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Abstract

A fundamental description of gas—liquid mass transfer with reversible consecutive reaction has been derived. The Higbie
penetration theory has been used and numerical simulations were carried out for isothermal absorption. Although the model can be
adapted to reactions of general stoichiometric and kinetic orders, results in this paper have been limited to unit orders only. The
model has been applied for a wide range of process conditions to investigate the effect of reversibility of both reaction steps and the
effect of the use of (partially) loaded solutions on the mass transfer characteristics. For consecutive reactions with both steps
irreversible, the approximate solutions of Onda (1970, 1972) have been found to be sufficiently accurate (maximum deviation of 4.3%
for the penetration theory solution). It has also been shown that the overall enhancement factor can be regarded as the summation of
the enhancement factors of the individual reaction steps. This has been quantitatively shown for the case where the first step is
irreversible while the second is reversible. Finally, an approximate technique to determine infinite enhancement factors for reversible
consecutive reactions has been given. This approximation is based on the method described by DeCoursey (1982). Deviations from
numerical calculations for both loaded and unloaded solutions were found to be less than 1.3%. Part I of this paper deals with the case
of equal diffusivities of the chemical species involved whereas the effect of unequal diffusivities on the overall absorption rate and
enhancement will be dealt with in Part II. ( 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Consecutive chemical reactions play an important role
in the process industry. Industrial examples are, among
others, alkylation and substitution chlorination of or-
ganic compounds. For a summary of consecutive reac-
tion systems one is referred to Doraiswamy and Sharma
(1984).

One of the first studies into consecutive reactions was
limited to homogeneous systems (Rodiguin and
Rodiguina, 1964). However, industrially, these reactions
usually occur as heterogeneous processes. Therefore, an
additional phenomenon occurs — mass transfer with
simultaneous chemical reaction.

The consecutive reaction stoichiometry for heterogen-
eous processes is described by (1a)—(1c)

A(g)P A(l) (1a)

A(l)#B(l) k1,1@k1,2
Q&&P C(l)#D(l) (1b)

A(l)#C(l) k2,1@k2,2
Q&&P E(l)#F(l). (1c)

A number of researchers have dealt with the problem of
heterogeneous gas—liquid mass transfer with consecutive
reaction in the liquid phase. Except for two studies,
which have been mentioned at the end for this section, all
work on consecutive reaction systems is based on the
isothermal and irreversible case. Pioneering work on
consecutive reactions was done by van de Vusse (1966
a, b), who used the chlorination of n-decane as a model
system. This work was limited to the effect of diffusion on
selectivity and yield of the intermediate products. Chlori-
nation of n-decane, however, generates a large number of
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side products, thereby complicating the fundamental
analysis of such a system. Hence, it was found necessary
to seek model systems with a limited number of reaction
paths. With this, the mass transfer phenomena could be
investigated more thoroughly. Inoue and Kobayashi
(1968) suggested the use of chlorination of p-cresol dis-
solved in carbon tetrachloride since this system consists
of only two reactions. They also measured rate constants
for both the reaction steps involved. This experimental
system was also used by Hashimoto et al. (1968) and
Teramoto et al. (1969, 1970), who presented an approx-
imate method for estimating the yield of the intermediate
product at a given reaction time. This was validated
experimentally with chlorination experiments in a stirred
cell. Further work on the effect of mass transfer on the
selectivity of the intermediate product was done by Pan-
garkar and Sharma (1974). They derived approximate
solutions for selectivity of the intermediate, based on the
film theory, which were then validated experimentally
with the chlorination of p-cresol. Special emphasis was
placed on the case where depletion of the liquid reactive
species occurs and for instantaneous consecutive reac-
tion. Darde et al. (1983, 1984a, b) incorporated the con-
secutive reaction scheme using the film theory into
a model for an ideal CSTR and the results were found to
agree with experiments on chlorination of p-cresol car-
ried out in a bubble column (modelled as a cascade of
CSTRs).

Some work that had appeared in literature was focused
on approximations to determine selectivity and yield of
the intermediate without actual experimental validation.
Kubota and Lee (1973) gave an analytical approximation
for selectivity based on the method of van Krevelen and
Hoftijzer. Kastánek and Fialová (1982) elaborated this
method by proposing simple empirical criteria for the
safe application of the approximate solutions and com-
pared the analytical approximations with numerical
solutions of the film theory. Approximate solutions for
the enhancement factor have been provided by Onda et
al. (1970, 1972), who derived semi-analytical solutions for
the film and penetration theory for the case where both
reaction steps may be considered irreversible. A more
detailed description of the absorption rate for the case
presented by Onda (1970, 1972) was provided by
Huang et al. (1980), who presented quantitative
values of enhancement factors over a range of Hatta
numbers using both film and penetration theory solu-
tions. They observed that the difference in the enhance-
ment factors obtained from the two theories was always
less than 2%.

It is only the work of Kuo and Huang (1973) that
studies the effect of reversibility on consecutive reactions.
However, this study was conducted for a simplified reac-
tion stoichiometry (see Section 4.4.5). The authors
showed that the effect of reversibility was to reduce the
absorption rate and, thereby, the enhancement as com-

pared to the irreversible reaction scheme. In the case of
non-isothermal absorption, an analysis of exothermic
irreversible consecutive reaction was made by Bhat-
tacharya et al. (1988). The authors provided approximate
analytical solutions for the interfacial temperature rise
and the enhancement factor as a function of the Hatta
number.

