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3

Mechanical Systems: Velocity
Estimation and Output Feedback
Stabilization

”Strive for perfection in everything you do. Take the best that ex-
ists and make it better. When it does not exist, design it.” - Sir Henry
Royce.

In the first and second chapters, we had given a brief introduction to me-
chanical systems which are modeled by the Hamiltonian equations (2.9). As
we discussed, in such systems the velocity measurements (which is the port-
Hamiltonian output) can be subjected to noise and hence can be inaccurate
while the position measurements may be much more accurate. Therefore,
it is of interest to build observers for these systems, to estimate the velocity
based on the position measurements and subsequently design a stabilizing
control law for the system using the position measurements and the velocity
estimates. In this chapter, we deal with both these problems for a special class
of mechanical systems.

3.1 Introduction

We recall the Hamiltonian equations used for modeling a mechanical system
being given by(

q̇
ṗ

)
=
[

0 In
−In 0

](
∇qH
∇pH

)
+
(

0
G(q)

)
u, (3.1)

where q, p ∈ R
n are the generalized positions and momenta, respectively,

u ∈ R
m is the control input, m ≤ n and G : R

n → R
n×m is a full rank matrix.

The Hamiltonian function H : R
n × R

n → R is the total energy of the system
and is given as

H(q, p) =
1
2
p�M−1(q)p+ U(q), (3.2)
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3 Mechanical Systems: Velocity Estimation and Output Feedback Stabilization

where M : R
n → R

n×n
P is the mass matrix and U : R

n → R is the potential
energy function, with R

n×n
P being the set of n × n positive definite matrices.

Sometimes, frictional effects are also included in the model of the mechan-
ical system in which case, our proposed observer incorporates a term that
requires the knowledge of the frictional forces. Since, in many applications,
these forces are negligible or usually quite uncertain, we chose to omit their
presence while designing the observer.

The observer design problem is formulated as follows. We assume that
q is measurable, p is unmeasurable and the input signal u(t) is such that
the system (3.1) is forward complete, that is, trajectories exist for all t ≥ 0.
Our first objective is to design an asymptotically convergent observer for p.
The second objective is to prove that the observer can be used in conjunc-
tion with the interconnection and damping assignment passivity–based con-
troller (IDA–PBC) preserving asymptotic stability by assuming the existence
of a full state feedback (IDA–PBC) that asymptotically stabilizes a desired
equilibrium point (q�, 0).

We focus on mechanical systems that can be rendered linear in the unmea-
surable momenta via a change of coordinates of the form (q, P ) = (q,Ψ�(q)p),
with Ψ : R

n → R
n×n being a full rank matrix. The class of systems that sat-

isfy this property, which is fully determined by the inertia matrix M , will be
called henceforth “Partially Linearizable via Coordinate Changes” (PLvCC).
As illustrated in [11, 25, 44, 80, 92], achieving linearity in P simplifies the ob-
server design as well as the control problem. However, the class of mechani-
cal systems considered in the literature in the context of linearization is only a
small subset of all PLvCC systems. Further, the linearization conditions con-
sidered in the literature imposes quite restrictive assumptions on the inertia
matrixM . In contrast to this situation, we give a complete characterization of
PLvCC systems, in terms of solvability of a set of partial differential equations
(PDE)’s and show that the class contains many examples of practical interest.

We propose for the PLvCC systems, a globally (exponentially) convergent
reduced order immersion and invariance (I&I) observer [6]. This design im-
poses an integrability condition, which is equivalent to solving a second set
of PDEs. We propose a systematic procedure to solve these PDEs for a special
subclass of PLvCC systems and illustrate it with several practical examples.
Furthermore, we show that the integrability condition can be obviated using
the full order I&I observer with dynamic scaling recently proposed in [44].
However, (as we shall show) the full-order observer design based on [44] in-
creases the complexity of the computations and also involves the injection of
high gain (which is not very desired). A final contribution of our work is the
proof that the proposed observer solves the position feedback stabilization
problem mentioned above.
Notation used in this chapter: For any matrix A ∈ R

n×n, Ai ∈ R
n denotes

the i–th column, Ai the i–th row and Aij the ij–th element. That is, with
ei, i ∈ n̄ := {1, . . . , n}, the Euclidean basis vectors, Ai := Aei, Ai := e�i A and
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3.2 Observers and alternate passive input-output pairs for PHSD

Aij := e�i Aej .

3.2 Characterization of the Class of PLvCC Systems

In this section, we identify the class of mechanical systems for which a change
of coordinates of the form (q, P ) = (q,Ψ�(q)p), where Ψ has a full rank for all
q, renders the system linear in P . As we shall see, this property is uniquely
defined by the inertia matrix M .

We first state two important lemmas which will be used by us later for
proving our main result.

Lemma 3.1. Let Ψ(q) be an n× n full rank matrix. Define the n× n matrix

J :=
n∑
i=1

{(p�∇qiΨ)�(e�i Ψ) − (Ψ�ei)(p�∇qiΨ)} (3.3)

Then, the (jk)th element of the matrix J is given by

Jjk = −p�[Ψj ,Ψk], (3.4)

where [Ψj ,Ψk] is the standard Lie bracket of the column vectors Ψj and Ψk.

Proof. We prove the lemma by computing the (jk)–th element of J as

e�j J ek =
n∑
i=1

{(p�(∇qiΨ)ej)Ψik − (p�(∇qiΨ)ek)Ψij}

= p�
n∑
i=1

{(∇qiΨj)Ψik − (∇qiΨk)Ψij}

= p�{(∇qΨj)Ψk − (∇qΨk)Ψj}
= −p�[Ψj ,Ψk].

�
Lemma 3.2. Define the n× n matrices

J̄i :=
n∑
j=1

[Ψi,Ψj]Ψ�
j (ΨΨ�)−1M−1, i ∈ n̄.

Then
n∑
i=1

(Ψ�ei)(p�∇qiΨ)Ψ−1M−1p− Ψ̇�p =
n∑
i=1

ei(p�J̄ip).
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3 Mechanical Systems: Velocity Estimation and Output Feedback Stabilization

Proof. We first note that

Ψ̇�p =
n∑
i=1

(p�∇qiΨ)�(e�i M
−1p)

=
n∑
i=1

(p�∇qiΨ)�(e�i Ψ)Ψ−1M−1p.

Replacing (3.3) of Lemma 3.1 we obtain

Ψ̇�p−
n∑
i=1

(Ψ�ei)(p�∇qiΨ)Ψ−1M−1p = JΨ−1M−1p.

Computing the i–th element of the vector completes the proof

e�i JΨ−1M−1p = e�i JΨ�(ΨΨ�)−1M−1p

=
n∑
k=1

Jike�k Ψ�(ΨΨ�)−1M−1p

= −
n∑
k=1

p�[Ψi,Ψk]Ψ�
k (ΨΨ�)−1M−1p

= −p�J̄ip,

where we have used (3.15) to obtain the third identity. �
We next state the following proposition.

Proposition 3.3. Let Ψ be an n×n full rank matrix. The dynamics of (3.1) expressed
in the coordinates (q, P ), where P = Ψ�(q)p, is linear in P if and only if for i ∈ n̄,
n̄ := {1, . . . , n}, we have

B(i)(q) + B�
(i)(q) = 0, (3.5)

where the matrices B(i) : R
n → R

n×n are defined as

B(i)(q) :=
n∑
j=1

{
[Ψi,Ψj]Ψ�

j (MΨΨ�)−1 +
1
2
ΨjiΨ∇qj (Ψ

�MΨ)−1Ψ�
}
, (3.6)

with [Ψi,Ψj] being the standard Lie bracket. Under the condition (3.5), the dynamics
becomes

q̇ = (Ψ�M)−1P, Ṗ = −Ψ� (∇U −Gu) . (3.7)

Proof. The equation for q̇ follows trivially from the definition of P . Now, Ṗ
can be expressed as

Ṗ = Ψ̇�p+ Ψ�ṗ
= −DΨ(q, p) − Ψ�(∇U(q) −G(q)u), (3.8)
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3.2 Observers and alternate passive input-output pairs for PHSD

where the parameterized mapping DΨ : R
n × R

n → R
n is defined as

DΨ(q, p) := Ψ�∇q{
1
2
p�M−1p} − Ψ̇�p. (3.9)

We will now show that each element of the vector DΨ is a quadratic form in
p, that is,

DΨ =
n∑
i=1

eip
�B(i)p, (3.10)

that becomes zero for all p if and only if the condition 3.5 is satisfied. To show
this, we compute

∇q{
1
2
p�M−1p} = ∇q

{1
2
p�Ψ(Ψ�MΨ)−1Ψ�p

}

=
1
2

n∑
i=1

ei

{
2p�(∇qiΨ)(Ψ�MΨ)−1Ψ�p

+ p�Ψ∇qi((Ψ
�MΨ)−1)Ψ�p

}

=
n∑
i=1

ei

{
p�(∇qiΨ)Ψ−1M−1p

+
1
2
p�Ψ∇qi((Ψ

�MΨ)−1)Ψ�p
}
. (3.11)

Replacing (3.11) in (3.9) we obtain

DΨ = −Ψ̇�p+
n∑
i=1

{
(Ψ�ei)(p�∇qiΨ)Ψ−1M−1p

+
1
2
(Ψ�ei)[p�Ψ∇qi((Ψ

�MΨ)−1)Ψ�p]
}
,

=
n∑
i=1

{
ei(p�J̄ip) +

1
2
(Ψ�ei)[p�Ψ∇qi((Ψ

�MΨ)−1)Ψ�p]
}
, (3.12)

=
n∑
i=1

eip
�B(i)p, (3.13)

where we use Lemma 3.2 to obtain the first term in (3.12) and the definition
of B(i) given in (3.6) to obtain (3.13). Hence, the proof follows. �

If the inertia matrixM satisfies the condition (3.5) for some full rank matrix
Ψ, then the mechanical system (3.1) becomes linear in P and (as described
earlier) is said to be PLvCC. The class of M for which there exists such a Ψ is
denoted by SPLvCC. That is, M ∈ SPLvCC if and only if there exists Ψ such that
(3.5) is satisfied.
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3 Mechanical Systems: Velocity Estimation and Output Feedback Stabilization

For the sake of completeness, we compute the resultant dynamics in the
(q, P ) coordinates for a general full rank matrix Ψ which may or may not
satisfy the condition 3.5. We state the following Lemma.

