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Chapter 1

Introduction

Quantum spin systems are of much interest recently, not only because of their
relevance to magnetic (nano) materials in general but also because of their
relation to the quantum computation and quantum information in particular.
The quantum computer promises to be more powerful than classical comput-
ers in solving some particular problems such as integer factorization, database
search, and simulation of quantum systems. Quantum information combines
communications and cryptography and is considered to be absolute secure. In
the physical realization of quantum computation and quantum information,
one major problem is keeping the components of the computer or communi-
cation channel in a coherent quantum state. The interaction with the exter-
nal world reduces the coherence (phase relations) between the states of the
quantum system. This effect, called decoherence, destroys the unitary trans-
formations that are essential for quantum information processing. Therefore,
the study of relaxation and decoherence in quantum spin systems is necessary
to understand the basic phenomena that are at play.

Quantum spin systems are rather complicated many-body systems and except
for some special cases their time evolution cannot be calculated analytically.
With the help of powerful modern computers and efficient algorithms, we can
simulate the dynamics of the system directly by solving the time-dependent
Schrödinger equation. A lot of useful information can be extracted from these
simulations, information that may be relevant for the development of a theory
or experimental study of these systems.

In this thesis, we will focus on two different quantum spin problems. The
first concerns the relaxation and decoherence of a central system of two spins



2 Introduction

that is coupled to a spin-bath environment. This problem is not only related
to the progress of the physical realization of quantum computer and quantum
information, but also addresses fundamental conjectures of decoherence theory.
Another topic is the stability of domain wall and its interaction with spin waves
in spin 1/2 chain, which is relevant to the critical phenomena and quantum
communication in quantum spin systems.

The contents of each chapter are the following:

In Chapter 2, we present the details of the physical model and the algorithms
that we use to perform the computer simulations.

In Chapter 3, we study the relaxation and decoherence in a system of two an-
tiferromagnetically coupled spins that interact with a spin-bath environment,
which is initially prepared in its ground state. Systems are considered that
range from the rotationally invariant to highly anisotropic spin models, for
instance, the couplings among the bath spins or between them and the central
two spins, can be isotropic Heisenberg or Ising-like. The interactions have
different topologies and values of parameters that are fixed or allowed to fluc-
tuate randomly. We explore the conditions under which the two-spin system
clearly shows an evolution from the initial spin-up -spin-down state towards
the maximally entangled singlet state. We demonstrate that frustration and,
especially, glassiness of the spin environment strongly enhances decoherence
of the two-spin system.

In Chapter 4, we continue the study of decoherence of two coupled spins that
interact with a frustrated spin-bath environment in its ground state. The cen-
tral system can be either ferromagnetic or antiferromagnetic. The conditions
under which the two-spin system relaxes from the initial spin-up - spin-down
state towards its ground state are determined. It is demonstrated that the
symmetry of the coupling between the two-spin system and the environment
has an important effect on the relaxation process. In particular, we show
that if this coupling conserves the magnetization, the two-spin system readily
relaxes to its ground state whereas a non-conserving coupling prevents the
two-spin system from coming close to its ground state.

In Chapter 5, we study decoherence of two coupled spins that interact with
a chaotic spin-bath environment which initially is prepared in a random su-
perposition of all the basis states of the environment. This state corresponds
to the equilibrium density matrix of the environment at infinite temperature.
It is shown that connectivity of spins in the bath is of crucial importance
for decoherence of the central system. The previously found phenomenon of
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two-step decoherence (V. V. Dobrovitski et al, Phys. Rev. Lett. 90, 210401
(2003)) turns out to be typical for the bath with a slow enough dynamics or
no internal interactions. For a generic random system with chaotic dynamics,
a conventional exponential relaxation to the pointer states takes place. Our
results confirm a conjecture that for weak enough interactions, the pointer
states are eigenstates of the central system.

In Chapter 6, we demonstrate that magnetic chains with uniaxial anisotropy
support stable structures, separating ferromagnetic domains of opposite mag-
netization. These structures, domain walls in a quantum system, are shown to
remain stable if they interact with a spin wave. The value of the phase shift
of spin waves passing through a domain wall was found to be proportional to
the angle by which the magnetization of domain wall rotates in the film plane
(R. Hertel et al, Phys. Rev. Lett. 93 257202 (2004)). We find that a domain
wall transmits the longitudinal component of the spin excitations only. Our
results suggest that continuous, classical spin models described by Landau-
Lifshitz-Gilbert equation cannot be used to describe spin wave-domain wall
interaction in microscopic magnetic systems.

In Chapter 7, we study the real-time domain-wall dynamics near a quantum
critical point of the one-dimensional anisotropic ferromagnetic spin 1/2 chain.
It is known that the ground state of this model in the subspace of total mag-
netization zero supports domain wall structures. However, if we let the system
evolve in time from an initial state with a domain wall structure and this ini-
tial state is not an eigenstate, it must contain some excited states. Therefore,
the question whether the domain wall structure will survive in the stationary
(long-time) regime is nontrivial. In this chapter, we focus on the dynamic
stability of the domain wall in the Heisenberg-Ising ferromagnetic chain, and
by numerical simulation, we find the domain wall is dynamically stable in the
Heisenberg-Ising model. Near the quantum critical point, the width of the
domain wall diverges as (∆− 1)−1/2. We also show that the domain wall pro-
files rapidly become very stable as we move away from the quantum critical
point.
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Chapter 2

Model and Algorithm

The measurement of the spin component of particles such as electrons, protons,
and neutrons along any direction yield either ~/2 or −~/2, and we call these
particles as spin 1/2 particles. The state corresponds to the outcome ~/2
is convenient to be named as spin up (|↑〉) and −~/2 as spin down (|↓〉).
Mathematically, the states

|↑〉 = |0〉 =

(
1

0

)
, and |↓〉 = |1〉 =

(
0

1

)
(2.1)

are the eigenstates of z component of the spin 1/2 operator S = (Sx, Sy , Sz)
with eigenvalues +1/2 and −1/2. Here Sx, Sy , Sz are defined (in units such
that ~ = 1) by

Sx =
1
2

(
0 1

1 0

)
, Sy =

1
2

(
0 i

−i 0

)
, and Sz =

1
2

(
1 0

0 −1

)
. (2.2)

In general, the wavefunction of a single spin 1/2 particle can be written as a
linear combination of the spin up and spin down by

|φ〉 = a(↑) |↑〉+ a(↓) |↓〉 , (2.3)

where a(↑) and a(↓) are complex numbers, and it is convenient to normalize
〈φ|φ〉 = 1 :

|a(↑)|2 + |a(↓)|2 = 1. (2.4)

Similarly, the state of a spin 1/2 system with N spins can be represented by

|φ〉 = a(↑↑ ... ↑↑) |↑↑ ... ↑↑〉+ a(↑↑ ... ↑↓) |↑↑ ... ↑↓〉+ ...

+ a (↓↓ ... ↓↑) |↓↓ ... ↓↑〉+ a (↓↓ ... ↓↓) |↓↓ ... ↓↓〉 . (2.5)
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Let spin up (down) corresponds to the state 0 (1) as Eq.(2.1), then

|φ〉 = a(00...00) |00...00〉+ a(00...01) |00...01〉+ ...

+ a (11...10) |11...10〉+ a (11...11) |11...11〉

=
2N−1∑

k=0

ak |k〉 . (2.6)

Here we denote the spins from right to left, which means in the translations
of notations, from spin up (down) to a binary number, the first bit in the
binary number corresponds to the 1st spin, and the last bit to the N -th spin.
The coefficients ak are complex numbers, and it is convenient to normalize
〈φ|φ〉 = 1 :

2N−1∑

k=0

|ak|2 = 1. (2.7)

Generally, the Hamiltonian of a spin 1/2 system with N coupled spins is
represented by

H (t) = −
N∑

i,j=1

∑
α=x,y,z

Jα
i,j(t)S

α
i Sα

j −
N∑

i=1

∑
α=x,y,z

hα
i (t)Sα

i , (2.8)

where the exchange integrals Jα
i,j determine the strength of the interaction

between the α components of spins i and j, and hi = (hx
i , hy

i , h
z
i ) is the external

magnetic field applied on the i− th spin.

To calculate the time evolution of this system we need solve the TDSE

i
∂

∂t
|φ(t)〉 = H (t) |φ(t)〉 , (2.9)

which has the solution

|φ(t)〉 = U (t) |φ(0)〉 = e−i
∫

H(t)dt |φ(0)〉 . (2.10)

If the Hamiltonian is time independent, Eq.(2.10) becomes

|φ(t)〉 = U (t) |φ(0)〉 = e−itH |φ(0)〉 . (2.11)

If the Hamiltonian is time dependent, we can choose a relevant small time
step τ , during which the Hamiltonian can be regarded as a constant, then the
relation of the wave function at time t + τ and t can be represented as

|φ(t + τ)〉 = U (τ) |φ(t)〉 ' e−iτH(t) |φ(t)〉 . (2.12)
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Equations (2.11) and (2.10) have the similar expression, and there are several
numerical algorithms to calculate them. In the following sections we will give
a brief introduction to the algorithms that we used in our simulation.

2.1 Spin 1/2 Operations

First we consider the single spin 1/2 operation |φ′〉 = Sα
m |φ〉, where α = x, y, z:

∣∣φ′〉 = Sα
m |φ〉 =

2N−1∑

k=0

a′k |k〉 . (2.13)

It follows from Eq.(2.2) that the coefficients a′ and a have the rules:

(i) for Sz
m

a′ (∗...0m...∗) = +
1
2
a (∗...0m...∗) ,

a′ (∗...1m...∗) = −1
2
a (∗...1m...∗) ; (2.14)

(ii) for Sx
m

a′ (∗...0m...∗) = +
1
2
a (∗...1m...∗) ,

a′ (∗...1m...∗) = +
1
2
a (∗...0m...∗) ; (2.15)

(iii) for Sy
m

a′ (∗...0m...∗) = − i

2
a (∗...1m...∗) ,

a′ (∗...1m...∗) = +
i

2
a (∗...0m...∗) . (2.16)

The bit strings on the left and right hand sides of each equation above are
identical except for the m-th bit.

The two spin 1/2 operation |φ′′〉 = Sα
mSα

n |φ〉 =
∑2N−1

k=0 a′′k |k〉 can also be
constructed similarly:
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(i) for Sz
mSz

n

a′ (∗...0m...0n...∗) = +
1
4
a (∗...0m...0n...∗) ,

a′ (∗...0m...1n...∗) = −1
4
a (∗...0m...1n...∗) ,

a′ (∗...1m...0n...∗) = −1
4
a (∗...1m...0n...∗) ,

a′ (∗...1m...1n...∗) = +
1
4
a (∗...1m...1n...∗) ; (2.17)

(ii) for Sx
mSx

n

a′ (∗...0m...0n...∗) = +
1
4
a (∗...1m...1n...∗) ,

a′ (∗...0m...1n...∗) = +
1
4
a (∗...1m...0n...∗) ,

a′ (∗...1m...0n...∗) = +
1
4
a (∗...0m...1n...∗) ,

a′ (∗...1m...1n...∗) = +
1
4
a (∗...0m...0n...∗) ; (2.18)

(iii) for Sy
mSy

n

a′ (∗...0m...0n...∗) = −1
4
a (∗...1m...1n...∗) ,

a′ (∗...0m...1n...∗) = +
1
4
a (∗...1m...0n...∗) ,

a′ (∗...1m...0n...∗) = +
1
4
a (∗...0m...1n...∗) ,

a′ (∗...1m...1n...∗) = −1
4
a (∗...0m...0n...∗) . (2.19)

Similarly, the bit strings on the left and right sides of each equation above are
identical except the m-th and n-th bits.

Next we will discuss how to construct the time evolution operator U (t) in a
form by which we can perform the single and two spin 1/2 operations direct
to the wave function |φ〉.

2.2 Chebyshev Polynomial Algorithm

The Chebyshev polynomial algorithm is based on the numerically exact poly-
nomial decomposition of the operator U (t) = e−itH .
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Firstly we need the polynomial decomposition of e−izx, where x is a real
number in the range [−1, 1].

Let x ≡ cos θ, since [1]

cos(zx) = J0(z) + 2
∞∑

m=1

(−1)m J2m (z) cos (2mθ) , (2.20)

sin(zx) = 2
∞∑

m=0

(−1)m J2m+1 (z) cos {(2m + 1) θ} , (2.21)

where Jm(z) is the Bessel function of integer order m, we have

e−izx = cos(zx)− i sin(zx)

= J0(z)− 2iJ1 (z) cos θ

+ 2
∞∑

m=1

(−1)m [J2m (z) cos (2mθ)− iJ2m+1 (z) cos {(2m + 1) θ}]

= J0(z)− 2iJ1 (z) cos θ

+ 2
∞∑

m=1

[
i2mJ2m (z) cos (2mθ)− i2m+1J2m+1 (z) cos {(2m + 1) θ}]

= J0(z) + 2
∞∑

m=1

(−i)m Jm (z) cos (mθ)

= J0(z) + 2
∞∑

m=1

(−i)m Jm (z) Tm (x) , (2.22)

where Tm (x) = cos [m arccos (x)] is the Chebyshev polynomial of the first
kind [1]. Tm (x) obeys the following recurrence relation:

Tm+1 (x) + Tm−1 (x) = 2xTm (x) . (2.23)

The Bessel function {Jm(z)} can be numerically generated by using the fol-
lowing recurrence relation and associated series [1]

Jm−1 (z) =
2m

z
Jm (z) + Jm+1 (z) , (2.24)

J0 (z) + 2J2 (z) + 2J4 (z) + 2J6 (z) + · · · = 1. (2.25)

The recurrence relation Eq.(2.24) should only be used in the decreasing way in
the program, otherwise the result will not converge [2]. |Jm (z)| vanishes very
rapidly if m becomes larger than z [3], and therefore we can find a fix M such
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that for all m ≥ M , we have |Jm (z)| < ε. Here ε is a small positive number,
for example 10−15, which determines the accuracy of the approximation of the
generated {Jm (z)}.
We will derive an expression of M in the following.

From [1], the Bessel functions Jm (mz) have upper bounds [2]

|Jm(mz)| ≤
∣∣∣∣∣∣
zm exp

[
m
√

1− z2
]

[
1 +

√
1− z2

]m

∣∣∣∣∣∣
, (2.26a)

and similarly we have

|Jm(z)| ≤

∣∣∣∣∣∣∣∣

(
z
m

)m exp
[
m

√
1− (

z
m

)2
]

[
1 +

√
1− (

z
m

)2
]m

∣∣∣∣∣∣∣∣
, for m ≥ |z| . (2.27)

Since for z > 0, 1 +
√

1− (z/m)2 < 2 and therefore from Eq.(2.27) we get

ln |Jm(z)| < m ln(
z

2m
) +

√
m2 − z2 < m

[
ln(

z

2m
) + 1

]
, (2.28)

which implies that
|Jm(z)| < em[ln( z

2m
)+1]. (2.29)

The inequality |Jm (z)| < ε holds when exp
{
m

[
ln( z

2m) + 1
]} ≤ ε, which is

equivalent to
m

[
ln(

z

2m
) + 1

]
≤ ln ε, (2.30)

where ε is a small positive number and can be denoted as ε ≡ exp(−α), where
α > 1. Equation (2.30) becomes

ln(
z

2m
) + 1 ≤ − α

m
, (2.31)

since m ≥ z, Eq.(2.31) also holds if

ln(
z

2m
) + 1 ≤ −α

z
, (2.32)

or
m ≥ 1

2
ze(1+α

z ) =
1
2
ze(1−

ln ε
z ). (2.33)

Therefore, we can introduce

M ≡ z exp [1− (ln ε) /z] /2, (2.34)
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then, for all m ≥ M , we have |Jm (z)| < ε. Now Eq.(2.22) can be written as:

e−izx ' J0(z) + 2
M∑

m=1

(−i)m Jm (z) Tm (x) . (2.35)

In practice, the generation of {Jm (z)} is very fast, even if ε equals the numer-
ical precision of the machine.

We can now derive the polynomial decomposition of the operator U (t) =
e−itH . Since the Hamiltonian H has a complete set of eigenvectors |En〉 with
real valued eigenvalues En, we can expand the wave function |φ(0)〉 as a su-
perposition of the |En〉

|φ(0)〉 =
2N∑

n=1

|En〉 〈En|φ(0)〉 , (2.36)

and therefore

|φ(t)〉 = e−itH |φ(0)〉 =
2N∑

n=1

e−itEn |En〉 〈En|φ(0)〉 . (2.37)

Now we introduce ‖H‖b as a positive number which is not smaller than the
maximum of the eigenvalues En, that is

‖H‖b ≥ ‖H‖m ≡ max{En}, (2.38)

and introduce new variables t̂ ≡ t ‖H‖b and Ên ≡ En/ ‖H‖b, where Ên are
the eigenvalues of a modified Hamiltonian Ĥ ≡ H/ ‖H‖b, that is

Ĥ |En〉 = Ên |En〉 . (2.39)

Now we can rewrite Eq.(2.37) as

|φ(t)〉 =
2N∑

n=1

e−it̂Ên |En〉 〈En|φ(0)〉 . (2.40)

Here
∣∣∣Ên

∣∣∣ ≤ 1, which means that Ên has the same value interval of x in

Eq.(2.22). Then we can use Eq.(2.22) to decompose the operator e−it̂Ên . By
using the inequality ∥∥∥∥∥

N∑

n=1

Xn

∥∥∥∥∥ ≤
N∑

n=1

‖Xn‖ , (2.41)
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and the elementary bounds

‖sα
k‖ =

1
2
,

∥∥∥sα
ksα′

k′

∥∥∥ =
1
4
, (2.42)

with the Hamiltonian H of Eq.(2.8) we find

‖H‖m ≤ 1
4

N∑

i,j=1

∑
α=x,y,z

∣∣Jα
i,j (t)

∣∣ +
1
2

N∑

i=1

∑
α=x,y,z

|hα
i (t)| . (2.43)

Then we introduce ‖H‖b

‖H‖b ≡
1
4

N∑

i,j=1

∑
α=x,y,z

∣∣Jα
i,j (t)

∣∣ +
1
2

N∑

i=1

∑
α=x,y,z

|hα
i (t)| . (2.44)

Now we use Eq.(2.35) to rewrite Eq.(2.40) as

|φ(t)〉 '
2N∑

n=1

[
J0(t̂) + 2

Mn∑

m=1

(−i)m Jm

(
t̂
)
Tm

(
Ên

)]
|En〉 〈En|φ(0)〉

= J0(t̂) |φ(0)〉+ 2
M∑

m=1

(−i)m Jm

(
t̂
) 2N∑

n=1

Tm

(
Ên

)
|En〉 〈En|φ(0)〉

=

[
J0(t̂)T̂0

(
Ĥ

)
+ 2

M∑

m=1

Jm

(
t̂
)
T̂m

(
Ĥ

)]
|φ(0)〉 , (2.45)

where
Mn ≡ Ên exp

[
1− (ln ε) /Ên

]
/2, M ≡ max{Mn}, (2.46)

and

T̂m

(
Ĥ

)
= (−i)m Tm

(
Ĥ

)
= (−i)m

2N∑

n=1

Tm

(
Ên

)
|En〉 〈En| , (2.47)

is a 2N -dimensional matrix, with diagonal elements T̂m(Ên), the modified
Chebyshev polynomial, which is related with the Chebyshev polynomial Tm(Ên)
by

T̂m

(
Ên

)
= (−i)m Tm

(
Ên

)
. (2.48)

The first two matrices T̂m are given by

T̂0

(
Ĥ

)
|φ〉 = I |φ〉 , T̂1

(
Ĥ

)
|φ〉 = −iĤ |φ〉 . (2.49)
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From Eq.(2.23), we have the recurrence relation of the Chebyshev polynomial
Tm

(
Ên

)

Tm+1

(
Ên

)
+ Tm−1

(
Ên

)
= 2ÊnTm

(
Ên

)
, (2.50)

and therefore we can get the following recurrence relation for the matrix
T̂m

(
Ĥ

)

T̂m+1

(
Ĥ

)
|φ〉 = (−i)m+1

2N∑

n=1

[
2ÊnTm

(
Ên

)
− Tm−1

(
Ên

)]
|En〉 〈En|φ〉

= (−i)m+1
[
2ĤTm

(
Ĥ

)
− Tm−1

(
Ĥ

)]
|φ〉

= −2iĤT̂m

(
Ĥ

)
|φ〉+ T̂m−1

(
Ĥ

)
|φ〉 , (2.51)

for m ≥ 1.