The limitation of irreversibility of consecutive reac-
tions has been overcome in the present study. However,
isothermal absorption has still been assumed. The Higbie
penetration theory has been used for this study. Further,
an analysis of gas absorption into loaded solutions has
been presented. The results obtained have then been
compared to available literature after making necessary
simplifications. For an overview of the existing literature
on reactions with simplified stoichiometries, the reader is
referred to the review by van Swaaij and Versteeg (1992)
on the subject. Part I of the study is limited to the case of
equal diffusivities of all chemical species involved where-
as Part II focuses on the effect of unequal diffusivities on
the absorption rate and its corresponding effect on the
overall enhancement factor.

2. Theory

2.1. Species conservation equations

The reaction stoichiometry under consideration is
given by reactions (1a)—(1c). The numerical description,
however, considers general stoichiometric and kinetic
orders of the different chemical species.

Based on the penetration theory, the unsteady-state
species conservation equations may be written as

LA

Lt
"D

A

L2A
Lx2

!R
A1

!R
A2

(2a)

LB

Lt
"D

B

L2B

Lx2
!R

A1
(2b)

LC

Lt
"D

C

L2C

Lx2
#R

A1
!R

A2
(2c)

LD

Lt
"D

D

L2D
Lx2

#R
A1

(2d)

LE

Lt
"D

E

L2E

Lx2
#R

A2
(2e)

LF

Lt
"D

F

L2F

Lx2
#R

A2
. (2f)

It is assumed that the kinetic expressions can be de-
scribed by simple power-law expressions (3a) and (3b), as
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Table 1
Program input parameters

Variable Value Units

A
i

10 mol m~3

B
T

1000*, 40 mol m~3

k
L

10~4—10~7 m s~1

k
1,1

0.25—2.6]105 m3 mol~1 s~1

K
1

0.01—100 —
K

2
0.01—100 —

K
R2

10~5—102 —
a 10~3—0.999 —
D

B
10~9 m2 s~1

*Initial concentration of B when both reactions are irreversible.

they are usually accurate enough for estimation of local
reaction rates

R
A1

"k
1,1

AB!k
1,2

CD (3a)

R
A2

"k
2,1

AC!k
2,2

EF. (3b)

The species conservation equations have been solved
with the following initial (4a) and boundary conditions
(4b)—(4d):

initial:

t"0, x*0NA"A
0
, B"B

0
, C"C

0
,

D"D
0
, E"E

0
, F"F

0
(4a)

boundary:

t'0, x"0Nk
G
(A

G
!A

i,G
)"!D

A A
LA

LxB
x/0

(4b)

t'0; x"0N

A
LB

LxB
x/0

"A
LC

LxB
x/0

"A
LD

LxB
x/0

"A
LE

LxB
x/0

"A
LF

LxB
x/0

"0 (4c)

t'0, xPRNA"A
0
, B"B

0
, C"C

0
, D"D

0
,

E"E
0
, F"F

0
. (4d)

Under conditions where the liquid is already loaded with
the gas-phase component, the bulk equilibrium of all
chemical species needs to be considered. A loading factor,
a is defined as

A
T
"aB

T
(5a)

where A
T

and B
T

are the total bulk concentrations of
A and B in all forms. These are defined as

A
T
"A

0
#D

0
#E

0
(5b)

B
T
"B

0
#D

0
. (5c)

Here, B
T

is the initial amount of B added to the solution
before equilibrium. The equilibrium concentrations of all
the species at a given solute loading is determined by
solving Eqs. (5a) and (5b) along with the equilibrium
definitions and mass balances.

K
1
A

0
B

0
!C

0
D

0
"0 (5d)

K
2
A

0
C

0
!E

0
F
0
"0 (5e)

D
0
!C

0
!E

0
"0 (5f)

E
0
!F

0
"0. (5g)

Here, K
1
and K

2
are defined as the equilibrium constants

for reactions (1b) and (1c), respectively. The equilibrium
reactions (5d)—(5g) are sufficient to describe the reaction
stoichiometry under consideration. However, for ap-

plications to practical systems, it is usually necessary to
consider additional equilibria. For example, aqueous
equilibria and/or electroneutrality would have to be con-
sidered if electrolytic systems are studied.

2.2. Numerical model

The set of partial differential equations (2a)—(2f) sub-
ject to initial and boundary conditions (4a)—(4d) was
solved using a technique similar to that described by
Versteeg et al. (1989). The numerical code has been imple-
mented in PASCAL.

The set of equilibrium Eqs. (5a)—(5g) were solved separ-
ately using a Newton—Raphson algorithm for a given
value of B

T
, K

1
and K

2
to obtain the initial bulk concen-

trations of all species at different loading factors, a.
The variables used in the present simulations are given

in Table 1.

3. Validation

By varying the process parameters and/or conditions
such as stoichiometric and kinetic orders, kinetic rate
constants and mass transfer coefficients, it is possible to
simplify the generalised stoichiometry given by reactions
(1a)—(1c) to simpler systems for which analytical and
semi-analytical solutions are available. The enhancement
factors calculated as a function of the corresponding
Hatta number are compared with the results available in
open literature.

The systems used to validate the numerical code and
the corresponding results obtained are given in Table 2.
The results obtained are well within the inherent devi-
ations to be expected when comparing the numerical
results with approximate or semi-analytical solutions
used for the validation. These deviations could be on
account of the use of the film theory or linearisation
based on the Hikita—Asai or van Krevelen—Hoftijzer ap-
proximation. This confirms the accuracy of the numerical
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Table 2
Reaction stoichiometries considered for the validation of the numerical code together with the maximum and average deviations found in the
numerical computations

Case Kinetic Maximum Average Number of Validation literature
expression deviation (%) deviation (%) points

First-order irreversible k
1,0

A 0.73 0.11 24 Higbie (1935)
Second-order irreversible k

1,1
AB 3.72 0.94 24 DeCoursey (1974)

Yeramian et al. (1970)
Second-order reversible k

1,1
AB!k

1,2
CD 5.36 1.67 80 DeCoursey and Thring (1989)

Second-order reversible k
1,1

AB!k
1,2

CD 5.90 1.0 124 DeCoursey and Thring (1989)
with unequal diffusivities D

A
OD

B
Second-order reversible k

1,1
AB!k

1,2
CD 6.00 2.1 144 DeCoursey and Thring (1989)

with loaded solutions A
T
"aB

T

Deviation defined as: dev"
DE

N6.%3*#!-
!E

A/!-:5*#!-
D100

E
A/!-:5*#!-

.

