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Summary 

The estimation of the HIV-AIDS epidemic by means of back-calculation (BC) has been 

difficult since the introduction of highly active anti-retroviral therapy (HAART) because 

the incubation time distributions needed for BC were poorly known. Moreover, it has been 

assumed that if the general public is aware that effective treatments are available then the 

majority of infected people would be known, and therefore a hidden epidemic was assumed 

not to exist. Nevertheless, it was suspected that not every infected person would come to the 

attention of health-care providers, and therefore estimates independent of the patients’ reg-

istration were necessary. In this paper, the incubation time distributions for HIV treated with 

the HAART regimen are derived from a cohort study. By using estimates of the proportion 

treated according to the HAART regimen and the incubation time distributions estimated 

in the era before the implementation of HAART (pre-HAART), new marginal population 

incubation time distributions for each of the three risk groups (homosexuals, drug users and 

others) were constructed. The BC was performed using an empirical Bayesian approach 

based on the latter incubation time distribution. 
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Introduction

The use of back-calculation (BC) for estimating the number of unobserved HIV cases has 

long been an instrument of choice in the analysis of AIDS surveillance data. The crucial 

factor in the use of BC is an accurate description of the incubation time distribution either 

through a Markov model or through a survival function derived from cohort studies [1–3]. 

The last update of HIV incidence in Europe through BC occurred in 1996. Since the intro-

duction of highly active anti-retroviral therapy (HAART) in 1997, the shape and form of 

the incubation time distribution have become uncertain, and prediction using BC only from 

AIDS-incidence data have been abandoned. Aalen et al. [4] proposed a Markov model in 

which both the reported HIV incidence (i.e. the treatment status of the patients) and AIDS 

incidence were taken into account, and therefore the HIV incidence can be modeled without 

the need to use the incubation time distribution.

	 It has been argued that since the publication of HAART, people at risk of HIV–AIDS 

might seek medical help at an earlier stage, such that virtually all HIV-infected people are 

registered. An effort was made to set up databases containing all known HIV-positive pa-

tients. In [5–7], an overview is given of the number of known HIV-diagnosed persons ac-

cording to the year of diagnosis. However, this does not provide the incidence of HIV cases 

by year of onset or the number of unrecorded HIV infections.

	 Despite AIDS not being regarded as a threat in developed countries seven years after the 

introduction of HAART, there is still some concern. HAART does not provide complete 

protection, and because patients are required to adhere to a strict and complex drug regimen 

many become non-adherent. There are also some signs that the HIV prevention campaigns 

are not as effective as should be. Finally, the pharmaceutical industry simply wants to know 

how long and what quantity of medication will be required in future. For these reasons, our 

aim is to estimate the total number of HIV cases in the Netherlands by BC.

Study Design

The cornerstone of the classic BC is the incubation time distribution, which reflects the 

incubation period from HIV to AIDS. Previously, in 1996, the incubation time distribution 

for untreated persons for the BC was derived from a Markov model, taking into account 

pre-AIDS death and going back and forwards in the defined stages of CD4 counts [1, 2]. 

CD4 counts were given as six categories, in decreasing numbers of CD4 cells per microli-
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ter. Group 1 being the group of patients with the highest count, CD4 ≥ 900, group 2 with 

900 > CD4 ≥ 700, group 3 700 > CD4 ≥ 500, group 4 500 > CD4 ≥ 350, group 5 350 > CD4 

≥ 200 and group 6 CD4 < 200, respectively.

	 In the BC used for the European Union (EU) countries, the change of definition of AIDS 

and the dependency of the incubation period on the age of onset were taken into account 

[3]. For untreated persons, or persons not treated until the first HIV-positive test was per-

formed, we still believe this to be the best incubation time distributions available for the EU 

countries. As these distributions were specifically adapted for each country using informa-

tion on age distribution and date of change for the definition of AIDS, in this study we will 

use the specific distribution derived for the Netherlands. The incubation time distributions 

were all derived from disease progression data for stages defined by CD4 counts using a 

Markov model [1, 2]. In Figure 1, pathways for disease progression of an HIV-infected per-

son are depicted. Note that HAART can occur only after 1996, thus making the incubation 

distribution time dependent on the calendar time of the first HIV test at which a decision for 

HAART was made.

