
 

 

 University of Groningen

Discrete geometry approach to structure-preserving discretization of Port-Hamiltonian
systems
Seslija, Marko

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2013

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Seslija, M. (2013). Discrete geometry approach to structure-preserving discretization of Port-Hamiltonian
systems. s.n.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 29-10-2022

https://research.rug.nl/en/publications/9af7acdf-79d3-4120-a7e7-920a89ba14b3


Discrete Geometry Approach to

Structure-Preserving Discretization of

Port-Hamiltonian Systems

marko seslija



The research for this doctoral dissertation has been carried out at the Faculty
of Mathematics and Natural Sciences, University of Groningen, the Nether-
lands, within a collaboration between the Research Institute of Industrial Engi-
neering and Management and the Johann Bernoulli Institute for Mathematics
and Computer Science.

disc
The research reported in this dissertation is part of the research program of the
Dutch Institute of Systems and Control (DISC). The author has successfully
completed the educational program of DISC.

The research reported in this dissertation has been funded by the Netherlands
Organisation for Scientific Research via the NWO project #613.000.705.

Printed by Ipskamp Drukkers B.V.
Enschede, the Netherlands

ISBN (Book): 978-90-367-6093-5
ISBN (E-book): 978-90-367-6092-8



Discrete Geometry Approach to

Structure-Preserving Discretization of

Port-Hamiltonian Systems

Proefschrift

ter verkrijging van het doctoraat in de
Wiskunde en Natuurwetenschappen
aan de Rijksuniversiteit Groningen

op gezag van de
Rector Magnificus, dr. E. Sterken,
in het openbaar te verdedigen op

vrijdag 8 maart 2013
om 14.30 uur

door

Marko Seslija
geboren op 6 augustus 1984

te Sarajevo, Bosnië en Herzegovina
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Abstract

This thesis addresses the issue of structure-preserving discretization of open
distributed-parameter systems with generalized Hamiltonian dynamics. Em-
ploying the formalism of discrete exterior calculus, I introduce simplicial Dirac
structures as discrete analogues of the Stokes-Dirac structure and demonstrate
that they provide a natural framework for deriving finite-dimensional port-
Hamiltonian systems that emulate their infinite-dimensional counterparts. The
spatial domain, in the continuous theory represented by a finite-dimensional
smooth manifold with boundary, is replaced by a homological manifold-like
simplicial complex and its circumcentric dual. The smooth differential forms,
in the discrete setting, are mirrored by cochains on the primal and dual com-
plexes, while the discrete exterior derivative is defined to be the cobound-
ary operator. This approach of discrete exterior geometry, rather than dis-
cretizing the partial differential equations, allows to first discretize the un-
derlying Stokes-Dirac structure and then to impose the corresponding finite-
dimensional port-Hamiltonian dynamics. In this manner, a number of im-
portant intrinsically topological and geometrical properties of the system are
preserved. I demonstrate general considerations on a number of physical ex-
amples, including reaction-diffusion systems, where the structure-preserving
discretization recovers the standard compartmental model. Furthermore, I
show how a Poisson symmetry reduction of Dirac structures associated with
infinite- and finite-dimensional models can be conducted in a unified fashion.
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1
Introduction

The central conception of all modern theory in physics is ‘the Hamiltonian’.
If you wish to apply modern theory to any particular problem, you must
start with putting the problem ‘in Hamiltonian form’.

– Erwin Schrödinger, The Hamiltonian Postage Stamp

H
amiltonian systems are at the foundation of many current physical
theories, including quantum and relativistic mechanics, electromag-
netism, optics, solid and fluid mechanics. Geometry as the study
of observable symmetries and dynamical invariants is de facto the

lingua franca of the Hamiltonian theories. The prevailing paradigm in model-
ing of the complex large-scale physical systems is network modeling. In many
problems arising from modern science and engineering, such as multi-body
systems, electrical networks and molecular dynamics, the port-based network
modeling is a natural strategy of decomposing the overall system into subsys-
tems, which are interconnected to each other through pairs of variables called
ports and whose product is the power exchanged between the subsystems.