Lemma 3.4. For a general full rank matrix Ψ, the transformed dynamics in the
coordinates (q, P ) is given by(

q̇

Ṗ

)
=
[

0 Ψ
−Ψ� J

](
∇qH̄
∇P H̄

)
+
(

0
Ψ�G

)
u, (3.14)

with the new energy function being

H̄(q, P ) :=
1
2
P�(Ψ�MΨ)−1P + U(q),

and the jk element of the skew–symmetric matrix J : R
n×R

n → R
n×n being given

by
Jjk(q, p) = −p�[Ψj ,Ψk]. (3.15)

Proof. The expression for q̇ is obtained in a straightforward manner. We now
compute the expression for Ṗ . The proof proceeds as follows (also refer to
[93]). We first note that DΨ can be written as

DΨ =
n∑
i=1

[(Ψ�ei)(p�∇qiΨ) − (p�∇qiΨ)�(e�i Ψ)]∇P H̄

+
1
2

n∑
i=1

(Ψ�ei)[P�∇qi((Ψ
�MΨ)−1)P ]

= −J∇P H̄ +
1
2

n∑
i=1

(Ψ�ei)[P�∇qi ((Ψ
�MΨ)−1)P ],

where we used the following identity

∇q{
1
2
p�M−1p} =

n∑
i=1

ei

{
p�(∇qiΨ)Ψ−1M−1p+

1
2
p�Ψ∇qi((Ψ

�MΨ)−1)Ψ�p
}

=
n∑
i=1

ei

{
p�(∇qiΨ)(Ψ�MΨ)−1P +

1
2
P�(∇qiΨ)((Ψ�MΨ)−1)P

}

=
n∑
i=1

ei

{
p�(∇qiΨ)∇P H̄ +

1
2
P�∇qi((Ψ

�MΨ)−1)P
}
,

and the definition of J given by (3.3) in Lemma 1. Replacing the expression
of DΨ in (3.8) we finally obtain

Ṗ = J∇P H̄ − 1
2

n∑
i=1

(Ψ�ei)[P�∇qi((Ψ
�MΨ)−1)P ] − Ψ�(∇U −Gu)

= J∇P H̄ − Ψ�∇qH̄ + Ψ�Gu,
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3.3 Observers and alternate passive input-output pairs for PHSD

which corresponds to (3.14). �
The following remarks are in order.

Remark 3.5. Equation (3.6) may be alternatively viewed as a family of oper-
ators, parameterized by Ψ, mapping R

n×n
P into R

n×n. The system is PLvCC
if there exists Ψ such that, upon the action of this operator, its mass matrix is
mapped into a skew-symmetric matrix.

Remark 3.6. The results obtained in Section 3.2 can be alternatively expressed
in a more compact form using Poisson brackets. Please refer to [73] for further
details.

We thus characterized the class of mechanical systems which can be par-
tially linearized via a change of coordinates i.e., showed that they belong to
the set SPLvCC. In the next section, we give a physical interpretation for the set
SPLvCC.

3.3 How Large is the Set SPLvCC?

A natural question that arises at this point is: For what kind of inertia matrices
M is the condition (3.5) satisfied? Providing a complete answer is equivalent
to characterizing the solvability of the PDE’s (3.5), (3.6) in the unknown func-
tion Ψ, which appears to be a daunting task. However, it turns out that this
set contains some interesting subsets that have a clear physical interpretation
and in some cases also a differential geometric interpretation. Some of these
sets have been studied in the literature, which we now briefly review in this
section.

3.3.1 Four Subsets of the Set SPLvCC

To get a better understanding of the condition (3.5), we present four sets of
non–decreasing cardinality (displayed in Figure 3.1), and show them to be
subsets of SPLvCC. Three of them are well–known, but the fourth (and far more
interesting) one does not seem to have been reported in the literature. We now
introduce the following important definitions that will be used repeatedly in
the sequel.

Definition 3.7. A full rank matrix T : R
n → R

n×n is said to be a factor of M−1 if

M−1(q) = T (q)T�(q). (3.16)

Definition 3.8. The sets of inertia matrices SCI, SZCS, SZRS, ST are defined as follows.

(i) (Constant inertia)

SCI := {M ∈ R
n×n
P |Mij = constant, i, j ∈ n̄},
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3 Mechanical Systems: Velocity Estimation and Output Feedback Stabilization

SPLvCC

ST

SZRS

SZCS = SCI

Figure 3.1: Sets of inertia matrices with non-decreasing cardinality

(ii) (Zero Christoffel symbols)

SZCS := {M ∈ R
n×n
P | Cijk = 0, i, j, k ∈ n̄},

where Cijk : R
n → R are the Christoffel symbols of the first kind defined in

(2.4) for a given inertia matrix M .

(iii) (Zero Riemann symbols)

SZRS := {M ∈ R
n×n
P | Rijlk = 0, i, j, l, k ∈ n̄},

with Rijlk : R
n → R are the Riemann symbols given by

Rijlk(q) :=
1
2

[
∇2
qjql

Mik + ∇2
qiqk

Mjl −∇2
qjqk

Mil −∇2
qiql

Mjk

]

+
n∑

a,b=1

(M−1)ab [CjlaCikb − CilaCjkb] . (3.17)

(iv) (Skew–symmetry condition)

ST :=
{
M ∈ R

n×n
P |M−1 admits a factor T such that

n∑
j=1

[Ti, Tj]T�
j = −

⎡
⎣ n∑
j=1

[Ti, Tj]T�
j

⎤
⎦
�

, i ∈ n̄
}
. (3.18)

We next give the following proposition which proves the non-decreasing
cardinality of the above defined sets as also indicated in Figure 3.1.

Proposition 3.9. The sets of inertia matrices in Definition 3.8 satisfy

SCI = SZCS ⊂ SZRS ⊂ ST ⊆ SPLvCC,
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3.3 Observers and alternate passive input-output pairs for PHSD

where the inclusion SZCS ⊂ SZRS is strict for every n > 1, and the inclusion SZRS ⊂
ST is strict for every n > 2.

Proof. • (SCI = SZCS) The fact that [M ∈ SCI ⇒ M ∈ SZCS] follows trivially
from the definition of the Christoffel symbols in (2.4). The proof for [M ∈
SZCS ⇒M ∈ SCI] can be worked out as follows.

Assume all Christoffel symbols are identically equal to zero, that is,

Cijk(q) :=
1
2
{
∇qjMik + ∇qiMjk −∇qk

Mij

}
≡ 0, (3.19)

for all q. The equations above define 1
2{n3 + n2} PDE’s where we used the

fact that Cijk = Cjik . First consider the case when i = j = k. This gives the n
equations,

Ciii = ∇qiMii = 0, (3.20)

for all 0 ≤ i ≤ n. Next consider the case i = k �= j. Then for every 0 ≤ i, j ≤ n,
i �= j we get the n(n−1)

2 equations,

Ciji = ∇qjMii = 0. (3.21)

Thus, from (3.20), (3.21) we conclude that all the diagonal entries of the inertia
matrix are constant. Next, we choose i = j �= k and impose Ciik(q) = 0 which
gives the n(n− 1) equations

Ciik = ∇qiMik = 0, (3.22)

for every 0 ≤ i, k ≤ n and i �= k. But, we also know that Mik = Mki and
hence from (3.22) we conclude that,

∇qiMik = ∇qk
Mik = 0, (3.23)

for all 0 ≤ i, k ≤ n, i �= k. At this point we can conclude from (3.22), (3.23)
that each off-diagonal element Mij is such that

∇qiMij = ∇qjMij = 0. (3.24)

Next, we choose j = k �= i and impose Cikk(q) = 0 which gives the n(n−1)
2

equations
Cikk = ∇qk

Mik + ∇qiMkk −∇qk
Mik ≡ 0. (3.25)

Hence, these n(n−1)
2 equations in (3.25) identically become equal to zero. Fi-

nally, we consider i �= j �= k and get n(n−1)(n−2)
2 equations in total which are

of the form,

Cijk =
1
2
{
∇qjMik + ∇qiMjk −∇qk

Mij

}
= 0. (3.26)
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3 Mechanical Systems: Velocity Estimation and Output Feedback Stabilization

From (3.26), we obtain that

Cijk + Cikj = ∇qiMjk = 0, (3.27)

which holds for all i �= j �= k. Thus, from (3.24) and (3.27) we can conclude
that each off-diagonal element Mij is constant, establishing the claim.

• (SZCS ⊂ SZRS) The proof that [M ∈ SZCS ⇒ M ∈ SZRS] follows from the iden-
tity SCI = SZCS and the definition of the Riemann symbols (3.17). To show
that the inclusion is strict, we first recall a well known characterization of the
set SZRS, which may be found in [11], [79], [80] (also refer to Proposition 3.13).
The Riemann symbols given by (3.17), corresponding to an inertia matrix M
become identically equal to zero if and only if the matrix M admits a factor-
ization M−1 = TT� such that the Lie brackets of the columns of the matrix T
are identically equal to zero. That is,

Rijlk = 0, i, j, l, k ∈ n̄ ⇔ M−1 admits a factor T
such that [Ti, Tj ] = 0, i, j ∈ n̄.