	 For persons treated with anti-viral drugs based on their CD4 count, the estimation of the 

incubation time distribution becomes more complex. We divided the drug regimens into 

two different classes: HAART and pre-HAART. A regimen consisting of three or more 

more different drugs (e.g. two reverse transcriptase inhibitors and one protease inhibitor) 

was defined as HAART, while regimens consisting of two or less different drugs, as was 

Figure 1. Markov model of disease progression from HIV to death. The numbers 1-6 refer to CD4 stages at 

first HIV test (see text). Pathways between CD4 stages are described in [1,2], in which pre-AIDS death is 

allowed, inclusion of age and change of AIDS definition in 1993 are described in [3].
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usual before the implementation of HAART, were defined as pre-HAART. We used data 

from the HIV clinic at the University Medical Centre of Groningen (UMCG) to estimate 

the incubation time distribution while on treatment. The UMCG-HIV registration com-

menced in 1996 in anticipation that prospective and retrospective HIV research would be 

required to be performed in future. This observational research database comprises demo-

Table I. Reported data adapted from [5-7]. 

Start End Homo Drugs Others Total At Risk 

(x1000)

1978 1981 0 0 0 0 13 600

1981 1982 0 0 0 0 14 209

1982 1983 3 0 2 5 14 286

1983 1984 17 0 2 19 14 340

1984 1985 29 0 2 31 14 395

1985 1986 62 1 5 68 14 454

1986 1987 121 7 8 137 14 529

1987 1988 193 20 32 244 14 615

1988 1989 250 39 36 325 14 715

1989 1990 305 36 50 391 14 805

1990 1991 318 42 59 419 14 893

1991 1992 335 43 72 450 15 010

1992 1993 376 60 74 510 15 129

1993 1994 317 61 103 481 15 239

1994 1995 314 65 115 494 15 342

1995 1996 314 74 145 533 15 424

1996 1997 299 50 110 459 15 494

1997 1998 174 43 120 337 15 567

1998 1999 116 27 95 238 15 654

1999 2000 81 24 73 178 15 760

2000 2001 104 14 133 251 15 864

2001 2002 99 9 135 243 15 987

2002 2003 113 5 166 284 16 105

2003 2004 97 8 129 234 16 193

2004 2005 16 258

Note: At risk are the total population numbers of the Netherlands.
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graphic data (e.g. age, gender and risk group), clinical data (e.g. HIV diagnosis, results of 

blood tests and disease classification) and resource utilization data (e.g. inpatient days and 

medication use). This registry is maintained by employees at the UMCG-HIV clinic. All 

persons in the registry with a first positive test were eligible for inclusion in this study. Pa-

tients were excluded if their medication history was not complete for the period they were 

in the registry. Patients were followed up till December 31, 2002, until they were removed 

from the registry or until death. A total of 552 patients were eligible for inclusion in the 

study. The following was recorded for each person: the CD4 count from the first posi-

tive test, the dates of starting and stopping medication, the date of being diagnosed with 

AIDS and the date of death. Dates were recorded in days and could be interval censored. 

Furthermore, we divided the patient population into three different risk groups: (i) 152 

homosexual men; (ii) 37 drug users; and (iii) 202 others. The patients included in the risk 

group others mostly got infected by heterosexual transmission. AIDS incidence data for 

the Dutch situation were used as published and updated in [5–7] and are given in Table I.

Incubation Time Distributions

The incubation time distributions were estimated separately for the three risk groups and were 

derived through survival functions. The reason to fit incubation distributions for each risk group 

separately is that the course of the disease progression may depend on age, life style and other 

aspects of the health status, which may differ considerably between risk groups. For example, 

drug users have a greater risk for non-AIDS-related death, while the age distribution for the 

other risk groups may be different. The different stages and the possible pathways from HIV 

infected to AIDS or HIV infected to death, with the observed variations found in treatment re-

gimes, are depicted in Figure 1. The data were analyzed using a parametric survival regression 

allowing for interval censoring (CensorReg from S-Plus, [8]). The best-fitted survival function 

appeared to be an extreme-value function (Gumbel). The stage defined by the CD4 count at the 

first positive HIV test was used as a categorical co-variate, while age and gender were ignored. 