Average deviation is defined as: avgdev"
E

$%7
Number of points

.

code used for the mass transfer flux calculations with
consecutive chemical reaction.

4. Consecutive reactions

4.1. Both reactions irreversible

The simplest form of consecutive reactions with unit
stoichiometric and kinetic orders has been studied earlier
by Onda and co-workers (1970, 1972). The same system
was numerically investigated by Huang et al. (1980).

Results obtained from simulations, carried out with
the model described in this paper, are presented in Fig.
1(a) as enhancement factor, E

A
, defined as

E
A
"

N
A

k
L
(A

i
!A

0
)

(6a)

which is the ratio of chemical to physical flux under
identical concentration driving force, over a range of
Hatta numbers, Ha, defined as

Ha"
Jk

1,1
B
0
D

A
k
L

. (6b)

From Eq. (6b), it is clear that the Hatta number, used in
this study, is defined on the basis of the first reaction (1b).

The Hatta numbers were varied by changing, either the
liquid mass transfer coefficient, k

L
, or the kinetic rate

constants. The varying parameter in the graph, K
R2

, is
defined as the ratio of the forward rate constants

K
R2

"

k
2,1

k
1,1

. (6c)

The following points need to be noted:
(a) The reactions show a characteristic two-step in-

crease in the enhancement factor. Each step can be seen

as a contribution by the individual reactions to the total
enhancement. If reaction (1c) is slower than reaction (1b),
then, at lower Ha, the absorption of A is determined by
reaction (1b) only. Consequently, the enhancement factor
increases, as is observed for a single irreversible reaction,
to its asymptotic value called the intermediate asymptotic
enhancement factor (E

=1
). However, at higher Ha, suffi-

cient intermediate C is produced within the penetration
depth so that reaction (1c) can also influence the absorp-
tion of A. As a result, the enhancement factor further
increases from the intermediate asymptotic value (E

=1
)

to its final value. This value has been called the final
infinite enhancement factor (E

=
). In addition, the point at

which one observes the additional enhancement pro-
vided by the second reaction has been defined as the
‘kick-in’ point. A typical ‘kick-in’ point for one case (K

R2
"10~5) is shown in Fig. 1(a).

(b) At extremely high Ha (Ha'106), both reactions
(1b) and (1c) are instantaneous with respect to mass
transfer. Under these conditions the overall reaction
scheme simplifies to:

2A(l)#B(l)PD(l)#E(l)#F(l). (7)

The infinite enhancement factor E
=
, for the stoi-

chiometry given above and equal diffusivities, is defined
as

E
=
"1#

2B
0

A
i

. (8)

It is observed that all reactions, irrespective of K
R2

,
finally converge to the same E

=
.

(c) The value of K
R2

is indicative of the reactivity of
the intermediate C with A. At very low values of
K

R2
(typically 10~5), the reaction between A and C is

noticeable only at very high Hatta numbers. For such
a case, a clear intermediate asymptotic enhancement
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Fig. 1. (a) Effect of K
R2

on enhancement factor. Irreversible consecutive reaction. Distinct two-step increase in enhancement observed with the ‘kick-in’
point indicated for K

R2
"10~5. K

R2
"(k

2,1
/k

1,1
). (b) Deviation between Onda’s solutions and results from present model. Relative deviation

%"

(E
N6.%3*#!-

!E
A11309*.!5*0/

)100

E
N6.%3*#!-

.

factor is observed. This intermediate value is equal to the
infinite enhancement factor for a single irreversible reac-
tion (1b). For conditions of equal diffusivity, the value of
E
=1

for K
R2

"10~5"(1#B
o
/A

i
). This corresponds to

the value of 101 seen in Fig. 1(a). With an increase in K
R2

,
the ‘kick-in’ point shifts to lower Hatta numbers. A higher
value of K

R2
indicates higher reaction rates of C with

A so that reaction (1c) can influence the absorption of
A at increasingly lower Ha. Consequently, this means
that the final infinite enhancement factor is also achieved
at increasingly lower Hatta numbers. For K

R2
'1, reac-

tion (1c) is instantaneous over the entire range of Hatta
numbers so that any intermediate C formed is immedi-
ately consumed by reactions (1c). No intermediate pla-
teau in enhancement is seen and the value of E

A
rises to

its final infinite value directly. The overall reaction
stoichiometry is then represented by reaction (7) resulting
in a value of E

=
as defined in Eq. (8). This corresponds to

the value of 201 as seen in Figure 1(a). For intermediate
values of K

R2
, the value of E

=1
varies within these two

asymptotes.

4.1.1. Comments on Onda et al. (1970, 1972)
Onda and co-workers have provided semi-analytical

solutions for enhancement factor as function of Hatta
number for irreversible consecutive reaction. The en-
hancement factors have been obtained by linearising the
set of non-linear differential species conservation Eqs.
(2a)—(2c) using the Hikita—Asai technique. The resulting
approximate solutions can be applied to consecutive
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reactions of general kinetic orders. The flux description
presented in this paper has been compared with the
Onda solution for film theory (1970) and penetration
theory (1972). For the case of equal diffusivities and
unloaded solutions, the film theory solution of Onda
results in an enhancement factor that is obtained by
solving Eqs. (9a)—(9e) simultaneously.

