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Abstract

We have investigated molecular dimers with different electronic coupling strengths by bulk and single molecule

spectroscopy. In one of the dimers the two monomers (perylene-monoimide) are directly connected via a single bond

while in the other one they are separated by the benzil motif. The close proximity of the monomers in the first case gives

rise to excitonic band splitting which is clearly observable in the bulk absorption spectra. For the benzil structure the

electronic interactions are governed by F .orster-type energy hopping between the monomers. Fluorescence intensity

trajectories at the single molecule level show one-step and two-step bleaching behaviour which appears to be very

similar for both dimers. However, emission spectra recorded simultaneously with the trajectories indicate spectral

changes which allow to distinguish between weakly and strongly coupled dimers. In the latter case the spectral shape

changes significantly when excitonic coupling has been lifted because of photochemical transformation of one of the

monomers. r 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The optical properties of molecular aggregates
or multichromophoric assemblies are typically
influenced by electronic interactions among the
chromophores. The strength of these interactions
depends on the distance and relative orientation of
the chromophoric units and the magnitude of their
electronic transition dipoles. Assuming negligible
interchromophore electron overlap and electron
exchange, two regimes of interactions are of

primary interest. When the chromophores are
in close proximity the interaction between the
transition dipoles will give rise to excitonic states
which may be delocalised over the whole aggregate
[1,2]. Such systems are characterised by collective
optical properties which may become visible in
appreciable shifts of the absorption and emission
lines. Well-known examples are the famous J-
aggregates which show a strong red-shift in
absorption [3,4]. At intermolecular distances
where excitonic splittings can be neglected, in-
coherent electronic energy transfer between the
chromophores can occur. This is the regime
of fluorescence resonance energy transfer
(FRET) which can be described by F .orster type
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dipole–dipole interaction [1,5]. Unidirectional
FRET between a donor and an acceptor moiety
is a valuable tool to measure distances and
distance fluctuations at a length scale of several
nanometers [6]. It is obvious that the transition
between excitonic interactions and FRET is not
sharp.
Recently, various kinds of multichromophoric

assemblies like conjugated polymer molecules [7],
light-harvesting pigments [8–11], donor–acceptor
substituted biopolymers [12,13] or dendrimers
carrying different numbers of chromophores
[14,15] have been studied by single molecule
spectroscopy. A strong motivation for these
experiments relates to the fact that electronic
interactions can then be studied without averaging
over the properties of an intrinsically inhomoge-
neous ensemble. Actually, the results obtained so
far have revealed a number of novel phenomena.
To name just a few, fluorescence intensity fluctua-
tions of single conjugated polymer molecules could
be attributed to localised quenching defects along
the polymer chain [7] and low-temperature studies
of light harvesting pigments have improved our
understanding of excitation delocalisation in
photosynthetic assemblies [10]. Interestingly, most
of the studies of single multichromophoric assem-
blies point to common features, although the
chemical structures of the chromophores might be
vastly different. One prominent example is the
observation of complete emission quenching by a
single photo-induced trap state.
A complication inherent to the study of multi-

chromophoric systems is to sort out phenomena,
which might originate from differences in coupling
strengths between the chromophores caused by
variations of inter-chromophore distances. To
mediate this problem, we have started experiments
with the simplest type of molecular aggregates, i.e.
molecular dimers. In particular, we have investi-
gated two dimers in which the identical monomer
units—perylenemonoimides—are covalently held
together at different distances giving rise to a
variation of coupling strengths. Perylene-carbox-
imides are quite stable chromophores which
recently have been covalently assembled to various
kinds of multichromophoric aggregates [14,16]. In
the present work, we have studied Perylenemonoi-

mide (PM), Bi-Perylenemonoimide (BPM) and
benzilic Bi-Perylenemonoimide (b BPM: two
Perylenemonoimides connected by the benzil
motif). The chemical structures of the monomer
and both dimers are presented in Fig. 1. The
differences in electronic interaction strengths
between BPM and b BPM already show up in
the bulk solution absorption and emission spectra.
Related information about the coupling strength
or alterations of it are obtained by analysing
spectral shifts and fluorescence intensity changes
observed at the single molecule level.