For each risk group, the contribution of CD4 counts as well as the scale parameter were kept 

constant across the different pathways, while the intercept was allowed to vary. As we consid-

ered only the time from a certain treated (or untreated) stage to AIDS, which can be reached 

by several pathways through the different stages, we have to compute the convolution of the 

distributions associated with each of the nodes in a possible pathway. See [3] for details.
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The Marginal Incubation Time Distribution from Onset to AIDS

It is necessary to construct the marginal incubation time distribution for persons from onset 

to AIDS considering all possible pathways. For untreated persons and persons not treated 

until they are found to be sero-positive (with a recorded CD4 level), we used the incubation 

time distribution from the BC for the Dutch situation, which was published in 1996 [3].

	 In the classic BC model [9], the expected number of diagnosed AIDS cases y
i
 in some time 

interval i = 1, . . . , I is expressed by





J

j
jjjii NzxPyE

1

]1|[][   

where x
i
 is the event of being diagnosed with AIDS, z

j
 ∈ {0, 1} the event of being infected 

in time interval j = 1, . . . , J and b
j 
the relative incidence of unobserved persons being in-

fected in the later time interval and N
j
 the number at risk. We took for the number at risk 

the total population in the Netherlands in the subsequent years, simply as a means to have a 

common denominator. Usually one assumes for the distribution of y
i
 a Poisson distribution 

conditional on the known values of P[x
i
 | z

j
] and b

j
. Also, a log-normal distribution of b

j
 is 

assumed with prior:

),0(N)]...|(log[ 1
1


   djd  

for some fixed d, where D
d
 is the difference operator of order d. Usually, it is sufficient to 

take first-order differences, i.e. d = 1, which we call the neighbor prior. The aim of BC is 

to estimate b
j
 , i.e. the (partly) hidden epidemic curve. See [9] for details of the estimation 

problem. What can we say of P[x
i
 | z

j
] in the light of treatment effects? If no treatment would 

have been applied, we could safely use the discrete version of incubation time distribution 

used in earlier publications. However, since at some time j = t
0
 pre-HAART and HAART 

treatments have been used, this must be taken into account. We may write in general the 

convolution:


 

 
6

1
i-t1 ]CD41|[]1|4CD[]1|[
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where CD4
t-i

 = k is the event of an untreated person being in the kth class of the CD4 classes 

(k = 1, . . . , 6) at time period t – i. The moment a person gets treated we have to change the 

probability of getting AIDS in the last term of the summation.
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Now, from j = t
0
 on, there is a chance that an infected person will get on treatment with 

pre-HAART or HAART. Assume that there exist non-zero probabilities p
skl

s = t
0
 , . . . , J that 

a person starts treatment l when arriving at a certain class k of CD4 counts at time s. We may 

then derive the following equality:

]CD41|[]4CD1|[ i-t ltreatmentj
l

iikltitji IkzxPkzxP     

The treatment indicator is in the case of three treatments, untreated (0), pre-HAART (1) and 

HAART (2), while in the case of two treatments we drop the category pre-HAART.

	 However, as we already have the ‘old’ incubation time distribution for untreated persons, 

this equation is not used for untreated persons. Thus, given the probabilities p
skl

s = t
0
 , . . . , J, 

we have to derive the probability of getting AIDS in time period i when infected at a certain 

time j using the ‘old’ incubation time distributions, together with the prevalence of being in 

class k of the CD4 counts derived from these, and the new extreme value distributions for 

each pathway

]1|[ ji zxP  
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 	 We write the above equation in a form that enables us to discriminate between the un-
treated and treated persons
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It is clear that only for i<t
0
 the incubation incidence is simply the untreated one. For 

i≤t
0 
it is not possible to use the untreated incubation distribution directly as for the untreated 

persons we have to down-weight the tail of the distribution by the probability of going onto 

treatment.

	 As the incubation time distribution for the untreated persons is not available in the fine 

details needed, we used the following approximation to the untreated part of the incubation 

time distribution:



















00
)(

0

000

00

,0,0

    ,

              ,
                 ,1

]1|[]1|[

tjtie

tjti
tjti

wzxPwIzxP
ij

jijijitreatmentji


  

where P0 [·] is the original distribution function, 0  the average proportion not on treat-

ment and k some tuning constant. Thus, we down-weight the original distribution heavier 

for those who are infected before the treatment regimes started. Constraints are applied on 

the weights such that the weights and the mean probabilities of getting treatment sum to 1.