(3.28)

We now present the physical example of the inverted pendulum on cart which
was introduced in Chapter 1. We show that its inertia matrix belongs to the
set SZRS but its Crystoffel symbols do not identically become equal to zero
which concludes the proof. Indeed, consider the inertia matrix given by (1.6).
Next, for any given positive definite matrix M , it is always possible to find
a uniquely defined lower triangular Cholesky factorization, T of M−1 sat-
isfying (3.16) and such that its diagonal entries are positive. Please refer to
Corollary 7.2.9 of [36] and [39] for a discussion on this. For the mass matrix
in (1.6), we have

T =

⎡
⎣

√
m3√

m3−b2 cos2 q1
0

−b cos q1√
m3

√
m3−b2 cos2 q1

1√
m3

⎤
⎦ , (3.29)

and it can be easily verified that [T1, T2] = 0. Hence, from (3.28), the matrix
in (1.6) has zero Riemann symbols. We next compute the Christoffel symbols
forM and obtain that C112 = −b sin q1,while the rest of the symbols are iden-
tically zero. Thus, the inclusion SZCS ⊂ SZRS is strict.

• (SZRS ⊂ ST) If the columns of T commute, that is, if [Ti, Tj ] = 0, it is
clear that the skew–symmetry condition (3.18) is satisfied. Hence, by using
the equivalence (3.28), the claim [M ∈ SZRS ⇒ M ∈ ST] follows in a straight
forward manner.

We now proceed to prove that, for n > 2, the converse implication is not
true, which shows that the inclusion is strict. First, we prove that for n ≤ 2
the sets are the same. For n = 1 the equivalence is, of course, trivial. For
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3.3 Observers and alternate passive input-output pairs for PHSD

n = 2 this can be easily shown as follows. The skew–symmetry condition
(3.18) yields two equations of the form

[T1, T2]d� =
[

0 α̃
−α̃ 0

]
, α̃ ∈ R, (3.30)

for d = T1, T2, respectively which have a solution if and only if [T1, T2] = 0 or
d = 0. The proof follows by noting that since T is full rank, [T1, T2] = 0 for
(3.30) to hold true.

We now consider the case n = 3 and construct an inertia matrix M ∈ ST

such that M /∈ SZRS. Let M be a 3 × 3 symmetric positive definite matrix and
let T be its factorization. First, we observe that the condition

[T1, T2] = T3, [T2, T3] = T1, [T3, T1] = T2 (3.31)

is sufficient to prove the skew–symmetry condition in (3.18). We can see that
the condition (3.31) is satisfied by the vectors Ti = Aix where x ∈ R

3 and
Ai ∈ R

3×3 are the rotation matrices given as

Ai =

⎡
⎣ 0 Ω3i Ω2i

−Ω3i 0 Ω1i

−Ω2i −Ω1i 0

⎤
⎦ , i ∈ {1, 2, 3},

where Ωjk := e�j ek. However, the resulting matrix T = [T1|T2|T3] has zero
determinant and hence cannot qualify as a factor of M−1.

To complete the example we invoke some concepts from Lie group theory
(refer to [50], [79]). The first observation is that the matrices Ai are tangent
vectors at the identity point of the Lie group SO(3) and, furthermore, form
a basis for its associated Lie algebra so(3). We then extend these vectors to
left–invariant vector fields on the group SO(3) using a push–forward of the
left multiplication map Lg(h) = gh, where g, h ∈ SO(3). The push–forward
is defined as (Lg)∗(Ai) = gAi, where g is taken to be the product matrix
R(x) = R1(x)R2(x)R3(x) with,

R1 =

⎡
⎣ cosx1 sinx1 0

− sinx1 cosx1 0
0 0 1

⎤
⎦ , R2 =

⎡
⎣ 1 0 0

0 cosx2 sinx2

0 − sinx2 cosx2

⎤
⎦

R3 =

⎡
⎣ cosx3 sinx3 0

− sinx3 cosx3 0
0 0 1

⎤
⎦ ,

which is a parametrization (using the Euler angles) of SO(3). The question
is then to find the vectors T̃i, whose push–forward by R∗, that is R∗(T̃i), will
equal (LR)∗(Ai). This leads to the following set of equations

(∇x1R)T̃i1(x) + (∇x2R)T̃i2(x) + (∇x3R)T̃i3(x) = R(x)Ai, i = 1, 2, 3.
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3 Mechanical Systems: Velocity Estimation and Output Feedback Stabilization

By solving these equations, we obtain the matrix T̃

T̃ (x) =

⎡
⎣ − sin(x1) cot(x2) − cos(x1) cot(x2) 1

cos(x1) − sin(x1) 0
sin(x1)cosec(x2) cos(x1)cosec(x2) 0

⎤
⎦ .

Some simple computations show that the matrix T̃ has full rank (almost ev-
erywhere) and verifies (3.31). But, the matrix T̃ above is singular at the point
zero and hence is not full rank. This singularity can be removed by intro-
ducing an homeomorphism F : R × (0, π) × R → R

3 : x �→ q. For in-
stance, F (x) = [x1, tan(x2 − π

2 ), x3]�, which has an inverse map F I : R
3 →

R
3, F I(q) = [q1, π2 + tan−1(q2), q3]�. Now, upon defining the transformed

vectors,
Ti(q) = [(∇F (x))T̃i(x)]x=F I (q), i = 1, 2, 3,

we get after some simple calculations that

T =

⎡
⎣ sin(q1)q2 cos(q1)q2 1

(1 + q22) cos(q1) −(1 + q22) sin(q1) 0√
1 + q22 sin(q1)

√
1 + q22 cos(q1) 0

⎤
⎦ , (3.32)

which also verifies (3.31). We then obtain M−1 = T (q)T�(q) as

M−1 =

⎡
⎣ 1 + q22 0 q2

√
1 + q22

0 (1 + q22)2 0
q2
√

1 + q22 0 1 + q22

⎤
⎦ . (3.33)

Now, computing the Riemann symbols and recalling that, because of the
symmetries of the tensor, only R1212, R1213, R1223, R1313, R1323, R2323 need
to be calculated, one can verify that R1212, R1323, R2323 �= 0 for all q and
R1223 �= 0 for q2 �= 0, and hence conclude that M /∈ SZRS. Since, T satis-
fies (3.31), each of the matrices [T1, T2]T�

2 +[T1, T3]T�
3 , [T2, T1]T�

1 +[T2, T3]T�
3

and [T3, T1]T�
1 + [T2, T3]T�

3 are skew symmetric as desired. This completes
the proof.

• (ST ⊆ SPLvCC) We can see that, replacing Ψ = T in (3.6), the second right
term vanishes and we get

B(i) =
n∑
j=1

[Ti, Tj ]T�
j . (3.34)

and hence, condition (3.5) is satisfied with Ψ = T . Now, the skew-symmetry
condition (3.18) and (3.34) ensure that the condition (3.5) is satisfied. Hence
the proof follows. �
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Remark 3.10. The case M ∈ SZRS has been extensively studied in analytical
mechanics and has a deep geometric significance (refer to [19], [79] and also
look at Theorem 2.36 in [87]). The property has been exploited in the context
of linearization (refer to [11], [80]). It can be shown using Riemannian geome-
try that if M ∈ SZRS the system is said to be Euclidean [11], where the qualifier
stems from the fact that the system is diffeomorphic to a “linear double inte-
grator”. In the next section, we discuss in more detail about the physical and
geometric significance of this set and also explain about Euclidean systems.

3.3.2 Physical Interpretation of the Sets SZCS,SZRS,ST

In this section, we throw some light on the classes of physical systems for
which the mass matrix belongs to the sets defined in proposition 3.9. As
shown in the proof of Proposition 3.3, condition (3.5) holds if and only if
the mapping DΨ, defined in (3.9), identically vanishes. We will therefore use
this test to answer the questions. An additional motivation to analyze DΨ

is that it allows to establish some connections of our work with the existing
literature.

We first relate the key mapping DΨ, defined in (3.9), with the matrices M
and C in the Euler-Lagrange model (2.3). For this, we define the vector func-
tion D̃Ψ : R

n × R
n → R

n as D̃Ψ(q, q̇) := DΨ(q,M(q)q̇). Now, from (3.9) we
get

D̃Ψ = Ψ�∇q{
1
2
q̇�Mq̇} − Ψ̇�Mq̇,

= [Ψ�C − d

dt
(Ψ�M)]q̇, (3.35)

where, to obtain the second identity, we have used the property (2.6).

The Set SZCS

Proposition 3.11. The following statements are equivalent.

(i) M ∈ SZCS.

(ii) Condition (3.5) holds for any constant Ψ.

(iii) The Coriolis and centrifugal forces C(q, q̇)q̇ equal zero.

Moreover, if M ∈ SZCS, and we take Ψ = M−1, the transformed dynamics (3.7)
become

q̇ = P, Ṗ = −M−1 (∇U −Gu) . (3.36)
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Proof. The equivalence between (i) and (iii) follows directly from the property
(2.7). Now, from (3.9), it is clear that (ii) is true if and only if

∇q{
1
2
p�M−1p} = 0,

which is equivalent to M ∈ SCI. The proof is completed by recalling from
Proposition 3.9 that SZCS = SCI.

The proof of (3.36) follows by noting that, Ψ = M−1 gives P = q̇ and Ṗ is
obtained by replacing DM−1 = 0 in (3.8). �
Remark 3.12. In [25] an observer was designed for Lagrangian systems to
estimate q̇, under the following sufficient condition for linearizability. Define
a change of coordinates of the form (q, v) = (q, E(q)q̇), with E : R

n → R
n×n

full rank. Then

v̇ = Ė q̇ + E q̈
= (Ė − EM−1C)E−1v − EM−1(∇U −Gu), (3.37)

where (2.3) was used to get the last equation. It is clear that the dynamics
becomes linear in v if

Ė = EM−1C. (3.38)

(Of course, this conclusion also follows from (3.35) setting Ψ = M−1E�).
Condition (3.38) is imposed in [25], which besides being obviously stronger
than condition (3.5), does not seem to admit any geometric or system theo-
retic interpretation.