The formalism that unifies the geometric Hamiltonian and the port-based
network modeling is the port-Hamiltonian, the central conception of the thesis
at hand.

In this thesis I propose a geometric framework for structure-preserving
discretization of distributed-parameter port-Hamiltonian systems. Employing
the formalism of discrete exterior calculus, I will introduce the notion of sim-
plicial Dirac structures and show that these Dirac structures provide a natural
framework for the treatment of finite-dimensional port-Hamiltonian systems
on simplicial manifolds. Mirroring the framework of infinite-dimensional port-
Hamiltonian systems, I will supply a number of results on structural prop-
erties of port-Hamiltonian systems on simplicial complexes of arbitrary finite

1



2 INTRODUCTION

dimension. By the end, I hope, it will become clear that discrete geometry,
as considered in this thesis, offers a consistent theory for discretization of
distributed-parameter port-Hamiltonian systems.

Before embarking on the quest of endowing a mathematical spine to these
notions, let me begin by putting them into the context.

1.1 Historical Context

The theoretical paradigm of Hamiltonian systems goes back to the spring and
summer of 1834 when William Rowan Hamilton wrote two famous papers1 “On
a Geometric Method in Dynamics.” Drilling through the science of mechanics
with his ‘long analytical borer’2, in his essays Hamilton introduced an ‘auxil-
iary function’, which he named the ‘principle function’, to the modern students
better known as the Hamiltonian. At the end of the second essay Hamilton
had derived the canonical equations of motion by rewriting the second-order
Euler-Lagrange system as a set of first-order differential equations.

Hamiltonian dynamics. Prior to the publication of his essays, geometrical
ray optics and dynamics had been seen as different sciences dealing with differ-
ent mathematical models, but Hamilton found a beautiful theory that would
connect the two at an extremely abstract level. The largely mathematical the-
ory had practical application, at first primarily in celestial mechanics, but soon
in optics, electromagnetism, solid, fluid, quantum and statistical mechanics.

Throughout the 20th century the Euler-Lagrange and the Hamiltonian
formalism have been developing hand in hand. The Hamiltonian equations
of motion have been generalized to systems whose configuration space is an
arbitrary n-dimensional manifold Q instead of Rn, extending the symplectic
vector space R2n to the symplectic manifold T ∗Q, the cotangent bundle of
Q. Further generalization has led to definition of a general (possibly infinite-
dimensional) symplectic manifold (not necessarily being a cotangent bundle),
and, even more general, a Poisson structure. All these formalisms have proven
to be very valuable in description and analysis of all kind of physical systems
(see, e.g., [1, 9, 77]). The culmination of these developments happened in the

1“Hamilton’s General Method in Dynamics is the most important of all his major mathe-
matical discoveries; it is also the one on which he spent the least time. It grew directly out of
his Theory of Systems of Rays, and it exhibited to an extraordinary degree his ability to cre-
ate rapidly an enormous body of theory almost unparalleled in generality and abstraction,”
writes Hamilton’s biographer Thomas L. Hankins in [45].

2 “. . . [Hamilton] would drill right through the science of mechanics and out the other
side with his long analytical borer,” William Whewell wrote to Hamilton on March 27, 1834
[45].
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late 1980s and the early 1990s when Theodore Courant and Alan Weinstein
proposed a formalism of Dirac structures that unites symplectic and Poisson
geometry [22, 23].

Port-based network modeling. For modeling of large-scale physical sys-
tems it is very effective to split a system into subsystems3 that interact with
each other via port variables called flows and effort variables, whose product
defines power. This method of modeling called port-based modeling offers a
unified way to model physical systems from different physical domains, such
as mechanical, electrical, thermal, and so forth. The conceptual framework
that offers a systematic way of modeling general physical systems has been
successfully formalized into the modeling language of bond graphs formulate
by Henry Paynter in 1961 (see [85] and for more references [57, 18, 39]). The
setting of port-based network modeling brings many advantages to modeling
and system analysis in terms of reusability of subsystem models (libraries),
flexibility (coarse models of subsystems may be replaced by more refined ones,
leaving the rest of the system modeling unaltered), and control (by adding
new subsystems as control components in order to modify the behavior to a
desired one).

