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Chapter 2

Shioda’s Algorithm

In this chapter we will give a description of the methods described in Shioda’s
article to compute the rank of Delsarte surfaces. The method used was first
described in a slightly different form in [17]. In this text we will not prove the
algorithm. Instead we will focus on the way the algorithm can be applied to
compute the rank of an elliptic Delsarte surface.

2.1 Computing the Lefschetz number

In this section we will state an algorithm to calculate the Lefschetz number,
given by Shioda in [17]. We will first state the algorithm and then give some re-
marks. Note that given the Lefschetz number λ, the rank r of the corresponding
elliptic surface is given by r = h2 − λ− ρtriv.

• Start with an equation of a Delsarte surface

f =
3∑
i=0

tai0xai1yai2 . (2.1)

• Homogenise this as a surface

F =

3∑
i=0

T ai0Xai1Y ai2Zai3 .

• Put the exponents in a matrix

A =

⎛
⎜⎜⎝

a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33

⎞
⎟⎟⎠ .

• Construct the subgroup L ⊂ (Q/Z)4 generated by (1, 0, 0,−1)A−1,
(0, 1, 0,−1)A−1 and (0, 0, 1,−1)A−1.

• Define Λ ⊂ L as follows. An element v = (a0, a1, a2, a3) ∈ L is an element
of Λ, precisely when it satisfies the following two conditions.
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– For all i we have ai �= 0 mod Z.

– There exists an element t ∈ Z, such that ord(tv) = ord(v) and more-

over
∑3
i=0 {tai} �= 2. Here ord refers to the order in the additive

group (Q/Z)4. The notation {a} refers to the natural bijection be-
tween the set Q/Z and [0, 1).

• Then the Lefschetz number is given by λ = #Λ.

For a proof of the correctness of this algorithm we refer to [17].

Remark 2.1.1. In the algorithm we assume that A−1 exists. This imposes a
restriction on the surfaces for which the algorithm works. Theorem 2.1.3 tells
us that this will only happen in very specific cases.

Remark 2.1.2. There is a difference between the algorithm as stated here and
how it was originally given by Shioda in [17].

In the original publication Shioda uses the cofactor matrix of A instead of
the inverse matrix of A. He then construct L as a subset of (Z/dZ)4 instead of
as a subset of (Q/Z)4.

The benefit of the way the algorithm is presented here is that it makes it
easier to deal with families of elliptic surfaces.

Theorem 2.1.3. Let π : E → P1 be an elliptic Delsarte surface. Assume that
the surface does not split over a finite extension of k(t), then det(A) �= 0.

Proof. If we homogenise the equation defining the generic fibre of E then we
get:

F̃ =
3∑
i=0

tai0Xai1Y ai2Zbi3 .

Just as we did with F we can put the exponents in a matrix.

B =

⎛
⎜⎜⎝

a00 a01 a02 b03
a10 a11 a12 b13
a20 a21 a22 b23
a30 a31 a32 b33

⎞
⎟⎟⎠ .

Note that A and B are related in the following manner. The first three columns
of A and B are the same. The last column of B is the sum of the first and last
columns of A minus a constant times the vector (1, 1, 1, 1)T .

There are a few things we can say about the matrices A and B. Either both
matrices A and B are singular or both are non-singular. Since F is homogeneous
we find that

∑3
i=0 aij = deg(F ), and hence does not depend on j. Likewise since

F̃ is homogeneous we find a1j+a2j+b3j is a constant not depending on j. Since

F and F̃ are irreducible we find that each column of A and B contains a zero.
We will first proof that if there is a relation between the last three column

of B then is the genus of the generic fibre of E zero, and hence not an elliptic
curve. After this we will proof that if the first column of B depends on the
last three columns then E splits over a finite extension of the base field. The
combination of these result will proof the theorem.
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We will begin with the possibility that the last three columns are linearly
dependent. Let B1, B2 and B3 be the last three columns of B. By assumption
there exist λi’s, not all zero, such that

λ1B1 + λ2B2 + λ3B3 = 0.