By using the recurrence relation Eq.(2.51) together with Eq.(2.49), we can get
{T̂m

(
Ĥ

)
|φ (0)〉, m = 0, 1, ...,M}, and performing the sum in Eq.(2.45), the

wave function at time t can be obtained.

2.3 Suzuki-Trotter Product-Formula Algorithm

In the previous section, we introduce the Chebyshev polynomial to reduce the
exponential operation (e−itH |φ〉) into linear operations (Ĥ |φ〉). In the fol-
lowing, we will introduce Suzuki-Trotter product-formula algorithm to com-
pute the matrix exponential directly. The basic idea of this algorithm is to
decompose the time evolution operator into several independent exponential
operation, which can be applied to the wave function separately and directly.

The Suzuki-Trotter product-formula algorithm is based on a systematic ap-
proximation of the unitary matrix exponential [4, 5],

U (t) = e−itH = e−it(H1+H2+···+HN ) = lim
m→∞

(
N∏

n=1

e−itHn/m

)m

, (2.52)

and generalizations thereof [6–8]. For understanding why Eq.(2.52) holds,
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one can compare two Taylor series

e(H1+H2)/m = 1 +
(H1 + H2)

m
+

(H1 + H2)
2

2m2
+ O

(
1

m3

)

= 1 +
(H1 + H2)

m
+

H2
1 + H1H2 + H2H1 + H2

2

2m2

+O

(
1

m3

)
, (2.53)

and

eH1/meH2/m = 1 +
(H1 + H2)

m
+

H2
1 + 2H1H2 + H2

2

2m2
+ O

(
1

m3

)
. (2.54)

It is clear that for sufficiently large m, two expressions above are equal up to
terms of O

(
[H1,H2]/m2

)
, then we have

eH1+H2 = lim
m→∞(eH1/meH2/m)m. (2.55)

One can also show that [5]
∥∥∥eH1+H2 −

(
eH1/meH2/m

)m∥∥∥ ≤ 1
2m

‖[H1,H2]‖ e(‖H1‖+‖H2‖), (2.56)

and
∥∥∥eH1+H2+···+HN −

(
eH1/meH2/m...eH2/m

)m∥∥∥

≤ 1
2m

∑

1≤i≤j≤N

‖[Hi,Hj ]‖ e(‖H1‖+‖H2‖+...+‖HN‖). (2.57)

Equation (2.52) suggests that for a short time interval

U1 (τ) = e−iτH1 · · · e−iτHn · · · e−iτHN (2.58)

is a good approximation to U (τ) if τ is sufficiently small. If all Hn in Eq.(2.58)
are Hermitian, then U1 (τ) is unitary and the algorithm based on Eq.(2.58) is
unconditionally stable. We have

‖U (τ)− U1 (τ)‖ ≤ τ2

2

∑

i<j

‖[Hi −Hj ]‖ , (2.59)

therefore U1 (τ) may be a good approximation to U (τ) if we use small time
steps τ such that τ ‖H‖ ¿ 1. It also follows from Eq.(2.59) that the Taylor
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series of U (τ) and U1 (τ) are identical up to first order in τ and we call U1 (τ)
a first-order approximation of U (τ).

The Suzuki-Trotter product-formula approach provides a simple, systematic
procedure to improve the accuracy of the approximation of U (τ) without
changing its fundamental properties. We can introduce higher-order approxi-
mations, for example, the unitary matrix

U2 (τ) = U+
1 (−τ/2) U1 (τ/2) = e−iτHN/2 · · · e−iτH1/2e−iτH1/2 · · · e−iτHN/2

(2.60)
is a second-order approximation of U (τ) [6–8], and we have [9]

‖U (τ)− U2 (τ)‖ ≤ c2τ
2, (2.61)

where c2 is a positive constant. A fourth-order approximation can be con-
structed as [6, 8]

U4 (τ) = U2 (aτ) U2 (aτ) U2 ((1− 4a) τ) U2 (aτ) U2 (aτ) , (2.62)

where a = 1/
(
4− 41/3

)
, and we have

‖U (τ)− U4 (τ)‖ ≤ c4τ
4, (2.63)

where c4 is a positive constant. Equations (2.59), (2.61) and (2.63) give the
rigorous error bounds of the approximations, and the approximation Eq.(2.60)
and Eq.(2.62) have proven to be very useful for a wide range of different
applications [7–15]. The crucial step to apply the Suzuki-Trotter product-
formula algorithm in our spin system is how to choose the Hermitian matrixes
{Hn} such that the operators e−iτHn can be calculated efficiently.

We first decompose the Hamiltonian H in Eq.(2.8) into two parts:

Ha (t) = −
N∑

j=1

∑
α=x,y,z

hα
j (t)Sα

j , (2.64)

Hb (t) = −
N∑

j,k=1

∑
α=x,y,z

Jα
j,k(t)S

α
j Sα

k , (2.65)

where Ha (t) contains the external time-dependent fields and Hb (t) contains
the exchange coupling of the spins.

For Ha (t), we consider the case when the external field changes slowly such
that in each small time step τ the external field can be regarded as a constant.
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Since the spin operators with different spin labels commute, that is [Sα
i , Sα

j ] =
0, and using the fact that

eA+B = eAeB if [A, B] = 0, (2.66)

we have

Ua (τ) = e−iτHa(t) = exp


iτ

N∑

j=1

∑
α=x,y,z

hα
j (t)Sα

j




=
N∏

j=1

exp

[
iτ

∑
α=x,y,z

hα
j (t)Sα

j

]
=

N∏

j=1

exp [iτSj · hj(t)] . (2.67)

We introduce ĥj(t) ≡ hj(t)/hj (t), where hj (t) = ‖hj(t)‖. Then Sj · ĥj(t) is
the projection of Sj on the direction ĥj(t) and it is easy to prove that

exp [iτSj · hj(t)]

= cos
(

τhj (t)
2

)
+ 2iSj · ĥj(t) sin

(
τhj (t)

2

)

=


 cos

(
τhj(t)

2

)
+

ihz
j (t)

hj(t)
sin

(
τhj(t)

2

)
ihx

j (t)+hy
j (t)

hj(t)
sin

(
τhj(t)

2

)

ihx
j (t)−hy

j (t)

hj(t)
sin

(
τhj(t)

2

)
cos

(
τhj(t)

2

)
− ihz

j (t)

hj(t)
sin

(
τhj(t)

2

)

 .

(2.68)

For Hb (t), the pair-product decomposition is defined by [5, 16]

Ub (τ) = e−iτHb(t) = exp


iτ

N∑

j,k=1

∑
α=x,y,z

Jα
j,k(t)S

α
j Sα

k




=
N∏

j,k=1

exp

[
iτ

∑
α=x,y,z

Jα
j,k(t)S

α
j Sα

k

]
, (2.69)

and each factor can be calculated analytically as

exp

[
iτ

∑
α=x,y,z

Jα
j,k(t)S

α
j Sα

k

]

=




eiaτ cos bτ 0 0 ieiaτ sin bτ

0 e−iaτ cos cτ ie−iaτ sin cτ 0

0 ie−iaτ sin cτ e−iaτ cos cτ 0

ieiaτ sin bτ 0 0 eiaτ cos bτ




jk

,(2.70)
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where a = Jz
j,k(t)/4, b =

[
Jx

j,k(t)− Jy
j,k(t)

]
/4 and c =

[
Jx

j,k(t) + Jy
j,k(t)

]
/4.

The matrix in Eq.(2.68) is just a single spin 1/2 operation. Equation (2.70) is
more complicated but can be performed in a similar manner as two spin 1/2
operation, therefore we will not give a more detailed description.

2.4 Exact Diagonalization Algorithm

In this and the following section, we will discuss the algorithms which will
perform the operation U (t) |φ〉 without using the single or two spin 1/2 oper-
ations: the exact diagonalization algorithm and short-iterative Lanczos algo-
rithm.

The Hamiltonian H in Eq.(2.8) is a 2N -dimensional Hermitian matrix, and it
has a complete set of eigenvectors and real-valued eigenvalues. We can find a
unitary matrix Ω (Ω+Ω = I) to diagonalize H as [17]

Ω+HΩ = H̃, (2.71)

where H̃ is a diagonal matrix. Then, the time evolution operator becomes

U (t) = e−itH = e−itΩH̃Ω+
=

∞∑

n=0

(
−itΩH̃Ω+

)n

n!

=
∞∑

n=0

(−it)n
(
ΩH̃Ω+

)
1

(
ΩH̃Ω+

)
2
· · ·

(
ΩH̃Ω+

)
n−1

(
ΩH̃Ω+

)
n

n!

= Ω
∞∑

n=0

(
−itH̃

)n

n!
Ω+ = Ωe−itH̃Ω+. (2.72)

The elements of matrix H̃ are non-zero only along the diagonal:

H̃ =




m1 0 · · · 0 · · · 0 0

0 m2 · · · 0 · · · 0 0
...

...
. . .

...
. . .

...
...

0 0 · · · mk · · · 0 0
...

...
. . .

...
. . .

...
...

0 0 · · · 0 · · · m2N−1 0

0 0 · · · 0 · · · 0 m2N




, (2.73)
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and the operator e−itH̃ can be expanded in a series

e−itH̃ =
∞∑

n=0

(−it)n

n!
H̃n

=
∞∑

n=0

(−it)n

n!




mn
1 0 · · · 0 · · · 0 0

0 mn
2 · · · 0 · · · 0 0

...
...

. . .
...

. . .
...

...

0 0 · · · mn
k · · · 0 0

...
...

. . .
...

. . .
...

...

0 0 · · · 0 · · · mn
2N−1

0

0 0 · · · 0 · · · 0 mn
2N




=




e−itm1 0 · · · 0 · · · 0 0

0 e−itm2 · · · 0 · · · 0 0
...

...
. . .

...
. . .

...
...

0 0 · · · e−itmk · · · 0 0
...

...
. . .

...
. . .

...
...

0 0 · · · 0 · · · e−itm
2N−1 0

0 0 · · · 0 · · · 0 e−itm
2N




.

(2.74)

It is clear that if we find the unitary matrix Ω and the eigenvalues {mk}
of H, the time evolution operator U (t) can be performed by simple matrix
multiplications. Diagonalizing the Hermitian matrix H is straightforward: we
use a standard linear algebra package such as LAPACK.

The algorithm based on exact diagonalization is simple, but it needs a lot of
memory to store and perform the diagonalization. The memory and CPU time
of the direct diagonalization scale as D2 and D3 respectively [17–19]. Thus
we can use this technique for small systems (up to L ≈ 13) only.

2.5 Lanczos Algorithm

The basic idea of the Lanczos algorithm [3, 20] is to use the Lanczos recursion
to project the Hamiltonian onto a new basis in which H is a tri-diagonal matrix
and can be diagonalized easily.
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Let |φ(0)〉 be a randomly selected initial state. We denote the Lanczos vector
by |φi〉 (i = 0, 1, 2, ..., j where j ≤ D), and introduce scalars by

αi ≡ 〈φi|H |φi〉 , βi+1 ≡ 〈φi+1|H |φi〉 , (2.75)

and
β1 = 0, |φ0〉 = 0, and |φ1〉 = |φ(0)〉 /

√
〈φ(0)|φ(0)〉. (2.76)

We generate the Lanczos vectors as

βi+1 |φi+1〉 = H |φi〉 − αi |φi〉 − βi |φi−1〉 . (2.77)

We will now proof that
〈φi|φi′〉 = δ

(
i− i′

)
. (2.78)

By construction we have 〈φ1|φ1〉 = 1, and it is easy to show that 〈φ1|φ2〉 = 0
and 〈φ2|φ2〉 = 1 (multiply 〈φ1| or 〈φ2| on both sides of Eq.(2.77) and take
i = 1). That means Eq.(2.78) is true for i ≤ 2. Assume Eq.(2.78) is true for
i, i′ ≤ k (k ≥ 2), that is, 〈φi|φi′〉 = δ (i− i′) for i, i′ ≤ k, we will show that it
is also true for i, i′ ≤ k + 1, which means that we need prove

〈φi|φk+1〉 = δ (k + 1− i) for i ≤ k + 1. (2.79)

First, from Eq.(2.77) we have that

βi+1 〈φk|φi+1〉 = 〈φk|H |φi〉 − αi 〈φk|φi〉 − βi 〈φk|φi−1〉 , (2.80)

and for i ≤ k − 2, 〈φk|φi+1〉 = 〈φk|φi〉 = 〈φk|φi−1〉 = 0, therefore

〈φk|H |φi〉 = 0 for i ≤ k − 2. (2.81)

From Eq.(2.77), we have that

βk+1 〈φi|φk+1〉 = 〈φi|H |φk〉 − αk 〈φi|φk〉 − βk 〈φi|φk−1〉 , (2.82)

1) for i ≤ k − 2, 〈φi|H |φk〉 = 〈φi|φk〉 = 〈φi|φk−1〉 = 0, therefore

〈φi|φk+1〉 = 0 for i ≤ k − 2; (2.83)

2) for i = k − 1, 〈φi|H |φk〉 = βk, 〈φi|φk〉 = 0, therefore

〈φi|φk+1〉 = 0 for i = k − 1; (2.84)

3) for i = k, 〈φi|H |φk〉 = αk, 〈φi|φk−1〉 = 0, therefore

〈φi|φk+1〉 = 0 for i = k; (2.85)
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4) for i = k + 1, 〈φi|H |φk〉 = βk+1, 〈φi|φk〉 = 〈φi|φk−1〉 = 0, therefore

〈φi|φk+1〉 = 1 for i = k + 1. (2.86)

Equations (2.83)-(2.86) show that Eq.(2.79) is true, thus we can make a con-
clusion that Eq.(2.78) is also true.

Now we can introduce the Lanczos matrix Tj [20]

Tj ≡




α1 β2 0 · · · 0 0 0

β2 α2 β3 · · · 0 0 0

0 β3 α3 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · αj−2 βj−1 0

0 0 0 · · · βj−1 αj−1 βj

0 0 0 · · · 0 βj αj




, (2.87)

and a matrix
Φj ≡ {|φ1〉 , |φ2〉 , ..., |φj〉} , (2.88)

which is a D× j matrix whose ith column is the ith Lanczos vector |φi〉. It is
clear that for any j ≤ D we have

ΦT
j Φj = Ij . (2.89)

Equation (2.77) can be rewritten in matrix form as

HΦj = ΦjTj + βj+1 |φj+1〉 〈ej | , (2.90)

where 〈ej | is the coordinate vector whose jth component is 1 and the others
are 0. By multiplying ΦT

j on both sides of Eq.(2.90) and using Eq.(2.78), one
can get

Tj = ΦT
j HΦj , (2.91)

which means that the Lanczos matrix Tj is the orthogonal projection of H

onto the subspaces (Krylov subspace) spanned by Φj . It is easy to find a
unitary matrix Ω to diagonalize the tri-diagonal matrix Tj (Ω+

j TjΩj = T̃j).
Then the Hamiltonian can be represented as

H = ΦjTjΦT
j = ΦjΩjT̃jΩ+

j ΦT
j , (2.92)
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and with the same procedure in the exact diagonalization algorithm, we can
write the time evolution operator as

U (t) = lim
j→D

Uj (t) = lim
j→D

ΦjΩje
−itT̃jΩ+

j ΦT
j . (2.93)

The memory and CPU time of the Lanczos algorithm scale as D and j2D

respectively [3].

Having shown how to use the Lanczos algorithm to perform the time evolu-
tion operator, we now discuss about how to use this algorithm to find the
algebraically-smallest or algebraically-largest of the Hamiltonian. In general,
one can find these values by direct diagonalization of the Hamiltonian. But
as we mentioned before, the exact diagonalization algorithm may need a huge
memory and a lot of CPU time, and is therefore not suitable when D is large.
It was already proved that the algebraically-smallest or algebraically-largest
of the eigenvalue of H, are well approximated by the eigenvalues of the corre-
sponding Lanczos matrix Tj (j ¿ D) [20]. If we want to construct the ground
state of the system only, that is, to find the algebraically-smallest of the eigen-
value and the corresponding eigenstate of the Hamiltonian, we can use the
following algorithm:

1) Firstly select a unit vector |φ1〉 and a sequence of {k}, e.g., {k = 10, 20, 30, 40...};
2) Follow the Lanczos procedure to generate the Lanczos matrix Tj , and when
j reaches the value in {k}, diagonalize the matrix Tj=k to get the corresponding
algebraically-smallest of the eigenvalue Ek;

3) Increase the value of j, until EK−EK+1 ≤ ε (ε is a very small positive num-
ber, for example, ε = 10−10), which means that to increase the dimension of
the Lanczos matrix has very small influence to the algebraically-smallest eigen-
value. Then we can regard EK+1 as a good approximation of the algebraically-
smallest eigenvalue of H, and the ground state of H is |Ground〉 = |K + 1〉,
where |K + 1〉 is the eigenvector of TK+1 corresponding to the algebraically-
smallest eigenvalue EK+1.
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Chapter 3

Giant Enhancement of

Quantum Decoherence by

Frustrated Environments

This chapter was previously published as
S. Yuan, M.I. Katsnelson, and H. De Raedt, JETP Lett. 84, 99-103 (2006).

The interaction between a quantum system, called central system in what fol-
lows, and its environment affects the state of the former. Intuitively, we expect
that by turning on the interaction with the environment, the fluctuations in
the environment will lead to a reduction of the coherence in the central system.
This process is called decoherence [1, 2]. In general, there are two different
mechanisms that contribute to decoherence. If the environment is dissipative
(or coupled to a dissipative system), the total energy is not conserved and
the central system + environment relax to a stationary equilibrium state, for
instance the thermal equilibrium state. In this chapter, we exclude this class
of dissipative processes and restrict ourselves to closed quantum systems in
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which a small, central system is brought in contact with a larger quantum
system that is prepared in its ground state. Then, decoherence is solely due
to fact that the initial product state (wave function of the central system
times wave function of the environment) evolves into an entangled state of the
whole system. The interaction with the environment causes the initial pure
state of the central system to evolve into a mixed state, described by a reduced
density matrix [3], obtained by tracing out all the degrees of freedom of the
environment [1, 2, 4, 5].

Not all initial states are equally sensitive to decoherence. The class of states
that is “robust” with respect to the interaction with the environment are called
pointer states [2]. If the Hamiltonian of the central system is a perturbation,
relative to the interaction Hamiltonian Hint, the pointer states are eigenstates
of Hint [2, 6]. In this case, the pointer states are essentially “classical states”,
such as states with definite particle positions or with definite spin directions
of individual particles for magnetic systems. In general, these states, being a
product of states of individual particles forming the system, are not entangled.
On the other hand, decoherence does not necessarily imply that the central
system evolves to a classical-like state. If Hint is much smaller than the typi-
cal energy differences in the central system, the pointer states are eigenstates
of the latter, that is, they may be “quantum” states such as standing waves,
stationary electron states in atoms, tunnelling-split states for a particle dis-
tributed between several potential wells, singlet or triplet states for magnetic
systems, etc. [6]. This may explain, for example, that one can observe linear
atomic spectra - the initial states of an atom under the equilibrium conditions
are eigenstates of its Hamiltonian and not arbitrary superpositions thereof.

Let us now consider a central system for which the ground state is a max-
imally entangled state, such as a singlet. In the absence of dissipation and
for an environment that is in the ground state before we bring it in contact
with this central system, the loss of phase coherence induces one of following
qualitatively different types of behavior:

1. The interaction/bath dynamics is such that there is very little relaxation.

2. The system as a whole relaxes to some state (which may or may not be
close to the ground state) and this state is a complicated superposition
of the states of the central system and the environment.

3. The system as a whole relaxes to a state that is (to good approximation)
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a direct product of the states of the central system and a superposition
of states of the environment. In this case there are two possibilities:

(a) The central system does not relax to its ground state;

(b) The central system relaxes to its maximally entangled ground state.

Only case 3b is special: The environment and central system are not entangled
(to a good approximation) but nevertheless the decoherence induces a very
strong entanglement in the central system. In this chapter, we demonstrate
that, under suitable conditions, dissipation free decoherence forces the central
system to relax to a maximally entangled state which itself, shows very little
entanglement with the state of the environment.

3.1 Model

Most theoretical investigations of decoherence have been carried out for oscil-
lator models of the environment for which powerful path-integral techniques
can be used to treat the environment analytically [4, 5]. On the other hand,
it has been pointed out that a magnetic environment, described by quantum
spins, is essentially different from the oscillator model in many aspects [7].
For the simplest model of a single spin in an external magnetic field, some
analytical results are known [7]. For the generic case of two and more spins,
numerical simulation [8, 9] is the main source of theoretical information. Not
much is known now about which physical properties of the environment are
important for the efficient selection of pointer states. Recent numerical simu-
lations [9] confirm the hypothesis [10] on the relevance of the chaoticity of the
environment but its effect is actually not drastic.