2. Experimental

Absorption spectra of PM, BPM and b BPM in
tetradecane were measured on an Omega 20
spectrometer (Bruins Instruments). Fluorescence
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Fig. 1. Chemical structures of the compounds investigated:

Perylene-monoimide (PM), Bi-Perylene-monoimide (BPM) and

two PM molecules interconnected by the benzil motif (b BPM).

Please note that neither BPM nor b BPM are planar structures.
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spectra of the same systems were recorded with a
FluoroMax2 fluorometer (JobinYvon-Spex).
Samples for the single molecule experiments

were prepared by spin-coating solutions of PM,
BPM and b BPM (5� 10�10mol/l) in toluene
containing 6 g/l zeonex (a polycyclo-olefine
polymer) on a glass cover slide at 3000 rpm to
yield thin (around 30 nm) polymer films.
The single molecule experiments were

performed with a confocal microscope built on a
Zeiss Axiovert 135 TV system. The microscope has
been described in detail elsewhere [17]. In brief, an
argon/krypton mixed gas laser (Innova 70-Spec-
trum, Coherent) was used for excitation of the dye
molecules at 488.0 nm. After suppression of
residual plasma lines by a laser line filter and
variable attenuation, the expanded laser beam was
guided into a high-numerical-aperture microscope
objective (NA=0.9, Zeiss) by reflection from a
dichroic mirror (FT 510 or FT 505). The polymer
film samples were mounted on a piezo scanner
(PI), allowing x2y translation of the specimen.
The microscope objective served to both focus the
laser beam onto the sample and collect the emitted
fluorescence and scattered excitation light from the
nearly diffraction-limited sample volume. The
Stokes-shifted fluorescence passed a dichroic
mirror and was focused by a tube lens onto a
detection pinhole (80 mm) for spatial filtering. A
488 holographic notch filter (Kaiser Optical
Systems) was used for further suppression of
residual laser light. The remaining light was
divided by a 50:50 beam-splitter and focused onto
an avalanche photodiode (AQR 14, EG&G) and
the entrance slit of a spectrograph (Spectra Pro
500, Acton Research Cooperation) equipped with
a LN2 cooled CCD camera (LN/1100 PB, Roper
Scientific). This set-up allowed the simultaneous
recording of the fluorescence intensity as a
function of time (fluorescence time traces) and
fluorescence emission spectra.
The overall detection efficiency of our set-up

was B5%. Typically, a sample area of about
10� 10 mm2 was scanned through the focus of the
microscope objective and the total fluorescence
intensity was recorded as a function of the x2y

position. In a suitably diluted sample the diffrac-
tion limited spots corresponding to single dye

molecules could then easily be discerned. Keeping
the piezo scanner positioned stationary on one of
these spots allowed recording of single-molecule
dispersed fluorescence spectra or fluorescence
time-traces. The spectra were measured with an
integration time of 5 s and the time-traces with
dwell times of 50 or 100ms. The excitation
intensity was typically set to 4.4 kW/cm2.

3. Absorption and emission spectra of bulk

solutions

In Fig. 2 the absorption and fluorescence
emission spectra of PM, BPM and b BPM in
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Fig. 2. (a) Absorption spectra of PM, BPM and b BPM in

tetradecane. The concentrations have been in the range of

3� 10�6mol/l; (b) fluorescence emission spectra of PM, BPM

and b BPM in tetradecane. The concentrations have been in the

range of 5� 10�7mol/l.

Th. Christ et al. / Journal of Luminescence 98 (2002) 23–33 25



tetradecane solution are shown. When comparing
the absorption spectra of PM and BPM, clear
differences are immediately visible. The long
wavelength band of the BPM spectrum is shifted
to the red (15 nm) and the overall spectral shape is
largely altered. The most prominent feature is the
strong absorption (eE100:000 l/mol cm) of the
long wavelength absorption band. These differ-
ences between PM and BPM are attributed to
inter-chromophore interactions in BPM. To qua-
litatively explain the observed effects, we refer to
the exciton model applied by Kasha et al. to
molecular dimers [2]. In this seminal paper, the
authors introduced a quasi-classical vector model
to describe the interaction of two transition
dipoles under various geometries.
Recently, it has been reported that for a