We claim that there is a row with precisely two zeroes in the columns B1, B2

and B3. This can be seen by the following argument.
As we know, each of the Bi’s contains at least one entry which is zero. If

every zero is in a different row then the λi’s would all have different sign. This
is of course impossible. Not all the zeroes are in the same row since

B1 +B2 +B3 = deg(F̃ )

⎛
⎜⎜⎝

1
1
1
1

⎞
⎟⎟⎠ .

The two columns with the zeroes on the same row are linearly dependent.
The corresponding affine equation for our curve is of the form

c0 + c1ξ
αηλα + c2ξ

βηλβ + c3ξ
γηλγ = 0.

Let m be a zero of the polynomial

c0 + c1m
α + c2m

β + c3m
γ = 0,

then η = mtλ, η = 1/t is a parametrisation of the curve. So the genus of the
curve is zero.

Now assume the first column is dependent on the last three columns. This
means that there exist λi ∈ Q such that B0 = λ1B1 + λ2B2 + λ3B3. Then over
some finite extension of k(t) we can map the curve E to a curve that is defined
over k. This map is given by (X : Y : Z) → (tλ1X : tλ2Y : tλ3Z).

Remark 2.1.4. The implication of this theorem goes only one way. It is pos-
sible that det(A) �= 0, and that E splits over an extension of k(t). Such an
extension can, however, not be of the form k(s) ⊃ k(t) with sn = t.

An example of this can be given by the surface defined by:

Y 2 +X3 + t+ 1.

This surface does not split over k(t). It does however split over k(s), where s is
defined by s6 = t+ 1.

Corollary 2.1.5. If det(A) = 0, then either the elliptic surface splits and the
rank is infinity or the elliptic surface splits over a finite extension and the rank
is zero.

Proof. If the elliptic surface splits, then it is of the form E ∼= E ⊗ P1. This
means that any point on E corresponds to a section. The rank of E is already
infinite.

If the elliptic surface splits over a finite extension we can see that the cor-
responding Mordell-Weil rank is zero. This means that the discriminant of the
elliptic surface is of the form Δ = ctr. Here c is a constant in k an r is an integer
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between 2 and 8. The j-invariant as such an elliptic surface is constant. From
this we see that there are precisely two singular fibres, one over 0 an one over
infinity. There are three possibilities: both fibres are of type I∗0, one is of type
IV and the other of type IV∗ or one is of type II and the other of type II∗. In
any of these cases we find ρtriv = 10. By the Shioda-Tate formula we now find
that r = 0.

Remark 2.1.6. From here on we will assume that all elliptic surfaces do not
split.

2.2 An example

In this section we will compute the maximal rank of a certain family of elliptic
surfaces. In the following chapter we will encounter this family in a natural way.
For now we just consider this as an example.

We will consider the elliptic curves over k(t) that are defined by a polynomial
of the form

f = ta + (tb + tc)X3 + tdY 2 = 0,

where a, b, c, d are non-negative integers with c > b. We want to find the maxi-
mal rank that occurs in this family.

Let E be the curve defined by f and E′ the curve defined by

t6a + (t6b + t6c)X3 + t6dY 2 = 0.

Then we have a natural monomorphism φ : E(k(t)) −→ E′(k(t)), defined by
φ(x(t), y(t)) = (x(t6), y(t6)). In particular we find the rank of E(k(t)) is at most
the rank of E′(k(t)). So we will restrict ourselves to computing the rank of E′.

The map given by ξ = t2(b−a)X, η = t3(d−a)Y defines an isomorphism from
E′ to the curve E′′ given by

f̃ = 1 + (1 + tn)ξ3 + η2 = 0.

Here n = 6(c− b).
Take m > 0 a positive integer. Let E′′′ be the curve given by

1 + (1 + tnm)ξ3 + η2 = 0.

There is an injective morphism from E′′ to E′′′ given by

(ξ(t), η(t)) −→ (ξ(tm), η(tm)).