In this chapter, we report on the results of numerical simulations of quantum
spin systems, demonstrating the crucial role of frustrations in the environment
on decoherence. In particular, we show that, under appropriate conditions,
decoherence can cause an initially classical state of the central system to evolve
into the most extreme, maximally entangled state. We emphasize that we
only consider systems in which the total energy is conserved such that the
decoherence is not due to dissipation.

We study a model in which two antiferromagnetically coupled spins, called the
central system, interact with an environment of spins. The model is defined
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Table 3.1: Minimum value of the correlation of the central spins and the energy of the

whole system (which is conserved), as observed during the time evolution corresponding

to the curves listed in the first column. The correlations 〈S1 · S2〉0 and the ground state

energy E0 of the whole system are obtained by numerical diagonalization of the Hamiltonian

Eq.(3.1).

〈Ψ(t)|H|Ψ(t)〉 E0 mint〈S1(t) · S2(t)〉 〈S1 · S2〉0
Fig. (3.1) (a) -1.299 -1.829 -0.659 -0.723

Fig. (3.1) (b) -1.532 -2.065 -0.695 -0.721

Fig. (3.1) (c) -1.856 -2.407 -0.689 -0.696

Fig. (3.2) -4.125 -4.627 -0.744 -0.749

Fig. (3.3) (a) -1.490 -1.992 -0.746 -0.749

Fig. (3.3) (b) -0.870 -1.379 -0.260 -0.741

Fig. (3.3) (c) -1.490 -1.997 -0.737 -0.744

Fig. (3.3) (d) -2.654 -3.160 -0.742 -0.745

Fig. (3.3) (e) -7.791 -8.293 -0.716 -0.749

Fig. (3.3) (f) -3.257 -3.803 -0.713 -0.718

Fig. (3.4) (b) -0.884 -1.388 -0.424 -0.733

Fig. (3.3) (c) -1.299 -1.829 -0.659 -0.723

Fig. (3.3) (d) -1.299 -1.807 -0.741 -0.743

Fig. (3.3) (e) -1.843 -2.365 -0.738 -0.735

by

H = Hc + He + Hint,

Hc = −JS1 · S2,

He = −
N−1∑

i=1

N∑

j=i+1

∑
α

Ω(α)
i,j Iα

i Iα
j ,

Hint = −
2∑

i=1

N∑

j=1

∑
α

∆(α)
i,j Sα

i Iα
j , (3.1)

where the exchange integrals J < 0 and Ω(α)
i,j determine the strength of the

interaction between spins Sn = (Sx
n, Sy

n, Sz
n) in the central system (Hc), and the

spins In = (Ix
n , Iy

n, Iz
n) in the environment (He), respectively. The exchange
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Figure 3.1: (color online) Left: Time evolution of the correlation 〈Ψ(t)|S1 · S2|Ψ(t)〉 of

the two spins in the central system. Dashed horizontal line at -1/4: Correlation in the

initial state (〈Ψ(t = 0)|S1 · S2|Ψ(t = 0)〉 = −1/4); Horizontal line at -3/4: Expectation

value in the singlet state; (a) Environment containing N = 14 quantum spins; (b) N = 16;

(c) N = 18. The parameters Ω
(α)
i,j and ∆

(α)
i,j are uniform random numbers in the range

[−0.15|J |, 0.15|J |]. Right: Time evolution of the concurrence C(t) for three different random

realizations of a spin glass environment. The parameters are uniform random numbers in

the range −0.15|J | ≤ Ω
(α)
i,j , ∆

(α)
i,j ≤ 0.15|J | and the environment contains N = 14 quantum

spins. The transition from an unentangled state (C(t) = 0) to a nearly fully entangled state

(C(t) = 1) is clearly seen.

integrals ∆(α)
i,j control the interaction (Hint) of the central system with its

environment. In Eq.(3.1), the sum over α runs over the x, y and z components
of spin 1/2 operators. The number of spins in the environment is N .

Initially, the central system is in the spin-up - spin-down state and the en-
vironment is in its ground state. Thus, we write the initial state as |Ψ(t =
0)〉 = | ↑↓〉|Φ0〉. The time evolution of the system is obtained by solving the
time-dependent Schrödinger equation for the many-body wave function |Ψ(t)〉,
describing the central system plus the environment. The numerical method
that we use is described in Ref. [11]. It conserves the energy of the whole
system to machine precision.

By changing the parameters of model (3.1), we explore the conditions under
which the central system clearly shows an evolution from the initial spin-up
- spin-down state towards the maximally entangled singlet state. We con-
sider systems that range from the rotationally invariant Heisenberg case to
the extreme case in which He and Hint reduce to the Ising model, topologies
for which the central system couples to two and to all spins of the environ-
ment, and values of parameters that are fixed or are allowed to fluctuate
randomly. Illustrative results of these calculations are shown in Figs. 3.1, -
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Figure 3.2: (color online) Time evolution of the concurrence C(t) for the case of a frustrated

antiferromagnetic environment. The interactions of the central system and the environment

are uniform random numbers in the range −0.15|J | ≤ ∆
(α)
i,j ≤ −0.05|J |. The environment

contains 14 quantum spins, arranged on a triangular lattice and interacting with nearest

neighbors only. The nonzero exchange integrals are uniform random numbers in the range

−0.55|J | ≤ Ω
(α)
i,j ≤ −0.45|J |. The transition from an unentangled state (C(t) = 0) to a

nearly fully entangled state (C(t) = 1) is evident, as is the onset of recurrent behavior due

to the finite size of the environment.

3.4,. In Table 3.1, we present the corresponding numerical data of the en-
ergy 〈Ψ(0)|H|Ψ(0)〉 = 〈Ψ(t)|H|Ψ(t)〉) and of the two-spin correlation 〈S1(t) ·
S2(t)〉 = 〈Ψ(t)|S1 · S2|Ψ(t)〉. For comparison, Table 3.1. also contains the
results of the energy E0 and of the two-spin correlation 〈S1 · S2〉0. in the
ground state of the whole system, as obtained by numerical diagonalization of
the Hamiltonian Eq.(3.1).

We monitor the effects of decoherence by computing the expectation value
〈Ψ(t)|S1 ·S2|Ψ(t)〉. The central system is in the singlet state if 〈S1(t) ·S2(t)〉 =
−3/4, that is if 〈S1(t) · S2(t)〉 reaches its minimum value. We also study the
time evolution of the concurrence C(t), which is a convenient measure for the
entanglement of the spins in the central system [12]. The concurrence is equal
to one if the central system is in the singlet state and is zero for an unentangled
pure state such as the spin-up - spin-down state [12].
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Figure 3.3: (color online) Time evolution of the correlation 〈Ψ(t)|S1 · S2|Ψ(t)〉 of the two

spins in the central system. Environment containing N = 16 quantum spins. Dashed

horizontal line at -1/4: Correlation in the initial state (〈Ψ(t = 0)|S1 · S2|Ψ(t = 0)〉 =

−1/4); Horizontal line at -3/4: Expectation value in the singlet state. For all curves (a-f)

∆
(x)
i,j = ∆

(y)
i,j = 0, that is Hint is Ising like. The values of ∆

(z)
i,j are: (a) random −0.0375 |J |

or 0.0375 |J |, (b-e) random −0.075 |J | or 0.075 |J |, (f) random −0.15 |J | or 0.15 |J |. The

values of Ω
(α)
i,j are uniform random numbers in the range: (b) [−0.0375|J |, 0.0375|J |], (a,c)

[−0.15|J |, 0.15|J |], (d,f) [−0.3|J |, 0.3|J |] and (e) [−|J |, |J |].

3.2 Role of Frustrated Environments

A very extensive search through parameter space leads to the following con-
clusions:

• The maximum amount of entanglement strongly depends on the values
of the model parameters Ω(α)

i,j and ∆(α)
i,j . For the case in which there

is strong decoherence, increasing the size of the environment will en-
hance the decoherence in the central system (compare the curves of
Fig. 3.1. (a,b,c) and Fig. 3.4. (d,e)). Keeping the size of the envi-
ronment fixed, different realizations of the random parameters do not
significantly change the results for the correlation and concurrence (right
panel of Fig. 3.1.). However, the range of random values Ω(α)

i,j and ∆(α)
i,j

for which maximal entanglement can be achieved is narrow, as illustrated
in Figs. 3.3. and 3.4. In Fig. 3.3. we compare results for the same
type of Hint (Ising like) and the same type of He (anisotropic Heisenberg
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Figure 3.4: (color online) Effect of the symmetry of the exchange interactions Ω
(α)
i,j and

∆
(α)
i,j on the time evolution of the correlation 〈Ψ(t)|S1 · S2|Ψ(t)〉 of the two spins in the

central system. Dashed horizontal line at -1/4: Correlation in the initial state (〈Ψ(t =

0)|S1 · S2|Ψ(t = 0)〉 = −1/4); Horizontal line at -3/4: Correlation in the singlet state;

Other lines from top to bottom (at t|J | = 6000): (a) Ising Hint with Ising He, N = 14;

(b) Heisenberg-like Hint with Ising He, N = 14; (c) Heisenberg-like Hint with Heisenberg-

like He, N = 14; (d) Ising Hint with Heisenberg-like He, N = 14; (e) Same as (d) except

that N = 18. We use the term Heisenberg-like Hint (He) to indicate that ∆
(α)
i,j (Ω

(α)
i,j ) are

uniform random numbers in the range [−0.15 |J | , 0.15 |J |]. Likewise, Ising Hint (He) means

that ∆
(x,y)
i,j = 0 (Ω

(x,y)
i,j = 0), and ∆

(z)
i,j (Ω

(z)
i,j ) are random −0.075 |J | or 0.075 |J |.

like), but with different values of the model parameters. In Fig. 3.4. ,
we present results for different types of Hint and He. but for parameters
within the same range.

• Environments that exhibit some form of frustration, such as spin glasses
or frustrated antiferromagnets, may be very effective in producing a high
degree of entanglement between the two central spins, see Figs. 3.1 -3.4.

• Decoherence is most effective if the exchange couplings between the sys-
tem and the environment are random (in a limited range) and anisotropic,
see Figs. 3.3. and 3.4.

• The details of the internal dynamics of the environment affects the max-
imum amount of entanglement that can be achieved [9], and also af-
fects the speed of the initial relaxation (compare the curves of Fig. 3.3.
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(b,c,d,e), Fig. 3.4. (a,d) and Fig. 3.4. (b,c)).

• For the case in which there is strong decoherence, for the same He and
the same type of Hint, decreasing the strengh of Hint will reduce the
relaxation to the finial state, and the final state comes closer to the
singlet state (compare the curves of Fig. 3.3. (a,c) and Fig. 3.3. (d,f)).

Earlier simulations for the Ising model in a transverse field have shown that
time-averaged distributions of the energies of the central system and environ-
ment agree with those of the canonical ensemble at some effective tempera-
ture [13, 14]. Our results do not contradict these findings but show that there
are cases in which the central system relaxes from a high energy state to its
ground state while the environment starts in the ground state and ends up in
state with slightly higher energy. As shown in Fig.4(e), this state is extremely
robust and shows very little fluctuations.

3.3 Summary

For the models under consideration, the efficiency of decoherence decreases
drastically in the following order: Spin glass (random long-range interac-
tions of both signs); Frustrated antiferromagnet (triangular lattice with the
nearest-neighbour interactions); Bipartite antiferromagnet (square lattice with
the nearest-neighbour interactions); One-dimensional ring with the nearest-
neighbour antiferromagnetic interactions. This can be understood as follows.
A change of the state of the central system affects a group of spins in the
environment. The suppression of off-diagonal elements of the reduced density
matrix can be much more effective if the group of disturbed spins is larger.
The state of the central system is the most flexible in the case of a coupling
to a spin glass for which, in the thermodynamic limit, an infinite number of
infinitely closed quasi-equilibrium configurations exist [15, 16]. As a result,
a very small perturbation leads to the change of the system as a whole. This
may be considered as a quantum analog of the phenomenon of “structural re-
laxation” in glasses. This suggests that frustrated spin systems that are close
to the glassy state should provide extremely efficient decoherence.

To conclude, we have demonstrated that frustrations and, especially, glassiness
of the spin environment result in a very strong enhancement of its decohering
action on the central spin system. Our results convincingly show that this
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enhancement can be so strong that solely due to decoherence, a fully disen-
tangled state may evolve into a fully entangled state, even if the environment
contains a relatively small numbers of spins.
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Chapter 4

Evolution of a Quantum Spin

System to its Ground State:

Role of Entanglement and

Interaction Symmetry

This chapter was previously published as
S. Yuan, M.I. Katsnelson, and H. De Raedt, Phys. Rev. A 75, 052109 (2007).

The foundations of non-equilibrium statistical mechanics are still under debate
(for a general introduction to the problem, see, e.g., Ref. [1]; see also a very
recent discussion [2] and Refs. therein). There is a common believe that a
generic “central system” that interacts with a generic environment evolves into
a state described by the canonical ensemble (in the limit of low temperatures,
this means the evolution to the ground state). Experience shows that this
is true but a detailed understanding of this process, which is crucial for a
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rigorous justification of statistical physics and thermodynamics, is still lacking.
In particular, in this context the meaning of “generic” is not clear. The key
question is how the evolution to the equilibrium state depends on the details
of the dynamics of the central system itself, on the environment, and on the
interaction between the central system and the environment.

In one of the first applications of computers to a basic physics problem Fermi,
Pasta, and Ulam attempted to simulate the relaxation to thermal equilibrium
of a system of interacting anharmonic oscillators [3]. The results obtained
appeared to be counterintuitive, as we know now, due to complete integrability
(in the continuum medium limit) of the model they simulated [4].

Bogoliubov [5] has considered in a mathematically rigorous way the evolution
to thermal equilibrium of a classical harmonic oscillator (central system) con-
nected to an environment of classical harmonic oscillators which are already
thermalized (for a generalization to a nonlinear Hamiltonian central system
with one degree of freedom, see in Ref. [6]). Also, for quantum systems
this “bosonic bath” is the bath of choice, starting with the seminal works
by Feynman and Vernon [7] and Caldeira and Leggett [8] (for a review, see
Ref. [9]). On the other hand, as we know now, the bosonic environment dif-
fers in many ways from, say, a spin-bath environment (such as nuclear spins)
that dominate the decoherence processes of magnetic systems at low enough
temperatures [10]. The evolution of quantum spin systems to the equilibrium
state has been investigated in Refs. [11–13], for a very special class of spin
Hamiltonians.

In terms of the modern “decoherence program” quantum systems interacting
with an environment evolve to one of the robust “pointer states”, the super-
position of the pointer states being, in general, not a pointer state [14, 15].
The decoherence program is supposed to explain the macroscopic quantum
superpostion (“Schrödinger cat”) paradox, that is, the inapplicability of the
superposition principle to the macroworld. Indeed, it is confirmed in many
ways that, for the case where the interaction with environment is strong in
comparison with typical energy differences for the central system, the classical
“Schrödinger cat states” are the pointer states. At the same time, some less
trivial pointer states have been found in computer simulations of quantum
spin systems for some range of the model parameters [16–18]. In fact, the
evolution of quantum spin systems to equilibrium is still an open issue (see
also Refs. [19–21]). Recently, the effect of an environment of N À 1 spins on
the entanglement of the two spins of the central system has attracted much
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attention [16–18, 22–30].

The relationship between the pointer states and the eigenstates of the Hamil-
tonian of central system is of special interest for the foundations of quantum
statistical mechanics: The standard scenario assumes that the density matrix
of the system at the equilibrium is diagonal in the basis of these eigenstates.
Paz and Zurek [31] have conjectured that pointer states are the eigenstates of
the central system if the interaction of the central system with each degree of
freedom of the environment is a perturbation, relative to the Hamiltonian of
the central system. In view of the foregoing, it is important to establish the
conditions under which this conjecture holds and to explore situations in which
the interaction with environment can no longer be regarded as a perturbation
with respect to the Hamiltonian of the central system.

In previous chapter, we reported a first collection of results for an antiferro-
magnetic Heisenberg system coupled to a variety of different environments.
Our primary goal was to establish the conditions under which the central sys-
tem relaxes from the initial spin-up - spin-down state towards its ground state,
that is the maximally entangled singlet state. We found that environments
that exhibit some form of frustration, such as spin glasses or frustrated an-
tiferromagnets, may be very effective in producing a final state with a high
degree of entanglement between the two central spins. We demonstrated that
the efficiency of the decoherence process decreases drastically with the type
of environment in the following order: Spin glass and random coupling of
all spins to the central system; Frustrated antiferromagnet (triangular lattice
with the nearest-neighbors interactions); Bipartite antiferromagnet (square
lattice with the nearest-neighbors interactions); One-dimensional ring with
the nearest-neighbors antiferromagnetic interactions [22].

Competing interactions, frustration and glassiness provide a very efficient
mechanism for decoherence whereas the difference between integrable and
chaotic systems is less important [18]. Furthermore, we observed that for
a fixed system size of the environment and in those cases for the decoherence
is effective, different realizations of the random parameters do not significantly
change the results. However, maximal entanglement in the central system was
found for a relatively narrow range of the couplings between the environment
spins and the interaction between the central spins and those of the environ-
ment.

Having established that the decoherence caused by a coupling to a frustrated,
spin-glass-like environment can be a very effective, it is of interest to study in
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Table 4.1: The values of the correlation functions 〈S1 · S2〉, 〈Sz
1Sz

2 〉, 〈Sx
1 Sx

2 〉, the total

magnetization M , the concurrence C and the magnetization 〈Sz
1 〉 for different states of the

central system.

|ϕ〉 〈S1 · S2〉 〈Sz
1Sz

2〉 〈Sx
1 Sx

2 〉 M C 〈Sx
1 〉

1√
2
(|↑↓〉 − |↓↑〉) −3/4 −1/4 −1/4 0 1 0

1√
2
(|↑↓〉+ |↓↑〉) 1/4 −1/4 1/4 0 1 0

1√
2
(|↑↑〉 − |↓↓〉) 1/4 1/4 −1/4 0 1 0

1√
2
(|↑↑〉+ |↓↓〉) 1/4 1/4 1/4 0 1 0

|↑↓〉 −1/4 −1/4 0 0 0 1/2

|↓↑〉 −1/4 −1/4 0 0 0 −1/2

|↑↑〉 1/4 1/4 0 1 0 1/2

|↓↓〉 1/4 1/4 0 −1 0 −1/2

detail, the time evolution of the central system coupled to such an environ-
ment. In this chapter, we consider as a central system, two ferro- or antiferro-
magnetically coupled spins that interact with a spin-glass environment. The
interactions between each of the spin components of the latter are chosen ran-
domly and uniformly from a specified interval centered around zero, making
it very unlikely that there are conserved quantities in this three-component
spin-glass. For the interaction of the central system with each of the spins of
the environment we consider two cases.

In the first case, the couplings between the three components are generated
using the same procedure as used for the environment. In the second case,
the central system interacts with the environment via the z-components of
the spins only. This implies that both the Hamiltonians that describe the
central system (isotropic Heisenberg model) and the interaction between the
central system and the environment commute with the total magnetization of
the central system; hence the latter is conserved during the time evolution.
In contrast to the naive picture in which the presence of conserved quantities
reduces the decoherence, we find that the presence of a conserved quantity
may affect significantly the nature of the stationary state to which the central
system relaxes.
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4.1 Model

The model Hamiltonian that we study is defined by

H = Hc + He + Hce,

Hc = −JS1 · S2,

He = −
N−1∑

i=1

N∑

j=i+1

∑
α

Ω(α)
i,j Iα

i Iα
j ,

Hce = −
2∑

i=1

N∑

j=1

∑
α

∆(α)
i,j Sα

i Iα
j , (4.1)

where the exchange integrals J and Ω(α)
i,j determine the strength of the inter-

action between spins Sn = (Sx
n, Sy

n, Sz
n) in the central system (Hc), and the

spins In = (Ix
n , Iy

n, Iz
n) in the environment (He), respectively. The exchange

integrals ∆(α)
i,j control the interaction (Hce) of the central system with its envi-

ronment. In Eq.(4.1), the sum over α runs over the x, y and z components of
spin-1/2 operators S and I. The exchange integral J of the central system can
be positive or negative, the corresponding ground state of the central system
being ferromagnetic or antiferromagnetic, respectively.