Port-Hamiltonian systems. As we have seen, Hamiltonian systems have
their roots in analytical mechanics, but also are a constitutive element of
modern geometry and dynamical systems theory. On the other hand, the
network approach stems from engineering and constitutes a cornerstone of
systems theory. In the mid of 1990s van der Schaft and Maschke proposed
the formalism of port-Hamiltonian systems as a unifying framework of the
Hamiltonian and the network modeling paradigm, by associating with the
interconnection structure of the network a geometric structure given by a
Poisson, or more generally, a Dirac structure [95, 25, 96]. The Hamiltonian
dynamics is then defined with respect to this Poisson, or Dirac, structure by
specifying the Hamiltonian representing the total stored energy, the energy-
dissipating elements and the ports of the system. Apart from enunciating a
remarkable structural unity, Poisson and Dirac geometry offers a mathematical
framework that gives important insights into dynamics and physics of port-
Hamiltonian systems. Moreover, the port-Hamiltonian formalism transcends
the finite-dimensional scenario and has been successfully applied to study of a
number of distributed-parameter systems, systems described by a set of partial
differential equations.

3The historically proven strategy Divide et impera, which has been shaping the sociopolit-
ical landscape for millennia, is the predominate trend in modeling and analysis of large-scale
systems, but now without reprobated consequences.
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1.2 Distributed-Parameter
Port-Hamiltonian Systems

The underlying structure of open distributed-parameter dynamical systems
considered in this thesis is a Stokes-Dirac structure [98], a type of infinite-
dimensional Dirac structure, defined in terms of differential forms on a smooth
finite-dimensional orientable, usually Riemannian, manifold with a boundary.
The Stokes-Dirac structure generalizes the framework of Poisson and symplec-
tic structures by providing a theoretical account that permits the inclusion of
varying boundary variables in the boundary problem for partial differential
equations. From an interconnection and control viewpoint, such a treatment
of boundary conditions is essential for the incorporation of energy exchange
through the boundary, since in many applications the interconnection with
the environment takes place precisely through the boundary.

In the construction of the Stokes-Dirac structure, the geometrical content
of the physical variables involved is expressed by identifying them with differ-
ential forms of appropriate order. The proof that the Stokes-Dirac structure is
an infinite-dimensional Dirac structure is strongly grounded on the Stokes the-
orem4, which states that the integral of an (n−1)-differential form ω over the
boundary of an orientable n-dimensional manifold M is equal to the integral
of its exterior derivative dω over the whole of M , that is,∫

M
dω =

∫
∂Ω
ω.

In the context of the Stokes-Dirac structure, as we will see in Chapter 2,
the Stokes theorem enunciates a fundamental property of port-Hamiltonian
systems: the increase in the energy on the domain M is equal to the power
supplied to the system through the boundary ∂M . Power is the currency of
port-Hamiltonian systems5.

1.3 Motivation and Related Approaches

For numerical integration, simulation and control synthesis, it is of paramount
interest to have finite approximations of distributed-parameter port-Hamilto-
nian systems that can be interconnected to one another or via the boundary

4This comes as no surprise as the whole exterior geometry is firmly anchored on this
coolly elegant result, which better than almost anything else reconfirms the Latin motto:
Simplex sigillum veri.

5This is an instance of the more general conclusion made in [36]: “Power is the universal
currency of physical systems.”
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coupled to other systems, be they finite- or infinite-dimensional. Most of the
numerical algorithms for spatial discretization of distributed-parameter sys-
tems, primarily finite difference and finite element methods, fail to capture the
intrinsic system structures and properties, such as symplecticity, conservation
of momenta and energy, as well as differential gauge symmetry. Furthermore,
some important results, including the Stokes theorem, fail to hold numerically
and thus lead to spurious results. Given the overwhelming geometric nature
of port-Hamiltonian systems, the loss of fidelity to preserve some inherently
topological and geometric structures of the continuous models gives a motiva-
tion to approach computations from a geometric standpoint.