	 It may be tempting to try to estimate the probabilities p
tkl

 simultaneously with b
j
 as we 

have a finite mixture of distributions. However, when fitted with a fixed arbitrary p
tkl

, it is 

clear that a fit with j   = p
tkl
b

j
 will fit equally well and thus cancel out the other treated 

components, or vice versa. Unless there is explicit information on the AIDS-diagnosed pa-

tients with respect to their treatment status, a simultaneous fit is impossible. Thus, we es-

timated the proportions on treatment from the Groningen cohort by a simple generalized 

linear model for each risk group. From this we concluded that—after 1999—the proportion 

on treatment remained constant and apart from the risk-group ‘others’, were independent 

of CD4 class. We chose to ignore the latter dependance as the numbers on which these es-

timates were based were small. The estimated treatment proportions increased from 0.11 in 

1996 to 0.45 in 1999 and we used the indices of the treatment proportion depending linearly 

on time from 1996 onwards until 2000. In Figure 2, the marginal distributions are given on 

the basis of the selected infection cohorts for homosexual men.

Fitted Back-Calculation Models

For each separate risk group, a BC model was fitted to estimate the relative incidence of 

HIV, using the number of inhabitants as the number of people at risk, i.e. a log-link with the 

log of the number at risk as offset. We tried marginal incubation time distributions based





 

ESTIMATION AND PREDICTION OF THE HIV

years

pr
ob

ab
ili

ty

1985 1990 1995 2000 2005 2010

0.0

0.05

0.10

0.15

0.20

0.25

infected  1978
infected  1982
infected  1987
infected  1992

infected  1997
infected  2002
infected  2007

Risk group homosexual men untreated and HAART 

Figure 2. Incubation time distributions for selected infection cohorts of homosexual men.

4. FITTED BACK-CALCULATION MODELS

For each separate risk group, a BC model was fitted to estimate the relative incidence of HIV,
using the number of inhabitants as the number of people at risk, i.e. a log-link with the log
of the number at risk as offset. We tried marginal incubation time distributions based on two-
and three-treatment classes, and subsequently used the Akaike Information Criterion (AIC) as the
goodness-of-fit measure. For all of the risk groups—except drug users—the two-treatment marginal
incubation time distribution gave by far the smallest AIC. Only the risk group of drug users fitted
much better with three-treatment classes. Figures 2–8 depict for each risk group (i) the fitted AIDS
incidence in numbers and (ii) the relative HIV incidence (per 1000), all with the accompanying
predictions from 2005 to 2010. The figures were created using incubation time distribution based
on two-treatment classes for all risk groups. The 95 per cent prediction limits are based on the use
of the negative binomial distribution, details of which can be found in [9]. Note that the predictions
for the relative HIV incidence after 2003 are simply the last carry forward of the estimate in 2003
as a result of the neighbor prior in the Bayesian prediction model.

4.1. Prevalence and cumulative incidence of HIV in the Netherlands

We estimated for each year (i) the AIDS incidence with their prediction intervals, (ii) the HIV
incidence and prevalence with their prediction intervals, (iii) death incidence and (iv) the cumulative
numbers of HIV cases and deceased for each risk group. For reasons of brevity, we include in
Table II only HIV prevalence and cumulative incidence for the three risk groups. In particular,

Copyright � 2007 John Wiley & Sons, Ltd. Statist. Med. (in press)
DOI: 10.1002/sim

Figure 2. Incubation time distributions for selected infection cohorts of homosexual men. 

on two- and three-treatment classes, and subsequently used the Akaike Information Crite-

rion (AIC) as the goodness-of-fit measure. For all of the risk groups—except drug users—

the two-treatment marginal incubation time distribution gave by far the smallest AIC. Only 

the risk group of drug users fitted much better with three-treatment classes. Figures 2–8 

depict for each risk group (i) the fitted AIDS incidence in numbers and (ii) the relative HIV 

incidence (per 1000), all with the accompanying predictions from 2005 to 2010. The figures 

were created using incubation time distribution based on two-treatment classes for all risk 

groups. The 95 per cent prediction limits are based on the use of the negative binomial dis-

tribution, details of which can be found in [9]. Note that the predictions for the relative HIV 

incidence after 2003 are simply the last carry forward of the estimate in 2003 as a result of 

the neighbor prior in the Bayesian prediction model.
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Prevalence and Cumulative Incidence of HIV in the Netherlands