In the sequel, we will use the term “Heisenberg-like” Hce (He) to indicate
that ∆(α)

i,j (Ω(α)
i,j ) are uniform random numbers in the range [−∆|J |, ∆|J |]

([−Ω|J |, Ω|J |]) for all α’s and use the expression “Ising-like” Hce (He) to indi-
cate that ∆(x,y)

i,j = 0 (Ω(x,y)
i,j = 0), and that ∆(z)

i,j (Ω(z)
i,j ) are dichotomic random

variables taking the values ±∆ (±Ω). The parameters ∆ and Ω determine the
maximum strength of the interactions.

The quantum state of central system is completely determined by its reduced
density matrix, the 4 × 4 matrix that is obtained by computing the trace
of the full density matrix over all but the four states of the central system.
In our simulation work, the whole system is assumed to be in a pure state,
denoted by |Ψ(t)〉. Although the reduced density matrix contains all the in-
formation about the central system, it is often convenient to characterize the
state of the central system by other quantities, such as the correlation func-
tions 〈Ψ(t)|S1 · S2|Ψ(t)〉, 〈Ψ(t)|Sz

1Sz
2 |Ψ(t)〉, and 〈Ψ(t)|Sx

1 Sx
2 |Ψ(t)〉, the single-

spin magnetizations 〈Ψ(t)|Sx
1 |Ψ(t)〉, 〈Ψ(t)|Sx

2 |Ψ(t)〉, the total magnetization
M ≡ 〈Ψ(t)| (Sz

1 + Sz
2) |Ψ(t)〉, and the concurrence C(t) [33, 34]. The concur-

rence, which is a convenient measure for the entanglement of the spins in the
central system, is equal to one if the state of central system is unchanged under
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a flip of the two spins, and is zero for an unentangled pure state such as the
spin-up - spin-down state. In Table 4.1, we show the values of these quantities
for to different states of the central system.

As the energy of central system is given by −J〈Ψ(t)|S1 · S2|Ψ(t)〉, it follows
from Table 4.1 that the four eigenstates of the central system Hc are given by

|S〉 =
|↑↓〉 − |↓↑〉√

2
,

|T0〉 =
|↑↓〉+ |↓↑〉√

2
,

|T1〉 = |↑↑〉 ,
|T−1〉 = |↓↓〉 , (4.2)

satisfying
Hc |S〉 = ES |S〉 , Hc |T1,0,−1〉 = ET |T1,0,−1〉 , (4.3)

where ES = 3J/4 and ET = −J/4.

From Table 4.1, it is clear that the singlet state |S〉 is most easily distinguished
from the others as the central system is in the singlet state if and only if
〈S1 · S2〉 = −3/4. To identify other states, we usually need to know at least
two of the quantities listed in Table 4.1. For example, to make sure that the
system is the triplet state |T0〉, the values of 〈S1 ·S2〉 and 〈Sz

1Sz
2〉 should match

with the corresponding entries of Table 4.1. Likewise, the central system will
be in the state |↑↑〉 if 〈S1 · S2〉 and M agree with the corresponding entries of
Table 4.1.

In general, we monitor the effects of the decoherence by plotting the time de-
pendence of the two-spin correlation function 〈S1 ·S2〉 and the matrix elements
of the density matrix. We compute the matrix elements of the density matrix
in the basis of eigenvectors of the central system (see Eq.(4.2)). If necessary
to determine the nature of the state, we consider all the quantities listed in
Table 4.1.

The simulation procedure is as follows. First, we select a set of model param-
eters. Next, we compute the ground state |φ0〉 of the environment and, for
reference, the ground state of the whole system also. The spin-up – spin-down
state (|↑↓〉) is taken as the initial state of the central system. Thus, the initial
state of the system reads |Ψ(t = 0)〉〉 = |↑↓〉 |φ0〉 and is a product state of the
state of the central system and the ground state of the environment which,
in general is a (very complicated) linear combination of the 2N basis states of
the environment.
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The time evolution of the whole system is obtained by solving the time-
dependent Schrödinger equation for the many-body wave function |Ψ(t)〉, de-
scribing the central system plus the environment. The numerical method that
we use is described in Ref. [32]. It conserves the energy of the whole system
to machine precision.

In our model, decoherence is solely due to fact that the initial product state
|Ψ(0)〉 = |↑↓〉 evolves into an entangled state of the whole system. The interac-
tion with the environment causes the initial pure state of the central system to
evolve into a mixed state, described by a reduced density matrix [35], obtained
by tracing out all the degrees of freedom of the environment [7, 9, 14, 15]. If
the Hamiltonian of the central system Hc is a perturbation, relative to the
interaction Hamiltonian Hce, the pointer states are eigenstates of Hce [15, 31].
On the other hand, if Hce is much smaller than the typical energy differences
in the central system, the pointer states are eigenstates of Hc, that is, they
may be singlet or triplet states. In fact, as we will show, the selection of
the eigenstate as the pointer state is also determined by the state and the
dynamics of the environment.

In the simulations that we discuss in this chapterchapter, the interactions
between the central system and the environment are either Ising or Heisenberg-
like. The interesting regime for decoherence occurs when each coupling of the
central system with the environment is weak, that is, ∆ ¿ |J |, but there is
of course nothing that prevents us from performing simulations outside this
regime. The interaction within the environment are taken to be Heisenberg-
like, Ω being a parameter that we change.

4.2 Heisenberg-like Hce

4.2.1 Ferromagnetic Central System

In this section, we consider a ferromagnetic (J = 1) central system that in-
teracts with the environment via a Heisenberg-like interaction (recall that
throughout this chapter the environment itself is always Heisenberg-like).

In Fig. 4.1, we present simulation results for the two-spin correlation function
for different values of the parameter Ω that determines the maximum strength
of the coupling between the N(N − 1)/2 pairs of spins in the environment.
Clearly, in case (a), the relaxation is rather slow and confirming that there is
relaxation to the ground state requires a prohibitively long simulation. For
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Figure 4.1: (Color online) The time evolution of the correlation 〈Ψ(t)|S1 · S2|Ψ(t)〉 of the

ferromagnetic central system with Heisenberg-like Hce and He. The model parameters are

∆ = 0.15 and a: Ω = 0.075; b: Ω = 0.15; c: Ω = 0.20; d: Ω = 0.30; e: Ω = 1. The number

of spins in the environment is N = 14.

cases (b) – (d), the results are in concert with the intuitive picture of relaxation
due to decoherence: The correlation shows the relaxation from the up-down
initial state of the central system to the fully polarized state in which the two
spins point in the same direction.

An important observation is that our data convincingly shows that it is not
necessary to have a macroscopically large environment for decoherence to cause
relaxation to the ground state: A spin-glass with N = 14 spins seems to
be more than enough to mimic such an environment. This observation is
essential for numerical simulations of relatively small systems to yield the
correct qualitative behavior.

Qualitative arguments for the high efficiency of the spin-glass bath were given
in Ref. [22]. Since the spin-glasses possess a huge amount of the states that
have an energy close to the ground state energy but have wave functions
that are very different from the ground state, the orthogonality catastrophe,
blocking the quantum interference in the central system [9, 14] is very strongly
pronounced in this case.

This conclusion is further supported by Fig. 4.2 where we show the diagonal
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Figure 4.2: (Color online) The time evolution of the diagonal matrix elements of the reduced

density matrix of the central system for ∆ = 0.15 and Ω = 0.15 (case (b) of Fig. 4.1). The

number of spins in the environment is N = 14.

elements of the reduced density matrix for case (b). After reaching the steady
state, the nondiagonal elements exhibit minute fluctuations about zero and
are therefore not shown. From Fig. 4.2, it is then clear that central system
relaxes to a mixture of the (spin-up, spin-up), (spin-down, spin-down), and
triplet state, as expected of intuitive grounds. In case (e), the characteristic
strength of the interactions between the spins in the environment is of the
same order as the exchange coupling in the central system (Ω ≈ J), a regime
in which there clearly is significant transfer of energy, back-and-forth, between
the central system and the environment.

From the data for (b) – (d), shown in Fig. 4.1, we conclude that the time
required to let the central system relax to a state that is close to the ground
state depends on the energy scale (Ω) of the random interactions between
the spins in the environment. As it is difficult to define the point in time at
which the central system has reached its stationary state, we have not made
an attempt to characterize the dependence of the relaxation time on Ω.
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Figure 4.3: (Color online) The time evolution of the correlation 〈Ψ(t)|S1 · S2|Ψ(t)〉 of the

antiferromagnetic central system with Heisenberg-like Hce and He. The model parameters

are ∆ = 0.15 and a: Ω = 0.075; b: Ω = 0.15; c: Ω = 0.20; d: Ω = 0.30; e: Ω = 1. The

number of spins in the environment is N = 14.

4.2.2 Antiferromagnetic Central System

We now consider what happens if we replace the ferromagnetic central system
by an antiferromagnetic one.

The main difference between the antiferromagnetic and the ferromagnetic cen-
tral system is that the ground state of the former is maximally entangled (a
singlet) whereas the latter is a fully polarized product state.

In Fig. 4.3, we present simulation results for the two-spin correlation function
for different values of the parameter Ω. In passing, we mention that in our
simulations, we change the sign of J only, that is we use the same parameters
for Hce and He as in the corresponding simulations of the ferromagnetic case.
Apart from the change is sign, the curves for all cases (a–e) in Fig. 4.1 and
Fig. 4.3 are qualitatively similar. However, this is a little deceptive.

As for the ferromagnetic central system, in case (a), the relaxation is rather
slow and confirming that there is relaxation to the ground state requires a
prohibitively long simulation. In case (e), we have Ω ≈ |J | and as already
explained earlier, this case is not of immediate relevance to the question ad-
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Figure 4.4: (Color online) The time evolution of the diagonal matrix elements of the reduced

density matrix of the central system for ∆ = 0.15 and Ω = 0.15 (case (b) of Fig. 4.3). The

number of spins in the environment is N = 14.

dressed in this chapter. For cases (b) – (d), the results are in concert with
the intuitive picture of relaxation due to decoherence except that the central
system does not seem to relax to its true ground state. Indeed, the two-spin
correlation relaxes to a value of about 0.65 – 0.70, which is much further away
from the ground state value −3/4 than we would have expected on the basis
of the results of the ferromagnetic central system. In the true ground state of
the whole system, the value of the two-spin correlation in case (b) is −0.7232,
and hence significantly lower than the typical values, reached after relaxation.
On the one hand, it is clear (and to be expected) that the coupling to the
environment changes the ground state of the central system, but on the other
hand, our numerical calculations show that this change is too little to explain
the apparent difference from the results obtained from the time-dependent
solution.

In Fig. 4.4, we plot the diagonal matrix elements of the density matrix (calcu-
lated in the basis for which the Hamiltonian of the central system is diagonal)
for case (b). From these data and the fact that the nondiagonal elements are
negligibly small (data not shown), we conclude that the central system relaxes
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Figure 4.5: (Color online) The time evolution of the correlation 〈Ψ(t)|S1 · S2|Ψ(t)〉 of the

antiferromagnetic central system with Ising-like Hce and Heisenberg-like He. The model

parameters are ∆ = 0.075 and a: Ω = 0.075; b: Ω = 0.15; c: Ω = 0.30; d: Ω = 1. The

number of spins in the environment is N = 16.

to a mixture of the singlet state and the (spin-up, spin-up) and (spin-down,
spin-down) states, the former having much more weight (0.9 to 0.05) than the
two latter states. Thus, at this point, we conclude that our results suggest
that decoherence is less effective for letting a central system relax to its ground
state if this ground state is entangled than if it is a product state. Remarkably,
this conclusion changes drastically when we replace the Heisenberg-like Hce

by an Ising-like Hce, as we demonstrate next.

4.3 Ising-like Hce

In our simulation, the initial state of the central system is |↑↓〉 and this state
has total magnetization M = 0. For an Ising-like Hce with Heisenberg-like
He coupling, the magnetization M of the central system commutes with the
Hamiltonian (4.1) of the whole system. Therefore, the magnetization of the
central system is conserved during the time evolution, and the central system
will always stay in the subspace with M = 0. In this subspace, the ground
state for antiferromagnetic central system is the singlet state |S〉 while for the
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ferromagnetic central system the ground state (in the M = 0 subspace) is the
entangled state |T0〉. Thus, in the Ising-like Hce, starting from the initial state
|↑↓〉, the central system should relax to an entangled state, for both a ferro-
or antiferromagnetic central system.

If the initial state of the central system is |↑↓〉, it can be proven (see Appendix)
that

〈Ψ(t)|S1 · S2|Ψ(t)〉F + 〈Ψ(t)|S1 · S2|Ψ(t)〉A = −1
2
, (4.4)

where the subscript F and A refer to the ferro- antiferromagnetic central
system, respectively. Likewise, for the concurrence we find CF (t) = CA (t)
and similar symmetry relations hold for the other quantities of interest. Of
course, this symmetry is reflected in our numerical data also, hence we can
limit ourselves to presenting data for the antiferromagnetic central system
with Ising-like Hce and Heisenberg-like He.

In Fig. 4.5, we present simulation results for the two-spin correlation function
for different values of the parameter Ω. Notice that compared to Figs. 4.1– 4.4,
we show data for a time interval that is three times larger. For the cases (b,c),
the main difference between Fig. 4.3 and Fig. 4.5 is that for the latter and
unlike for the former, the central system relaxes to a state that is very close to
the ground state. Thus, we conclude that the presence of a conserved quantity
(the magnetization of the central system) acts as a catalyzer for relaxing to
the ground state. Although it is quite obvious that by restricting the time
evolution of the system to the M = 0 subspace, we can somehow force the
system to relax to the entangled state, it is by no means obvious why the
central system actually does relax to a state that is very close to the ground
state.

Intuitively, we would expect that the presence of a conserved quantity hin-
ders the relaxation and indeed, that is what we observe in cases (a,b) where
the relaxation is much slower than in cases (a,b) of Fig. 4.1 or of Fig. 4.3.
Notwithstanding this, in the presence of a conserved quantity, the central sys-
tem relaxes to a state that is much closer to the true ground state than the
one it would relax to in the absence of this conserved quantity.

4.4 Role of ∆

Now, we study the effect of changing the strength ∆ of the coupling between
the central system and the environment. For a qualitative discussion of this
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Figure 4.6: (Color online) The time evolution of the correlation 〈Ψ(t)|S1 · S2|Ψ(t)〉 of the

antiferromagnetic central system with Ising-like Hce and Heisenberg-like He. a: ∆ = 0.0375

and Ω = 0.15; b: ∆ = 0.075 and Ω = 0.15; c: ∆ = 0.075 and Ω = 0.3; d: ∆ = 0.15 and

Ω = 0.3. The number of spins in the environment is N = 16.

aspect, it suffices to consider the case of Ising-like Hce, as we have seen that
then, the central system most easily relaxes to its ground state.

In Fig. 4.6, we present some representative simulation results for the two-
spin correlation function for different values of the parameters ∆ and Ω. By
simply comparing the time intervals of the plots for cases (a,b) and (c,d), it
is immediately clear that the speed of relaxation changes drastically with ∆.
For a “slow” environment (small enough Ω) the effect is rather trivial, namely,
the larger ∆ the faster the relaxation. In the case (c) the system comes close
to the triplet state in comparison with (d), probably, since the perturbation
of the ground state of the central system is smaller.

4.5 Sensitivity of the Results to Characteristics of

the Environment

Finally, we study the effect of small changes to the initial state of the environ-
ment and of the number of spins in the environment.
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Figure 4.7: (Color online) The time evolution of the correlation 〈Ψ(t)|S1 · S2|Ψ(t)〉 of a

ferromagnetic central system with Heisenberg-like Hce and Heisenberg-like He with ∆ = 0.15

and Ω = 0.3. Initial state of the environment is solid line (a): ground state; dashed line (b):

close to but not the same as the ground state. The number of spins in the environment is

N = 14.
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Figure 4.8: (Color online) The time evolution of the diagonal elements (left panel) and

the real parts of the off-digonal elements (right panel) of the reduced density matrix in the

antiferromagnetic central system, with Heisenberg-like Hce and Heisenberg-like He (∆ = 0.15

and Ω = 0.15). The initial state of the central two spins is the up-down state, and the

environment is initially in a random state. The number of spins in the environment is

N = 14.
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Figure 4.9: (Color online) The time evolution of the correlation 〈Ψ(t)|S1 · S2|Ψ(t)〉 of a

ferromagnetic central system with Heisenberg-like Hce and Heisenberg-like He with ∆ = 0.15

and Ω = 0.3. The number of spins in the environment is a: N = 8; b: N = 9; c: N = 10; d:

N = 11; e: N = 12.

For the spin glasses, the true ground state is rather difficult to reach, and there
are a lot of states with a very close energy but essentially different character-
istics. To check how relevant it can be for our observations, we replace the
environment ground state by one of these states and study the time evolution
of the central system as we did before. In Fig. 4.7, we show typical results
for a ferromagnetic central system with Heisenberg-like Hce and Heisenberg-
like He. In the initial state, the energy of the environment Eb = −2.247,
which is a little bit higher than the ground-state energy of the environment
Ea = −2.321. The time evolution of the correlation function of the two central
spins for the cases (a) and (b) (see Fig. 4.7) clearly demonstrates that in both
cases, the central system evolves to the ground state, and that the dynamics
of this evolution is also very similar. This confirms that as long as the energy
of the initial state of the environment is close to its ground state energy, the
qualitative features of the decoherence process remain the same. If, on the
other hand, we prepare the environment in a random state (which, roughly
speaking, corresponds to a very high temperature), the central system does
not relax to its ground state but to a mixed state with a diagonal density
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matrix, as expected (see Fig. 4.8).

Second, we study the effect of finite size of the environment on the decoher-
ence process. Some typical results for a ferromagnetic central system with
Heisenberg-like Hce and Heisenberg-like He with different numbers N of the
environment spins are shown in Fig. 4.9. It looks reasonable to define the bor-
der between a mesoscopic and a macroscopic environment as the value of N for
which the oscillations in the two-particle correlation are no longer well-defined.
Thus, on the basis of the data displayed in Fig. 4.9 one can say that N ≈ 11
is large enough for the spin-glass environment to mimic the macroscopic sys-
tem. Needless to say, this statement is very qualitative but, in any case, the
N dependence of the results shown in Fig. 4.9 demonstrates the effectiveness
of the spinglass as a model environment to study decoherence processes with
rather modest requirements as to the environment size.

4.6 Summary

We have presented the results of simulations that address the question of how
a small quantum system evolves to its ground state when it is brought into
contact with an environment consisting of quantum spins. Our systematic
study confirms the suggestion of Ref. [22] that the use of a spin-glass thermal
bath is indeed a very efficient way to simulate decoherence processes. Envi-
ronments containing 14 – 16 spins are sufficiently large to induce a complete
decay of the Rabi oscillations; this is in sharp contrast to environments that
have a more simple structure, such as spin-chains or square lattices [22].

In general, it turns out that the relaxation to the ground state is a more com-
plicated process than one would naively expect, depending essentially on the
ratio between parameters of the interaction and environment Hamiltonians.
Two general conclusions are: (i) the central system more easily evolves to its
ground state when the latter is less entangled (e.g., up-down state compared to
the singlet) and (ii) constraints on the system such as existence of additional
integrals of motion can make the evolution to the ground state more efficient.

At first sight, the latter statement looks a bit counterintuitive since it means
that it may happen that a more regular system exhibits stronger relaxation
than a chaotic one. The reason that it may happen is that the larger is
the dimensionality of available Hilbert space for the central system, the more
complicated is the decoherence process due to the appearance of the whole
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hierarchy of decoherence times for different elements of the reduced density
matrix. A manifestation of this phenomenon has been observed earlier [16]:
Under certain conditions, the same central system as studied here (four by
four reduced density matrix) displays “quantum oscillations without quantum
coherence” whereas for a single spin in magnetic field (two by two reduced den-
sity matrix) decoherence can, relatively easily, suppress the Rabi oscillations
completely.

We believe that these results can stimulate further development and clarifi-
cation of the “decoherence program” [15, 36]. Assuming that the interaction
with an environment is weak enough, a hypothesis that the pointer states
should be the eigenstates of the Hamiltonian of the central system was pro-
posed [31], with the very ambitious aim of explaining the basic phenomenon
of “quantum jumps”.