The discrete approach to geometry goes back to Whitney, who in [134] in-
troduced an isomorphism between simplicial and de Rham cohomology. More
recent antecedents can be found, for instance, in [106], and also in the compu-
tational electromagnetism literature [15, 16, 41]. For a comprehensive histori-
cal summary we refer to the thesis [49] and references therein. The literature,
however, seems mostly focused on discretization of systems with infinite spatial
domains, boundaryless manifolds, and systems with zero boundary conditions.
The goal of the thesis is to treat port-Hamiltonian systems with nonzero en-
ergy flow through boundary.

A notable previous attempt to resolve the problem of structure-preserving
discretization of port-Hamiltonian systems is [39], where the authors employ
the mixed finite element method. Their treatment is restricted to the one-
dimensional telegraph equation and the two-dimensional wave equation. Al-
though it is hinted that the same methodology applies in higher dimensions
and to the other distributed-parameter systems, the results are not clear. It is
worth noting that the choice of basis functions can have dramatic consequences
on the numerical performance of the mixed finite element method; as the mesh
is being refined, it easily may lead to an ill-conditioned finite-dimensional lin-
ear system [8]. The other undertaking on discretization of port-Hamiltonian
systems can be found in [99, 100], but the treatment is purely topological
and is more akin to the graph-theoretical formulation of conservation laws.
Furthermore, the authors in [99, 100] do not introduce a discrete analogue of
the Stokes theorem and the entire approach is tied to the goal of preserving
passivity.

The approach I propose in this thesis is that of discrete exterior calculus
[26, 27, 49, 120], which has previously been applied to variational problems
naturally arising in mechanics and electromagnetism. These problems stem
from a Lagrangian, rather than Hamiltonian, modeling perspective and as
such they conform to a multisymplectic structure [40, 67, 68, 126], rather than
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the Stokes-Dirac structure. A crucial ingredient for numerical integration is
the asynchronous variational integrator for spatio-temporally discretized prob-
lems, whereas our approach spatially discretizes the Stokes-Dirac structure and
allows imposing time-continuous spatially discrete dynamics.6

1.4 Discrete Exterior Geometry Approach

As said, when dealing with continuous aspects of port-Hamiltonian systems,
the operating language of this thesis is exterior geometry. Discrete exterior
calculus is the parlance used in addressing spatially discrete port-Hamiltonian
systems or the process of discretization itself.

In the discrete setting, the spatial domain in the continuous theory rep-
resented by a finite-dimensional smooth manifold is replaced by a homologi-
cal simplicial manifold. Familiar examples of such a manifold are meshes of
triangles embedded in R3 and tetrahedra obtained by tetrahedrization of a
3-dimensional manifold. Discrete differential forms are expressed as cochains
on the simplicial manifold, while a discrete analogue of the exterior derivative
is defined to be the coboundary operator from algebraic topology [73, 46].

In the fashion of discrete exterior calculus, the discrete exterior derivative
d is constructed in such a manner that the Stokes theorem is satisfied by
definition. This means, given a n-chain c and a discrete (n − 1)-form α, the
discrete Stokes theorem states that

〈dα, c〉 = 〈α, ∂c〉 ,

where ∂ is the boundary operator. This result is the centerpiece of discrete
exterior calculus. To rephrase Spivak [119, p. 104] in the discrete context,
the discrete Stokes theorem shares three important attributes with many fully
evolved mathematical constructions:

1. It is simple.

2. It is clear because the terms appearing in it have been properly defined.

3. It has significant consequences.

This bedrock of discrete geometry, in the context of port-Hamiltonian sys-
tems, as will be demonstrated in Chapter 3 and 4, expresses the fundamental

6This apparent discrepancy between multisymplectic and the Stokes-Dirac structure-
preserving discretization could be elevated by, for instance, defining Stokes-Dirac structure
on a pseudo-Riemannian manifold to insure a treatment of space and time on equal footing,
whilst keeping nonzero exchange through the boundary. I will very briefly address this in
the final chapter.
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property of port-Hamiltonian systems defined on simplicial complexes: in the
absence of internal dissipation, the rate of energy change of the system inside
c is equal to the power supplied through the boundary ∂c.

