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9. Model reduction of
port-Hamiltonian systems as
structured systems

The goal of this chapter is to demonstrate that a specific projection-based
model reduction method, which provides an H2 error bound, turns out to
be applicable to port-Hamiltonian systems, preserving the port-Hamiltonian
structure for the reduced order model, and, as a consequence, passivity.

9.1. Introduction

In this chapter we are looking at port-Hamiltonian systems as first order
systems which are a subclass of the so-called structured systems. Structured
systems, studied in [83], are defined using the notion of a differential opera-
tor. The projection of such systems onto a dominant eigenspace of the appro-
priate reachability Gramian results in the reduced order model which inherits
the underlying structure of the full order model. In fact, the frequency do-
main representation of the reachability Gramian leads in this case to the error
bound in the H2-norm [83]. The preservation of the first order structure can
be further shown to preserve the port-Hamiltonian structure for the reduced
order model, implying passivity and stability properties.

In Section 9.2 we provide a description of the method used. The application
of this method to port-Hamiltonian systems is considered in Section 9.3.

This chapter is based on the recent work [72].

9.2. Description of the method

In the systems and control literature the most usual representation of phys-
ical and engineering systems is the first order representation, possibly with a
feed-through term D

{
ẋ = Ax +Bu,

y = Cx +Du,
(9.1)
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9. Reduction of port-Hamiltonian systems as structured systems

with x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp, and A ∈ Rn×n, B ∈ Rn×m, C ∈
Rp×n, D ∈ Rp×m constant matrices. At the same time in many applications
higher order structures naturally arise. One important class of structured
systems is the class of so-called second order systems described by the system
of equations

{
Mẍ+Dẋ+Kx = Bu,

y = Cx,
(9.2)

with x(t) ∈ Rn/2, u(t) ∈ Rm, y(t) ∈ Rp, M,D,K ∈ Rn/2×n/2, B ∈ Rn/2×m,
C ∈ Rp×n/2. For mechanical applications the matricesM,D andK represent,
respectively, the mass (or inertia), damping and stiffness matrices, with M in-
vertible. Of course, the matrix D and the vector x in (9.2) are different from
those in (9.1). The system (9.2) can be easily represented in the form (9.1).

In general model reduction methods applied to (9.1) produce reduced order
models of the form

{
ẋr = Arxr +Bru,

yr = Crxr +Dru,
(9.3)

with r � n, xr(t) ∈ Rr, u(t) ∈ Rm, yr(t) ∈ Rp, Ar ∈ Rr×r, Br ∈ Rr×m, Cr ∈
Rp×r, Dr ∈ Rp×m. The second (higher) order structure (9.2) for the reduced
order models quite often fails to be extracted from (9.3). Therefore special
structure preserving methods are required.

Model reduction of second order systems was studied in [17], [60], [16],
[15], along with the use of the Krylov methods in [9], [77], [27], [10]. In this
chapter we are using the method of [83] which provides an H2 error bound
and turns out to be applicable to port-Hamiltonian systems, preserving the
port-Hamiltonian structure for the reduced order model, and, as a conse-
quence, passivity.

9.2.1. System representation using differential operator s

In order to proceed we need the following notation. LetK(s), P (s) be poly-
nomial matrices in s:

K(s) =

l∑

j=0

Kjs
j , Kj ∈ Rn×n, P (s) =

l∑

j=0

Pjs
j , Pj ∈ Rn×m,

where K is invertible, K−1P is a strictly proper rational matrix and l is the
order of the system (l = 1 for (9.1) and l = 2 for (9.2)). Then K( d

dt), P ( d
dt )

denote the differential operators

K( d
dt) =

l∑

j=0

Kj
dj

dtj
, P ( d

dt) =

l∑

j=0

Pj
dj

dtj
.
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9.2. Description of the method

The systems (without a feed-through term) can be now defined by the follow-
ing set of equations:

Σ :

{
K( d

dt)x = P ( d
dt)u,

y = Cx,
(9.4)

where C ∈ Rp×n.
This is a more general representation of (9.1), (9.2), which allows for deriva-

tives of the input u.

9.2.2. Reachability Gramian

Recall from [2] that for the first order stable system (9.1) the corresponding
(infinite) reachability Gramian is defined as

W :=

∞∫

0

eAτBBT eAT τdτ. (9.5)

This Gramian is one of the central objects in the mathematical systems the-
ory. It is a symmetric positive semi-definite matrix which satisfies the follow-
ing Lyapunov equation

AW +WAT +BBT = 0. (9.6)

The eigenvalues of the Gramian W are measures of the reachability of the
system (9.1).

The Gramian (9.5) can be rewritten as

W :=

∞∫

0

x(t)x(t)T dt (9.7)

for x(t) being the state of the corresponding (first order) system when the
input u is the δ-distribution. Indeed, the solution of ẋ = Ax + Bu, x(0) = 0,
to the input u(t) = Iδ(t) is given as x(t) = eAtB.