substituted bi-perylene, a dimer which is very
similar to BPM, the dihedral angle between the
two perylene moieties amounts to B701 [18]. First
electronic structure optimisations for BPM arrive
at a slightly higher value. Therefore, both calcula-
tions indicate that the chromophores are almost
orthogonal in the dimers, leading to negligible
electronic orbital overlap. Based on these results
and the reasonable assumption that the transition
dipole in PM is oriented along the long molecular
axis [19], BPM in a first approximation can be
represented by the simple model shown in Fig. 3.
The inclination angle y between the transition
dipole axes and the interconnecting line was
estimated to be 91 assuming a distance r between
the centres-of-mass of the two chromophores of
10 (A. According to the exciton model [2] this
configuration leads to an exciton band diagram as
shown in Fig. 3. For a fixed distance between the
transition dipoles, the strength of the splitting
(DE) depends on the magnitude of the transition
dipoles and the inclination angle y: This relation-
ship is expressed in the following equation [2]:

DE ¼
1

4pe0

2 Mj j2

r3
ð1� 3 cos2 yÞ ð1Þ

with M being the transition dipole. M has been
obtained by integrating the absorption spectrum
of the first electronic transition of PM
(M ¼ 6:7Debye) and applying standard expres-
sions for the oscillator strength [20]. Inserting the

appropriate numbers into Eq. (1), we arrive at an
exciton splitting j DE j ¼ 870 cm�1. This splitting is
large enough to be easily observable even at room
temperature.
For the geometry shown in Fig. 3 the exciton

model [2] predicts that the red shifted transition is
electric dipole allowed while the blue shifted
transition is forbidden. These salient features of
our simple approach can be qualitatively recovered
in the absorption spectrum of BPM shown in
Fig. 2(a). The long-wavelength transition is shifted
to the red with respect to PM and carries a lot of
oscillator strength. For a more quantitative
comparison, besides the excitonic splitting, also
the change in van-der Waals type dispersion
interactions between the monomer and dimer has
to be taken into account [2]. In Fig. 3 the latter
contribution is depicted as a lowering of the
excited state energy relative to a fixed ground
state energy, although both states are influenced
by a change in dispersion interactions. In the case
of BPM in tetradecane what basically has to be
considered is the difference of the dispersion
interaction of PM in a tetradecane solvation shell
and PM in a tetradecane solvation shell plus
another PM in the solvation shell. This alteration

monomer
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dimer
levels

E

E 1

E 2

G

 θ

Fig. 3. Model for the excitonic splitting of BPM. The inset is a

simple vector model for the interaction of the BPM transition

dipoles which form an inclination angle y with the axis

connecting the dipoles. (for more details see text).
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of the solvation shell should lead to energy
lowering because of the high polarisability of
p-electron systems. Along these lines, it is not
surprising that the experimentally determined
absorption red shift (585 cm�1) is larger than
half the calculated exciton splitting
( j DE=2 j ¼ 435 cm�1). However, because our
approach is very simple, the difference between
these values should not be identified with the
change in dispersion interaction energies.
In case of b BPM the red shift of the absorption

spectrum (as compared to PM) is smaller than for
BPM. Additionally, the shape of the spectrum
shows only minor differences to the PM absorp-
tion spectrum. Therefore, it seems reasonable to
assume that the interaction strength is much
weaker in the b BPM dimer. When looking at
the molecular structure of b BPM, we have to take
into account that this compound might exist in the
‘‘syn’’ and ‘‘anti’’ conformations. However, recent
investigations of the parent benzil structure (R�H
in Fig. 1) have indicated that benzil in various
solvents exists in a single skewed conformation
[21]. Preliminary electronic structure optimisations
starting from the ‘‘syn’’ and ‘‘anti’’ conformations
of b BPM point to two skewed conformations
which actually appear to be quite similar. For both
conformations rough estimates have yielded ex-
citon splittings in the range between 100 and
150 cm�1. As these values are relatively small, we
assume that the observed absorption red shift
between PM and b BPM (B430 cm�1) is mainly
related to the interaction with the benzilic moiety
in the dimer. A similar red shift has been observed
for a single PM chromophore attached to a
hexaphenylene unit where no inter-chromophore
interactions can exist. Following these arguments,
the dominating electronic interaction among the
chromophores in the b BPM dimer should be due
to incoherent energy transfer of the F .orster type.
In both conformations the inter-chromophore
distances (B15–20 (A) are well below the F .orster
radius of PM (R0 ¼ 38 (A). This value of R0 has
been obtained by assuming random orientation
between the chromophores [19].
The fluorescence spectra shown in Fig. 2(b)