E
A
"

JM
1

tanhJM
1

(9a)

where

M
1
"Ha2(b#K

R2
c). (9b)

In order to determine the value of M
1
, Onda et al.,

assume that the concentration profiles of species B and
the ratio C/B may be expressed as quadratic functions of
the dimensionless film thickness, z.

B

B
0

"(1!b) z2#b (9c)

C

B
"

c
b

(1!z2). (9d)

Substituting the above expressions for the concentration
profiles of B and C in the linearised species conservation
equation results in a relationship between the interfacial
concentrations of B and C, as follows:

c"
(1!b)

1#5
6
K

R2
((1!b)/b)

. (9e)

As an extension to the film theory solution, Onda et al.
(1972) presented a method to calculate the enhancement
factor based on the penetration theory. This method,
however, is limited to equal diffusivities of the chemical
species. The value of E

A
, is given by solving Eqs.

(10a)—(10c) simultaneously.

E
A
"AJM

1
#

n

8JM
1
BerfA2S

M
1

n B#1
2
expA!

4M
1

n B
(10a)

E
A
"1#2

B
0

A
i

(1!b)!
B
0

A
i

c (10b)

c"
(1!b)

1#K
R2

((1!b)/b)
. (10c)

In actual calculations Eq. (10a) was simplified to

E
A
"AJM

1
#

n

8JM
1
B . (10d)

This simplification is valid for higher Hatta numbers
(typically Ha'3). The error function contribution then
reduces to unity and the exponential part reduces to zero.

The deviations between the Onda solutions and the
present numerical data are given in Fig. 1(b). The error

curve for the film theory has a double-peak shape with-
minimum errors at the intermediate asymptotic enhance-
ment and the final infinite enhancement. Maximum error
is observed at very low Hatta numbers (for E

A
"1.2;

relative deviation "6%). This can be attributed to the
use of the penetration theory for the numerical calcu-
lations while the Onda solution is based on the film
theory. It is known that the difference in the two theories,
for the case of equal diffusivities, is negligible at infinite
enhancement and is more pronounced at lower Hatta
numbers (Huang et al., 1980). Another reason for the
deviation is the assumption of the concentration profile
of B made by Onda et al. on which the value of B

i
is

based. The value of b obtained with the flux description
presented here was compared with that obtained using
the Onda approximation. It was found that at a Ha"
90.5 (relative deviation"3.9%), the value of b obtained
by the Onda approximation"0.4 while that obtained
numerically was "0.29. Conversely, at the intermediate
asymptotic value (Ha"1450, deviation"0.23%), the
value of b from both methods was similar.

The overall performance of Onda’s penetration theory
solution is slightly better. It is observed that the highest
error occurs at a relatively high Hatta number ('104).
The maximum deviation here is 4.3%. However, the
average deviation when compared with numerical data is
1.6% for the penetration theory solution and 1.9% for
the film theory solution. It needs to be noted that while
the film theory tends to over-estimate the enhancement,
the penetration theory under-estimates it and vice versa.
Both solutions generate negligible deviations at the inter-
mediate asymptotic enhancement factor.

4.1.2. Comments on Huang, et al. (1980)
Huang et al. (1980) studied the influence of consecutive

irreversible second-order reactions on liquid phase mass
transfer. They described this system using, both, the film
and penetration theory. The resulting set of (partial)
differential equations were then solved using orthogonal
collocation. Due to the small size of the graphs of Huang
et al. (1980), it was difficult to compare the results with
any degree of accuracy. However, the authors also de-
rived an analytical approximation for E

A
at short contact

times (corresponding to low values of Ha). Under these
conditions, it can be assumed that B"B

0
throughout

the penetration depth and C/B
0
P0. The species conser-

vation equation for A is then solved to obtain the en-
hancement factor.

E
A,t?0

"AHa#
n

8HaB erfA
2Ha

JnB#
2Ha

n

]expA!
4Ha2

n B . (11)

Expression (11) is similar to that obtained for a pseudo-
first-order reaction. This approximation was compared
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Fig. 2. Effect of K
2

on enhancement factor. Consecutive (irr)—(rev) reaction.

with the presently obtained numerical results for
low Hatta numbers (Ha(3). A maximum deviation of
5.8% was seen for the lowest Hatta number (Ha"1)
while for higher Hatta numbers the agreement was much
better.

4.2. First reaction irreversible—second reaction reversible

The results from the simulation for the above case are
given in Fig. 2 for K

R2
"10~4. As may be observed, the

initial part of the curve is similar to a second order
irreversible reaction and can be described with available
techniques (e.g. DeCoursey, 1974) till the curve reaches
the intermediate asymptotic enhancement value. For the
case of equal diffusivities, the value of E

=1
corresponds

to the quantity (1# B
0
/A

i
). As Ha increases further, the

first reaction becomes instantaneous with respect to mass
transfer so that, now, further enhancement is essentially
provided by the second reaction.

4.2.1. Effect of K
2

From Fig. 2 it is clear that the value of K
2

influences
the final infinite enhancement factor. For very low
K

2
(typically(10~2) practically no further enhancement

is provided by the second reaction. This is obvious as at
such low K

2
, the net production of E and F is very low;

the effect of the forward reaction reaction (1c) is over-
ruled by the comparatively fast backward reaction of
reaction (1c) resulting in negligible additional absorption
of A. With an increase in K

2
, the rate of the forward

reaction (1c) increases, resulting in greater absorption of
A and a higher enhancement factor. However, the value
of E

=
cannot exceed the value for the case where both

reactions are irreversible (8). This corresponds to a value
of E

A
"9 for the initial concentrations used in the simu-

lations presented in Fig. 2.