From this we see that rank(E′′′) ≥ rank(E′). We conclude that to find the
maximal rank in our family of elliptic surfaces 2.2 we can assume m|n, for any
convenient m.

We will compute the Lefschetz number using the technique described in 2.1.
To do this we first homogenise f̃ . This gives

F̃ = Zn+3 + TnX3 +X3Zn + Y 2Zn+1.
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We compute the matrices A and A−1.

A =

⎛
⎜⎜⎝

0 0 n+ 3 0
3 0 0 n
3 0 n 0
0 2 n+ 1 0

⎞
⎟⎟⎠ and A−1 =

⎛
⎜⎜⎝

− n
3(n+3) 0 1

3 0

− n+1
2(n+3) 0 0 1

2
1

n+3 0 0 0
1

n+3
1
n − 1

n 0

⎞
⎟⎟⎠ .

By definition L is the subgroup of (Q/Z)∗ generated by

w1 = (1, 0, 0,−1)A−1 =

(
−1

3
,− 1

n
,
n+ 3

3n
, 0

)
,

w2 = (0, 1, 0,−1)A−1 =

(
−1

2
,− 1

n
,
1

n
,
1

2

)
,

w3 = (0, 0, 1,−1)A−1 =

(
0,− 1

n
,
1

n
, 0

)
.

By inspecting these generators we see that L is also generated by

v1 = w1 − w3 =

(
−1

3
, 0,

1

3
, 0

)
,

v2 = w2 − w3 =

(
−1

2
, 0, 0,

1

2

)
,

v3 = w3 =

(
0,− 1

n
,
1

n
, 0

)
.

We see that L consists of elements of the form iv3, v1+iv3, 2v1+iv3, v2+iv3,
v1+ v2+ iv3 and 2v1+ v2+ iv3. For each form there are exactly n elements. To
compute λ we have to find out which of these elements lie in Λ.

Elements of the form iv3, v1 + iv3 and 2v1 + iv3 do not lie in Λ, since they
all have zero as their last coordinate.

An element of the form v2 + iv3 does not lie in Λ. If i = 0 this follows from
the fact that the second and third coordinate are zero. If i �= 0 then this follows
from the fact that we can compute for all t with (t, 2n) = 1:{

ti

n

}
+

{
− ti
n

}
+

{
t

2

}
+

{
− t

2

}
= 2.

We will now determine when v1 + v2 + iv3 ∈ Λ. Take j,m ∈ Z≥0 such
that j/m = i/n and (j,m) = 1. Write v1 + v2 + iv3 = ( 16 ,− j

m ,
1
3 + j

m ,
1
2 ).

The conditions
{
t
6

} �= 0,
{− jt

m

} �= 0,
{
t
3 + jt

m

} �= 0 and
{
t
2

} �= 0 are satisfied

precisely when j �= 0 and j
m �= 2

3 .
In all other cases we have v1 + v2 + iv3 ∈ Λ if and only if there exists a t

such that (t, 6m) = 1 and{
t

6

}
+

{
− jt
m

}
+

{
t

3
+
jt

m

}
+

{
t

2

}
�= 2.
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It is easy to compute, if j �= 0 and j
m �= 2

3 then

{
t

6

}
+

{
− jt
m

}
+

{
t

3
+
jt

m

}
+

{
t

2

}
=

⎧⎪⎪⎨
⎪⎪⎩

1 if t ≡ 1 mod 6 and
{
tj
m

}
> 2

3 ,

2 if t ≡ 1 mod 6 and
{
tj
m

}
< 2

3 ,

3 if t ≡ 5 mod 6 and
{
tj
m

}
< 1

3 ,

2 if t ≡ 5 mod 6 and
{
tj
m

}
> 1

3 .

By considering a pair ±t, this means that v1 + v2 + iv3 ∈ Λ if and only if{
tj
m

}
< 1

3 for some t ≡ 5 mod 6, with (t, 6m) = 1. We now distinguish between
the various possibilities:

• The case m ≤ 3 is easy and leads to (v1 + v2 + iv3) �∈ Λ. This happens
precisely when i ∈ {0, n/2, n/3, 2n/3}.