The Set SZRS

Proposition 3.13. The following statements are equivalent:

(i) M ∈ SZRS.

(ii) There exists a matrix T which is a factor of M−1, that is, M−1 = TT� and a
mapping Q : R

n → R
n such that

∇Q(q) = T−1(q). (3.39)

(iii) The system is Euclidean.

Proof. We first prove the equivalence between (i) and (ii). For this, we denote
Cq ⊂ R

n as the n-dimensional manifold defined by the configuration space of
the generalized position coordinates q. We then recall from (3.28) that M ∈
SZRS if and only if there exists a full rank factorization T of M−1 such that

[Ti, Tj] = 0, i, j ∈ n̄, q ∈ Cq. (3.40)
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Next, each Ti(q), i ∈ n̄ would be a vector field acting on the manifold Cq .
Since, the matrix T (q) has a full rank for all q, its columns are linearly inde-
pendent. We now assume that:

• the columns of T (q) satisfy (3.40).

• the n vector fields Ti, i ∈ n̄ are complete, that is, the integral curves of
the vector fields exist for all times t.

Then, from [79] (also refer to Theorem 2.36 in [58]), we know that there exists
a coordinate chart for Cq given by the coordinates q̄ = Q(q) for someQ : R

n →
R
n such that, the vector fields in the new coordinates satisfy Ti(q̄) = ei where

ei denotes the ith natural basis vector of R
n. Further, this coordinate chart

would be global and hence the mapping from q to Q is bijective for all q ∈ Cq .
We next invoke the fact that the vector fields transform in a covariant fash-

ion [79] under such coordinate changes which means

Ti(q̄) = ∇Q(q)Ti(q) = ei. (3.41)

Subsequently, we perform the following computations

∇Q(q)Ti(q) = ei, (3.42)
=> ∇Q(q) [T1(q)|T2(q)|...|Tn(q)] = In×n, (3.43)

=> ∇Q(q) = T−1(q). (3.44)

Thus, we can conclude that if the columns of T (q) commute, then T−1(q)
is the Jacobian of some vector S(q) and is thus integrable. We now assume
that T−1(q) = ∇qS for some vector Q : R

n → R
n. We then easily obtain,

∇Q(q)Ti(q) = ei which implies that there exists a set of coordinates q̄ = Q(q)
such that in those coordinates, the columns of T assume the form Ti(q̄) = ∇q̄i .
We once again invoke Theorem 2.36 in [58] and conclude that the columns of
T (q) commute among each other. Hence, the proof follows.

We next prove the equivalence between (i) and (iii). Firstly, if M ∈ SZRS,
then there exists a mapping Q : R

n → R
n such that (3.39) is satisfied and

further condition (3.5) holds with Ψ = T (where TT� = M−1), that is, DT =
0. Consider now the coordinates (Q,P ) where P = T�p. We compute

Q̇ = (∇Q)q̇ = T−1q̇ = T�p = P,

where we have used (3.39). Next, from (3.8) and using the fact that DT = 0
we obtain the dynamics of Ṗ as

Ṗ = T�{Gu−∇U} = −∇QṼ (Q) + G̃(Q)u. (3.45)

where G̃(Q) := T�(QI(Q))G(QI(Q)), Ṽ (Q) := V (QI(Q)), with QI : R
n →

R
n a right inverse of Q(q), that is, Q(QI(x)) = x for all x ∈ R

n. Hence, the
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system is Euclidean [11] as there exists a canonical transformation given by
Q,P such that the system in the new coordinates has a constant inertia matrix
and moreover, if the potential energy U = 0, the system dynamics is given as
a double integrator Q̈ = G̃(Q)u = v. �
The Set ST

Proposition 3.14. For any matrix T , factor of M−1, the following statements are
equivalent:

(i) M ∈ ST.

(ii) Condition (3.5) holds with Ψ = T , that is, DT = 0.

Further, if M ∈ ST, the transformed dynamics takes the form

q̇ = TP, Ṗ = −T� (∇U −Gu) . (3.46)

Proof. The evaluation of the matrices B(i), defined in (3.6), for Ψ = T is given
in (3.34). Now, from (3.13) we conclude that DT = 0 if and only if these
matrices are skew symmetric, which is precisely the condition for M ∈ ST.

The last claim is established by noting that, Ψ = T gives q̇ = TP and Ṗ is
obtained by replacing DT = 0 in (3.8). �
3.3.3 The Set SPLvCC

In this subsection, we present an interesting example of the robotic leg system
which is not Euclidean but we show that its inertia matrix belongs to SPLvCC.
We then consider the classical ball and beam system and show that it does
not belong to SPLvCC.

Example 3.15. The Robotic Leg (M ∈ SPLvCC but M /∈ SZRS): We consider the
robotic leg example [22] depicted in Figure 3.2. The system consists of a rigid body
that is pinned to a fixed point on the ground at its center of mass. The body can rotate
about this fixed point and has a moment of inertia J about the axis of rotation. The
body has an extensible massless leg which is attached at the fixed point and the leg
has a point mass m present at its tip. The coordinate ψ represents the angle of the
body, θ represents the angle made by the extensible leg with the fixed horizontal axis
in an inertial reference frame and r denotes the extension of the leg which is assumed
to be strictly positive. Further, η1 represents the torque acting at the point of rotation
which controls the angle between the body and the leg and η2 represents the force that
controls the extension of the leg.

We thus have a 3 degree of freedom mechanical system whose kinetic energy is
given by KE = 1

2mṙ
2 + 1

2mr
2θ̇2 + 1

2Jψ̇
2. Letting q = (r, θ, ψ), we subsequently

obtain the inertia matrix as

M = diag{m,mq21, J}, (3.47)
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Figure 3.2: Robotic leg, where we denote q := (r, θ, ψ)

where q1 ≥ ε > 0. Firstly, the only non–zero Christoffel symbols for M are C122 =
−C221 = mq1 which implies that M /∈ SZCS. Furthermore, the Riemann symbol
R1212 = m �= 0 implies that M /∈ SZRS. We will now prove that M ∈ SPLvCC

provided
q ∈ C := {q1 ≥ ε > 0, q2 �= iπ, i ∈ Z+}.

Indeed, some lengthy but straightforward calculations, prove that the matrix

Ψ(q1, q2) :=

⎡
⎣ sin(q2) sin(q2) 0

1
q1

cos(q2) + κ 1
q1

cos(q2) 0
0 0 1

⎤
⎦ , κ �= 0 (3.48)

which is well–defined and full–rank for all q ∈ C, ensures DΨ = 0 for the inertia
matrix (3.47). It should be pointed out that (3.48) was obtained by solving the PDEs
(3.5), (3.6) for the inertia matrix (3.47).

Remark 3.16. Although not yet proven, some preliminary calculations lead
us to conjecture that M /∈ ST. Notice that the “natural” choice for the factor
T , namely

T = diag{ 1√
m
,

1
q1
√
m
,

1√
J
},

does not satisfy the condition [T1, T2]T�
2 = −

(
[T1, T2]T�

2

)�.

Example 3.17. The Ball-Beam System (M /∈ SPLvCC): It is interesting to note that,
in spite of the similarities with the robotic leg, the classical ball–and–beam system
[62] is not PLvCC. The system consists of the ball whose position along the beam is
described by the coordinate q1, the angle made by the beam with the horizontal axis is
denoted by q2 and a torque u acts on the beam and controls its angular position. Then,
the inertia matrix of the ball–and–beam is M = diag{1, �2 + q21}, where � > 0 is the
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Figure 3.3: Ball-Beam System

length of the beam, and q ∈ {|q1| ≤ � }. The PDEs (3.5), (3.6) for the ball–and–beam
system are

∇q1Ψ11 =0, ∇q2Ψ11 + (�2 + q21)∇q1Ψ21 =0, ∇q2Ψ21 =
−q1

�2 + q21
Ψ11.

The first and third PDE’s together imply

Ψ21(q1, q2) =
q1

�2 + q21
Ψ̃21(q2) + κ, (3.49)

where Ψ11(q2) = −∇q2Ψ̃21. Next, using (3.49) together with the second PDE yields
the ODE

∇2Ψ̃21(q2) =
�2 − q21
�2 + q21

Ψ̃21(q2),

that clearly does not admit a solution.

3.3.4 A Globally Exponentially Convergent Reduced Order I&I
Observer for PLvCC Systems

In this section, we construct a globally exponentially convergent reduced or-
der observer for PLvCC systems using the Immersion and Invariance princi-
ple introduced in Chapter 2. Proceeding on the similar lines, we define the
observer for the system (3.1).

Definition 3.18. The dynamical system

η̇ = Υ(q, η, u), (3.50)

with η ∈ R
n, is called a reduced order I&I observer for the system (3.1) if there exists

a full rank matrix Ψ : R
n → R

n×n and a vector function β : R
n → R

n, such that
the manifold

M := {(η, q, p) : β(q) = η + Ψ�(q)p} ⊂ R
n × R

n × R
n (3.51)
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is invariant and attractive with respect to the system (3.1), (3.50). The asymptotic
estimate of p, denoted by p̂, is then given by

p̂ = Ψ−�(β − η).

Remark 3.19. The manifold M in (3.51) is a particular case of (2.53) which we
saw in chapter 2. More particularly, we can draw parallels from [8], where
the manifold is defined as {(η, q, p) : β̃(q, η) = Ψ�(q)p}, with β̃ : R

n × R
n →

R
n. From (3.51), we can see that the function β̃(q, η) = β(q) − η in our case

and thus is an affine function of η. It is clear that by considering a more
general manifold expression, it is possible in principle to handle a larger class
of systems. However, it can be shown that for PLvCC systems, the choice
of β in (3.51) is without loss of generality. Please see Remark 3.22 for some
additional relationships between both observers.

Before presenting the proposed observer design, we need the following as-
sumption.