generally corroborate the conclusions drawn from
the absorption spectra. When comparing the

vibronic structures of the emission spectra of the
three compounds, it is seen that they are much
more well resolved for PM and b BPM. Addition-
ally, BPM shows an exceptionally large Stokes
shift which may be attributed to the higher
polarisability of the delocalised excited state in
BPM.

4. Single molecule experiments

To study the different behaviours of the mono-
mer and the two dimers at the single molecule
level, we have recorded fluorescence time traces
and simultaneously measured emission spectra at
5 s time intervals, examples of which are shown in
Figs. 4 and 5. In case of the PM monomer the time
traces (not shown here) were similar for all 30
molecules investigated. After a period of constant
emission intensity, the fluorescence signal dropped
to the background level indicating an irreversible
bleaching event. Reversible dark state transitions
are only observed rarely for single PM molecules.
The emission spectra of different PM molecules
(not shown here) show variations in spectral
position and relative band intensities [22]. This is
a typical feature of single molecule investigations
and mainly attributed to the inhomogeneous
polymer environment or slight conformational
differences between molecules. What is important
to note in the present context is that for a given
single PM molecule the spectra with the exception
of small spectral shifts of a few nanometers
basically did not change as a function of time
until the final photobleaching occurred.
When single dimers are investigated, the fluor-

escence time traces as well as the emission spectra
indicate a much more complex behaviour. In
Figs. 4 and 5, fluorescence time traces and emis-
sion spectra of single BPM and b BPM dimers,
respectively, are collected. We first want to
summarise the observations for BPM molecules
which gave rise to different types of time traces.
For the time trace shown in Fig. 4(a) the emission
signal irreversibly ceased after 36 s. This kind of
behaviour was found for 36% of the BPM
molecules investigated and is called one-step signal
drop. In Fig. 4(b) the emission signal changed in a

Th. Christ et al. / Journal of Luminescence 98 (2002) 23–33 27
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two-step sequential fashion until the final signal
drop occurred (18% of molecules). Similar discrete
step-wise changes were observed for the molecule
whose data are shown in Fig. 4(c). In this case,
however, the fluorescence signal first drops to the
background level to emit at a different intensity
level after residing in a dark state for several
seconds. Such a two-step signal change including a
reversible dark-state transition was found for 32%
of the molecules investigated. For the remaining
percentage of BPM molecules even more complex
behaviour was found. In such cases the time traces
showed multiple reversible dark-state transitions
and sometimes more than two levels of emission
intensity.
As was observed for PM, the emission spectra of

different BPM dimers show variations in spectral
position and relative band intensities. Since the
main interest of the present study will focus on the
discussion of spectral changes in relation to
concomitant changes in the time traces for
identical molecules, these distributions will not
be considered further. Accordingly, a complete set
of fluorescence spectra has been collected simulta-
neously with the time traces for every single dimer.
During periods of constant emission intensity the
spectra typically showed only slight spectral shifts
as a function of time. However, spectral changes
were observed whenever an intensity change was
indicated by the time traces.
In Fig. 4(d) the fluorescence spectra of a single

BPM molecule which have been recorded simulta-
neously with the time trace shown in Fig. 4(b)
(two-step sequential signal drop) are displayed.
The data indicate a blue shift of the spectrum after
the first signal drop with a concomitant decrease of
the overall spectral intensity. Another change
relates to the vibrational structure of the spectra
which became much more pronounced after the
signal drop. For the BPM molecule the time trace
of which is displayed in Fig. 4(c), the spectral
changes (not shown here) were quite similar. The
emission spectrum following the reversible dark
state was blue shifted compared to the spectrum
measured before the dark state and exhibited a
more pronounced vibrational structure. The main
difference to the previous case is the reversible
dark state during which no emission is detectable.