4.2.2. Final infinite enhancement factor, E
=

It is observed that the final infinite enhance-
ment factor, E

=
, can be described by the following

equation:

E
=
"E

=1
#E

=2
!1 (12)

where E
=1

and E
=2

are the contributions of reactions
(1b) and (1c) to the final infinite enhancement factor. For
irreversible chemical reaction and equal reactant dif-
fusivities, E

=1
is given by

E
=1

"1#
B
0

A
i

. (13)

The value of E
=2

may be obtained from standard tech-
niques for infinite enhancement factors for single revers-
ible reactions (e.g. DeCoursey and Thring, 1989; Secor
and Beutler, 1967). However, in order to use these tech-
niques, the value of the initial concentration of the inter-
mediate C is required. Since at these Hatta numbers, Eq.
(1b) is instantaneous with respect to mass transfer, it can
be assumed that all B present initially is completely
converted to C. In other words, one may assume that
the initial concentration of C is the same as the ini-
tial concentration of B. Table 3 compares the approxim-
ate final infinite enhancement factor from Eq. (12) to
those obtained numerically. The DeCoursey and Thring
(1989) technique has been used for evaluating E

=2
.

As can be observed, the differences in the values are
negligible.

4.3. First reaction reversible—second reaction irreversible

The results for the above case are presented in Fig.
3 for K

R2
"10~3 . The results may be explained on the

basis of the following parameters:
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Fig. 3. Effect of K
1

on the enhancement factor. Consecutive (rev)—(irr) reaction.

Table 3
Consecutive (irr)—(rev) reaction. Comparison of approximate and nu-
merical values of E

=

K
2

E
=1

E
=2

E
=

Approx. E
=

Numerical Deviation (%)*

0.01 5 1.19 5.19 5.20 0.20
0.1 5 1.58 5.58 5.59 0.18

1 5 2.56 6.56 6.56 0.00
10 5 4.06 8.06 8.06 0.00

100 5 4.85 8.85 8.85 0.00

*Deviation defined as: dev"
DE

N6.%3*#!-
!E

A11309*.!5*0/
D100

E
A11309*.!5*0/

.

4.3.1. Effect of K
1

K
1

affects the intermediate asymptotic enhancement
factor, which increases with a rise in K

1
as observed in

any single-step reversible reaction. However, for all cases,
the value of E

=1
cannot exceed the corresponding value

for a single irreversible reaction. For the results presented
in Fig. 3, this upper limit on E

=1
corresponds to E

A
"5.

In addition, K
1

affects the ‘kick-in’ point. At lower
K

1
values, the ‘kick-in’ point is observed at higher Hatta

numbers. This can be explained by the fact that, at lower
K

1
values, the concentration of intermediate species, C, is

lower. Due to this the reaction (1c) starts influencing
mass transfer only at a higher Hatta number. The value
of the intermediate asymptotic enhancement factor may
be calculated with a standard method for reversible reac-
tions (e.g. DeCoursey and Thring, 1989).

4.3.2. Effect of irreversibility of the second reaction
The irreversibility of reaction (1c) results in the equilib-

rium of reaction (1b) being shifted to the side of the
products. As a result, at very high Hatta numbers, where
both reactions behave instantaneously with respect to

mass transfer, the stoichiometry is once again described
by reaction (7). The value of E

=
is then given by Eq. (8),

corresponding to the value of E
A
"9 in Fig. 3.

4.4. First reaction reversible—second reaction reversible

Typical results for this type of reaction are presented in
Fig. 4(a) and (b). The reaction may be studied under the
following cases:

z Both K
1

and K
2

are very high (typically K
1

and
K

2
'100).

The problem reduces to both reactions being irrevers-
ible and simulations give results similar to that in Section
4.1.
z Both K

1
and K

2
are very low (typically K

1
and

K
2
(0.01).

The problem reduces to that of physical diffusion of
A into a liquid as given by Eq. (1a). Simulations gave an
enhancement factor of unity as expected.
z Intermediate values of K

1
and K

2
(typically K

1
'0.1 and K

2
(100).

The simulations are explained on the basis of the
following parameters:

4.4.1. Effect of K
1

At a fixed K
2
[Fig. 4(a)], the following remarks need to

be mentioned:

z K
1

affects the value of the intermediate asymptotic
enhancement factor, which reduces at lower values
of K

1
.

z K
1

affects the ‘kick-in’ point of the second reaction.
The explanation to this is similar to that provided in
Section 4.3.1.
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Fig. 4. (a) Effect of K
1

on the enhancement factor. Consecutive (rev)—(rev) reaction. (b) Effect of K
2

on enhancement factor. Consecutive (rev)—(rev)
reaction.

z K
1

affects the value of the final infinite enhancement
factor. This may be explained by comparing two
cases—with equilibrium constants K

1
"K

2
"0.01,

an enhancement of 1.3 was observed in the present
calculations, while for a case where K

1
"100, K

2
re-

maining 0.01, an enhancement of 5.1 was obtained.
The additional enhancement of the second reaction
remains more or less the same, while the enhance-
ment by the first reaction is changed. This phenom-
enon is qualitatively explained in Section 4.4.4.

4.4.2. Effect of K
2

At a fixed K
1
[Fig. 4(b)], the following remarks need to

be mentioned.

z K
2

affects the value of the final infinite enhancement
factor; the lower the K

2
, the lower is the enhance-

ment factor.

z K
2

does not affect the ‘kick-in’ point for the second
reaction as well as the intermediate asymptotic en-
hancement factor.

