wave functions and energies for a typical realization of Lévy
disorder with σ = 0.1J and α = 1/2. The upper panel focuses on energies around
the lower band edge; the lower panel displays an energy interval deep in the DOS
tail. The dashed vertical lines indicate the positions of outliers in the site energy.

localized on the same interval [66]. In Fig. 5.4.1 this occurs between N = 52 and
N = 96.

(ii) N∗ ≈ Nseg. Here one finds multiplets of three or more states on a single
segment, which resemble the states of a disorder-free chain of size Nseg. In Fig. 5.4.1
examples occur between n = 1 and n = 31, between n = 92 and n = 112, and
between n = 164 and n = 200,

(iii) N∗ > Nseg. In this case the segmentation strongly confines the excitons and
the states within a segment typically get further separated than in the absence of
segmentation. If the segments are still relatively large, their lowest s-like eigenstates
contain considerable oscillator strength and occur just above the band edge (e.g.,
the state between n = 154 and n = 164 in Fig. 5.4.1). With increasing value
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of σ, the segments get shorter and the energy of the s-like state increases. This
explains the blue-shift of the J band observed in Fig. 5.3.1(b). Also, for growing
σ, segments of length 1 and 2 become more likely. These give rise to states with
energies distributed around the average monomer and dimer energies, E = 0 and
E = ±J , respectively, thus explaining the extra features in the DOS and the
absorption spectra observed in Fig. 5.3.1. Closer scrutiny even reveals features for
segments of length 3, 4, etc, but these are weak and overshadowed by the band
edge peaks. For smaller values of α, these features become more prominent. To
illustrate this, Fig. 5.4.2 shows the density of states and the absorption spectrum
for a Lévy disordered chain with α = 1/4 and σ = 0.1J . Not only the monomer
and dimer peaks at E = 0 and E = ±J , but also trimer peaks at E = 0,±√

2J
and higher order peaks can clearly be observed.
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Figure 5.4.2: The density of states (dashed line) and the absorption spectrum (solid
line) for a Lévy disordered chain with σ = 0.2J and α = 1/4.

Of course, the existence of two localization mechanisms, each with its own
length scale, is directly responsible for the observed nonuniversality of the local-
ization length distribution. Moreover, the interplay between both mechanisms also
explains the disorder scaling of the exchange broadening of the absorption band.
Using Eq. (5.2.6) and replacing N by either N∗ or N̄seg, we obtain the contributions
to the HWHM from the states localized by the two different mechanisms, respec-
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tively. This leads to HWHM∗ ∝ J(σ/J)2α/(1+α) and HWHMseg ∝ J(σ/J)1−α. For
α = 1/2, the scaling exponent equals 2/3 and 1/2, respectively. Since the numeri-
cally obtained exponent equals 0.60 ± 0.03, we conclude that both scales, N∗ and
N̄seg, almost equally contribute to the disorder scaling of the J band width.

5.5 Summary

In summary, we have shown that heavy-tailed Lévy disorder has dramatic con-
sequences for the properties of systems with collective excitations. Novel effects
occur, such as exchange broadening and a nonuniversal scaling of the distribution
of exciton localization lengths. We have shown that these effects may all be traced
back to the simultaneous occurrence of two different localization mechanisms, each
with its own length scale, namely the conventional localization caused by small
local variations in energy and the segmentation-related localization caused by out-
liers. We have used the Frenkel exciton chain as an example, but we expect that
the occurrence of two localization length scales has equally dramatic effects on
other disordered systems with collective excitations, such as those mentioned in
the introduction.

Appendix 5.A Occurrence of segment boundaries

Lévy distributions are characterized by heavy tails, implying that there is a rel-
atively high probability for sites to acquire energies lying outside of the exciton
band (−2J ≤ E ≤ 2J for a homogeneous system); we will refer to such a site as
an outlier.

The probability for a site to be an outlier is evaluated as

Pb = 1 −
∫ 2J

−2J

dx p(x) = 1 − 1

π

∫ ∞

−∞
dt

sin 2Jt

t
exp (−|σt|α) . (5.A.1)

If we restrict ourselves to moderate disorder strengths σ � J , the expression in
Eq. (5.A.1) can be evaluated explicitly. In that case, we have 2J � σ, and only
the range |2Jt| < 1 will contribute significantly to the integral. Using a Taylor
expansion of the exponential, exp (−|σt|α) = 1 − |σt|α, one obtains

Pb =
2

π

( σ

2J

)α
∫ ∞

0

dt tα−1 sin t =
2

π
Γ(α) sin

(πα

2

)( σ

2J

)α

, (5.A.2)

where Γ(α) is the Euler Gamma function. The mean number of barriers in a chain
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of N sites is thus N̄b = NPb, allowing us to estimate the mean segment size as

N̄seg =
N

Nb
=

π

2Γ(α) sin(πα/2)

(
2J

σ

)α

. (5.A.3)

Since a segment consists of two boundaries separated by Nseg sites, the distribution
of segment lengths is exponential,

P (Nseg) = P 2
b (1 − Pb)

Nseg . (5.A.4)