In a similar way as in (9.7) the reachability Gramians of higher order sys-
tems can be defined. In particular, the reachability Gramian of the second
order system (9.2) can be shown to be the left upper block of the reachability
Gramian of the corresponding first order system (9.1).

Using Parseval’s theorem, the Gramian (9.7) can be considered in the fre-
quency domain:

W =
1

2π

∞∫

−∞

x(iω)x(iω)∗dt, (9.8)
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9. Reduction of port-Hamiltonian systems as structured systems

where the star denotes the conjugate transpose and x(iω) is the Laplace trans-
form of the time signal x(t) (for simplicity of notation, quantities in the time
and frequency domains are denoted by the same symbol x).

The transfer function of (9.4) in the frequency domain is given as

G(s) = CK(s)−1P (s),

while the input-to-state and the input-to-output maps are

x(s) = K(s)−1P (s)u(s), y(s) = G(s)u(s).

For the input being the unit impulse u(t) = δ(t)I it follows that u(s) = I and
the about expressions read

x(s) = K(s)−1P (s), y(s) = G(s).

In the time domain we have

trace
{

∞∫

0

y(t)y(t)T dt
}

= trace
{

∞∫

0

Cx(t)x(t)TCTdt
}

= trace
{
CWCT

}
.

Using the notation
F (s) := K(s)−1P (s)

(distinguish from the port-Hamiltonian F = J − R) and the Parceval’s theo-
rem we obtain for the frequency domain

trace
{

∞∫

0

y(t)y(t)T dt
}

= trace
{
C

(
1
2π

∞∫

−∞

F (iω)F (iω)∗dω
)
CT

}
.

This reasoning results in the conclusion that the reachability Gramian of a
system with the corresponding order is given in the frequency domain as

W = 1
2π

∞∫

−∞

F (iω)F (iω)∗dω. (9.9)

9.2.3. Model reduction procedure

Model reduction of the systems (9.4), as explained in [83], is based on the
projection of (9.4) on the dominant eigenspace of a Gramian W of the state x.

The eigenvalue decomposition of the corresponding Gramian W gives

W = V ΛV T , Λ = diag(Λ1, Λ2). (9.10)
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where Λ ∈ Rn×n is a diagonal matrix containing the real eigenvalues of the
Gramian W in decreasing order, and V ∈ Rn×n is an orthogonal matrix.

Choosing the dimension of the reduced order model r leads to the parti-
tioning

Λ = diag(Λ1, Λ2), V = [V1, V2], (9.11)

where Λ1 ∈ Rr×r, Λ2,∈ R(n−r)×(n−r), V1 ∈ Rn×r, V2 ∈ Rn×(n−r).
An orthogonal basis for the dominant eigenspace of dimension r is used to

construct a reduced order model:

Σ̂ :

{
K̂11(

d
dt)x̂ = P̂ ( d

dt)u,

ŷ = Ĉ1x̂,
(9.12)

where
x̂ ∈ Rr, Ĉ1 = CV1 ∈ Rp×r,

K̂11(
d
dt ) =

l∑

j=0

K̂j
dj

dtj
, K̂j = V T

1 KjV1 ∈ Rr×r,

P̂ ( d
dt ) =

l∑

j=0

P̂j
dj

dtj
, P̂j = V T

1 Pj ∈ Rr×m.

This model reduction method by construction preserves the second or higher
order structure of the full order model Σ in (9.4) for the reduced order model
in (9.12)

Suppose the polynomial matrix K̂(s) has the following splitting correspond-
ing to the dimension of the reduced order model

K̂(s) = V TK(s)V =

[
V T

1 K(s)V1 V T
1 K(s)V2

V T
2 K(s)V1 V T

2 K(s)V2

]
=:

[
K̂11(s) K̂12(s)

K̂21(s) K̂22(s)

]
.

Let L(s) be the polynomial matrix

L(s) := (K̂11(s))
−1K̂12(s). (9.13)

If the reduced order system has no poles on the imaginary axis, sup
ω
‖L(iw)‖2

is finite. Then the model reduction method results in the following H2 error
bound.

Theorem 9.1. [83] Consider the full order structured system Σ in (9.4) and the

reduced order structured system Σ̂ in (9.12). Then the error system

E = Σ− Σ̂

satisfies the followingH2 error bound

‖E‖2H2
6 trace{Ĉ2Λ2Ĉ

T
2 }+ κ trace{Λ2}, (9.14)
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9. Reduction of port-Hamiltonian systems as structured systems

where κ is a constant depending on Σ, Σ̂, and the diagonal elements of Λ2 are the
neglected smallest eigenvalues of W :

κ = sup
ω
‖(Ĉ1L(iω))∗(Ĉ1L(iω)− 2Ĉ2)‖2,

Ĉ2 = CV2.