By inspecting Fig. 5, it immediately becomes
evident that the same typology of time traces as
described for BPM was found for the b BPM
dimer. Besides one-step signal drops (16%), two-
step sequential signal drops (28%) and two-step
signal drops including a reversible dark-state
transition (26%) were observed. As for BPM the
remaining percentage of b BPM molecules (30%)
showed more complex behaviour with the same
characteristics mentioned before. The spectral
changes observed for b BPM besides similarities
to BPM also showed some remarkable differences.
In Fig. 5(d), the emission spectra belonging to the
time trace in Fig. 5(b) are displayed. The time trace
was characterised by a two-step signal drop
including a reversible dark-state transition. After
the emission signal had reappeared, the spectrum
had shifted to the blue. However, in contrast to the
observations for BPM, the vibrational structure of
the spectrum did only change to a very minor
extent. The spectral changes recorded simulta-
neously with the time trace in Fig. 5(c) (not shown
here) have been very similar to those just discussed.

5. Discussion

Qualitatively, similar observations as reported
here have been obtained in single molecule
investigations of other multichromophoric sys-
tems. Especially, the intriguing (reversible and/or
irreversible) quenching of the total emission
intensity seems to be a common feature of multi-
chromophoric systems with interchromophore
distances that allow for electronic interactions.
Of particular interest for the present study are the
single molecule experiments with dendrimers
decorated at their rim with a variable number of
PM monomers [15] and with the allophycocyanin
(APC) trimer, a light harvesting protein complex [9].
We will start our discussion by considering the

irreversible one-step signal drops which were
observed for both dimers (Figs. 4 (a) and 5(a)).
In accordance with previous investigations, the
most likely explanation for this behaviour relates
to the formation of a trap state which completely
quenches the emission. It is reasonable to assume
that this trap state is formed on a single monomer

Th. Christ et al. / Journal of Luminescence 98 (2002) 23–33 29



site and then quenches the emission of the second
intact monomer. Obviously, the quenching can
occur over a range of distances because it is
observed in BPM as well as in b BPM which are
characterised by different inter-chromophore dis-
tances. Long-range F .orster type energy transfer
seems to be a suitable mechanism for the observed
quenching. As to the nature of the quenching state
which appears to be non-fluorescent, we can only
speculate at present. In accordance with other
investigations of multichromophoric systems com-
posed of organic dye molecules [7–9], a radical
cation whose absorption spectrum overlaps the
emission spectrum of intact PM would be a
suitable candidate. While the absorption spectrum
of the PM radical cation is not known, data are
available for the perylene radical cation [23]. The
absorption spectrum of the latter species in
solution peaks at 546 nm. Assuming that the PM
radical cation absorption would be in the same
range (presumably shifted even more to the red),
F .orster transfer would be a possible scenario.
Additonally, radical cations would not show up in
the emission spectra because they are known to be
non-fluorescent. Concerning the formation of a
radical cation, it recently was argued in an
investigation of single conjugated polymer mole-
cules, that oxygen assists as an electron acceptor
during the formation of a radical cation [24]. As
our investigations have been performed in air,
oxygen is abundant in the thin dimer-doped
polymer films.
For the APC trimer studied by Ying et al. [9], it

was suggested that emission from single pairs of
strongly interacting chromophores is quenched by
exciton trap formation within these pairs. This
behaviour is very reminiscent of what is presented
here in terms of a one-step signal drop. Radical
cations which absorb but do not emit were
identified as the most likely source for exciton
traps. In the study of the aforementioned single
conjugated polymer molecules [7,24] it was found
that the emission from the polymer chain could be
completely quenched by a single defect. Again,
radical cations were suggested to act as efficient
localised quenching sites. For a second-generation
polyphenylene dendrimer carrying eight PM chro-
mophores at the rim, collective on/off jumps of the