Assumption 1. There exists a mapping β : R
n → R

n satisfying the matrix in-
equality

QA(q) + A�(q)Q ≥ εIn, (3.52)

uniformly in q, for some ε > 0 and some constant matrix Q ∈ R
n×n
P , where

A(q) := ∇β(q)[Ψ�(q)M(q)]−1. (3.53)

Proposition 3.20. Consider the mechanical system (3.1). Assume M ∈ SPLvCC with
a matrix Ψ whose inverse is uniformly bounded and that there exists a mapping β
satisfying Assumption 1. Then, the dynamical system

η̇ = ∇β(q)(Ψ�M)−1(β − η) + Ψ�(∇U −Gu)
p̂ = Ψ−�(β − η) (3.54)

is a globally exponentially convergent reduced order I&I observer—with the estima-
tion error verifying

|p̂(t) − p(t)| ≤ ᾱ exp−ρ̄t |p̂(0) − p(0)|,

for some ᾱ, ρ̄ > 0, where | · | is the Euclidean norm.

Proof. By following the I&I procedure in Chapter 2, we prove that the man-
ifold M, defined in (3.51), is attractive and invariant by showing that the
off–the–manifold coordinate

z = β − η − Ψ�p = β − η − P, (3.55)
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verifies: (i) (z(0) = 0 ⇒ z(t) = 0) for all t ≥ 0, and (ii) z(t) asymptotically
(actually, exponentially) converges to zero. Note that from (3.51) we get that
dist{(η, q, p),M} = 0 if and only if z = 0.

To obtain the dynamics of z, we differentiate (3.55) to get

ż = β̇ − η̇ − Ṗ

= (∇β)M−1p− (∇β)(Ψ�M)−1(β − η)
= −Az (3.56)

where (3.7) and (3.54) are used for the second identity while the third one is
obtained invoking (3.53) and (3.55).

The manifold M is clearly positively invariant. To establish global expo-
nential attractivity of M, consider the Lyapunov function

V(z) =
1
2
z�Qz. (3.57)

Conditions (3.52) and (3.56) ensure that

V̇ ≤ − ε

λ̄(Q)
V , (3.58)

with λ̄(Q) denoting the maximum eigenvalue of Q, which proves, after some
basic bounding, the global exponential convergence to zero of z. Exponential
convergence of p̂− p is concluded invoking uniform boundedness of Ψ−1. �
Remark 3.21. Assumption 1 may be rephrased as follows. Instead of assum-
ing the existence of β we assume that there exists a mapping N : R

n → R
n×n

such that (3.52) holds with

A(q) = N (q)[Ψ�(q)M(q)]−1, (3.59)

and
∇N j =

(
∇N j

)�
, j ∈ n̄. (3.60)

The latter (integrability) condition ensures, from Poincaré’s Lemma, that there
exists a β such that

∇β = N . (3.61)

That is, the problem reduces to the solution of the PDE (3.60), subject to the
inequality constraint (3.52), (3.59).

In section 3.4, we propose a step–by–step procedure to compute N for the
special choice of Ψ = T with T being the lower triangular Cholesky factor-
ization of M−1.
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3.3.5 Implications on observer design for the sets SZCS,SZRS,ST

We now have a look at the various sets of inertia matrices which were defined
previously and study the implications on observer design for these sets.

i) M ∈ SZCS: This is the case of constant inertia matrix. From the definition
of A in (3.59) we see that when Ψ = M−1, the Assumption 1 is satisfied
with any constant matrix N such that −N is a Hurwitz matrix. Fur-
ther, the construction of β from (3.61) is trivial and the observer error
dynamics is linear, namely ż = −N z. For instance, selecting N = In the
observer takes the simple form

η̇ = q − η +M−1 (∇U −Gu) , p̂ = M(q − η).

The reason why this basic construction works can be easily explained
recalling (3.36) of Proposition 3.11.

ii) M ∈ SZRS: In this case, the dynamics (in principle) can be expressed in
the coordinates (Q,P ) as (3.45) for which the I&I observer construction
procedure becomes trivial as in the case for M ∈ SZCS. However, to
obtain the representation (3.45), it is necessary to solve the PDE (3.39)
in order to obtain the expression forQ as a function of q which severely
restricts the practical applicability of the approach. Indeed, the explicit
solution of this PDE may sometimes not be possible which happens
in the case of the classical inverted pendulum on the cart system. In
Section 3.6, this system is shown to be Euclidean but, as indicated in
[11], the PDE (3.39) leads to an elliptic integral of the second kind that
does not admit a closed form solution.

However, as we have seen, it is more facile (or rather convenient) to
express Euclidean systems in the partially linearized form in the context
of observer design. Indeed, if we choose the coordinates as (q, T�(q)p)
(T given by (3.16)), we obtain the partially linearized system (3.46) with
P = T�q. Further, from (3.53) we see that when Ψ = T we get A = NT .
In Section 3.4 we propose to take T to be the lower triangular Cholesky
factor ofM−1, and present a systematic procedure to design N in order
to satisfy Assumption 1.

iii) M ∈ ST: Similar to the systems where M ∈ SZRS, we get in this case
A = NT and thus the procedure for construction of N in Section 3.4 is
applicable.

Remark 3.22. Some connections between our observer and the one proposed
in [8] may be established at this point. Towards this end, we refer to the
function D̃Ψ defined in (3.35) and evaluate it for Ψ = T (T given by (3.16)) to
obtain

D̃T = [T�C − d

dt
T−1]q̇ =: C̄(q, q̇)q̇.
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It can be shown that the matrix C̄(q, q̇)T (q) is linear in q̇ and furthermore, by
invoking (2.6) we can also prove that it is skew–symmetric. These properties
are used in [8] to generate an error dynamics of the form

ż = [Γ(q, η) − C̄(q, q̇)T (q)]z,

where Γ : R
n × R

n → R
n×n is a matrix that can be shaped by selecting

the function β̃. A constructive solution has been given in [8] for some par-
ticular cases of systems with n = 2, namely diagonal inertia matrix (with
possibly unbounded elements) and inertia matrix with bounded elements.
Some recent calculations show that this technique can be extended beyond
these cases, but the need to explicitly solve the integrals that define β̃ make
this more of an “existence result”, than an actual constructive procedure. Of
course, it may be argued that the analysis done in this chapter (that aims at
eliminating the term DΨ), although leading to the explicit identification of
some PDEs to be solved, is also not constructive—given our inability to guar-
antee their solution in general.

3.4 A Constructive Procedure for N
In this Section we present a simple algorithm to construct a matrix N that
satisfies Assumption 1 for the selection Ψ = T (T given by (3.16)). The start-
ing point of the procedure is to choose T as the lower triangular Cholesky
factorization of the mass matrix M . The idea is then to construct a matrix N
such that, on one hand, NT is diagonal with positive diagonal entries and, on
the other hand, N is “trivially” integrated (refer to 3.62) in the sense of Re-
mark 3.21. The first condition will ensure (3.52) of Assumption 1, while the
second one guarantees (3.60). As expected, the construction involves the so-
lution of some PDEs that we show can be easily solved for several examples
of practical interest.

To enhance readability we present the algorithm first for the simplest case
when the inertia matrix depends on one coordinate, for which the differential
equations to be solved are ODEs. We then consider the case of dependence on
two coordinates, and deal with PDEs. We then generalize the procedure for
the case where the inertia matrix can depend on k coordinates where k ∈ n̄.

3.4.1 Procedure for Computing N when M Depends on a
Single Coordinate

Without loss of generality we assume that M is a function of q1. We propose
the following form for the matrix N

N = Λ + ∇q{φ(q1) + ψ(q1)q}, (3.62)
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where Λ > 0 is an n× n constant diagonal matrix, φ : R → R
n is a function to

be defined that depends only on q1 and verifies e�1 φ = 0 and ψ : R → R
n×n,

also to be defined, depends only on q1 and verifies e�i ψej = 0 for all j ≥ i and
ψe1 = 0.

Given the proposed form of N , condition (ii) of Assumption 1 is trivially
satisfied and β can be immediately computed as

β = Λq + φ(q1) + ψ(q1)q. (3.63)

Moreover, N is lower triangular and hence, N (q) := N (q)T (q) is also lower
triangular since the matrix T is lower triangular. Further, each diagonal entry
of N is given as Nii = ΛiiTii > 0. To satisfy the positivity condition (i) of
Assumption 1 our strategy will be to find ψ and φ such that the matrix N
becomes diagonal.

The matrix N has the following form:

The algorithm proceeds along the following steps:

1. For every i ≥ 3, solve Ni,i−1 = 0 to obtain the function ψi,i−1. For
example, we compute ψ32 = −Λ33T32

T22
, ψ43 = −Λ44T43

T33
and so on. Note

that the terms Tii > 0 for every i ∈ n̄.

2. For every i ≥ 4, solve Ni,i−2 = 0 using the function ψi,i−1 obtained in
step 1 to get ψi,i−2. For example, ψ42 = Λ44

T22T33
{T43T32 − T42T33}.

3. Proceed in this manner until i = n to complete the computation of ψ.

4. Solve the ordinary differential equations Ni1 = 0, 2 ≤ i ≤ n and com-
pute the vector φ. For example, the function φ2 is obtained by solving
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the ODE ∂φ
∂q1

= −Λ22T21(q1)
T11(q1) . We can continue in this manner, use the

(now known) function ψ and compute the function φ by solving ODE’s.

The elements of the matrix Λ can be chosen freely and it suffices to just ensure
that they are positive constants. Finally, after having computed N , we obtain
β from (3.63). In the case when the dimension of the mechanical system is
n ≤ 2, the matrix ψ is not needed and we skip the first three steps.

We now illustrate this procedure on two physical examples.