We estimated for each year (i) the AIDS incidence with their prediction intervals, (ii) the 

HIV incidence and prevalence with their prediction intervals, (iii) death incidence and (iv) 

the cumulative numbers of HIV cases and deceased for each risk group. For reasons of brev-

ity, we include in Table II only HIV prevalence and cumulative incidence for the three risk 

groups. In particular, the cumulative number of HIV cases is interesting. At the beginning 

of the epidemic in 1987, the cumulative cases of HIV-infected persons was estimated to be 

12 000. This estimate was lowered to 9 000 in 1995 [3]. The cumulative number of recorded 

HIV persons as of June 2005 is, according to [7], 5556 for homosexual men, 563 for drug 

users and 4500 for the risk group others. From Table II, our estimates for the cumulative 

incidence by the end of 2004 are 5583 for the risk group of homosexual men, 1052 for drug 

users and 7680 for the risk group others. Allowing for a linear interpolation between the 

estimates for the end of 2004 and 2005, our estimates until June 2005 are: 5605, 1053 and 

7825, respectively. Thus, there is a very good agreement in our estimates for the risk group 

homosexual men and that of the UMCG database. This implies that homosexual men are 

more aware of their risk for HIV/AIDS. The discrepancy for the drug users is most likely 

due to our modeling technique. Specifically, our pre-HAART model assumed that there was 

an extra 15 per cent of deaths before AIDS (and probably HIV) was diagnosed [3]. In ad-

dition, pre-HAART drug users accounted for the majority of the pre-HAART incidence in 

the total population. If our incubation time distribution is correct, there are approximately 

3300 HIV-infected persons missing from the risk group others, which is likely due to mostly 

heterosexual transmission. It is clear that for the risk groups homosexual men and intra-

venous drug users the epidemic is over. The risk group others (which comprises mostly of 

heterosexuals) had a maximum incidence in 1995, which coincides with the EU report in 

1996.After the peak in 1995, the incidence has decreased, but is still at a higher level than 

prior to 1993 and at a much higher level than in the homosexual men and drug user groups. 

It is of concern to the public health authorities in the Netherlands that 43 per cent of the risk 

group others is not registered in the database and therefore they are probably unaware of 

their HIV status. We estimate that by the end of 2004 the prevalence among the risk group 

others is 6118 (95 per cent prediction interval: 5475–6835). While the prevalence among the 

risk group of homosexual men is 1774 (1668–1886), intravenous drug users account for 485 

(288–729) persons. Thus, we estimate that from the total HIV-infected population, 73 per 

cent belongs to the risk group others, in contrast to the reported estimate of 43 per cent in [7].
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Table II. Estimated HIV-cumulative incidences and HIV incidence in absolute numbers for homosexual 

men, drugs users and risk group others.

Homosexual men Drugs users Others

Year
HIV 

cumulative
Prevalence

HIV 
cumulative

Prevalence
HIV 

cumulative
Prevalence

1981 216 197 1 1 59 55

1982 286 262 1 1 81 75

1983 472 436 3 2 106 98

1984 1178 1115 7 5 15 139

1985 2542 2427 19 13 236 216

1986 3396 3191 45 32 372 340

1987 3830 3487 97 72 553 502

1988 4082 3553 197 147 748 672

1989 4253 3492 386 303 931 820

1990 4385 3355 683 563 1089 931

1991 4498 3172 806 644 1223 1007

1992 4600 2964 868 661 1342 1056

1993 4698 2746 917 660 1456 1091

1994 4794 2530 962 653 1578 1124

1995 4889 2324 995 631 1730 1178

1996 4982 2131 1014 595 1956 1298

1997 5072 1952 1024 550 2360 1588

1998 5158 1920 1031 503 3186 2280

1999 5239 1892 1035 495 5121 4153

2000 5317 1870 1038 486 6004 4957

2001 5391 1851 1041 479 6536 5389

2002 5460 1835 1045 472 6952 5685

2003 5524 1803 1048 464 7324 5920

2004 5583 1774 1052 458 7680 6118

2005 5637 1747 1057 452 8029 6293

2006 5685 1724 1062 448 8373 6453

2007 5729 1708 1069 445 8715 6604

2008 5767 1695 1076 444 9057 6753

2009 5800 1681 1085 445 9399 6905

2010 5827 1665 1095 448 9747 7064
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Discussion and Conclusion