fluorescence intensity have been reported [15]. As a
possible mechanism for the collective on/off jumps
singlet–triplet energy transfer has been postulated.
While such a mechanism can operate on the
timescale of the triplet state lifetime, it certainly
cannot explain dark states lasting many seconds or
even much longer. Dark states in this time regime,
which also have been observed for the dendrimer,
again were tentatively interpreted to be caused by
the formation of a radical cation/radical anion
pair [15]. Following these results from the litera-
ture, the light-induced formation of radical cations
seems to be a likely reason for fluorescence
quenching in multichromophoric systems. How-
ever, in all investigations cited (including the
present one), the independent spectroscopic proof
for the presence of radical cations has not yet been
achieved. An additional problem relates to the
lifetime of those radicals which supposedly are
highly reactive species. According to the data in
Figs. 4(a) and 5(a) the lifetime has to be easily
several tens of seconds. Therefore, the possibility
for further reactions of these radicals cannot be
excluded.
After the irreversible one-step signal drops we

now want to examine the time traces which
showed one or the other form of two-step
behaviour. As a first example we want to discuss
the observations for BPM as exemplified in
Figs. 4(b) and (d). By comparing both figures it
is seen that the emission spectrum had changed
appreciably after the first signal drop. We attribute
this behaviour to the loss of excitonic coupling
within the dimer following a photochemical
transformation of one of the chromophores. As
long as both monomers are identical, they couple
strongly and the emission originates from the
lower excitonic level of the dimer (see Fig. 3)
giving rise to the unstructured spectrum of BPM.
After one of the chromophores has undergone a
photochemical reaction, excitonic coupling is
absent and the emission of the remaining intact
PM is observed. In this context it is interesting to
inspect the solution emission spectra of PM and
BPM which are shown in Fig. 2. The BPM
spectrum is appreciably red-shifted as compared
to the PM spectrum and the latter shows a clearly
resolved vibrational progression.
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During the processes described before, BPM
most probably is transformed into a dimer
consisting of one intact PM molecule and a PM
molecule which has undergone a photoreaction.
Although the structure of the latter photoproduct
is unknown, it is obvious that this specific
photoproduct does not quench the emission of
the remaining intact PM. Therefore, following the
arguments from above it most probably cannot be
a radical cation. Before discussing other possibi-
lities, it is interesting to inspect the time trace given
in Fig. 4(c). Here the two-step signal change is
accompanied by a temporary dark state. As was
mentioned before, the emission spectra before and
after the dark state were almost identical to those
shown in Fig. 4(d). Therefore, also for this type of
behaviour the excitonic coupling seems to be
destroyed by the formation of a photoproduct.
In contrast to the previous case, however, this
product is formed from a species which first
quenches the emission of the dimer. This species
could be again the much cited radical cation which
would have to rearrange into a secondary product
which has lost the spectral properties to quench
the emission of the intact PM. Whether such
rearrangements are possible is not known at
present.
The data in Fig. 4(b) (supported by the spectra

in (d)) would be compatible with the direct
formation of a photoproduct being characterised
by an absorption spectrum blue-shifted with
regard to PM and negligible absorption at the
fixed excitation wavelength of 488 nm. This would
prevent F .orster type quenching of the intact PM as
well as observation of emission from the photo-
product. In a recent investigation of single
terrylene molecules in a p-terphenyl crystal [25],
it was demonstrated that reaction with singlet
oxygen leads to a number of different photopro-
ducts the main product being an exoperoxide
whose absorption spectrum is blue shifted by
100 nm with respect to the parent compound. The
formation of an exoperoxide cannot be ruled out
in the present case, although there is no direct
proof for such a scenario. From a more general
point of view, at this point the question arises
whether there is a distinct difference between the
time traces shown in Figs. 4(b) and (c). It simply

could be that the dark period in a time trace like
that in Fig. 4(b) is too short to be resolved within
the experimental time resolution. If this would be
true, both types of time traces have to be discussed
on the same footing. Actually, the photooxidation
studies of terrylene in p-terphenyl would also offer
an explanation for the time trace in Fig. 4(c),
because it was found that occasionally primary
photooxidation products rearrange into secondary
ones [25], the latter being characterised by an
additional shift of the absorption spectrum.
Summarising, at the present stage there is no real
understanding of the photochemical processes
which lead to the fluorescence intensity and
spectral changes of the dimers. However, as will
be seen in the following paragraphs the spectral
consequences of the stepwise photochemistry
allows for a distinction of strongly and weakly
coupled dimers.
Phenomenologically, the single molecule time