In this chapter, we demonstrate that, apart from just the strength of dif-
ferent interactions, also their symmetry and the amount of entanglement of
the ground state of the central system may play an essential role. Among
the cases that we consider in this chapter, there are two situations where the
standard decoherence scenario works as envisaged [31]. If the ground state is
not entangled (as in the case of the up-down state for the case of ferromagnetic
interactions) or if the Hilbert space is restricted due to some conservation laws
(as for the singlet ground state in the Ising-type interaction Hamiltonian), the
central system clearly evolves to its ground state, supposed to be the pointer
state according to Ref. [31]. However, if the ground state of the central system
is the fully entangled singlet state, and the interaction Hamiltonian is generic,
without symmetries, the system evolves to some mixture of the ground state
and excited states. Of course, the data presented here are not sufficient to
make strong, general statements about the character of the pointer states, but
we hope that, at least, our work will stimulate further research to establish
the conditions under which the conjecture holds that the pointer states are
the eigenstates of the central system.

Appendix

For the Hamiltonian Eq.(4.1), if ∆(x)
i,j = ∆(y)

i,j = 0, Hce is Ising-like and it is easy
to prove that [M,H] = 0, implying that the magnetization of the central two
spins is a conserved quantity. In our simulations, we take as the initial state
of the central system the spin-up - spin-down state (|↑↓〉 = (|S〉+ |T0〉)/

√
2).
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Hence, because [M, H] = 0, the central spin system will always stay in the
subspace of M = 0. Thus, at any time t, the state of the whole system can be
written as

|Ψ(t)〉 = |S〉|φS(t)〉+ |T0〉|φT0(t)〉, (4.5)

where |φS〉 and |φT0〉 denote the states of the environment.

Let us denote by {|ψi〉} a complete set of states of the environment. Within the
subspace spanned by the states {|S〉|ψi〉, |T0〉|ψi〉}, the Hamiltonian Eq.(4.1)
can be written as

H = ES |S〉〈S|+ ET |T0〉〈T0|+ He

−1
2

N∑

j=1

(∆(z)
1,j −∆(z)

2,j ) (|S〉〈T0|+ |T0〉〈S|) Iz
j , (4.6)

where we used 〈S|Sz
1 |S〉 = 〈T0|Sz

1 |T0〉 = 〈S|Sz
2 |S〉 = 〈T0|Sz

2 |T0〉 = 0, 〈T0|Sz
1 |S〉 =

1/2, and 〈T0|Sz
2 |S〉 = −1/2.

Introducing a pseudo-spin σ = (σx, σy, σz) such that the eigenvalues +1 and
−1 of σz correspond to the states |S〉 and |T0〉, respectively, Eq.(4.6) can be
written as

H =
ES −ET

2
+

ES + ET

2
σz + He

−1
2

N∑

j=1

(∆(z)
1,j −∆(z)

2,j )I
z
j σx, (4.7)

showing that in the case of Ising-like Hce, the model Eq.(4.1) with two central
spins is equivalent to the model Eq.(4.7) with one central spin.

From Eq.(4.7), it follows immediately that the Hamiltonian is invariant under
the transformation {J, σz} → {−J,−σz}. Indeed, the first, constant term
in Eq.(4.7) is irrelevant and we can change the sign of the second term by
rotating the speudo-spin by 180 degrees about the x-axis. Therefore, if the
initial state is invariant under this transformation also, the time-dependent
physical properties will not depend on the choice of the sign of J , hence the
ferro- and antiferromagnetic system will behave in exactly the same manner.

For the case at hand, the initial state can be written as (|S〉 + |T0〉)|φ0〉/
√

2,
which is trivially invariant under the transformation σz → −σz. Summarizing:
For Ising-like Hce (∆(x)

i,j = ∆(y)
i,j = 0), and an initial state that is invariant for
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the transformation |S〉 ↔ |T0〉), 〈Ψ(t)|A|Ψ(t)〉 does not depend on the sign
of J , for any observable A of the central system that is invariant for this
transformation. Under these conditions, it is easy to prove that Eq.(4.4) holds
and that the concurrence does not depend on the sign of J .
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Chapter 5

Importance of Bath Dynamics

for Decoherence in Spin

Systems

This chapter was previously published as
S. Yuan, M.I. Katsnelson, and H. De Raedt, arXiv:0707.2372.

It is commonly accepted that decoherence by nuclear spins is the main ob-
stacle for realization of quantum computations in magnetic systems; see, e.g.,
discussions of specific silicon [1] and carbon [2] based quantum computers.
Therefore, understanding the decoherence in quantum spin systems is a sub-
ject of numerous works (for review, see Refs. [3, 4]). The issue seems to be
very complicated and despite many efforts, even some basic questions about
character of the decoherence process are unsolved yet. Most of the problems
cannot be solved analytically, in particular if there is more than one spin in
the central system, but we can use the computer to simulate the dynamics
and find useful information.
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An unusual two-step decoherence was reported in Ref. [5]. This is an important
phenomenon since it implies that, generally speaking, the observation of the
Rabi oscillations does not guarantee access to sectors of the Hilbert space
that may be essential for efficient quantum computation. Its origin is still
poorly understood; it was described analytically in a framework of an exactly
solvable model of noninteracting spins in the bath [6] but it is not clear how
sensitive it is to the details of spin-spin interactions. In the real world, the
environment has its own dynamics, which could be much slower or comparable
to the central dynamics. First attempts to investigate numerically the effects
of the environment dynamics [7] did not lead to definite conclusions.

The behavior of an open quantum system crucially depends on the ratio of
typical energy differences of the central system δEc and the energy Ece which
characterizes the interaction of the central system with the environment. The
case δEc ¿ Ece has been studied extensively in relation to the “Schrödinger
cat” problem and the physics is quite clear [8, 9]: As a result of time evolution,
the central system passes to one of the “pointer states” [9] which, in this
case, are the eigenstates of the interaction Hamiltonian. The opposite case,
δEc À Ece is less well understood. There is a conjecture that in this case the
pointer states should be eigenstates of the Hamiltonian of the central system,
but this is proven only for a very simple model [10]. On the other hand, this
case is of primary interest if, say, the central system consists of electron spins
whereas the environment are nuclear spins (e.g., if one considers the possibility
of quantum computation using molecular magnets [11, 12]).

In fact, as we will show, the selection of an eigenstate as the pointer state
is also determined by the state and the dynamics of the environment. Else-
where [13, 14], we have already shown that if the environment is a spin glass
and initially in the ground state, then independent of the initial state of the
central system, the central system relaxes to a state that is very close to its
ground state: The ground state is selected as the point state of the central
system. In this chapter, we consider a realistic model of decoherence of a sys-
tem of two spins by an environment of nuclear spins at elevated temperatures.
We will demonstrate that the decoherence of the central system depends in a
significant, nonintuitive manner on the details of the dynamics of the environ-
ment.
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5.1 Model

We consider a generic quantum spin model described by the Hamiltonian
H = Hc + Hce + He where

Hc = −JS1 · S2,

He = −
N−1∑

i=1

N∑

j=i+1

∑
α

Ω(α)
i,j Iα

i Iα
j ,

and

Hce = −
2∑

i=1

N∑

j=1

∑
α

∆(α)
i,j Sα

i Iα
j , (5.1)

are the Hamiltonians of the central system, the environment, and the inter-
action of the central system and the environment, respectively. In Eq.(5.1),
the exchange integrals J and Ω(α)

i,j determine the strength of the interaction
between spins Sn = (Sx

n, Sy
n, Sz

n) of the central system Hc, and the spins
In = (Ix

n , Iy
n, Iz

n) in the environment He, respectively. The exchange integrals
∆(α)

i,j control the interaction Hce of the central system with its environment.
In Eq.(5.1), the sum over α runs over the x, y and z components of spin-1/2
operators S and I.

In the sequel, we will use the term “Heisenberg-like” He to indicate that each
Ω(α)

i,j is a uniform random number in the range [−Ω|J |, Ω|J |], Ω being a free
parameter. We will consider two different kinds of Hce, namely rotational
invariant Heisenberg interactions ∆(α)

i,j ≡ ∆ and “Ising-like” interactions for

which ∆(x)
i,j = ∆(y)

i,j = 0 and ∆(z)
i,j are dichotomic random variables, taking the

values ±∆. Obviously, if Hce is “Ising like”, the total magnetization of the
central system (M = Sz

1 + Sz
2) is a conserved quantity.

As we demonstrate in this chapter, the connectivity of the spins in the envi-
ronment affects the decoherence in a nontrivial manner. We characterize this
connectivity by the number K, the number of environment spins with which
a spin in the environment interacts. If K = 0, each spin in the environment
interacts with the central system only. If K = 2, the structure of the envi-
ronment is assumed to be that of a ring, that is each spin in the environment
interacts with two other spins only. Likewise, K = 4 and K = 6 correspond
environments in which the spins are placed on a square or triangular lattice,
respectively and interact with nearest-neighbors only. If K = N −1, each spin
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in the environment interacts with all the other spins in the environment and,
to give this case a name, we will refer to this case as “spin glass”.

If the Hamiltonian of the central system Hc is a perturbation, relative to the
interaction Hamiltonian Hce, the pointer states are eigenstates of Hce [9]. In
the opposite case, that is the regime |∆| ¿ |J | that we explore in this chapter,
the pointer states are supposed to be eigenstates of Hc [10]. The latter are
given by |1〉 ≡ |T1〉 = |↑↑〉, |2〉 ≡ |S〉 = (|↑↓〉 − |↓↑〉)/√2, |3〉 ≡ |T0〉 =
(|↑↓〉 + |↓↑〉)/√2, and |4〉 ≡ |T−1〉 = |↓↓〉, satisfying Hc|S〉 = (3J/4)|S〉 and
Hc|Ti〉 = (−J/4)|Ti〉 for i = −1, 0, 1.To check this conjecture is one of the
main aims of our simulations.

The simulation procedure is as follows. We generate a random superposition
|φ〉 of all the basis states of the environment. This state corresponds to the
equilibrium density matrix of the environment at infinite temperature. The
spin-up – spin-down state (|↑↓〉) is taken as the initial state of the central sys-
tem. Thus, the initial state of the whole system reads |Ψ(t = 0)〉〉 = |↑↓〉 |φ〉
and is a product state of the state of the central system and the random state
of the environment which, in general is a (very complicated) linear combina-
tion of the 2N basis states of the environment. In our simulations we take
N = 16 which, from earlier work [13, 14], we know is sufficiently large for the
environment to behave as a “large” system. For a given, fixed set of model
parameters, the time evolution of the whole system is obtained by solving the
time-dependent Schrödinger equation for the many-body wave function |Ψ(t)〉,
describing the central system plus the environment. The numerical method
that we use is described in Ref. [15]. It conserves the energy of the whole
system to machine precision. We monitor the effects of the decoherence by
plotting the time dependence of the matrix elements of the reduced density
matrix of the central system. As explained earlier, in the regime of inter-
est |∆| ¿ |J |, the pointer states are the eigenstates of the central systems,
hence we compute the matrix elements of the density matrix in the basis of
eigenvectors of the central system.

5.2 Isotropic Heisenberg Coupling

In Fig. 5.1, we show the time evolution of the elements of the reduced density
matrix of the central system for different connectivity numbers K and Heisen-
berg or Heisenberg-like interactions between central system and the spins in
the environment. We conclude that:
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Figure 5.1: (Color online) The time evolution of the real part of the off-diagonal element

ρ23 (right panel) and the diagonal elements ρ11, . . . , ρ44 (left panel) of the reduced density

matrix of a central system (with J = −5), interacting with a Heisenberg-like environment

He (with Ω = 0.15) via an isotropic Heisenberg Hamiltonian Hce (with ∆ = −0.075 ) for

different connectivity numbers K of the spins in the environment: (a) K = 0; (b) K = 2;

(c) K = 4; (d) K = 6; (e) K = N − 1.

1. In agreement with earlier work [5, 6], we find that in the absence of
interactions between the environment spins (K = 0) and after the ini-
tial fast decay, the central system exhibits long-time oscillations (see
Fig. 5.1(a)(left)). In this case and in the limit of a large environment,
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we have [6]

Re ρ23 (t) =

[
1
6

+
(1− bt2)e−ct2

3

]
cosωt, (5.2)

where b = N∆2/4, c = b/2 and ω = J−∆. Equation (5.2) clearly shows
the two-step process, that is, after the initial Gaussian decay of the
amplitude of the oscillations, the oscillations revive and their amplitude
levels of [6]. Notice that because of conservation laws, this behavior does
not change if the environment is described by an isotropic Heisenberg
Hamiltonian (Ω(α)

i,j ≡ Ω for all α, i and j), whatever the value of K. If,

as in Ref. [5], we take ∆(x)
i,j = ∆(y)

i,j = ∆(z)
i,j ∈ [0, ∆] random instead of the

same, the amplitude of the long-living oscillations is no longer constant
but decays very slowly [5].

2. The presence of Heisenberg-like (non-isotropic, random) interactions be-
tween the spins of the environment leads to a reduction and a decay
of the amplitude of the long-living oscillations (see Fig. 5.1(b-e)(left)).
The larger the connectivity number K, the faster is the decay of the
amplitude. When K reaches its maximum K = N − 1 (spin glass), the
second step in the decoherence process is no longer separated from the
initial decay. In fact, it seems as if it has merged with the final stage of
the first step (see Fig. 5.1(e)(left)). For K = N − 1, the time evolution
of ρ23 (t) can be fitted well by the function

Re ρ23 (t) =

[
e−a′t

6
+

(1− b′t2)e−c′t2

3

]
cosω′t, (5.3)

with a′ = 0.13403, b′ = 0.00659, c′ = 0.01085 and ω′ = 5.01037. For
comparison, the values that enter Eq.(5.2) are b = 0.0225, c = 0.01125
and ω = 4.925. It is of interest to note that if the dynamics of the
environment is sufficiently slow (Ω ≈ 0.01 in Ref. [5]), this dynamics
apparently does not affect the decoherence of the central spins [5]. Thus,
the effectiveness of the decoherence process not only depends on K but
also on the details of the interactions within the environment.

3. According to the general picture of decoherence [9], for an environment
with nontrivial internal dynamics that initially is in a random superpo-
sition of all its eigenstates, we expect that the central system will evolve
to a stable mixture of its eigenstates. In other words, the decoherence
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Figure 5.2: (Color online) The time evolution of the real part of the off-diagonal element

ρ23 of the reduced density matrix of a central system (with J = −1), interacting with a

Heisenberg-like environment He (with Ω = 0.15) via an Ising-like Hamiltonian Hce (with

∆ = 0.075 ) for different connectivity numbers K of the spins in the environment: (a)

K = 0; (b) K = 2; (c) K = 4; (d) K = 6; (e) K = N − 1.

will cause all the off-diagonal elements of the reduced density matrix to
vanish with time. Moreover, the weight of the degenerate eigenstates
|T0〉, |T−1〉, and |T1〉 in this mixed state are expected to be the same. As
shown in Fig. 5.1(b-e)(right), our simulations confirm that this picture
is correct in all respects. Furthermore, the results depicted in Fig. 5.1(b-
e)(right) demonstrate that the connectivity number K has no effect on
the value of ρ11, ρ22, ρ33 and ρ44 for long times.
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Table 5.1: Frequency of oscillation ω′′ and decoherence time τ for different connectivity K.

In case 1 and case 2, for each K, the values of Ω
(α)
i,j are the same but the values of ∆

(α)
i,j are

different. In case 2 and case 3, for each K, the values of ∆
(α)
i,j are the same but the values of

Ω
(α)
i,j are different.

Case K = 2 K = 4 K = 6 K = N − 1

1 ω′′ 1.015 1.015 1.016 1.017

τ ′′ 212.9 235.3 302.9 447.4

2 ω′′ 1.017 1.021 1.022 1.027

τ ′′ 93.07 105.0 110.4 182.1

3 ω′′ 1.021 1.022 1.022 1.027

τ ′′ 106.3 110.0 111.7 173.2

5.3 Anisotropic Ising-like Coupling

Next, we change the interactions between central system and the spins in
the environment from Heisenberg-like to Ising-like but keep the interactions
between different spins in the environment Heisenberg-like. In fact, in our
simulations, the Hamiltonian He is the same for both cases. As explained
earlier, in the Ising-like case, the total magnetization of the central system is
conserved during the time evolution. Thus, as the initial state of the central
system is (|S〉+ |T0〉)/

√
2, at any time t the state of the whole system can be

written as
|Ψ(t)〉 = |2〉|φ2(t)〉+ |3〉|φ3(t)〉, (5.4)

where |φ2(t)〉 and |φ3(t)〉 denote the states of the environment. In other words,
only ρ22(t), ρ23(t), ρ32(t), and ρ33(t) can be nonzero.

On general grounds, we may expect that the presence of an additional conser-
vation law slows down the decoherence and indeed, as shown in Fig. 5.2, this
is the case. Note that the results of Fig. 5.2 have been obtained for J = −1
instead of for J = −5, the value used to compute the results shown in Fig. 5.1
(the latter value was chosen to facilitate the comparison with the results of
Ref. [5]), but this factor of five in the value of J cannot account for the large
difference in the observed decoherence times.

From Fig. 5.2, we conclude that
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1. We never observe the two-step process that we find in the case of Heisenberg-
like Hce. For K = 0 (Fig. 5.2(a), there is no decoherence.

2. For K > 0, Re ρ23(t) vanishes with time, in agreement with the general
picture of decoherence [9]. However, quite unexpectedly, the rate of
decoherence increases with K, in contrast to the case of Heisenberg-
like Hce in which the rate of decoherence decreases with K. The data
presented in Figs. 5.2(b-d) can all be fitted very well by

Re ρ23 (t) =
1
2
e−t/τ ′′ cosω′′t, (5.5)

where ω′′ ≈ |J | and the values of τ ′′ depend on K. In Table 5.1, we give
some typical results for these parameters. Cases 1 and 2 illustrate that
(random) changes in Hce may affect the value of the decoherence time
τ ′′ significantly but the general trend, the increase of τ ′′ with K seems
generic.

5.4 Summary

In conclusion, we have shown that (1) the pure quantum state of the central
spin system evolves into the classical, mixed state, and (2) if the interaction
between the central system and environment is much smaller than the coupling
between the spins in the central system, the pointer states are the eigenstates
of the central system. Both these observations are in concert with the general
picture of decoherence [9].

Furthermore, we have demonstrated that, in the case that the environment is a
spin system, the details of this spin system are important for the decoherence
of the central system. In particular, we have shown that (1) changing the
internal dynamics of the environment may change the qualitative features of
the decoherence of the central spin system, and that (2) the dependence of
the decoherence time of the central spin system on the connectivity of the
interactions between spins of the environment is counterintuitive.
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Chapter 6

Quantum Dynamics of Spin

Wave Propagation Through

Domain Walls

This chapter was previously published as
S. Yuan, H. De Raedt, and S. Miyashita, J. Phys. Soc. Jpn. 75, 084703
(2006).

Wave propagation in one-dimensional magnets through a magnetic domain
wall (DW) is an interesting topic in quantum many-body physics. A DW
separates two regions with opposite magnetization. The DW in mesoscopic
wire can be considered to be self-assembled stable nanostructures which is
treated as a kind of soliton in a continuous medium. Such structure can be
created or annihilated by some external action [1]. The manipulation of DW
in stripes has already been proposed as a way of storing information or even
performing logic functions, and to offer new types of electronics devices [1] in
which the DW motion carries the information along a magnetic wire of submi-
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Figure 6.1: Left pictures (a,b,c,d): Spin configurations at time t/τ = 0; Right pictures

(e,f,g): Dynamically stable spin configurations for the Heisenberg-Ising model (λ = 2), at

time t/τ = 100. (e): Ferromagnetic state of the spin chain; (f): State containing a DW at

the center of the chain; (g): State containing two DWs. Right picture (h): Spin configuration

at time t/τ = 100 for the Heisenberg model (λ = 1), illustrating the instability of the initial

domain wall state (d).

crometer width, with DW velocities up to thousand kilometers per second [2].
Recently, a direct observation of the pendulum dynamics of a DW has been
reported [3]. The DW as a topological particle has a very small but finite mass
of 6.6× 10−23kg [3, 4].

The structure of DWs and also wave propagation in one-dimensional classical
spin systems has been studied in Refs. [5, 6]. Recently, the interaction between
DWs and spin waves has attracted a lot of interest. Hertel et al showed that the
DW induced phase shift of spin waves in the Landau-Lifshitz-Gilbert (LLG)
model of thin, narrow strips, is a characteristic property of such systems [8].
The value of the phase shift of spin waves passing through a DW was found
to be proportional to the angle by which the magnetization of DW rotates in
the film plane [8]. This effect might be used as a concept for a new generation
of nonvolatile memory storage and logical devices [8].