The frequency domain representation of the Gramian (9.9) results in the
following expressions [83] in the coordinates, where the Gramian is diagonal
W = Λ:

Λ = 1
2π

∞∫

−∞

F̂ (iω)F̂ (iω)∗dω,

Λ1 = 1
2π

∞∫

−∞

F̂1(iω)F̂1(iω)∗dω,

Λ2 = 1
2π

∞∫

−∞

F̂2(iω)F̂2(iω)∗dω,

0 = 1
2π

∞∫

−∞

F̂2(iω)F̂1(iω)∗dω,

(9.15)

where F̂1(s), F̂2(s) come from the splitting according to the dimension of the

reduced order model of F̂ (s), which is nothing but the defined before matrix
F (s) in the new coordinates:

F̂ (s) =

[
F̂1(s)

F̂2(s)

]
= V TF (s) = V TK(s)−1P (s). (9.16)

The expressions (9.15) are of the direct use in the proof of the error bound
in Theorem 9.1. The proof of Theorem 9.1 is sketched in Appendix C.

9.3. Application of the method to port-Hamiltonian
systems

Consider linear port-Hamiltonian systems (1.16)

ΣPHS :

{
ẋ = (J −R)Qx+Bu,

y = BTQx.
(9.17)

As discussed in the previous chapters (see, for example, Remark 5.6), there
exists a coordinate transformation S, x = SxI , such that in the new coordi-
nates

QI = STQS = I. (9.18)
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9.3. Application of the method to port-Hamiltonian systems

By defining the transformed system matrices as JI = S−1JS−T , RI =
S−1RS−T , BI = S−1B, we obtain the transformed port-Hamiltonian system

{
ẋI = (JI −RI)xI +BIu,

y = BT
I xI ,

(9.19)

with energy H(xI) = 1
2‖xI‖2. System (9.19) can be rewritten as

{
IẋI − (JI − RI)xI = BIu,

y = BT
I xI ,

(9.20)

which is of the form (9.4) with

K( d
dt) = I d

dt + (JI −RI),

P ( d
dt) = BI ,

C = BT
I .

The Gramian of the transformed port-Hamiltonian system (9.20)

W :=

∞∫

0

xI(t)xI(t)
T dt (9.21)

can be decomposed using the eigenvalue decomposition as shown in (9.10)
with the splitting as in (9.11) according to the chosen dimension r of the re-
duced order model .

This leads to the main result.

Theorem 9.2. Consider a full order port-Hamiltonian system (9.17) and construct
V1 as in (9.11) using the eigenvalue decomposition of the Gramian (9.21) of the trans-
formed port-Hamiltonian system (9.20). Then the rth order reduced system

Σ̂PHS :

{
˙̂xI = (ĴI − R̂I)x̂I + B̂Iu,

ŷ = ĈI x̂I ,
(9.22)

with the interconnection matrices ĴI , B̂I , energy matrix Q̂I , dissipation matrices R̂I

and output matrix ĈI given as

ĴI = V T
1 JIV1, R̂I = V T

1 RIV1, Q̂I = I,

B̂I = V T
1 BI , ĈI = BT

I V1,

is a port-Hamiltonian system as well as the first order system. Furthermore the error
system

E = ΣPHS − Σ̂PHS
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9. Reduction of port-Hamiltonian systems as structured systems

satisfies the followingH2 error bound

‖E‖2H2
6 BT

I V2Λ2V
T
2 BI + κ trace{Λ2}, (9.23)

where κ is a constant depending on ΣPHS , Σ̂PHS and the diagonal elements of Λ2

are the neglected smallest eigenvalues of W :

κ = sup
ω
‖(BT

I V1L(iω))∗(BT
I V1L(iω)− 2BT

I V2)‖2,

L(s) = (V T
1 FIV1 − Is)−1V T

1 FIV2.

Proof. Projection of the transformed port-Hamiltonian system (9.20) leads to
the reduced order system

{
I ˙̂xI − (ĴI − R̂I)x̂I = B̂Iu,

ŷ = ĈI x̂I ,

which is of the form (9.12), preserving the first order structure of (9.20), as
well as (9.17). This further results in the reduced order model (9.22) where
ĴI is clearly skew-symmetric and R̂I is symmetric and positive semi-definite.

Moreover ĈI = B̂T
I Q̂I . Therefore the reduced order system (9.22) is port-

Hamiltonian. The error bound (9.23) follows directly from Theorem 9.1.

9.4. Conclusions

In this chapter we considered a representation of port-Hamiltonian systems
using a notion of a differential operator. The projection of such systems onto
the dominant eigenspace of the corresponding reachability Gramian results
in the reduced order model which is shown to preserve the port-Hamiltonian
structure, and therefore passivity and stability. General error bound derived
in [83] is adopted to port-Hamiltonian systems. The extension of the met-
hod when the full order system is projected on the dominant eigenspace of
the product of the observability and reachability Gramians with the relation
to Lyapunov balancing as well as the applications of other methods preserv-
ing higher order structure to port-Hamiltonian systems are left for the future
research.
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