1.5 Contribution and Outline of the Thesis

In Chapter 2 I begin by reviewing the basic concepts of Dirac structures and
port-Hamiltonian systems, as employed in the rest of the thesis. After a
brief survey of finite-dimensional structures, I recall the construction of the
Stokes-Dirac structure and distributed-parameter port-Hamiltonian systems,
as introduced in [98]. Section 2.3 is the only instance of this thesis where I
deal with Dirac structures on Hilbert spaces. The motivation for the treat-
ment of Dirac structures in this context is that Hilbert spaces sometimes offer
a more natural formulation for the underlying partial differential equation
models. Following a concise review of colligation-type Dirac structures, I in-
troduce a Stokes-Dirac structure on the L2 de Rham complex. Some of the
preliminary results of Section 2.3 were presented in [111]. In the last section
of Chapter 2 I revisit an alternative formulation of port-Hamiltonian systems
as classical fields on jet bundles. Without trying to be fully rigorous, in Sec-
tion 2.4 I am dealing with first-order field theories which will be revisited in
Chapter 5, where I derive the port-Hamiltonian systems on the Stokes-Dirac
structure through symmetry reduction of port-Hamiltonian systems presented
in Section 2.4.

Readers interested primarily in structure-preserving discretization may
skip Section 2.3 and 2.4 and go straight to Chapter 3.

Chapter 3 builds up discrete exterior calculus on a simplicial manifold with
boundary. Firstly, I review the standard notions of chains, cochains, boundary
and coboundary operators on the primal mesh. Then, I introduce the notion of
the dual cell complex, which is constructed in such a way that the dual of the
boundary of the simplicial manifold is the boundary of the dual cell complex.
This is the crucial difference between the standard discrete exterior calculus,
as presented in [26, 27, 49], and the one I am dealing with in this thesis. The
introduced definition of the dual cell complex allows for the augmented notion
of the dual boundary operator, which is indispensable for the construction of
a discrete analogue of integration by parts formula.

In Section 3.2 I introduce the key concept of this thesis, simplicial Dirac
structures. These finite-dimensional Dirac structures on simplicial manifolds
are terminus a quo for the formulation of port-Hamiltonian systems on simpli-
cial manifolds. In the rest of Chapter 3 I show how simplicial Dirac structures
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relate to physical examples on a 3-, 2-, and 1-dimensional manifold: Maxwell’s
equations on a bounded domain, a two-dimensional wave equation, and the
telegraph equations. The results presented in this chapter are published in
[108, 109].

Chapter 4 deals with matrix representations of simplicial Dirac structures
and resulting port-Hamiltonian systems. Primal and dual cochains are identi-
fied with vectors, while the linear operators such as discrete exterior derivative
and the discrete Hodge operators are matrices. The port-Hamiltonian systems
defined with respect to simplicial Dirac structures in this chapter assume the
standard input-output format. When the system exhibits linear dynamics,
Section 4.4 provides some guidelines how to establish bounds for the energy
of discretization errors. At the end of Chapter 4 I look at a simple control
strategy by energy shaping for the obtained port-Hamiltonian systems. The
principle source of the material presented is [110, 113].

Chapter 5 deals with symmetry reduction of port-Hamiltonian systems.
In this chapter I am looking at the Poisson reduction as proposed in [127]
for closed Hamiltonian systems. In order to cope with Dirac structures on
a manifold with boundary, I look at the Poisson reduction on an augmented
cotangent bundle. Firstly, I obtain the Stokes-Dirac structure through sym-
metry reduction of a generalized canonical Dirac structure, and then apply
the same methodology in the discrete world. The main source of the material
presented in this chapter is [112].

In Chapter 6 I offer a geometric formulation of reaction-diffusion equations
as port-Hamiltonian systems. The geometric content of the reaction-diffusion
system is expressed with a Stokes-Dirac type structure on a manifold with
boundary. In this way, reaction-diffusion systems are treated as a boundary
controlled port-Hamiltonian system. In Section 6.5 I supply a result that
certifies the spatial uniformity of the asymptotic behavior of a class of balanced
reaction networks under the influence of diffusion. Then, in Section 6.6 I
proceed to structure-preserving discretization of reaction-diffusion systems.
Employing the methodology of Chapter 4, structured spatial discretization of
reaction-diffusion systems results in a standard compartmental model. For
the resulting compartmental model I provide a result that guarantees the
spatiotemporal consensus of a large class of balanced reaction networks. Most
of the results presented in this chapter are extensions of those in [107, 114, 115].