We have derived a method of estimating the total incidence of HIV from publicly avail-

able AIDS-incidence data, without the need for detailed information about each individual’s 

treatment history. The incubation time distributions, which are needed for classic BC, were 

derived by means of both the known distributions for untreated persons used in [3] (avail-

able from the first author for other EU countries as S-Plus files), and fitted distributions from 

a local cohort, together with information on the proportion of persons going on different 

treatment regimes. Although the possibility exists that the incubation time distributions de-

rived for treated persons have a local component because treatments are adapted to the local 

population locally, these incubation time distributions could be used by other countries in 

the absence of other information. Thus, the only truly local parameters are the proportions 

of persons commencing treatment as defined above, which can be simply estimated from 

hospital-based data. We therefore believe that the derived methodology can be applied to 

other EU countries as well. From the first author’s incubation time distributions for the EU 

countries as used in [3], the parameters used in the extreme value distributions as well as S-

Plus software for BC are available. The results of our study suggest that for the classic risk 

groups (homosexual men and intravenous drug users) there is evidence that the recorded 

HIV infections are well covered. This is probably due to the thorough follow-up of patients 

by the health-care professionals, awareness created by the health authorities and the Dutch 

government’s policy regarding the use of hard drugs. However, it is apparent that hetero-

sexuals who form the majority of the others risk group are receiving little attention. In fact, 

we estimate that 43 per cent of the others group is not registered and, therefore, they are 

probably unaware of their infection status. Moreover, we estimate that the others account 

for a much higher (73 per cent) percentage of the total infected population than the recently 

reported 43 per cent in [7].

5.1. Convolution of Extreme Value Distributions

In this section, the distribution of the sum of independently distributed extreme value dis-

tributions with common-scale parameter is derived. Let Xi
, i = 1, . . . , k, be independent 

stochastic variables with the extreme value distribution with location parameters a, i = 1, . . 

. , k, and the common-scale parameter b:
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The mean and variance of this distribution are a
I 
+ 0.577216 b and p2b2 /6, respectively, see 

[10]. We seek the cumulative distribution of Z = ∑
i 
X

i
. The moment-generating function of 

(1) is given by 
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From standard theory, it follows that the moment-generating function of ∑
i
 X

i 
equals:
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From this, it follows that the distribution of Z is given by the convolution of k independent 

identically distributed Gumbel distributions given by (1) with parameters    and b. It is in 

principle possible to find the density function by a complex integration from (3), but the 

form looks intractable for convolutions k>2. Numerical comparison reveals that for k not 

too large the form of the distribution will remain Gumbel. Thus, by letting the first two mo-

ments of Z , assuming a Gumbel distribution, coincide with the first two moments of the sum 

of identically distributed Gumbel distributions with parameters   and b, we find that the 

parameters of the corresponding Gumbel distribution of Z are approximately:

 
i

i kk )/11(577216.0~   

 
k 

~  

However, for k = 2, we may derive directly from the convolution of two i.i.d. Gumbel dis-

tributions the corresponding distribution. Thus, let Z = X + Y, with Z and Y independently 

distributed. Then, the c.d.f. of Z is given by the convolution:





 xxfxzFzF XYZ d )()()(  





 

Where F
Y
 and f

x
 denote the c.d.f. of Y, and the p.d.f. of Y respectively. The p.d.f. of the Gum-

bel distribution is






/)(/)( eee1),,(


xx
xf X  

From this, it follows that the convolution of two i.i.d. Gumbel distributions with parameters 

a and b is
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By a change of variables, i.e. w = e-(z-2a)/b, and thus translating the time z into z = 2a-b 

log(w), we see that w has exactly the standard logistic distribution with mean 0 and variance 

p2 /3.
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