4.4.3. Effect of K
R2

The effect of K
R2

is similar to that observed in Section
4.1. It has no effect on the intermediate asymptotic
enhancement factor, or the final infinite enhancement
factor.

4.4.4. Additional enhancement and infinite enhancement
As can be seen in Fig. 4(a), the infinite enhancement is

influenced by K
1
. The enhancement provided by the first

reaction is a function of K
1
only. However, the additional

enhancement provided by the second reaction is in-
fluenced by both K

1
and K

2
. For a given K

2
value, the

additional enhancement of the second reaction
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Fig. 5. Parity plot; comparison of enhancement factor as obtained from Kuo and Huang approximation (1973) with results from present model.
K

1
"K

2
"0.1.

(E
=
!E

=1
) is not a constant value. At a fixed K

2
, the

additional enhancement provided by the second reaction
increases with increasing K

1
and then decreases again as

K
1

is increased further.
Due to the different phenomena occurring simulta-

neously in the penetration depth, it is difficult to clarify
the exact reason for the behaviour mentioned in the
earlier paragraph. One possible way to explain this is to
see the effect of K

1
on the concentration of the intermedi-

ate, C, in the penetration depth. As K
1

is increased
initially, additional C is formed by reaction (1b). Due to
the higher availability of C, the rate of the forward
reaction of reaction (1c) is also increased, thereby increas-
ing the absorption of A causing the observed additional
enhancement.

At very high values of K
1
, the forward reaction (1c) will

cause the enhancement to rise sharply. However, beyond
a point, there is no further increase as the concentrations
of E and F also rise. This makes the backward reaction of
reaction (1c) reduce the overall enhancement. For reac-
tions with higher K

1
values, this effect is observed at

comparatively lower Hatta numbers as compared to the
case of low K

1
values. This can explain the observed

reduction in additional enhancement caused by the sec-
ond reaction at very high values of K

1
.

4.4.5. Comments on Kuo and Huang (1973)
Kuo and Huang studied the influence of consecutive

reversible chemical reactions of type A#B k1,1@k1,2
Q&&"

E k2,1@k2,2
Q&&" P on liquid phase mass transfer behaviour at

a gas—liquid interface using the film theory. The numer-
ical code described in this paper was modified to simulate
the reaction scheme of Kuo and Huang in order to
validate reversibility of consecutive reactions. Calcu-

lations were done for reaction conditions comparable
with that of Kuo and Huang. The highest deviation
occurs for very low Hatta numbers (6.7%), but decreases
with the increasing Hatta number. This can be accounted
for by the different mass transfer theories used.

Fig. 5 shows a parity plot for the given system.

5. Effect of solute loading on reversible—reversible
reactions

Calculations were done to study the influence of solute
loading on mass transfer behaviour. For a given solute
loading, a, and initial concentration B

T
, the bulk concen-

trations of the other components were calculated (see
Section 2.1). Calculations were done for K

1
and

K
2

values from 0.01 to 100 and for values of a ranging
from 0.1 to 0.999.

Typical results comparing corresponding values for
unloaded solutions are given in Figs. 6(a) and (b). The
following points need to be noted:

z In general, all other parameters remaining the same,
the enhancement factor for a loaded solution is
lower than that for an unloaded solution. This is
obviously due to the reduced driving force on ac-
count of the presence of A in the liquid bulk.

z Unlike the case of unloaded solutions, K
2

affects the
intermediate asymptotic enhancement factor, E

=1
.

The value of E
=1

is lower for higher values of K
2
.

This can be explained by observing the concentra-
tion profiles for species C and D as a function of K

2
[Fig. 6(c)]. It can be seen that, with an increase in
K

2
, there is an increase in D

0
!C

0
(D

0
increases

while C
0

decreases). However, the product C
0
]D

0
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Fig. 6. (a) Consecutive (rev)—(rev) reaction, enhancement factor as a function of Hatta number. Influence of loading as a function of K
2
. K

1
"0.1.

(b) Consecutive (rev)—(rev) reaction, enhancement factor as a function of Hatta number. Influence of solute loading as a function of K
2
. K

1
"100.

(c) Concentration profiles of components C and D for loaded solutions (a"0.1) as a function of K
2
. Dashed lines for K

2
"10~2 while whole lines for

K
2
"102.
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remains constant due to the equilibrium constraint
(5d) as K

1
, A

0
and B

0
are fixed. The value for

E
=1

can be reduced in case of loaded solutions if
there is an increase in the rate of the backward
reaction of reaction (1b). It shall be shown, by means
of the following analysis that this reduction in
E
=1

does actually occur. The effect of solute loading
on the backward reaction of reaction (1b) can be
represented as

r6"k
1,2

[C
0
#x][D

0
#x] (13a)

where C
0

and D
0

represent the initial concentrations
and ‘x’ the addition to the concentration as a result
of production by the forward reaction of (1b).