The last chapter, for the benefit of those who only read introductions and
conclusions, summarizes what has been accomplished. I then continue to list
a number of open problems, and, in my opinion, interesting research avenues.



2
Dirac Structures and
Port-Hamiltonian Systems

It seems to be one of the fundamental features of nature that fundamental
physical laws are described in terms of a mathematical theory of great
beauty and power, needing quite a high standard of mathematics for one
to understand it. You may wonder: Why is nature constructed along these
lines? One can only answer that our present knowledge seems to show that
nature is so constructed. We simply have to accept it. One could perhaps
describe the situation by saying that God is a mathematician of a very high
order, and He used very advanced mathematics in constructing the universe.
Our feeble attempts at mathematics enable us to understand a bit of the
universe, and as we proceed to develop higher and higher mathematics we
can hope to understand the universe better.

– Paul Dirac, The Evolution of the Physicist’s Picture of Nature

A
large class of physical systems percolating down from mechanics and
electromagnetism exhibit a remarkable structural unity enunciated
by Dirac structures. Dirac structures were originally introduced by
Courant and Weinstein in [22] as a generalization of symplectic,

presymplectic and Poisson structures. The theory of Dirac structures was
later developed by Courant [23] and Dorfman [29]. Soon after that the for-
malism of Dirac structure was employed as the geometric notion underpinning
generalized power-conserving interconnections and thus allowing the Hamil-
tonian formulation of interconnected and constrained dynamical systems [25],
[96], [98]. The open dynamical systems defined with respect to these structures
belong to the class of so-called port-Hamiltonian systems. Apart from offering
a geometric content of port-Hamiltonian systems, Dirac structures supply a
useful framework for control synthesis of physical systems [78].

9
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Much is known about finite-dimensional Dirac structures and their role in
physics; however, hitherto there is no complete theory of Dirac structures for
field theories. An initial contribution in this direction is made in by van der
Schaft and Maschke in the paper [98], where the authors introduce the notion
of the Stokes-Dirac structure. This infinite-dimensional Dirac structure lays
down the foundation for port-Hamiltonian formulation of a class of distributed-
parameter systems with boundary energy flow.

The Stokes-Dirac structure is the central gadget for the geometric treat-
ment of the open infinite-dimensional systems in this thesis. For that reason,
after brief notational preliminaries, we recall the definition of the Stokes-Dirac
structure and port-Hamiltonian systems in the smooth context. This thesis
for the most part treats distributed-parameter port-Hamiltonian systems on
smooth manifolds; nevertheless, in this chapter we also, for the first time, in-
troduce the notion of Stokes-Dirac structure on Hilbert spaces. Most results
pertaining to port-Hamiltonian systems on the de Rham complex, namely sec-
tions 5, 6 and 7, can be shown independently; however, I have chosen to intro-
duce them through the light of Kurula and collaborators’ framework [60]. The
carrier spaces of the Stokes-Dirac structures are not abstract Hilbert spaces as
in [60], but are now the Hilbert spaces of differential forms on a Riemannian
manifold with a Lipschitz boundary.

The last section of this chapter concerns the formulation of port-Hamiltonian
systems on jet bundles. This approach, while different from the Stokes-Dirac
framework, nonetheless has some common tangential points with the Dirac
side. The connection of these two formulations, in a rather limited context,
will be studied in Chapter 5.