traces of b BPM shown in Fig. 5 do not represent
any fundamental difference to the data of BPM in
Fig. 4. Actually, this observation is not too
surprising, taking into account that the inter-
chromophore distance in b BPM is still in a regime
where dipole–dipole energy-transfer processes are
expected to function efficiently. Along these lines
the irreversible and reversible dark states in
Figs. 5(a) and (b), respectively, are thought to
arise from the photoproducts tentatively proposed
before, which quench the fluorescence emission of
the remaining intact PM. The same arguments as
used before may also equally apply to explain
qualitatively the behaviour of b BPM exemplified
in Fig. 5(c). However, it is worthwhile noticing
that the data for b BPM lend additional support
to the idea that the photochemistry occurs at only
one of the chromophoric sites. In b BPM the
monomers are spatially well separated making it
hard to imagine that a single photochemical
reaction would transform both moieties at the
same time.
A clear difference between BPM and b BPM

follows from the spectral changes (Figs. 4(d) and
5(d)) after one of the chromophores underwent a
photoreaction. While the shape of the spectrum is
appreciably modified in case of BPM (Fig. 4(d)), it
is widely preserved for b BPM. (The overall
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intensity changes for both compounds are due to
the weaker absorption of only one chromophore.)
As was pointed out before, the electronic interac-
tions in b BPM are mainly attributed to incoher-
ent excitation energy transfer. Taking into account
that the inter-chromophore distance is much
smaller than the F .orster radius, it can be safely
assumed that the rate of energy hopping is higher
than the emission rate. Therefore, emission should
occur with almost equal probability from both
chromophoric sites, if their transition energies are
nearly degenerate. If one of the chromophores has
a lower transition energy, e.g. due to a different
environment, emission should preferentially occur
from this site. In any case the b BPM dimer
emission originates from a single chromophoric
site, giving rise to an emission spectrum which
closely resembles the PM spectrum. After one of
the monomers has bleached no substantial change
of the emission spectrum will occur. This is in
contrast to BPM, where the loss of strong
excitonic coupling leads to clear changes of the
emission spectrum.

6. Conclusions and outlook

We have investigated two molecular dimers built
from identical monomers which qualitatively
represent the weak and strong coupling case with
respect to their electronic interactions. Fluores-
cence intensity trajectories recorded at the single
molecule level under ambient conditions showing
one- or two-step intensity drops do not exhibit any
substantial differences between both dimers. This
at a first glance, surprising conformity probably
originates from the same set of photochemical
transformations supposed to occur at the mono-
mer sites which are identical for both dimers.
Substantial alterations, however, have been ob-
served in the fluorescence emission spectra which
for the strongly coupled dimer adopt a different
shape after the excitonic splitting has been lifted
through photochemistry of one of the monomers.
By comparison of these results, it becomes obvious
that the time traces, in general, might not contain
sufficient information to distinguish weak and
strong coupling between chromophores.

Following the foregoing discussion, it is man-
datory to complement our investigations by
measurement of more physical parameters. Polar-
isation modulation of the excitation beam and/or
the emission light will give information on the
orientation of the transition dipoles and concomi-
tant changes after bleaching of one of the
monomers. Along the same lines, correlation
spectroscopy will report about changes in triplet
lifetimes. One intriguing aspect concerns altera-
tions of the intersystem crossing rate into the
triplet state which is assumed to change when
excitonic splitting vanishes [2]. By conducting
experiments in an argon atmosphere, the influence
of oxygen on the triplet kinetics and photochem-
istry can be elucidated. Finally, it is important to
compare our results to larger multichromophoric
systems. For a dendrimer carrying eight PM
monomers at the rim, unstructured red-shifted
emission spectra had been tentatively attributed to
dimers [15]. The results presented here give first
evidence as to which type of strongly coupled
dimer gives rise to this type of spectra.
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