Expanding eq. (13a) gives

rN"k
1,2

[C
0
D

0
#x(C

0
#D

0
)#x2]. (13b)

The reaction equation can be written as three separ-
ate additions to the reaction rate. The product
C

0
]D

0
is constant and if we can neglect the effect of

solute loading on x2 then the addition to the back-
ward reaction due to solute loading can be described as

rN"k
1,2

[x (C
0
#D

0
)]. (13c)

Since C
0
]D

0
"constant we can write eq. (13c) as

f (C
0
, D

0
)"x (C

0
#D

0
)"A

const

D
0

#D
0B x. (13d)

Differentiating the right-hand side with respect to
D

0
gives

Lf (D
0
)

L(D
0
)
"A1!

const

D2
0
Bx. (13e)

This function equals zero at D
0
"Jconst. This

means that the backward reaction is minimum at
D

0
"C

0
and is higher for unequal amounts of

C
0

and D
0
. Correspondingly, the addition to the

backward reaction rate of the first reaction increases
with the difference D

0
!C

0
(higher K

2
), thus reduc-

ing the value of E
=1

.
z It is interesting to note that in Fig. 6(a), results are

presented for an a"0.5 (K
2
"100) and a"0.45

(K
2
"0.01) as these correspond to cases where A

0
is

slightly less than A
i
. For values of a above those

presented, the initial concentration of A in the liquid
phase is greater than the interfacial value. Conse-
quently, desorption of A from the liquid phase oc-
curs for values of a greater than those reported in
Fig. 6(a).

6. Approximate technique to determine E
=

of reversible
consecutive reactions

A technique for calculating E
=

of reversible consecut-
ive reactions with equal diffusivities of all chemical spe-

cies has been derived based on the method described by
DeCoursey (1982). DeCoursey developed this method
for single reversible chemical reactions based on the
Danckwerts’ model of mass transfer. He used the ap-
proximation technique of van Krevelen and Hoftijzer for
linearising the reaction terms of the species conservation
equations. However, since DeCoursey used an unsteady
state theory, the concentrations of the reactants from the
liquid phase were approximated by a time—mean value
and assumed independent of time. Variation of these
concentrations with distance from the interface was ne-
glected as well. The liquid bulk was assumed to be at
equilibrium at all times. In addition, it was assumed that
at any point within the liquid phase, equilibrium could be
expressed in terms of the time—mean concentrations.

For the situation described in this paper, time—
mean concentrations are obtained from the instan-
taneous concentrations by taking ‘s-multiplied’ Laplace
transforms of Eq. (2a) under initial condition (4a). Similar
exercise is carried out for all the other species. Bridging
equations for each reaction species are then obtained by
eliminating the reaction terms on manipulation of the
component mass balances.

The bridging equations are

D
L2
Lx2

(BM !AM !EM )!s(BM !AM !EM )

#s(B
0
!A

0
!E

0
)"0 (14a)

D
L2
Lx2

(CM #AM #2EM )!s(CM #AM #2EM )

#s(C
0
#A

0
#2E

0
)"0 (14b)

D
L2
Lx2

(DM #AM #EM )!s (DM #AM #EM )

#s (D
0
#A

0
#E

0
)"0 (14c)

D
L2
Lx2

(EM #AM !BM )!s(EM #AM !BM )

#s (E
0
#A

0
!B

0
)"0 (14d)

D
L2
Lx2

(FM #AM !BM )!s (FM #AM !BM )

#s (F
0
#A

0
!B

0
)"0 (14e)

where the overhead bars define time-averaged values.
These equations are then solved along with the trans-

formed species transport equation for A.

D
L2
Lx2

AM !s (AM !A
0
)!RM

A1
!RM

A2
"0. (14f)

To do this, the equations are rewritten in a manner similar
to that described by DeCoursey (1982) and implementing
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Fig. 7. (a) Parity plot; comparison of DeCoursey approximation (1982) with numerical values for E
=

. Consecutive (rev)—(rev) reaction—unloaded
solutions. (b) Parity plot; comparison of DeCoursey approximation (1982) with numerical values for E

=
. Consecutive (rev)—(rev) reaction—loaded

solutions.

h
1
"

q(!
1
#(E

=
!1)/q!2e#2!

3
) (!

2
#(E

=
!1)/q!e#!

3
)

K
1
(1!(E

=
!1)/q#e!!

3
)

!q
A

0
B
0

(16b)

the given dimensionless parameters. The equations re-
duce to

b"1!
(E

=
!1)

q
#e!!

3
(15a)

c"!
1
#

(E
=
!1)

q
!2e#2!

3
(15b)

d"!
2
#

(E
=
!1)

q
!e#!

3
(15c)

f"e (15d)

with

b"
B1

i
B
0

, c"
C1

i
B
0

, d"
D1

i
B

0

, e"
E1

i
B
0

and f"
F1
i

B
0

.

These equations can be substituted in the relations for
K

1
and K

2
, which in turn can be substituted in the

equation for h, defined as

h"
AM

ei
!A

0
A

i
!A

0

(16a)

where A
ei

is the time-averaged equilibrium interfacial
concentration.

This results in two equations for h (one for each equi-
librium constraint)
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Table 4
Selection of enhancement factors at different Hatta numbers. Further parametric values given in Table 1 and the respective figures

Fig. k
L

k
1,1

Ha E
A

K
R2

"10~5 K
R2
"10~2 K

R2
"1

1(a) 1.00]10~4 1.00]10~2 1 1.4 1.4 1.4
7.81]10~7 1.00]10~2 128 73.4 74.5 104.5
9.77]10~8 1.00]10~2 1024 100.2 143.8 195.9
3.05]10~9 5.12]100 741,460 201.0 201.0 201.0

K
2
"10~2 K

2
"1 K

2
"102

2 1.00]10~4 2.50 10!1 1 1.36 1.36 1.36
7.81]10~7 2.50 10!1 128 5.10 5.18 5.18
9.77]10~8 2.50 10!1 1024 5.18 6.27 7.79
9.77]10~8 1.31 105 741,460 5.20 6.56 8.85

K
1
"10~1 K

1
"1 K

1
"10

4(a) 1.00]10~4 2.50 10!1 1 1.29 1.35 1.36
7.81]10~7 2.50 10!1 128 1.69 2.78 4.35
9.77]10~8 2.50 10!1 1024 3.03 4.99 6.81
9.77]10~8 1.31 105 74,1460 3.78 5.90 7.57

Loaded solutions
6(a) k

L
k
1,1

Ha K
2
"0.01; a"0.45

1.00]10~4 2.98]10~1 1 1.15
7.81]10~7 2.98]10~1 128 1.28
9.77]10~8 2.98]10~1 1024 1.33
9.77]10~8 1.77]105 788,200 1.34

K
2
"100; a"0.9

1.00]10~4 4.21]10~1 1 1.09
7.81]10~7 4.21]10~1 128 1.14
9.77]10~8 4.21]10~1 1024 1.57
9.77]10~8 2.21]105 741,450 3.95

h
2
"

qe2
K

2
(!