Inverted Pendulum on a Cart [24], [81]

We construct a velocity observer for the inverted pendulum on a cart sys-
tem whose inertia matrix is given in (1.6) and the lower triangular Cholesky
factor in (3.29). As shown before [T1, T2] = 0 and thus condition (3.5) is satis-
fied. We now proceed to construct N by following the above algorithm and
accordingly set it as

N =
[

Λ11 0
0 Λ22

]
+
[

0 0
∇q1φ2 0

]
,

where Λii > 0. We next solve the ordinary differential equation, N21 = 0 ,
which is of the form

∇q1φ2 =
Λ22b

m3
cos(q1)

and hence φ2 = Λ22b
m3

sin(q1). Thus, we obtain

β =
[

Λ11q1
Λ22(q2 + b

m3
sin(q1))

]
. (3.64)

Some simulation results of this example are presented in Section 3.5.

3-Link Underactuated Planar Manipulator [3], [38]

The system shown in figure 3.4 is a 3-link underactuated planar manipulator
with the first two joints being prismatic and actuated while the third joint
is a revolute joint and is unactuated. We let (q2, q3) denote the horizontal
and vertical positions of the third joint from the origin and q1 denotes the
orientation of the third link with respect to the horizontal axis. Further, m1,
m2 andm3 denote the masses of the links, L denotes the distance of the center
of mass of the third link from the third joint and I denotes the moment of
inertia of the third link about the third joint. The kinetic energy of the system
is given byKE = 1

2mxṙ
2
x + 1

2my ṙ
2
y + 1

2Iθ̇
2 −m3l sin θθ̇ṙx +m3l cos θθ̇ṙy where

mx = m1 +m2 +m3 and my = m2 +m3. Thus, the moment of inertia of the
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q1

q2

q3

L

y

x

Figure 3.4: 3-Link underactuated planar manipulator.

system is given by

M−1=
1
F 2

⎡
⎢⎢⎣

1 m3L
mx

sin q1 −m3L
my

cos q1
m3L
mx

sin q1
myI+m2

3 L2

mxmy
cos2 q1 − m3L

2

mxmy
sin q1 cos q1

−m3L
my

cos q1 − m3L
2

mxmy
sin q1 cos q1

mxI−m2
3 L2

mxmy
sin2 q1

⎤
⎥⎥⎦

where F (q) :=
√

1 − m2
3 L2

my
cos2 q1 − m2

3 L2

mx
sin2 q1 . We compute the lower

triangular Cholesky factorization as

T =

⎡
⎢⎣

1
F 0 0

m3L
mxF sin q1 1√

mx
0

−m3L
myF cos q1 0 1√

my

⎤
⎥⎦ .

We can easily check that the columns of T commute thus the system is Eu-
clidean. Following the procedure described above we set N as

N =

⎡
⎣ Λ11 0 0

0 Λ22 0
0 0 Λ33

⎤
⎦+

⎡
⎣ 0 0 0

∇q1φ2 0 0
∇q1φ3 0 0

⎤
⎦+

⎡
⎣ 0 0 0

0 0 0
∇q1ψ32q2 ψ32 0

⎤
⎦ ,

where Λii > 0. We first solve N32 = 0 to obtain ψ32 = 0. We next solve
N31 = 0 and get φ3 = Λ33m3L

my
sin q1. We finally solve N21 = 0 to obtain
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φ2 = Λ22m3L
mx

cos q1. We finally get

β =

⎡
⎣ Λ11q1

Λ22(q2 + m3L
mx

cos q1)
Λ33(q3 + m3L

my
sin q1)

⎤
⎦ .

3.4.2 Procedure for Computing N when the Mass Matrix
Depends on Two Coordinates

Without loss of generality we assume that the mass matrix depends on q1 and
q2. Next we propose the following form for N given as,

N = Λ + ∇q{φ(q1, q2) + ψ(q1, q2)q} (3.65)

where Λ > 0 is an n× n constant diagonal matrix, φ : R
2 → R

n depends only
on q1, q2 and verifies e�1 φ = 0, ψ : R

2 → R
n×n depends only on q1, q2 and

verifies e�i ψej = 0 for all j ≥ i and ψe1 = ψe2 = 0.
Again, condition (ii) of Assumption 1 is trivially satisfied and β can be im-

mediately computed as

β = Λq + φ(q1, q2) + ψ(q1, q2)q. (3.66)

Moreover,N is lower triangular and hence, N := NT is also lower triangular.
Further, each diagonal entry of N is given as Nii = ΛiiTii > 0. To satisfy the
positivity condition (i) of Assumption 1 our strategy will be to find ψ and φ
to render N diagonal.

The matrix N has the following form:
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The algorithm proceeds along the following steps:
1. For every i ≥ 4, solve Ni,i−1 = 0 to obtain the function ψi,i−1. As before,
we compute ψ43 = −Λ44T43

T33
, ψ54 = −Λ55T54

T44
and so on.

2. For every i ≥ 5, solve Ni,i−2 = 0 by using the function ψi,i−1 obtained in
step 1 to get ψi,i−2. For example, ψ53 = Λ55

T33T44
{T54T43 − T53T44}.

3. Proceed in this manner until i = n to complete the computation of ψ.
4. Solve the equations N22 > 0 and N21 = 0 to determine the function φ2.
Note that the equationN21 = 0 leads to a PDE which needs to be solved along
with the inequality N22 > 0 to yield φ2. In the previous case of dependence
on a single coordinate, all the equations were ODEs.
5. Solve the partial differential equations Nij = 0, 3 ≤ i ≤ n, j = 1, 2
and compute the matrix φ. Note once again that, unlike the previous case of
dependence on a single coordinate, here we encounter PDE’s. However, the
solvability of these PDE’s can be easily verified and in case of the existence
of a solution, the residual step involves computing a set of first integrals in
order to obtain the function φ.

As an illustration, consider the equations N32 = 0 and N31 = 0. They
together yield

∂φ3

∂q2
= −Λ33

T32

T22
, (3.67)

∂φ3

∂q1
=

Λ33

T11T22
{T21T32 − T22T31}. (3.68)

A solution to (3.67), (3.68) would exist if and only if

∂

∂q1
{−Λ33

T32

T22
} =

∂

∂q2
{ Λ33

T11T22
{T21T32 − T22T31}}, (3.69)

which can be verified in a straightforward manner as the terms of the matrix
T are known. In case a solution exists, then the next step is a simple integra-
tion of (3.67), (3.68) to obtain the function φ3.

The elements of the matrix Λ can be chosen freely and it suffices to just ensure
that they are positive constants. Finally, after having computed N , we obtain
β from (3.66).

We now illustrate this procedure for a four degree of freedom mechanical
system.

Planar Redundant Manipulator with one elastic degree of freedom [10], [71]

This is an interesting example of a four degree of freedom underactuated me-
chanical system whose mass matrix depends on two coordinates. In the fig-
ure shown, there is a base body of mass M and rotational inertia I which can
translate and rotate freely in the plane and contains a massless arm of length
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q1

q2

q3

q4

L

m

M

Figure 3.5: Planar redundant manipulator with one elastic degree of freedom.

L at the tip of which the end-effector of mass m is attached. The base body is
connected to the massless arm by a linear torsional spring whose extension is
denoted by the coordinate q2. The coordinates (q3, q4) represent the position
of the end effector while q1 denotes the angle made by the base body with the
fixed horizontal axis. The base body is actuated by forces in the horizontal
and vertical directions and has a torque that controls its rotation in the plane.
However, the elastic joint is assumed to be unexcited which makes the system
underactuated and hence interesting from a control perspective.

Thus, the kinetic energy of the system is given by KE = 1
2 (M + m)(q̇23 +

q̇24)+ 1
2Iq̇

2
1 + 1

2ML2{q̇1 + q̇2}2 +ML{q̇1 + q̇2}{q̇3 sin(q1 + q2)− q̇4 cos(q1 + q2)}
and subsequently the inertia matrix is given as

M−1 =

⎡
⎢⎢⎣

1
I − 1

I 0 0
− 1
I

M+m
MmL2 + 1

I − 1
mL sin(q1 + q2) 1

mL cos(q1 + q2)
0 − 1

mL sin(q1 + q2) 1
M+m 0

0 1
M+m 0 1

M+m

⎤
⎥⎥⎦ .

We compute the lower triangular cholesky factorization, T of M−1 (q) as

T =

⎡
⎢⎢⎢⎢⎢⎣

1√
I

0 0 0

− 1√
I

√
M+m√
MmL

0 0

0 −
√

M
m

1√
M+m

sin(q1 + q2) 1√
M+m

0

0
√

M
m

1√
M+m

cos(q1 + q2) 0 1√
M+m

⎤
⎥⎥⎥⎥⎥⎦ .

We can again easily check that the columns of T commute among each other
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thus satisfying condition (3.5). We let the matrix N be given as,

N =

⎡
⎢⎢⎣

Λ11 0 0 0
0 Λ22 0 0
0 0 Λ33 0
0 0 0 Λ44

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0 0 0 0
∇q1φ2 ∇q2φ2 0 0
∇q1φ3 ∇q2φ3 0 0
∇q1φ4 ∇q2φ4 0 0

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0

∇q1ψ43q3 ∇q2ψ43q3 ψ43 0

⎤
⎥⎥⎦ , (3.70)

where Λii > 0. From N21 = 0 , we get ∇q1φ2 = ∇q2φ2 and from N22 > 0 ,
we get ∇q1φ2 > 0. Thus, we let φ2 = k(q1 + q2) where k > 0. We now solve
N43 = 0 to obtain ψ43 = 0. We then solve N42 = 0 to get

φ4 = −MLΛ44

M +m
sin(q1 + q2) + g(q1).

Finally, from N41 = 0 , we get ∇q1φ4 = ∇q2φ4 and hence we can set g = 0. We
next solve N32 = 0 to obtain

φ3 = −MLΛ33

M +m
cos(q1 + q2) + f(q1).

Next, from N31 = 0 , we get ∇q1φ3 = ∇q2φ3 and hence we can set f = 0. We
finally get

β =

⎡
⎢⎢⎣

Λ11q1
Λ22q2 + k(q1 + q2)

Λ33(q3 − ML
M+m cos(q1 + q2))

Λ44(q4 − ML
M+m sin(q1 + q2))

⎤
⎥⎥⎦ .