On the other hand, recent progress in synthesizing materials containing ferro-
magnetic chains [9–12] opens new possibilities to study the interaction between
a spin wave and a DW in a microscopic spin chain. Furthermore, quantum
spin models provide a playground to investigate how quantum information
can be transferred in quantum spin networks [13–15]. But, in contrast to the
nanoscale phenomena mentioned earlier, on the atomic level, the spin dynam-
ics is purely quantum mechanical and in such strongly quantum fluctuating
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systems it must be described by the time-dependent Schrödinger equation
(TDSE). Then, it is of considerable interest to compare the properties of spin
wave propagation through a magnetic domain boundary in a single spin chain
with the dynamics obtained in mesoscopic system, in which the magnetization
is regarded as a classical, continuous variable. In the nanoscale regime, the
DW is defined as the boundary of regions with opposite magnetization. On
the atomic level, a DW may be defined as a structure that is dynamically
stable under quantum mechanical motion, the existence of which has to be
confirmed.

6.1 Model

In this chapter, we study the stability of DWs and the effects of DWs on the
spin wave propagation in a chain of N sites on which we place S = 1/2 spins.
We solve the TDSE to compute the time-evolution of the magnetization at
each lattice site. The Hamiltonian of the spin chain is given by [16]

H = −J
N−1∑

n=1

(Sx
nSx

n+1 + Sy
nSy

n+1 + λSz
nSz

n+1), (6.1)

where the exchange integrals J > 0 and λJ determine the strength of the
interaction between the x, y and z components of spin 1/2 operators Sn =
(Sx

n, Sy
n , Sz

n). We solve the TDSE by the Chebyshev polynomial algorithm
which is known to yield extremely accurate solutions of the TDSE, independent
of the time step used [17–20]. We display the results at time intervals of
τ = π/5J . We present results for systems containing N = 26 spins only. We
checked that simulations for N = 20 spins (data not shown) yield qualitatively
similar results. In our numerical work, we use units such that ~ = 1 and J = 1.

First, we study the stability of DWs. The left panel of Fig. 6.1 shows the spin
configurations that we take as the initial state (t/τ = 0) in the simulation.
All the results shown in this Letter have been obtained using open boundary
conditions. We let the system evolve in time according to the Hamiltonian
Eq.(6.1) for a long time (t/τ = 100) and find that the motion generates a
dynamically stable state with DW(s) (see Fig. 6.1(f,g)). The DW is defined as
the boundary between regions of different magnetization but it is not trivial
that these boundaries exists in the presence of strong quantum fluctuations. [7]
Figure 6.1(e,f,g) shows the dynamically stable spin configurations obtained by
starting from the corresponding configuration (a,b,c).
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Whether or not quantum fluctuations destroy the DW(s) depends on the value
of the anisotropy λ. For the model Eq.(6.1), it is well know [16] that quantum
fluctuations destroy the long range order of the ground state if −1 < λ < 1
(XY-like) or λ = −1 (Heisenberg antiferromagnet). For λ ≥ 1 (Ising-like)
the ground state exhibits long range order. This property is reflected in the
stability of configurations that contain one or more DWs, except for λ = 1.
Our numerical simulations show that configurations with a DW are dynami-
cally stable if λ > 1. For comparison, in Fig. 6.1 we include the case λ = 1,
where the initial DW structure (Fig. 6.1(d)) is destroyed (Fig. 6.1(h)). Not
surprisingly, the destructive effect of quantum fluctuations can be suppressed
by increasing λ. Having studied systems with different values of λ, we found
that λ = 2 is representative for the quantitative behavior of the anisotropic
systems. Therefore, in this chapter, we present results for λ = 2 only. We
also checked the effect of the boundary condition. We found almost the same
stable DW structures in the case of periodic boundary conditions (results not
shown).

6.2 Spin Wave Propagation

We use the configuration at t/τ = 100 as the initial configuration to study the
spin wave dynamics. We generate a spin wave excitation by rotating the left
most spin S1 in Fig. 6.1(e,f,g). For reference, we also consider the dynamics
of the ferromagnet (see Fig. 6.1(a,e)). This case without DW can be analyzed
analytically, so that it also gives check of precision of numerical calculation.
Actually, we found very small difference between the analytical results and
numerical ones.

In Fig. 6.2(a) we show the time evolution of {〈Sz
n (t)〉} for n = 1, . . . N after flip-

ping S1, in the case of the uniform chain. The time evolution of {〈Sz
n (t)〉} for

n = 1, . . . N in the chain with one DW at n = 13, 14 is depicted in Fig. 6.2(b),
and Fig. 6.2(c) shows the results for the chain with one DW at n = 10, 11
and another DW at n = 17, 18. Hence, we demonstrate that even in the pres-
ence of a spin wave, the DW structure remain stable. In the model Eq.(6.1),
the magnetization in the z-direction is a conserved quantity. Hence, by flip-
ping one or more spins we change the total magnetization of the initial state.
The expectation value of the transverse spin components is identically zero
(〈Sx

n (t)〉 = 〈Sy
n (t)〉 = 0 for n = 1, . . . N), for all t > 0.

From Fig. 6.2, we can deduce how the spin wave is scattered by the DW(s).
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Figure 6.2: (color online) Time evolution of the magnetization 〈Sz
n (t)〉 of the Ising-like

spin chain with λ = 2. The initial configuration (t/τ = 0) of each panel (a,b,c) is shown

in Fig. 6.1(a,b,c), respectively. At the time t/τ = 100, the first spin (n = 1) is flipped,

generating a longitudinal spin wave.

The triangular pattern in Fig. 6.2(a) merely results from the reflection of the
spin flip excitation by the other edge of the chain. The triangular pattern
is also present in Fig. 6.2(b), but the presence of the DW causes 〈Sz

n (t)〉 to
change sign if n > N/2. Fig. 6.2(b) also demonstrates that the DW itself is
extremely robust, even in systems with one spin flipped. A similar behavior is
observed for the case of two DWs (see Fig. 6.2(c)), indicating that the change
of sign at the DW is generic.

The slope of the line in Fig. 6.2 from the point (n = 1, t/τ = 100) that
connects spin 1 and spin N is directly related to the velocity of the excitation.
We can estimate the time of the excitation to propagate from site n to site m

by analyzing the infinitely long chain. Starting from an initial state in which
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Figure 6.3: (color online) Time evolution of the transverse component 〈Sx
n (t)〉 of the

magnetization, for the same cases as those shown in Fig. 6.2 except that the first spin is

rotated by π/2 about the y-axis (instead of flip) at the time t/τ = 100.

we flip the spin at site n, the magnetization at site m is given by

〈Sz
m(t)〉 = lim

N→∞
1
2

[
1− |〈n|e−itH |m〉|2] , (6.2)

=
1
2

[
1− 2J2

m−n(Jt)
]
, (6.3)

where |m〉 denotes the ferromagnet state with a flipped spin at site m and
Jm(x) is the Bessel function of the first kind of order m. Although Eq.(6.3) is
valid for the infinite chain only, we may expect that it provides a qualitatively
correct description of the wave propagation in the finite system. Our numerical
calculations (results not shown) demonstrate that for N ≥ 16, the time for
the excitation to travel from n = 1 to m = 26 agrees within 2% with the first
minimum of Eq.(6.3).

Although it is clear that the longitudinal motion of the spin that results from
the spin flip can easily propagate through the DW structures, quantum fluc-



6.2. Spin Wave Propagation 73

0 50 100 150 200 250 300
0.480
0.482
0.484
0.486
0.488
0.490
0.492
0.494
0.496
0.498
0.500

0 50 100 150 200 250 300
0.460
0.465
0.470
0.475
0.480
0.485
0.490
0.495
0.500

|<
S
z N
>|

t/

(b)

(a)

|<
S
z N
>|

 

Figure 6.4: (color online) Time evolution of the magnetization 〈Sz
N (t)〉. (a) spin wave

generated by flipping the first spin S1; (b) spin wave generated by rotating the first spin S1

by π/2 about the y-axis. Solid (black) line: No DW, corresponding to the spin configuration

Fig. 6.1(e); Dashed (red) line: one DW, corresponding to the spin configuration Fig. 6.1(f).

Because 〈Sz
N (t)〉 is negative in this case, we plot the absolute value to facilitate the com-

parison; Dotted (blue) line: two DWs, corresponding to the spin configuration Fig. 6.1(g).

Comparison of (a) and (b) shows that the times at which the 〈Sz
N (t)〉 reaches one of the

minima does not depend on method by which the spin wave is generated.

tuations reduce the amplitude of the excitation and for t/τ > 250 it becomes
difficult to follow the excitation in Fig. 6.2(b,c). As mentioned earlier, we
could increase λ to reduce the quantum fluctuations but this does not change
the qualitative features that we are interested in.

Next, we study the propagation of the transverse components, that is the x or
y components of the expectation values of the spins. At t/τ = 100, we excite
the system by rotating the first spin in Fig. 6.1(e,f,g) by π/2 about the y-
axis. After this rotation, the magnetization of spin S1 is parallel to the x-axis.
Starting from this configuration, the time evolution will cause the first spin
to rotate about the z-axis (due to the presence of the neighboring spin that is
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Figure 6.5: (color online) Time evolution of 〈Sx
N (t)〉 of the same system as in Fig. 6.3,

plotted on two different scales. Solid (black) line: No DW, corresponding to the spin con-

figuration Fig. 6.1(e); Dashed (red) line: One DW, corresponding to the spin configuration

Fig. 6.1(f). Dotted (blue) line: Two DWs, corresponding to the spin configuration Fig. 6.1(g).

pointing in the z-direction). This then generates spin waves that contain both
longitudinal {〈Sz

n (t)〉} and transverse ({〈Sx
n (t)〉}, {〈Sy

n (t)〉}) components.

The space-time diagram of 〈Sz
n (t)〉 looks very similar as Fig. 6.2 and therefore

we do not show it. Now, we investigate the propagation of the transverse
spin waves by considering one of the two components (the actual choice is
irrelevant). In Fig. 6.3, we present results for the time evolution of 〈Sx

n (t)〉 for
n = 1 to N . In the Ising-like Heisenberg chain without a DW, the transverse
spin waves propagate in the same manner as the longitudinal waves. (compare
Fig. 6.2(a) and Fig. 6.3(a)). However, from Fig. 6.3(b,c) it is clear that the
transverse waves do not propagate through the DW structure but are reflected
instead.

For a more quantitative study of the interaction of DW(s) and spin waves in
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quantum spin chains, we analyze in detail, the time evolution of the right-
most spin. In Fig. 6.4 we plot 〈Sz

N (t)〉 as a function of time for the six cases
depicted in Figs. 6.2 (Fig. 6.4(a)) and 6.3 (Fig. 6.4(b)).

From Fig. 6.4, we conclude that the propagation of longitudinal spin waves
in the two cases is essentially the same, except for the amplitude. Rotating
the first spin by π/2 (instead of π in the case of the spin flip) about the x or
y axis generates waves of which the amplitude of the longitudinal component
at the site N is half of that of the spin-flip case. Using Eq.(6.3) and the fact
that J25(x) has a first maximum at x ≈ 27.4, we find that 〈Sz

26(t)〉 has a
minimum at t/τ ≈ 144. This value is in agreement with the time at which
the numerical solution for the N = 26 chain exhibits a first dip (see black
(solid) line in Fig. 6.4(a)). A first conclusion from this analysis is that the
qualitative aspects of the interaction of the longitudinal spin wave excitation
and the DW(s) does not depend on the transverse components of the spin
wave.

Fig. 6.4 also clearly shows that the presence of a DW increases the speed
at which the excitation travels through the DW. Comparing the curves for
the system without DW, one DW, and two DWs, we conclude that the solid
curve lags behind with respect to the dashed curve, and the dashed curve lags
behind with respect to the dotted curve. Thus, the longitudinal component of
the spin wave excitation is shifted forward as it passes a DW.

Fig. 6.5 shows the time evolution of 〈Sx
N (t)〉. In contrast to the longitudinal

component (see Fig. 6.4), the maximum amplitude of the transverse signals
strongly depend on the presence of DW(s) in the system (note the difference
in scale between Fig. 6.5(a) and Fig. 6.5(b)). Thus, in the quantum system,
the reflection of the transverse spin wave excitation is significantly larger than
the reflection of the longitudinal component.

6.3 Summary

Finally, we point out the difference between the continuous model for mesoscale
magnetic systems and the present lattice model. In the former, DWs exist as
rotation of the spins according to a soliton structure, while in the microscopic
quantum system, there is no structure in the transverse spin component and
a DW is defined as a dynamically stable structure of the longitudinal compo-
nents. We found that such DWs exists for λ > 1 whereas for λ ≤ 1 they are
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unstable. We also studied spin wave propagation and found that the longi-
tudinal components of the spin wave speed up when they cross a DW. The
transverse components of the spin wave are almost totally reflected by the DW,
but this characteristic feature of the microscopic quantum chain is not found
in mesoscopic magnetic system, where the transverse components crosse a DW
without reflection and with a phase shift of π/2 [8]. It should be noted that
the system described by the LLG equation is fundamentally different from the
system that we consider in this Letter. The former treats the magnetic sys-
tem in the mesoscopic regime as a classical, continuous medium, whereas the
present study treats the magnetic system as a microscopic, quantum mechan-
ical system. Which of these two approaches is the most suitable description
obviously depends on the specific material. The change of behavior from meso-
scopic to microscopic may become important as bottom-up chemical synthesis
is providing new ways for further down-sizing of the magnets.
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Chapter 7

Domain Wall Dynamics near

a Quantum Critical Point

This chapter was previously published as
S. Yuan, H. De Raedt, and S. Miyashita, Phys. Rev. B 75, 184305 (2007).

Recent progress in synthesizing materials that contain ferromagnetic chains [1–
4] provides new opportunities to study the quantum dynamics of atomic-size
domain walls (DWs). On the atomic level, a DW is a structure that is stable
with respect to (quantum) fluctuations, separating two regions with opposite
magnetization. Such a structure was observed in the one-dimensional CoCl2 ·
2H2O chain [5, 6].

In previous chapter, we studied the propagation of spin waves in ferromagnetic
quantum spin chains that support DWs. We demonstrated that DWs are very
stable against perturbations, and that the longitudinal component of the spin
wave speeds up when it passes through a DW while the transverse component
is almost completely reflected.
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In this chapter, we focus on the dynamic stability of the DW in the Heisenberg-
Ising ferromagnetic chain. It is known that the ground state of this model
in the subspace of total magnetization zero supports DW structures [8, 9].
However, if we let the system evolve in time from an initial state with a DW
structure and this initial state is not an eigenstate, it must contain some
excited states. Therefore, the question whether the DW structure will survive
in the stationary (long-time) regime is nontrivial.

The question how the DW structure dynamically survives in the stationary
(long-time) region is an interesting problem. In particular, we focus on the
stability of the DW with respect to the dynamical (quantum) fluctuations as
we approach the quantum critical point (from Heisenberg-Ising like to Heisen-
berg). We show that the critical quantum dynamics of DWs can be described
well in terms of conventional power laws. The behavior of quantum systems
at or near a quantum critical point is of contemporary interest [10]. We also
show that the DW profiles rapidly become very stable as we move away from
the quantum critical point.

7.1 Model

The Hamiltonian of the system is given by [8, 9, 11–13]

H = −J
N−1∑

n=1

(Sx
nSx

n+1 + Sy
nSy

n+1 + ∆Sz
nSz

n+1), (7.1)

where N indicates the total number of spins in the spin chain, and the exchange
integrals J and J∆ determine the strength of the interaction between the
x, y and z components of spin 1/2 operators Sn = (Sx

n, Sy
n , Sz

n). Here we
only consider the system with the ferromagnetic (J > 0) nearest exchange
interaction. It is well known that |∆| = 1 is a quantum critical point of the
Hamiltonian in Eq.(7.1), that is, the analytical expressions of the ground state
energy for 1 < ∆ and −1 < ∆ < 1 are different and singular at the points
∆ = ±1 [12].

In Ref. [8, 9] Gochev constructed a stable state with DW structure in both the
classical and quantum treatments of the Hamiltonian (7.1). In the classical
treatment, Gochev replaces the spin operators in Eq.(7.1) by classical vectors
of length s

Sz
n = s cos θn, Sx

n = s sin θn cosϕn, Sy
n = s sin θn sinϕn,
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and then uses the conditions δE/δθ = 0 and ϕn = const. to find the ground
state. In the ground state, the magnetization per site is given by [9]

Sz
n = s tanh(n− n0)σ,

Sx
n = s cosϕ sech(n− n0)σ,

Sy
n = s sinϕ sech(n− n0)σ,

(7.2)

where
σ = ln[∆ +

√
∆2 − 1], (7.3)

ϕ is an arbitrary constant, and n0 is a constant fixing the position of the DW.
The corresponding energy is

EDW = 2s2J∆tanhσ. (7.4)

In the quantum mechanical treatment, Gochev first constructs the eigenfunc-
tion of a bound state of k magnons [9]

|ψk〉 = An

∑

{ml}
Bm1m2...mk

S−m1
S−m2

...S−mk
|0〉 , (7.5)

where

Bm1m2...mk
=

k∏

i=1

vmi
i ,mi < mi+1, (7.6)

vi = cosh(i− 1)σ/ cosh(iσ), (7.7)

A−2 =
k∏

i=1

v2i
i /(1− v2

i ), (7.8)

and the corresponding energy is given by [9]

εk =
1
2
J∆ tanhσ tanh kσ. (7.9)

Then he demonstrated that for the infinite chain, the linear superposition

|φn0〉 = A
∞∑

i=−∞
exp

{
−1

2
σ

[
i +

(
1
2
− α

)]}
|ψN0+i〉 , (7.10)

where
n0 = N0 + α, |α| ≤ 1/2, N0 →∞, (7.11)

A−2 =
∞∑

i=−∞
exp

{
−1

2
σ

[
i +

(
1
2
− α

)]2
}

, (7.12)



82 Domain Wall Dynamics near a Quantum Critical Point

Figure 7.1: The magnetization 〈Sz
n〉 in the ground state of the subspace of total magne-

tization M = 0, generated by the power method. The parameters are: (a) ∆ = 1.05, (b)

∆ = 1.1, (c) ∆ = 1.2, (d) ∆ = 2. The total number of spins in the spin chain is N = 20. It

is clear that there is a DW at the centre of the spin chain. Furthermore there is no structure

in the XY plane, that is, 〈Sx
n〉 = 〈Sy

n〉 = 0.

is the quantum analog of the classical domain wall, in which 〈Sz
n〉 , 〈Sx

n〉 , 〈Sy
n〉

are given in Eq.(7.2), and the energy coincides with Eq.(7.4).

Gochev’s work confirmed the existence of the DW structures in the one-
dimensional ferromagnetic quantum spin 1/2 chain. In the infinite chain, the
exact quantum analog of classical DW is represented by |φn0〉. In the finite
chain, the DW structure exists as a bound k-magnon state |ψk〉. The main dif-
ference between these two states is the distribution of magnetization in the XY
plane. In the infinite chain, the change of the magnetization occurs in three
dimensions, according to Eq.(7.2), but in the finite chain 〈Sx

n〉 = 〈Sy
n〉 = 0 for

all spins.

Now we consider 〈Sz
n〉 of the bound state |ψk〉 in the case that the number of

flipped spin is half of the total spins, i.e., k = N/2 and N is an even number.
Even though the formal expression for |ψk〉 is known, the expression for 〈Sz

n〉
in this state (for finite and infinite chains) is not known. For finite N , the
ground state in the subspace of total magnetization M = 0 can, in principle,
be calculated from Eq.(7.5). However, this requires a numerical procedure
and we loose the attractive features of the analytical approach. Indeed, it is
more efficient to use a numerical method and compute directly the ground
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Figure 7.2: Top picture (a): Initial spin configuration at time t/τ = 0; Bottom pictures

(b,c,d,e,f,g,h,i): Spin configuration at time t/τ = 100; Bottom left pictures (b,c,d,e): DW

structures disappear or are not stable. The parameters are: (b) ∆ = 0 (XY model), (c)

∆ = 0.5 (Heisenberg-XY model), (d) ∆ = 1 (Heisenberg model), (e) ∆ = 1.05 (Heisenberg-

Ising model); Bottom right pictures (f,g,h,i): DW structures are dynamically stable in the

Heisenberg-Ising model. The parameters are: (f) ∆ = 1.1, (g) ∆ = 1.2, (h) ∆ = 2, (i)

∆ = 20. The total number of spins in the spin chain is N = 20.

state in the subspace of total magnetization M = 0. In Fig. 7.1, we show
some representative results as obtained by the power method [14] for a chain
of N = 20 spins. In all cases, the domain wall is well-defined. Obviously,
because we are considering the system in the ground state, the magnetization
profile will not change during the time evolution.