1
#(E

=
!1)/q!2e#2!

3
)
!q

A
0

B
0

(16c)

with

!
1
"

C
0

B
0

, !
2
"

D
0

B
0

, !
3
"

E
0

B
0

and q"
B

0
A

i
!A

0

.

The above set of equations can be solved for both loaded
and unloaded solutions. The only difference being that
for unloaded solutions the initial concentrations of all the
chemical species is taken as zero.

For instantaneous reversible consecutive reaction,
HaPR and h"1. With this simplification E

=
and

e can be calculated simultaneously from Eq. (16b) and
(16c). This was carried out using commercially available
software (MAPLE V). The results are presented as parity
plots with respect to numerical obtained values [Fig. 7(a)
and (b)]. The figures show that the match between the
approximate technique and numerical values is very
close with maximum deviation of 1.3% for unloaded
solutions and 0.3% for loaded solutions with an a of 0.1.

7. Conclusions

A numerical model based on the Higbie penetration
theory for isothermal reversible consecutive chemical re-

action has been presented in this paper. The model has
been successfully validated for simpler reaction
stoichiometries.

It has been shown that, although the Onda technique
(Onda et al., 1970, 1972) for enhancement factors of irre-
versible consecutive reactions is useful in determining the
intermediate asymptotic enhancement factor and the
final infinite enhancement factor, there is some deviation
from numerical results for the intermediate enhancement
factor (max. 6% for film theory and 4.3% for penetration
theory).

For reversible consecutive reactions, it has been shown
that the final infinite enhancement (E

=
) can be seen as

a contribution of the infinite enhancement of the first
reaction (E

=1
) along with the additional enhancement

provided by the second reaction (E
=2

). This was quantit-
atively shown for irreversible—reversible reactions.

For the case of solute loading, enhancement factors
obtained are lower than that for the unloaded case.
Unlike unloaded solutions, the value of K

1
affects the

intermediate asymptotic enhancement value for the case
of loaded solutions. Finally, an approximate technique to
determine final infinite enhancement factors based on the
method of DeCoursey (1982) has been presented for
consecutive reversible reactions with equal diffusivities.
The match with numerically obtained values is very good
for both loaded and unloaded solutions.
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The vigorous numerical analysis that has been present-
ed in this work serves to archive the effect of reversibility
and solute loading on consecutive reactions in gas—liquid
systems. In order to facilitate further numerical and ap-
proximate analysis on this reaction system, a selection of
results have been presented in Table 4.
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Notation

A component A, concentration of component
A, mol m~3

B component B, concentration of component B,
mol m~3

C component C, concentration of component
C, mol m~3

D component D, concentration of component
D, mol m~3

D
46"

diffusivity, sub: component m2 s~1

E component E, concentration of component E,
mol m~3

E
A

enhancement factor defined by Eq. (6a), di-
mensionless

E
=

final infinite enhancement factor defined by
Eqs. (8) and (12), dimensionless

E
=1

intermediate asymptotic enhancement factor,
dimensionless

E
=2

enhancement provided by reaction (1c), di-
mensionless

f (C
0
, D

0
) function defined by Eq. (13d), mol m~3 s~1

F component F, concentration of component F,
mol m~3

Ha Hatta number, defined by Eq. (6b), dimen-
sionless

k
46"1,46"2

reaction rate constant,
sub1: reaction number, sub2: reaction direc-
tion, m3 mol~1 s~1

k
G

gas side mass transfer coefficient, m s~1

k
L

liquid side mass transfer coefficient,
m s~1

K
46"

equilibrium constant sub: reaction number,
dimensionless

K
R2

k
2,1

/k
1,1

, dimensionless
M

1
constant defined by Eq. (9b), dimensionless

N
A

gas flux, mol m~2 s~1

q parameter defined by DeCoursey (1982), di-
mensionless

r\ backward reaction rate, molm~3 s~1

R
46"1,46"2

reaction rate, sub1: component, sub2: reac-
tion number mol m~3 s~1

s Laplace time variable, s~1

t time variable, s
x place variable, m
x additional concentration defined in Eq. (13a),

mol m~3

z dimensionless film thickness ("x/film thick-
ness), dimensionless

CAP time-average concentration, cap: component,
mol m~3

Greek letters
a loading factor defined by Eq. (5a), dimension-

less
b dimensionless interface concentration ("BM

i
/

B
0
), dimensionless

c dimensionless interface concentration ("CM
i
/

B
0
), dimensionless

! dimensionless initial concentration of com-
ponent, dimensionless

d dimensionless interface concentration ("D1
i
/

B
0
), dimensionless

e dimensionless interface concentration ("E1
i
/

B
0
), dimensionless

f dimensionless interface concentration ("F1
i
/

B
0
), dimensionless

h
46"

dimensionless driving force, sub: reaction
number, dimensionless

Subscripts
0 bulk condition
ei equilibrium value at interface
G, g gas phase
i liquid-phase interface
i, G gas-phase interface
¸, l liquid phase
¹ total
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