• Assume m > 3 and 3 � | m or j ≡ 2 mod 3. Then t ∈ Z exists with
t ≡ 5 mod 6 and t ≡ j−1 mod m. For this t we find

{
tj
m

}
< 1

3 , hence
(v1 + v2 + iv3) ∈ Λ.

• In the case that m > 3, 3|m, j ≡ 1 mod 3, assume moreover that there
exists a c ≡ 2 mod 3, with (c,m) = 1 and

{
c
m

}
< 1

3 . We can find t ≡ 5

mod 6 such that t ≡ cj−1 mod m. For that t we have
{
tj
m

}
< 1

3 . This
means (v1 + v2 + iv3) ∈ Λ. This happens for all m > 3 except when
m ∈ {6, 12, 30}, as is shown in lemma 2.2.1 below.

• The final case is m > 3, 3|m, j ≡ 1 mod 3 and there exists no c ≡ 2
mod 3, with (c,m) = 1 and

{
c
m

}
< 1

3 . Assume that v1 + v2 + iv3 ∈ Λ.

Then t ≡ 5 mod 6 exists, coprime to 6m such that
{
tj
m

}
< 1

3 . Hence

c = jt satisfies c ≡ 2 mod 3, gcd(c,m) = 1 and
{
c
m

}
< 1

3 , contrary to
our assumption.

In this case we find (v1+ v2+ iv3) �∈ Λ. By the following lemma, this final
possibility for m and j happens only if m ∈ {6, 12, 30}. In other words
only if i ∈ {n6 , n12 , 7n12 , n30 , 7n30 , 13n30 , 19n30 }.

Lemma 2.2.1. 6, 12 and 30 are the only integers n > 3 with the property that
there does not exist a prime p ≡ 2 mod 3 such that 3p < n and p � |n.
Proof. If n satisfies this property then it can be written as n = Kp1p2 . . . pt,
with the pi all primes with pi ≡ 2 mod 3 and 3pi < n. Order the pi such that
pi < pi+1. We construct the number N = 3p1 . . . pt−1 + pt and see that it has a
prime p ≡ 2 mod 3 dividing it, with p �= pi. If n > 51 we find

p/n ≤ N/n =
3

Kpt
+

1

Kp1 . . . pt−1
≤ 3

17
+

1

2 · 5 · 11 <
1

3
.

This means 3p < n, but p is not any of the pi, a contradiction. So if n satisfies
the conditions of the lemma we have n ≤ 51. Checking the lemma for n ≤ 51 is
easy.

The cases v1+v2+ iv3 and 2v1+v2+ iv3 are similar, since −(v1+v2+ iv3) =
2v1 + v2 + (n− i)v3 and the fact that v ∈ Λ ⇔ −v ∈ Λ.

To ensure that all the special values {0, n2 , n3 , 2n3 , n6 , n12 , 7n12 , n30 , 7n30 , 13n30 , 19n30 }
for i encountered in the calculations are actually integers we assume that 60|n.
In that case we find λ = 2n− 22.
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To compute the rank of the curve we bring the curve to Weierstrass form
and compute the rank there. Define η̃ = (1 + tn)η and ξ̃ = (1 + tn)ξ then we
get the formula

η̃2 + ξ̃3 + (1 + tn)2 = 0.

We use theory explained in [15] to show that the second Betti number is
h2 = 4n− 2. We can now compute ρ = h2 − λ ≤ 2n+ 20.

We also compute
Δ = −432(tn + 1)4.

j = 0.

From this we see, using again that 3|n, that the elliptic surface has n singular
fibres of type IV at the roots of tn + 1 = 0 and no other singular fibres. So we
find ρtriv = (2n+ 2).

Combining these facts gives

r = ρ− ρtriv ≤ (2n+ 20)− (2n+ 2) = 18.

This concludes the example and we find that the rank of E over k(t) is ≤ 18
and it equals 18 in the case E′′ with 60|n.
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