In fact, a DW can simply be introduced in the spin chain by letting half of
the spins up and the other half down (see Fig. 7.2(a) for N = 20). This
cluster state (|Φ〉) contributes mostly in the bound state |ψk〉 with k = N/2,
because |Bm1m2...mk

|2 reaches the maximum if mi = i for all i = 1, 2, .., N/2
(note |vi| < 1). It is clear that |Φ〉 is not an eigenstate of the Hamiltonian
in Eq.(7.1). The relative energy of |Φ〉 to the ferromagnetic ground state is

J∆/2, and the spread
(〈

Φ
∣∣H2

∣∣ Φ
〉− 〈Φ |H|Φ〉2

)1/2
= J/2, so the relative
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Table 7.1: εk is the relative energy of the ground state in the subspace of total magnetiza-

tion M = 0 (see Fig. 7.1), and E = J∆/2 is the relative energy of the initial state |Φ〉 (see

Fig. 7.2(a)), which is the same for different N , and conserved during the time evolution.

∆ E εk (N = 18) εk (N = 20) εk (N = 22)

1.01 0.505 0.042 0.046 0.050

1.05 0.525 0.148 0.149 0.150

1.1 0.55 0.219 0.219 0.219

2 1 0.856 0.856 0.856

5 2.5 2.439 2.439 2.439

spread is 1/∆. The dynamics of the DW in |Φ〉 is still unknown.

In Table 7.1, we list some representative values of the energy in the ground
state of subspace M = 0 (see Fig. 7.1) and in the initial state (see Fig.
7.2(a)) for a chain of N = 18, 20 and 22 spins. For ∆ ' 1, the difference in
energy is sufficiently large, indicating that near the quantum critical point,
the initial state contains a significant amount of excited states, it is not longer
evident that the DW structure will survive in the long-time regime, so we need
computer simulation to explore the dynamics of the DW, and by solving the
time dependent Schrödinger equation (TDSE), we can easily see if the DW is
dynamically stable or not.

7.2 Dynamically Stable Domain Walls

We solve the TDSE of the whole system with the Hamiltonian in Eq.(7.1)
and study the time-evolution of the magnetization at each lattice site. The
numerical solution of the TDSE is performed by the Chebyshev polynomial
algorithm, which is known to yield extremely accurate independent of the time
step used [15–18]. We adopt open boundary conditions, not periodic boundary
conditions, because the periodic boundary condition would introduce two DWs
in the initial state. In this chapter, we display the results at time intervals of
τ = π/5J , and use units such that ~ = 1 and J = 1.

The initial state of the system is shown in Fig. 7.2(a). The spins in the left
part (n = 1 to 10) of the spin chain are all “spin-up” and the rest (n = 11
to 20) are all “spin-down”. Here “spin-up” or “spin-down” correspond to the
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eigenstates of the single spin 1/2 operator Sz
n.

Whether the DW at the centre of the spin chain is stable or unstable depends
on the value of ∆. In Fig. 7.2(b,c,d,e,f,g,h, and i), we show the states of
the system as obtained by letting the system evolve over a fairly long time
(t = 500J/π). It is clear that the DW totally disappears for 0 ≤ ∆ ≤ 1,
that is, in the XY, Heisenberg-XY and Heisenberg spin 1/2 chain, the DW
structures are not stable. For the Heisenberg-Ising model (∆ > 1), the DW
remains stable when t ≥ 500J/π (see Ref. [7]), and its structure is more sharp
and clear if ∆ is larger, so we will concentrate on the cases ∆ > 1. One
may note that the values of ∆ in Fig. 7.2(e,f,g,h) are the same as in Fig.
7.1(a,b,c,d), but that the distributions of the magnetization are similar but
not the same. This is because the energy is conserved during the time evolution
and the system, which starts from the initial state shown in Fig. 7.2(a), will
never relax to the ground state of the subspace with the total magnetization
M = 0.

In order to get a quantitative expression of the width of DW, we first introduce
quantity Sz

n (t1, t2;∆) (n = 1, 2, ..., N) as the time average of the expectation
value 〈Sz

n (t)〉 of nth spin:

Sz
n (t1, t2;∆) ≡

∫ t2
t1
〈Sz

n (t)〉 dt

t2 − t1
. (7.13)

We take the average in Eq.(7.13) over a long period during which the DW is
dynamically stable. In Fig. 7.3, we show some results of Sz

n (t1, t2;∆) for the
Heisenberg-Ising model, where we take t1 = 101τ , t2 = 200τ and various ∆.
We find that each curve in Fig. 7.3 is symmetric about the line n = (N + 1) /2,
and can be fitted well by the function

Sz
n (t1, t2;∆) ' a∆ tanh

[
n− (N + 1)/2

b∆

]
. (7.14)

The values of ∆ we used and the corresponding values of a∆, b∆ are shown
in Table 7.2. As we mentioned earlier, Gochev [9] constructed an eigenstate
of the one-dimensional anisotropic ferromagnetic spin 1/2 chain in which the
mean values Sz

n, Sx
n and Sy

n coincide with the stable DW structure in the
classical spin chain, that is

〈Sz
n〉 =

1
2

tanh(n− n0)σ, (7.15)

where n0 is the position of the DW (in our notation, this is (N + 1) /2). The
fitted form of Sz

n (t1, t2;∆) in Eq.(7.14) is similar to Eq.(7.15). From Table



86 Domain Wall Dynamics near a Quantum Critical Point

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

S
z n(

t 1,
t 2;

)

n

 1.05
 1.06
 1.1
 1.2
 1.3
 1.5
 2
 5
 20

Figure 7.3: (Color online) Sz
n (t1, t2;∆) as a function of n for different ∆. Here t1 = 101τ ,

t2 = 200τ . We show the data for ∆ = 1.05, 1.06, 1.1, 1.2, 1.3, 1.5, 2, 5 and 20 only. The total

number of spins in the spin chain is N = 20.

7.2, it is clear that as ∆ increases, |a∆| converges to 1/2, in agreement with
Eq.(7.15). From the comparison of b∆ and 1/σ in Fig. 7.4, it is clear that the
dependence on ∆ is qualitatively similar but not the same. This is due to the
fact that Gochev’s solution is for a DW in the ground state whereas we obtain
the DW by relaxation of the state shown in Fig. 7.2(a).

We want to emphasize that the meaning of Sz
n (t1, t2;∆) in Eq.(7.14) is different

from 〈Sz
n〉 in Eq.(7.15). The former describes the mean value of 〈Sz

n (t)〉 in a
state with dynamical fluctuations, while the latter describes the distribution
of 〈Sz

n〉 in an exact eigenstate without dynamical fluctuations.

Next we introduce a definition of the DW width. From Eq.(7.14), we can find
n1 and n2 which satisfy

Sz
n1

(t1, t2;∆) = 1/4,

Sz
n2

(t1, t2;∆) = −1/4, (7.16)

that is, when
∣∣∣Sz

n (t1, t2; ∆)
∣∣∣ equals half of its maximum value (1/2). Here n1

and n2 are not necessarily integer numbers. Now we can define the DW width
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Table 7.2: The values of ∆ we used in our simulations and the corresponding a∆, b∆ fitted

by Eq.(7.14) for a spin chain of N = 20 spins.

∆ a∆ b∆ ∆ a∆ b∆

1.05 −0.263 3.659 1.8 −0.493 0.524

1.06 −0.330 3.171 1.9 −0.494 0.488

1.07 −0.377 2.850 2 −0.495 0.460

1.08 −0.406 2.673 2.1 −0.495 0.436

1.09 −0.424 2.534 2.2 −0.496 0.416

1.1 −0.435 2.396 2.5 −0.497 0.370

1.15 −0.462 1.996 3 −0.498 0.322

1.2 −0.471 1.626 4 −0.499 0.270

1.25 −0.476 1.330 5 −0.499 0.240

1.3 −0.479 1.142 6 −0.500 0.220

1.35 −0.481 0.959 7 −0.500 0.206

1.4 −0.483 0.869 8 −0.500 0.195

1.45 −0.485 0.770 9 −0.500 0.187

1.5 −0.487 0.719 10 −0.500 0.179

1.6 −0.489 0.629 15 −0.500 0.156

1.7 −0.491 0.568 20 −0.500 0.141

Table 7.3: The values of εN , AN and BN in Eq.(7.18) for a spin chain of N = 16, 18, 20,

22 and 24 spins. For the fit, we used all the data for ∆ ≤ 5.

N εN AN BN

16 0.065± 0.001 2.08± 0.10 −0.493± 0.142

18 0.052± 0.002 2.07± 0.11 −0.450± 0.152

20 0.045± 0.002 2.22± 0.09 −0.556± 0.133

22 0.040± 0.001 2.36± 0.08 −0.689± 0.140

24 0.033± 0.001 2.34± 0.06 −0.681± 0.127

W as the distance between n1 and n2:

W = |n1 − n2| . (7.17)
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Figure 7.4: Compare of b∆ and 1/σ as a function of ∆. The total number of spins in the

spin chain is N = 20.

Clearly, the width of the DW becomes ill-defined if it approaches the size of
the chain. On the other hand, the computational resources (mainly memory),
required to solve the TDSE, grow exponentially with the number of spins in
the chain. These two factors severely limit the minimum distance ∆−1 to the
quantum critical point ∆ = 1 that yields meaningful results for the width of
the DW. Indeed, for fixed N , ∆ has to be larger than the “effective” critical
value for the finite system in order for the DW width to be smaller than
the system size. Although the system sizes that are amenable to numerical
simulation are rather small for present-day “classical statistical mechanics”
standards, it is nevertheless possible to extract from these simulations useful
information about the quantum critical behavior of the dynamically stable
DW.

In Fig. 7.5, we plot W as a function of ∆ (1.06 ≤ ∆ ≤ 20). By trial and error,
we find that all the data can be fitted very well by the function

W (∆) =
AN

ln
{

∆− εN +
[
(∆− εN )2 − 1

]1/2
} + BN , (7.18)
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Figure 7.5: The DW width as a function of ∆ in a spin chain of N = 20 spins.

The black dots are the simulation data and the solid line is given by W (∆) =

AN/ ln
{

∆− εN +
[
(∆− εN )2 − 1

]1/2
}

+ BN with εN = 0.046 ± 0.001, AN = 2.16 ± 0.06

and BN = −0.485± 0.068.

where εN , AN and BN are fitting parameters. As shown in Fig. 7.6, all the
data for N = 16, 18, 22, 24 and ∆ ≤ 5 fit very well to Eq.(7.18). The results
of these fits are collected in Table 7.3.

As an check on the fitting procedure, we apply it to the data obtained by
solving for the ground state in the M = 0 subspace. In view of Eq.(7.13) and
(7.14), we may expect that Eq.(7.18) fits the data very well and, as shown in
Fig. 7.7, this is indeed the case.

To analyze the finite-size dependence in more detail, we adopt the standard
finite-size scaling hypothesis [19]. We assume that in the infinite system, the
DW width plays the role of the correlation length, that is, we assume that

W (∆) ∼ W0(∆− 1)−ν . (7.19)

This assumption is supported by the results of Gochev [9] for the ground
state for which, from Eq.(7.15), it follows that ν = 1/2. If we identify ∆ in
the quantum system with the temperature, finite-size scaling predict that the
effective critical value ∆∗

N scales as

∆∗
N ∼ 1 + λN−1/ν , (7.20)
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Figure 7.6: The DW width as a function of ∆ in a spin chain of N = 16, 18, 22, and 24

spins. The black dots are the simulation data and the solid line in each panel is given by

Eq.(7.18).

where λ is a model-dependent constant [19]. In Fig. 7.8, we present the results
of a fit of all our numerical data to

∆∗
N = 1 + εN ' ∆∗ + λN−1/ν , (7.21)

and conclude that the fit is consistent with both the exponent ν = 1/2, and
∆∗ ∼ 1.

Still considering the finite-size dependence in our model, although the width
of the DW as a function of ∆ cannot be expressed by Eq.(7.19), it can be
fitted well to

W (∆) = W0 (∆−∆∗
N )−C . (7.22)

To find the exponent C, we fix the number of spins in the system and fit the
DW width as Eq.(7.22) for ∆ ∈ [1.06,∆max] with different ∆max. For N = 20,
the results are shown in Fig. 7.9, from which we can see that as ∆max changes
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Figure 7.7: The DW width as a function of ∆ (1.06 ≤ ∆ ≤ 20) in the ground state of

subspace M = 0 in a spin chain of N = 20 spins. The black dots are the simulation data

and the solid line is given by Eq.(7.18), with εN = 0.010 ± 0.001, AN = 1.87 ± 0.04 and

BN = −0.550± 0.079.

from 20 to 1.2, the value of C decreases from 0.57 to 0.51, that is, if ∆ is close
to critical point, then C → ν = 1/2.

7.3 The Stability of Domain Walls

To describe the stability of the DW structure, we introduce δn (∆) (n =
1, 2, ..., N):

δn (∆) =
√

[Sz
n (t1, t2;∆)]2 − Sz

n (t1, t2;∆)
2
, (7.23)

where

[Sz
n (t1, t2;∆)]2 ≡

∫ t2
t1
〈Sz

n (t)〉2 dt

t2 − t1
. (7.24)

In order to show the physical meaning of δn, we write 〈Sz
n (t)〉 as

〈Sz
n (t)〉 ≡ Cn + Ωn (t) , (7.25)
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Figure 7.8: Fit of ∆∗
N to ∆∗ + λ ·N−2 with ∆∗ = 1.009± 0.002, and λ = 14.253± 0.660.

where Cn is a constant and Ωn (t) is a time-dependent term. Then Eq.(7.23)
becomes

δn (∆) =





∫ t2
t1

Ω2
n (t) dt

t2 − t1
−

[∫ t2
t1

Ωn (t) dt

t2 − t1

]2




1/2

. (7.26)

It is clear that if 〈Sz
n (t)〉 is a constant in the time interval [t1, t2], then δn (∆) =

0. In general, since the initial state is not an eigenstate of the Hamiltonian
Eq.(7.1), the magnetization of each spin will fluctuate and Ωn (t) 6= 0. If, after
long time, the system relaxes to a stationary state that contains a DW, the
magnetization of each spin will fluctuate around its stationary value Cn. The
fluctuations are given by Ωn (t). If |Ωn (t)| is large, the difference between the
actual magnetization profile at time t and the stationary profile Cn may be
large. From Eq.(7.26), it is clear that δn (∆) is a measure of the deviation of
〈Sz

n (t)〉 from its stationary value Cn, averaged over the time interval [t1, t2].
Thus, δn (∆) gives direct information about the dynamics stability of the DW.

Figure 7.10 shows the distribution δn (∆) for different values of ∆. We only
show some typical results, as in Fig. 7.3. As expected, the distribution of
δn (∆) is symmetric about the centre of the spin chain (n = 10.5).

We first consider how δn (∆) changes with ∆ for fixed n. From Fig.7.10, we
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Figure 7.9: The exponent C as a function of ∆max in a spin chain of N = 20 spins. The

exponent C obtained by fitting the DW width to Eq.(7.22), with ∆∗
N=20 = 1.045 and ∆ in

the range [1.06, ∆max].

conclude the following:

1) For the spins which are not located at the DW centre, i.e., n 6= 10, 11, δn (∆)
decreases if ∆ becomes larger. This means that the quantum fluctuations of
these spins become smaller if we increase the value of ∆. This is reasonable
because with increasing ∆, the initial state approaches an eigenstate of the
Hamiltonian for which δn (∆) = 0 (Ising limit).

2) For the spins at the DW centre, i.e., n = 10, 11, when ∆ becomes larger
and larger, δn (∆) first increases and then decreases. Qualitatively, this can
be understood in the following way. When ∆ is close to 1, the magnetization
at the DW centre disappears very fast and remains zero. However, if ∆ >> 1,
the magnetization at the DW centre will retain its initial direction, hence the
behavior of the spin at the DW centre will qualitatively change as ∆ moves
away from the critical point ∆ = 1. In Fig. 7.11, we plot δ10 (∆) (= δ11 (∆))
as a function of ∆. It is clear that δ10 (∆) first increases as ∆ increases, reaches
its maximum at ∆ = 1.3, and then decreases as ∆ becomes larger.

Now we consider the n-dependence of δn (∆) for fixed ∆. Since δn (∆) is a
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Figure 7.10: (Color online) δn (∆) as a function of n for different ∆. Here t1 = 101τ ,

t2 = 200τ . We only show the data for ∆ = 1.05, 1.06, 1.1, 1.2, 1.3, 1.5, 2, 5 and 20. The total

number of spins in the spin chain is N = 20.

symmetric function of n, we may consider only one side of the whole chain,
e.g., the spins with n = 1, 2, ..., N/2. From Fig.7.10, according to the value of
∆, there are three different regions:

1) 1.05 ≤ ∆ ≤ 1.3: starting from the boundary (n = 1), δn (∆) first decreases,
then increases, and finally decreases again as n approaches the DW centre
(n = 10). As we discussed already, the fluctuation of the magnetization at
the DW centre is small when ∆ is close to 1. The spin at the boundary
only interacts with one nearest spin, so it has more freedom to fluctuate. For
the others, because of the influence of the DW structure (or boundary), the
fluctuations of the spins which are near the DW (or near the boundary) are
larger compared to those of a spin located in the middle of a polarized region.
Thus δn (∆) is larger if the spin is located near the DW or near a boundary.

2) 1.3 ≤ ∆ ≤ 5: δn (∆) reaches its maximum at the DW centre. The reason
for this is that in this regime the magnetizations of all spins retain their initial
direction, therefore the spins that are far from the centre fluctuate little.

3) 5 < ∆: in this regime (Ising limit), the initial state is very close to the
eigenstate, and the fluctuations are small, even for the spins at the DW.
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Figure 7.11: δ10 (∆) as a function of ∆. Here t1 = 101τ , t2 = 200τ . The total number of

spins in the spin chain is N = 20.

7.4 Summary

In the presence of Ising-like anisotropy, DWs in a ferromagnetic spin 1/2 chain
are dynamically stable over extended periods of time. The profiles of the
magnetization of the DW are different from the profile in the ground state
in the subspace of total magnetization M = 0. As the system becomes more
isotropic, approaching the quantum critical point, the width of the DW in-
creases as a power law, with an exponent equals to 1/2.
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Appendix A

Correlation and Concurrence

We define the correlation function as 〈S1 · S2〉 . In order to show the relation
between the correlation function and the state of the two-spin system, we
denote a general state in the standard basis (|↑〉 |↑〉, |↑〉 |↓〉, |↓〉 |↑〉, |↓〉 |↓〉) as

|ψ〉 = a1 |↑〉 |↑〉+ a2 |↑〉 |↓〉+ a3 |↓〉 |↑〉+ a4 |↓〉 |↓〉 , (A.1)

where a1, a2, a3, a4 are complex constants. Then a simple calculation gives

〈Sx
1 Sx

2 〉 = 〈ψ|Sx
1 Sx

2 |ψ〉 = (〈ψ|Sx
1 )(Sx

2 |ψ〉) = (a∗3a2 + a∗4a1 + a∗1a4 + a∗2a3) /4,

〈Sy
1Sy

2 〉 = (a∗3a2 − a∗4a1 − a∗1a4 + a∗2a3) /4,

〈Sz
1Sz

2〉 =
(
|a1|2 − |a2|2 − |a3|2 + |a4|2

)
/4, (A.2)

and we find that the expression of the correlation reads

〈S1 · S2〉 = 〈Sx
1 Sx

2 〉+ 〈Sy
1Sy

2 〉+ 〈Sz
1Sz

2〉
=

[
2 (a∗3a2 + a∗2a3) + |a1|2 − |a2|2 − |a3|2 + |a4|2

]
/4. (A.3)

If the central system consists two coupled spins with the Hamiltonian Hc =
−S1 · S2, then 〈S1 · S2〉 is a direct measurement of the energy of the central
system. If 〈S1 · S2〉 = −0.75, then the central system is in the lowest-energy
state (singlet state 1√

2
(|↑〉 |↓〉 − |↓〉 |↑〉)); if 〈S1 · S2〉 = 0.25, then the central

system is in the highest-energy state, which could be one of the triplet states
(|↓〉 |↓〉, |↑〉 |↑〉, 1√

2
(|↑〉 |↓〉+ |↓〉 |↑〉) or superposition of these states.