One can check that the condition (3.69) holds true for this example.

3.4.3 Procedure for Computing N when the Mass Matrix
Depends on k Coordinates, k ∈ n̄

Without loss of generality we assume that the mass matrix depends on the
first k coordinates q1, q2, .... qk. Next we propose the following form for N
given as,

N = Λ + ∇q{φ(q1, q2, ....., qk) + ψ(q1, q2, ....., qk)q} (3.71)

where Λ > 0 is an n × n constant diagonal matrix, φ : R
k → R

n and verifies
e�1 φ = 0, ψ : R

k → R
n×n and verifies e�i ψej = 0 for all j ≥ i and ψe1 = ψe2 =

ψe3 = ..... = ψek = 0. The matrix N is then given as below with k+2 ≤ i ≤ n.
As before, condition (ii) of Assumption 1 is trivially satisfied and β can be

immediately computed as

β = Λq + φ(q1, q2, ....., qk) + ψ(q1, q2, ....., qk)q. (3.72)
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We can see that for the cases, k = 1, 2, the matrix N assumes the form (3.62)
and (3.65) respectively. Moreover for these cases, N is lower triangular and
hence isN = NT but, for k > 2, the k×k upper left block of the matrixN (and
subsequently N ) is clearly not lower triangular which makes the algorithm
more complicated. The algorithm proceeds along the following steps:
1. First compute Ñ = 1

2{N +N�},
2. For every i ≥ k + 2, solve Ñi,i−1 = 0 to obtain the function ψi,i−1.
3. For every i ≥ k + 3, solve Ñi,i−2 = 0 by using the function ψi,i−1 obtained
in step 1 to get ψi,i−2.
4. Proceed in this manner until i = n to complete the computation of ψ.
5. Solve the inequalities Ñii > 0 for all 2 ≤ i ≤ k and the partial differential
equations Ñij = 0 for all 1 ≤ j < i ≤ k to determine the functions φl, for all
l = 2, ...k.
6. Solve the partial differential equations Ñij = 0, k + 1 ≤ i ≤ n, 1 ≤ j ≤ k
and compute the matrix φ.

The elements of the matrix Λ can be chosen freely and it suffices to just
ensure that they are positive constants. Finally, after having computed N , we
obtain β from (3.72).

Remark 3.23. Step 5 is the difficult one as it involves solving (k − 1) inequal-
ities and (k)(k−1)

2 partial differential equations with the number of unknowns
being k(k − 1). We can see that for k = 2, the number of equations (inequali-
ties and equalities together) is same as the number of unknowns and we thus
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get an exact solution, but for k > 2 we have more equations than unknowns.
Hence, it could be possible that we can get more than one solution for the
functions φi for i = 2, ...k. The steps 2, 3 in the algorithm, which involve solv-
ing a set of algebraic equations and step 6 that involves some simpler PDEs
(as also seen in the k = 2 case), are relatively straightforward.

Remark 3.24. If k = n, then the matrix ψ = 0 from our construction. In
that case, we would have to follow only step 5 of the algorithm. Hence (as
expected), the larger the value of k, more PDEs need to be solved and the
complication of the algorithm increases.

3.4.4 Computation of N for a general non-Cholesky
factorization of the inertia matrix

The constructive procedure to compute N given above proceeds from the
Cholesky factorization of the matrix M−1. It may happen that this particu-
lar factorization does not satisfy the skew–symmetry condition of Proposition
3.9 but another factorization does—this is so for the mass matrix (3.33). More-
over, the inertia matrix may not admit a suitable factorization, i.e., one that
satisfies the skew–symmetry condition, but we may be able to find a matrix
Ψ that verifies the most general condition (3.5).

To compute N we can, of course, combine the two conditions of Assump-
tion 1 to obtain, directly in terms of β, the differential inequality

(∇β)M−1Ψ−� +
(
(∇β)M−1Ψ−�)� ≥ εIn,

but it seems difficult to even establish conditions for existence of solutions to
this inequality. Alternatively, we can fix “candidate” matrices N that already
satisfy the integrability condition (3.60) and concentrate on the inequality
(3.52). Obviously, the first natural candidates are constant matrices. Another
useful option is to fix the ij element of N to be of the form

Nij(q) = a1
i1(q1)a

2
i2(q2) · · ·

dajij(qj)
dqj

· · ·anin(qn)

for some free functions ajij : R → R—it is easy to see that (3.60) will hold for
the resulting N .

Example 3.25. We now show how the above construction works for the mass matrix
(3.33) with the (non–Cholesky) factorization (3.32) that we repeat here for ease of
reference

T =

⎡
⎣ q2 sin(q1) q2 cos(q1) 1

(1 + q22) cos(q1) −(1 + q22) sin(q1) 0√
1 + q22 sin(q1)

√
1 + q22 cos(q1) 0

⎤
⎦ .
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We recall that, as shown in Proposition 3.9, the columns of this matrix do not com-
mute, however, it verifies the skew–symmetry condition. For the sake of illustration,
we select the desired operating point to be q� = 0. We now Consider the matrix T
given above and the matrix

N =

⎡
⎢⎣ 0 λ̃√

1+q22
0

0 0 λ̃
cos(q1) 0

⎤
⎥⎦ ,

with λ̃ > 0. We aim to show that NT + T�N� > 0 for all q in the set

{q ∈ R
3 | −π

2
+ κ ≤ q1 ≤ π

2
− κ, 4 λ̃ > |q2|},

where κ > 0 is an arbitrarily small constant. For this, We compute NT + T�N�

as ⎡
⎣ 2λ̃

√
1 + q22 cos(q1) 0 1

2 sin(2q1)q2
0 2λ̃

√
1 + q22 cos(q1) cos2(q1)q2

1
2 sin(2q1)q2 cos2(q1)q2 2 cos(q1)

⎤
⎦ .

The determinant of this matrix equals

2λ̃(1 + q22)c
3(q1)[4λ̃− q22√

1 + q22
],

from which the claim follows immediately.

3.5 Asymptotic Stability of IDA–PBC Designs with
I&I Observers

In this section, we study the stability properties of the combination of the
Interconnection and Damping assignment passivity-based controller (IDA-
PBC) introduced in chapters 1 and 2 with the I&I observer derived in the
previous section. In particular, we show that the measurement of momenta,
p, required in IDA-PBC, can be replaced by its estimated signal p̂, preserving
asymptotic stability of the desired equilibrium.

Remark 3.26. In [1] a similar property is established for an IDA–PBC con-
troller with a different I&I observer for the case of systems with under-actuation
degree one written in Spong’s normal form [82]—see Section 6 of [1]. However,
to transform a mechanical system to Spong’s normal form it is necessary in
general to feed–back the full state and hence the result is not applicable for
the problem at hand. For example, in the case of inverted pendulum on cart,
the feed-back consists of velocity measurements (refer to [84]).
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Even though global exponential convergence of the I&I observer has been
established and, furthermore, mechanical systems are linear in u, the proof
of this claim, in its global formulation, is non–trivial for the following rea-
sons. First, the control law of IDA–PBC is quadratic in p and will, in gen-
eral, depend on all the elements of this vector. Second, non–positivity of
the Lyapunov function derivative is obtained in IDA–PBC via damping in-
jection, more precisely by feeding–back the passive output (for instance y =
G�(q)∇H(q, p) is the passive output for (3.1)) which is a function only of the
actuated components of p, that is, the elements in the image of the input ma-
trix G. Consequently, when p is replaced by their estimates the derivative
of the (state–feedback) Lyapunov function will contain sign indefinite terms.
While classical perturbation arguments allow to conclude local asymptotic
stability, to establish the global version some particular properties of cascaded
systems must be invoked.

For the sake of brevity the IDA–PBC methodology is not reviewed here (re-
fer to Chapters 1 and 2) while only the key equations needed for the analysis
are given. The objective in IDA–PBC is to assign to the closed–loop the energy
function

Hd(q, p) =
1
2
p�M−1

d (q)p+ Vd(q) − Vd(q�)

where Md = M�
d ∈ R

n×n
P , Vd are the desired inertia matrix and potential

energy function, respectively, and q� is the desired position, by preserving
the mechanical structure of the system. This is achieved imposing the closed–
loop dynamics(

q̇
ṗ

)
=
[

0 M−1Md

−MdM
−1 J2 −GKvG

�

](
∇qHd

∇pHd

)
, (3.73)

whereKv = K�
v ∈ R

n×n
P is a damping injection matrix and J2(q, p) is a skew–

symmetric matrix of the form⎡
⎢⎢⎢⎣

0 p�α1(q) p�α2(q) . . . p�αn−1(q)
−p�α1(q) 0 p�αn(q) . . . p�α2n−3(q)

...
...

...
. . .

...
−p�αn−1(q) −p�α2n−3(q) . . . 0

⎤
⎥⎥⎥⎦ (3.74)

where αi : R
n → R

n, i = 1, . . . , n2 (n− 1), are free functions.
If q� = arg minVd(q) then (q�, 0) is a stable equilibrium of the closed loop

with Lyapunov function Hd clearly verifying

Ḣd = −p�M−1
d GKvG

�M−1
d p ≤ −c1|p̄|2,

where, to simplify the notation in the sequel, we have defined the function

p̄(q, p) := G�(q)M−1
d (q)p, (3.75)
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and use the convention of denoting with ci an (often unspecified) positive
constant—in this case c1 := λ̄m{Kv}. Stability will be asymptotic if p̄ is a
detectable output (refer to footnote 1 in Chapter 1) for the closed–loop system
(3.73).