The concurrence, introduced by W.K. Wootters (Phys. Rev. Lett. 80, 2245
(1998)), is defined as

C (ρ) = max(0, λ1 − λ2 − λ3 − λ4), (A.4)
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where the λi are the eigenvalues, in decreasing order, of the Hermitian matrix

R ≡
√√

ρρ̃
√

ρ. (A.5)

Here ρ is the reduced density matrix of central spin pairs based on the standard
basis |↑〉 |↑〉, |↑〉 |↓〉, |↓〉 |↑〉, |↓〉 |↓〉, and

ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy), (A.6)

where σy =

(
0 −i

i 0

)
and ρ∗ is the complex conjugate on ρ.

In fact, the concurrence C is a measure between the state |ψ〉 and the state
with the two spins filpped

∣∣∣ψ̃
〉

(C =
∣∣∣
〈
ψ|ψ̃

〉∣∣∣). The singlet state, |ψ〉 =
1√
2
(|↑〉 |↓〉 − |↓〉 |↑〉) is unchanged under two spins flip, so C = 1. Similarly,

the triplet state |ψ〉 = 1√
2
(|↑〉 |↓〉+ |↓〉 |↑〉) is also unchanged under two spins

flip, so C = 1. For |↑〉 |↑〉, |↑〉 |↓〉, |↓〉 |↑〉, and |↓〉 |↓〉, the state is totally different
if the two spins flip, so C = 0.

In order to get the value of concurrence, we need to know the expressions of
ρ and ρ̃. Our simulation program uses the standard basis, therefore we can
easily get the matrix ρ, and according to the expression of ρ, we can find the
matrix ρ̃.

For our central system, the density matrix of the state in Eq.(A.1) is

ρ =




|a1|2 a∗1a2 a∗1a3 a∗1a4

a∗2a1 |a2|2 a∗2a3 a∗2a4

a∗3a1 a∗3a2 |a3|2 a∗3a4

a∗4a1 a∗4a2 a∗4a3 |a4|2




, (A.7)

and the state with two spins flipped is∣∣∣ψ̃
〉

= σy ⊗ σy |ψ〉 = −a4 |↑〉 |↑〉+ a3 |↑〉 |↓〉+ a2 |↓〉 |↑〉 − a1 |↓〉 |↓〉 , (A.8)

therefore the matrxi ρ̃ can be expressed as

ρ̃ =
∣∣∣ψ̃

〉〈
ψ̃

∣∣∣ =




|a4|2 −a∗4a3 −a∗4a2 a∗4a1

−a∗3a4 |a3|2 a∗3a2 −a∗3a1

−a∗2a4 a∗2a3 |a2|2 −a∗2a1

a∗1a4 −a∗1a3 −a∗1a2 |a1|2




. (A.9)

Finally, by directly diagonalizing the matrix R, we can get the eigenvalues
{λi} and then the concurrence C.
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Appendix B

Spin Wave in a Chain with

Free Ends

We consider a spin chain of N spins (S = 1/2) with nearest neighbor interac-
tion. The Hamiltonian for a chain with free-end boundary conditions reads

H = −J
N−1∑

k=1

(Sx
kSx

k+1 + Sy
kSy

k+1 + λSz
kSz

k+1). (B.1)

We take an ansatz for the eigenstate (we will prove that the following expres-
sion is only correct when λ = 1):

|k〉 =

√
2
N

N∑

j=1

{
cos[k(j − 1

2
)] + δ(k)(

√
2

2
− 1)

}
|↓j〉 , (B.2)

k =
mπ

N
,m = 0, 1, 2, ..., N − 1.

Here m 6= N or k 6= π otherwise |k〉 = 0, and the normalization constant
√

N/2
follows from the identities :



100 Spin Wave in a Chain with Free Ends

2
N

N∑

j=1

cos[k(j − 1
2
)]2

=
1
N

N∑

j=1

{
1 + cos

[
2mπ

N
(j − 1

2
)
]}

= 1 +
1
N


cos(

mπ

N
)

N∑

j=1

cos
(

2mπj

N

)
+ sin(

mπ

N
)

N∑

j=1

sin
(

2mπj

N

)


= 1, (B.3)

for k 6= 0, and

2
N

N∑

j=1

(√
2

2

)2

= 1, (B.4)

for k = 0. Furthermore, we have

2
N

N−1∑

k=0

{
cos[k(j − 1

2
)] + δ(k)(

√
2

2
− 1)

}2

=
2
N

{
1
2

+
N−1∑

k=1

cos2
[
k(j − 1

2
)
]}

=
1
N

{
N +

N−1∑

m=1

cos
[
2mπ

N
(j − 1

2
)
]}

= 1 +
1
N

(N−1)/2∑

m=1

{
cos

[
2mπ

N
(j − 1

2
)
]

+ cos
[
2π

N
(N −m) (j − 1

2
)
]}

= 1 +
1
N

(N−1)/2∑

m=1

{
cos

[
2mπ

N
(j − 1

2
)
]

+ cos
[
π +

2mπ

N
(j − 1

2
)
]}

= 1. (B.5)
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If we let the Hamiltonian H act on |k〉, we can get :

H |k〉 =

√
2
N

N∑

j=1

cos[k(j − 1
2
)]H |↓j〉

=

√
2
N

N−1∑

j=2

cos[k(j − 1
2
)]
−(N − 3)λJ + 2λJ

4
|↓j〉

+

√
2
N

∑

j=1,N

cos[k(j − 1
2
)]
−(N − 2)λJ + λJ

4
|↓j〉

−
√

2
N

N−1∑

j=1

cos[k(j − 1
2
)]

J

2
|↓j+1〉 −

√
2
N

N∑

j=2

cos[k(j − 1
2
)]

J

2
|↓j−1〉

=
J√
2N

∑

j=1

[
cos[k(j − 1

2
)]
−(N − 3)λ

2
− cos[k(j +

1
2
)]

]
|↓j〉

+
J√
2N

N−1∑

j=2

[
cos[k(j − 1

2
)]
−(N − 5)λ

2
− cos[k(j − 3

2
)]− cos[k(j +

1
2
)]

]
|↓j〉

+
J√
2N

∑

j=N

[
cos[k(j − 1

2
)]
−(N − 3)λ

2
− cos[k(j − 3

2
)]

]
|↓j〉 , (B.6)

or

H |k〉 =
J√
2N

∑

j=1

cos[k(j − 1
2
)]

[
−(N − 5)λ

2
− λ− cos[k(j + 1

2)]
cos[k(j − 1

2)]

]
|↓j〉

+
J√
2N

N−1∑

j=2

cos[k(j − 1
2
)]

[−(N − 5)λ
2

− 2 cos k

]
|↓j〉

+
J√
2N

∑

j=N

cos[k(j − 1
2
)]

[
−(N − 5)λ

2
− λ− cos[k(j − 3

2)]
cos[k(j − 1

2)]

]
|↓j〉 .

(B.7)

For j = 1 we have

1 +
cos[k(j + 1

2)]
cos[k(j − 1

2)]
=

cos[k(j − 1
2)] + cos[k(j + 1

2)]
cos[k(j − 1

2)]

= 2 cos kj = 2 cos k, (B.8)
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and for j = N we find

1 +
cos[k(j − 3

2)]
cos[k(j − 1

2)]
=

2 cos[k(j − 1)] cos k
2

cos[k(j − 1
2)]

=
2 cos

(
mπ − mπ

N

)
cos mπ

2N

cos
(
mπ − mπ

2N

)

= 2 cos k. (B.9)

Equation (B.7) becomes

H |k〉 =
J√
2N

N∑

j=1

cos[k(j − 1
2
)]

[−(N − 5)λ
2

− 2 cos k

]
|↓j〉

+
J√
2N

∑

j=1,N

cos[k(j − 1
2
)] (1− λ) |↓j〉

= J

[−(N − 5)λ
4

− cos k

]
|k〉+

J (1− λ)√
2N

∑

j=1,N

cos[k(j − 1
2
)] |↓j〉 ,

(B.10)

it clear that only for λ = 1 the second term in above expression is zero,
therefore we have

H |k〉 = J

[−(N − 5)λ
4

− cos k

]
|k〉 ≡ Ek |k〉 , (B.11)

where

Ek = E0 + J (1− cos k) ; (B.12)

E0 =
−(N − 1)J

4
; (B.13)

k = 0, 1, 2, ..., N − 1. (B.14)

Now we consider the time evolution of the system (λ = 1), that initially is in
a state with all spins up except for spin j which is down. We denote this state
by |t = 0〉 = |↓j〉. The state at time t is given by
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|t〉 = e−itH |↓j〉

=
N−1∑

k=0

e−itEk |k〉 〈k| |↓j〉

=

√
2
N

N−1∑

k=0

e−itEk |k〉
N∑

m=1

{
cos[k(m− 1

2
)] + δ(k)(

√
2

2
− 1)

}
〈↓m | ↓j〉

=

√
2
N

N−1∑

k=0

e−itEk |k〉
{

cos[k(j − 1
2
)] + δ(k)(

√
2

2
− 1)

}

=
2
N

e−i(E0+Jλ)
N∑

n=1

N−1∑

k=0

exp (iJt cos k)

{
cos[k(j − 1

2
)] + δ(k)(

√
2

2
− 1)

}

×
{

cos[k(n− 1
2
)] + δ(k)(

√
2

2
− 1)

}
|↓n〉

=
1
N

e−i(E0+Jλ)
N∑

n=1

N−1∑

k=0

exp (iJt cos k)

× {cos k(j + n− 1) + cos k(j − n)− δ(k)} |↓n〉 . (B.15)

The time evolution of the m− th spin < Sz
m > is

< Sz
m >= 〈t|Sz

m |t〉 = 〈↓j | eitHSz
me−itH |↓j〉

=
N∑

q,p=1

〈↓j | eitH |↓q〉 〈↓q|Sz
m |↓p〉 〈↓p| e−itH |↓j〉 , (B.16)

and as

Sz
m |↓p〉 = { −

1
2 |↓p〉 ,m = p

1
2 |↓p〉 ,m 6= p

=
1
2

[1− 2δ(m− p)] |↓p〉 , (B.17)

we have

< Sz
m >=

N∑

q,p=1

〈↓j | eitH |↓q〉 〈↓q| 12 [1− 2δ(m− p)] |↓p〉 〈↓p| e−itH |↓j〉

=
N∑

p=1

1
2

[1− 2δ(m− p)] 〈↓j | eitH |↓p〉 〈↓p| e−itH |↓j〉

=
1
2

[
1− 2

∣∣〈↓m| e−itH |↓j〉
∣∣2)

]

=
1
2

[
1− 2 |〈↓m |t〉|2)

]
. (B.18)
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By using the expression of |t〉 in Eq.(B.15), we find

〈Sm(t)〉 =
1
2
− 4

N2

∣∣∣∣∣
N−1∑

k=0

exp (iJt cos k)

{
cos[k(j − 1

2
)] + δ(k)(

√
2

2
− 1)

}

{
cos[k(m− 1

2
)] + δ(k)(

√
2

2
− 1)

}∣∣∣∣∣
2

=
1
2
− 1

N2

∣∣∣∣∣
N−1∑

k=0

exp (iJt cos k) [cos k(j + m− 1) + cos k(j −m)− δ(k)]

∣∣∣∣∣

2

.

(B.19)
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Summary

From a large collection of simulation results for a ferromagnetic and anti-
ferromagnetic Heisenberg system coupled to a variety of different spin-bath
environments that are initially prepared in the ground state or random state,
we establish the conditions under which the central system relaxes from the
initial spin-up - spin-down state towards its ground state or other pointer
states. In general, it turns out that the relaxation to the ground (pointer)
state(s) is a more complicated process, than the one one would naively ex-
pect, depending essentially on the ratio between parameters of the interaction
and environment Hamiltonians. Changing the internal dynamics of the envi-
ronment may change the qualitative features of the decoherence of the central
spin system.

The central system more easily evolves to its ground state when the latter is
less entangled (e.g., up-down state compared to the singlet), and constraints
on the system such as existence of additional integrals of motion can make
the evolution to the ground state more efficient. At the first sight, the latter
statement looks a bit counterintuitive since it means that it may happen that a
more regular system exhibits faster relaxation than a chaotic one. The reason
that this may happen is that the larger the dimensionality of the available
Hilbert space for the central system is, the more complicated the decoherence
process is due to appearance of the whole hierarchy of decoherence times for
different elements of the reduced density matrix.

We found that environments that exhibit some form of frustration, such as spin
glasses or frustrated antiferromagnets, might be very effective as a decoherence
mechanism. We demonstrated that the efficiency of the decoherence process
decreases drastically with the type of environment in the following order:

1) Spin glass and random coupling of all spins to the central system;

2) Frustrated antiferromagnet (triangular lattice with nearest-neighbor inter-
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actions);

3) Bipartite antiferromagnet (square lattice with nearest-neighbor interac-
tions);

4) One-dimensional ring with nearest-neighbor antiferromagnetic interactions.

Furthermore, we observed that for a fixed system size of the environment
and in those cases that the decoherence is effective, different realizations of
the random parameters do not significantly change the results. The use of
spin-glass or frustrated thermal bath is indeed a very efficient way to simulate
decoherence processes. Environments containing 14 – 16 spins are sufficiently
large to induce a complete decay of the Rabi oscillations, this in sharp contrast
to environments that have a more simple structure, such as spin-chains or
square lattices.

We believe that these results can stimulate further development and clari-
fication of the “decoherence program”. Assuming that the interaction with
an environment is weak enough, a hypothesis that the pointer states should
be the eigenstates of the Hamiltonian of the central system was proposed,
with the very ambitious aim to explain the basic phenomenon of “quantum
jumps”. Our results confirm that if the interaction between the central sys-
tem and environment is much smaller than the coupling between the spins in
the central system, the pointer states are the eigenstates of the central sys-
tem. However, our results also demonstrate the nongeneric character of the
decoherence, casting doubts on the general applicability of the decoherence
program.

In the presence of Ising-like anisotropy, domain walls in a ferromagnetic spin
1/2 chain are dynamically stable over extended periods of time. The profiles
of the magnetization of the domain wall are different from the profile in the
ground state in the subspace of zero total magnetization. As the system
becomes more isotropic, approaching the quantum critical point, the width of
the domain wall increases as a power law, with an exponent equal to 1/2.

We also studied the propagation of spin wave through the domain wall in the
quantum spin 1/2 chain, and found that the longitudinal components of the
spin wave speed up when they cross a domain wall. The transverse compo-
nents of the spin wave are almost totally reflected by the domain wall, but this
characteristic feature of the microscopic quantum chain, obtained by solving
the time-dependent Schrödinger equation, is not found in mesoscopic mag-
netic systems, where the transverse components cross a domain wall without
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reflection and with a phase shift of π/2. The system described by the Landau-
Lifshitz-Gilbert equation treats the magnetic system in the mesoscopic regime
as a classical, continuous medium, whereas our study treats the magnetic
system as a microscopic, quantum mechanical system. Which of these two
approaches is the most suitable description obviously depends on the specific
material. The change of behavior from mesoscopic to microscopic may become
important as bottom-up chemical synthesis is providing new ways for further
down-sizing of the magnets.
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Samenvatting

Aan de hand van een grote verzameling simulatieresultaten voor een ferro-
en antiferromagnetisch Heisenberg systeem, gekoppeld aan verschillende spin-
bad omgevingen geprepareerd in de grondtoestand, hebben we de voorwaarden
bepaald waaronder het centrale Heisenberg systeem evolueert van de initiële
spin-up - spin-down toestand naar zijn grondtoestand of naar andere “pointer”
toestanden. We hebben vastgesteld dat de evolutie naar de grondtoestand of
een pointer toestand een aanzienlijk gecompliceerder proces is dan wat men
zou verwachten. De evolutie hangt op een essentiële, niet-intüıtieve manier af
van de verhouding van de sterkte van de interaktie en van het type spin-bad
Hamiltonianen. Veranderen we de interne dynamica van de omgeving (= spin-
bad) dan verloopt de decoherentie van het centrale systeem meestal, maar niet
altijd, anders.

Het centrale systeem relaxeert gemakelijker naar zijn grondtoestand indien
deze laatste minder verstrengeld (entangled) is, zoals bij de spin-up - spin-
down toestand en de singlet toestand. Heeft het systeem bijvoorbeeld extra
behouden grootheden dan kan de evolutie naar de grondtoestand sneller ver-
lopen. Op het eerste zich lijkt dit laatste een beetje vreemd omdat het zou
suggereren dat een meer regulier systeem sneller zou kunnen relaxeren dan
een meer chaotisch systeem. Een verklaring voor dit gedrag is te vinden in
het feit dat in de afwezigheid van extra behouden grootheden, het decoheren-
tieproces veel gecompliceerder is, met verschillende decoherentietijden voor de
verschillende elementen van de dichtheidsmatrix, en dit omdat de toegankeli-
jke Hilberruimte groter is.

We hebben gevonden dat omgevingen die op één of andere manier “gefrus-
treerd” zijn, zoals bvb, een spin-glas of een antiferromagneet op een driehoekig
rooster, aanleiding geven tot een zeer effectief decoherentieproces. We hebben
laten zien dat de efficiëntie van het decoherentieproces drastisch afneemt in-
dien we het type van spin-bad als volgt kiezen:
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1) Spin-glas en random waarde voor de koppelingsterkte van de spins met alle
spins in het centrale systeem;

2) Gefrustreerde antiferromagneet (driehoekig rooster met naaste-nabuur in-
teracties);

3) Bipartiete antiferromagneet (vierkant rooster met naaste-nabuur interac-
ties);

4) En-dimensionale ring met naaste-nabuur interacties.

Verder hebben we aangetoond dat voor een spin bad omgeving met een vast
aantal spins en in die gevallen waarin het decoherentieproces efficiënt is, ver-
schillende realisaties van de random parameters geen significant effect geeft.
Gebruiken we het spin-glas of de gefrustreerde magneet als omgeving dan blijkt
dat dit een zeer effectieve manier is om het decoherentieprocessen to simuleren.
Omgevingen met 14 tot 16 spins zijn dan voldoende groot om de Rabi oscil-
laties volledig te onderdrukken, dit in tegenstelling met spin bad omgevingen
die een eenvoudigere struktuur hebben, zoals een ketting of vierkant rooster
van spins.

Onze resultaten zijn een stimulans om het zogenaamde “decoherence program”
verder te ontwikkelen en verhelderen. Indien we aannemen dat de interacties
met de omgeving zwak genoeg zijn dan is de stelling dat de “pointer” toes-
tand een eigentoestand van de Hamiltoniaan van het centrale systeem moet
zijn, met het ambitieuze doel om het fenomeen van de zogenaamde “quan-
tum jumps” te verklaren. Onze resultaten bevestigen dat onder de genoemde
condities de “pointer” toestanden inderdaad de eigentoestanden zijn van het
centrale systeem. Anderzijds tonen onze resultaten ook aan dat de deco-
herentie verre van generiek is, wat dan de algemene toepasbaarheid van het
“decoherence program” sterk in vraag stelt.

In de aanwezigheid van Ising-achtige anisotrope interacties blijken domein-
muren in ferromagnetische spin-1/2 systemen dynamisch stabiel te zijn over
zeer lange tijden. Het magnetisatieprofiel van de domeinmuur verschilt van
het profiel van de grondtoestand in de deelruimte met totale magnetisatie nul.
Als het systeem meer isotroop wordt en het in de buurt van het quantum
kritische punt wordt gebracht dan divergeert de breedte van de muur als een
macht van de afstand tot het kritisch punt en met kritische exponent 1/2.

Ten slotte hebben we de propagatie van spingolven door domeinmuren in quan-
tum spin-1/2 kettingen bestudeerd. We hebben gevonden dat de longitudinale
component van de spingolf versnelt bij het doorboren van een domeinmuur.
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De transverse component wordt echter bijna volledig gereflecteerd. Dit gedrag,
afgeleidt uit de oplossing van de tijdsafhankelijke Schrödinger vergelijking, is
eigen aan het quantum spin model, dit in tegenstelling met het gedrag in meso-
scopische magnetische systemen. Deze laatste worden veelal beschreven door
de Landau-Lifschitz-Gilbert vergelijking die het mesoscopische magnetische
systeem als een klassiek continue medium beschrijft en waarin de transverse
component van de spingolf zonder reflectie maar met een faseverschuiving
van 900 aan de andere kant van de domeinmuur verschijnt. Welke van de
twee beschrijvingen het meest geëigend is hangt uiteraard af van het speci-
fieke materiaal. Echter, het verschil in het gedrag tussen een mesoscopisch en
een microscopisch systeem kan van belang worden nu het met hedendaagse
bottom-up synthetische chemie mogelijk wordt om magnetische materialen
steeds kleiner te maken.
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