The full–state measurement IDA–PBC is given by

u(q, p) = (G�G)−1G� (∇qH −MdM
−1∇qHd + J2M

−1
d p
)
−Kvp̄, (3.76)

which, as shown in [1], may be written in the form

u(q, p) = u0(q) +

⎡
⎢⎣

p�A1(q)p
...

p�Am(q)p

⎤
⎥⎦−Kvp̄, (3.77)

where the vector u0 : R
n → R

n and the matrices Ai : R
n → R

n×n are func-
tions of q. As will be shown below, establishing boundedness of Ai, i =
1, ...m, will be critical for our analysis. Towards this end, we center our atten-
tion on the quadratic terms in p of (3.76) stemming from ∇qH and ∇qHd and
introduce the following assumption 2. Moreover, from (3.74) it is clear that
the term J2M

−1
d p is also quadratic in p. It will be shown below that Assump-

tion 2 allows to establish a suitable bound for this term as well.

Assumption 2. The matrices ∇qiM , ∇qiMd and G are bounded.

Proposition 3.27. Consider the system (3.1) and assume M ∈ SPLvCC. Define the
position feedback controller as u = u(q, p̂) with p̂ an estimate of p generated by
the I&I observer (3.54). Assume p̄(q, p) in (3.75) is a detectable output for the
closed–loop system (3.73) and that Assumption 1 is satisfied. Then there exists a
neighborhood of the point (q�, 0, β(q�)) such that all trajectories of the closed–loop
system starting in this neighborhood are bounded and satisfy

lim
t→∞(q(t), p(t), η(t)) = (q�, 0, β(q�)).

Furthermore, if Assumption 2 holds and the full state–feedback controller (3.77) en-
sures global asymptotic stability then the neighborhood is the whole space R

3n, thus
boundedness and convergence are global.

Proof. To carry out the proof the overall system is written as a cascade in-
terconnection of the observer error subsystem ż = −Az and the full state–
feedback dynamics (3.73). We first write u(q, p̂) = u(q, p) + χ(q, p, z) where
we define

χ(q, p, z) :=
m∑
i=1

[
z�Ψ−1AiΨ−�z + z�Ψ−1(Ai +A�

i )p
]
ei

−KvG
�M−1

d Ψ−�z. (3.78)
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The overall system can then be written in the cascaded form(
q̇
ṗ

)
=
[

0 M−1Md

−MdM
−1 J2 −GKvG

�

](
∇qHd

∇pHd

)
+
[

0
G

]
χ

ż = −Az (3.79)

Note that the system with χ = 0 is asymptotically stable. Furthermore, the
disturbance term is such that

G(q)χ(q, p, 0) = 0.

Invoking well–known results of asymptotic stability of cascaded systems [75]
completes the proof of local asymptotic stability. To establish the global claim
we invoke the fundamental result of [74], see also [78], and see that the proof
will be completed if we can establish boundedness of the trajectories (q(t), p(t)).
Computing the time derivative ofHd along the trajectories of (3.79) we get the
bound

Ḣd ≤ −c1|p̄|2 + |p̄||Gχ|. (3.80)

From the expression above it is clear that the key step to prove bounded-
ness of trajectories is to establish a suitable bound for |Gχ|. At this point
Assumption 2 is imposed. Comparing (3.76) with (3.77) we observe that the
matrices Ai will be bounded if Assumption 2 holds and J2 may be bounded
as ‖J2‖ ≤ c2|p|. Now, from the IDA–PBC procedure we have that J2 satisfies
the so–called kinetic energy PDE

G⊥{∇q(p�M−1p) −MdM
−1∇q(p�M−1

d p) + 2J2M
−1
d p
}
=0.

Comparing in this equation the terms which are quadratic in p and (3.74) we
conclude that, under Assumption 2, J2 will satisfy the bound above and the
matrices Ai are also bounded.

From the previous discussion, and boundedness of z, we get the bound
|Gχ| ≤ |z|(c2 + c3|p|), which replaced in (3.80) yields

Ḣd ≤ −c1|p̄|2 + |p̄||z|(c2 + c3|p|). (3.81)

Now, invoking standard (Young’s inequality1) arguments we get

|p̄||z| ≤ c1
c2
|p̄|2 +

c2
4c1

|z|2.

1The Young’s inequality argument states that if a, b are nonnegative real numbers and p, q, ε
are positive real numbers, then the following holds true

ab ≤ ap

εp
+

εbq

q
. (3.82)
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We replace this bound in the second right hand term in (3.81) to get

Ḣd ≤ −c1|p̄|2 + [
c1
c2
|p̄|2 +

c2
4c1

|z|2]c2 + c3|p̄||z||p|

≤ c22
4c1

|z|2 + c5|z||p|2,

where we have used the bound of |p̄| ≤ c4|p| to define c5 := c3c4. Now, let us
consider the non-negative function

W (q, p, z) := Hd(q, p) +
c22λ̄(Q)
4c1ε

V(z),

where V(z) is given in (3.57), which as shown in the proof of Proposition 1
verifies (3.58). Finally, evaluating the derivative of W we get

Ẇ ≤ c5|z||p|2 ≤ 2c5
λ̄(Md)

|z|W, (3.83)

where we have used the bounds W ≥ Hd ≥ 1
2 λ̄(Md)|p|2 to obtain the last

inequality. Since z is clearly an integrable function, invoking the Comparison
Lemma [46], we immediately conclude boundedness ofW and, consequently,
boundedness of the trajectories (q(t), p(t)) and complete the proof. �
Remark 3.28. In the context of passivity based stabilization of mechanical
systems, we point the reader to the recent article [29] which considers the
IDA-PBC problem for mechanical systems by using only position measure-
ments and designs a dynamic controller for the same. However, the mechan-
ical systems considered in [29] are assumed to be fully actuated while we do
not impose a restriction on the actuation.

3.6 Simulation Results

The theoretical results of the previous sections have been verified through
simulations of the inverted pendulum example. The dynamical equations for
this system are given by (3.1), (4.32) with

M−1=
1

m3 − b2 cos2 q1

[
m3 −b cos q1
∗ 1

]
, V = a cos q1

G = e2, a =
g

l
, b =

1
l
, m3 =

M +m

ml2
,

where q1 denotes the pendulum angle with respect to the upright vertical, q2
the cart position, m and l are, respectively, the mass and length of the pen-
dulum, M is the mass of the cart and g is the gravitational acceleration. The
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equilibrium to be stabilized is the upward position of the pendulum (q1∗ = 0)
with the cart placed in any desired location (arbitrary q2∗).

The detailed expressions of the full–state IDA–PBC, given by (3.76), may
be found in [93]. We proved the separation principle for the I & I reduced-
order observer and the IDA-PBC full–state feedback controller in Section 3.5.
We now numerically verify our proposed observer design and the certainty–
equivalence implementation of the full–state feedback IDA-PBC controller de-
sign with the I & I observer for the inverted pendulum on cart example.

Firstly, the estimate of the momenta p given by p̂, is generated by the I&I
observer design (refer to Section 3.4) and is given as

η̇1 = Λ11
√
m3√

m3−b2 cos2 q1
(β1 − η1) − a

√
m3 sin q1√

m3−b2 cos2 q1

+ b cos q1√
m3

√
m3−b2 cos2 q1

u

η̇2 = Λ22√
m3

(β2 − η2) − 1√
m3
u

p̂1 =
√
m3−b2 cos2 q1√

m3
(β1 − η1) + b cos q1√

m3
(β2 − η2)

p̂2 =
√
m3(β2 − η2)

with β given by (3.64). The observer error dynamics takes the form

ż1 = − Λ11
√
m3√

m3−b2 cos2 q1
z1

ż2 = − Λ22√
m3
z2,

from which it is clear that the rate of convergence is (essentially) determined
by the constant Λ11 and Λ22. Next, the “certainty–equivalence” controller is
obtained by replacing p by p̂ in the IDA-PBC full–state control law. We do
not give here the expression for the IDA-PBC controller but, as mentioned
before, it has been directly taken from [93]. Having obtained the closed-loop
dynamical equations, we now perform the simulations.

The values of the system and controller parameters, as well as the initial
conditions, are shown in Table 5.2. The initial conditions of the observer states
(η1(0), η2(0)) are chosen so that the initial estimate p̂(0) = 0, that is, no prior
knowledge for the initial momentum.

Simulation results are shown for the open–loop system, i.e., u = 0, in Fig.
3.6. To reveal the role of the observer tuning gains, the time histories of z are
depicted for Λ11 = Λ22 for the values 1 and 10. Fig. 5.5 shows the behavior of
the system in closed loop with the IDA–PBC controller with full–state feed-
back and observer–based feedback. As it can be seen, the trajectories of the
observer–based feedback system show an almost identical behavior with the
trajectories of the full–state feedback system, concluding the effectiveness of
the proposed scheme.
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Figure 3.6: I & I observer for the open–loop system (u = 0).
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Figure 3.7: Full–state (solid line) and observer-based (dashed line) IDA–PBC
for Λ11 = Λ22 = 1 and Λ11 = Λ22 = 10
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q2∗ = 20 q1(0) = π
2 − 0.2

a = m3 = 1 q2(0) = −0.1
b = 1/g p1(0) = 0.1

Λ11 = Λ22 = 1 p2(0) = 0.2
Kv = k = m0

22 = 0.01 η1(0) = Λ11q1(0)
P = 1 η2(0) = Λ22(q2(0) + b sin(q1(0))

m3
)

Table 3.1: Simulation parameters for the inverted pendulum example

3.7 Concluding Remarks

We have identified a special class of mechanical systems for which a glob-
ally exponentially stable reduced order observer can be designed. The class
consists of all the systems that can be rendered linear in (the unmeasurable)
momenta via a (partial) change of coordinates P = Ψ�(q)p and is character-
ized by (the solvability of) a set of PDEs. A detailed analysis of the class is
carried out and it is shown to contain many interesting practical examples
and is much larger than the class reported in the literature in the context of
observer design and linearization. It is also proven that, under a very weak
assumption, the observer can be used in conjunction with a globally asymp-
totically stabilizing full state–feedback IDA–PBC preserving global stability.
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