2.1 Background of Port-Hamiltonian Systems

Let X be a manifold with tangent bundle TX and cotangent bundle T ∗X. We
define TX⊕T ∗X as the smooth vector bundle over X with fiber at each x ∈ X

given by TxX × T ∗xX. Let X be a smooth vector field and let α be a smooth
one-form on X. Given a smooth vector bundle D ⊂ TX⊕T ∗X, we say that the
pair (X,α) belongs to D if (X(x), α(x)) ∈ D for every x ∈ X. Furthermore,
we define the smooth vector subbundle D⊥ ⊂ TX⊕ T ∗X as

D⊥=
{

(X,α) ∈ TX⊕ T ∗X
∣∣〈α|X̂〉+ 〈α̂|X〉 = 0 for all (X̂, α̂) ∈ D

}
, (2.1.1)

with 〈|〉 denoting the duality inner product between a one-form and a vector
field.
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Definition 2.1.1. A Dirac structure on a manifold X is a smooth vector
subbundle D ⊂ TX⊕ T ∗X such that D⊥ = D.

Remark 2.1.1. Usually an additional integrability condition is imposed on a
Dirac structure. A Dirac structure D is closed or integrable if it possesses the
property

〈£X1α2|X3〉+ 〈£X2α3|X1〉+ 〈£X3α1|X2〉 = 0 (2.1.2)

for all (X1, α1), (X2, α2), (X3, α3) ∈ D.

However, for the development of this thesis the notion of integrability does
not play a crucial role.

Example 2.1.1. Let {, } be a Poisson bracket on X with structural matrix
J(x). Then the graph of J(x), that is D = {(X,α) ∈ TX ⊕ T ∗X|X(x) =
J(x)α(x) for x ∈ X}, is a Dirac structure on X. The Jacobi identity for {, }
is equivalent to (2.1.2).

Example 2.1.2. Let ω be a two-form on X. Then D = {(X,α) ∈ TX ⊕
T ∗X|iXω = α} is a Dirac structure on X, which satisfies (2.1.2), if and only
if dω = 0.

Definition 2.1.2. Let X be a manifold with Dirac structure D and let H :
X → R be a smooth function, the Hamiltonian. The implicit Hamiltonian
system corresponding to (X,D, H) is given by the specification

(ẋ,dH(x)) ∈ D, x ∈ X. (2.1.3)

Remark 2.1.2. Substituting α = α̂ = dH(x) and X = X̂ = ẋ in (2.1.1)
immediately leads to the energy-conservation property dH

dt = 〈dH(x)|ẋ〉 = 0.

The notion of Dirac structures just entertained is suitable for the formula-
tion of closed Hamiltonian systems, however, our aim is a treatment of open
Hamiltonian systems in such a way that some of the external variables remain
free port variables. For that reason, let Fb be a linear vector space of external
flows, with the dual space F∗b of external efforts. We deal with Dirac structures
on the product space X×Fb. The pairing on (TX×Fb)⊕ (T ∗X×F∗b ) is given
by 〈〈(

(f1, fb,1), (e1, eb,1)
)
,
(

(f2, fb,2), (e2, eb,2)
)〉〉

= 〈e1|f2〉+ 〈eb,1|fb,2〉+ 〈e2|f1〉+ 〈eb,2|fb,1〉
(2.1.4)

for any (fi, fb,i) ∈ TX× Fb and (ei, eb,i) ∈ T ∗X× F∗b , with i = 1, 2.
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Definition 2.1.3. A generalized Dirac structure D is a subbundle of (TQ ×
Fb)⊕ (T ∗Q× F∗b ) which is maximally isotropic under (2.1.4).

A generalized Dirac structure (or from now on briefly, a Dirac structure) is
the starting point for the geometric formulation of port-Hamiltonian systems.

Definition 2.1.4. Consider a generalized Dirac structure D on the product
space Q × Fb. Let H : Q → R be a Hamiltonian. The port-Hamiltonian
system corresponding to a 4-tuple (Q,Fb,D, H) is defined by

(−ẋ(t), f(t),dH(x(t)), e(t)) ∈ D for t ∈ I ⊂ R. (2.1.5)

Remark 2.1.3. The equation (2.1.5) implies the energy balance

dH

dt
(x(t)) = 〈dH(x(t))|ẋ(t)〉 = 〈e(t)|f(t)〉 for all t ∈ I.

The duality product of f and e represents the incoming power of the system,
while the minus sign in front of ẋ is to assure that the incoming power 〈e, f〉
is counted positively.

Example 2.1.3. An important class of finite-dimensional port-Hamiltonian
systems is given by

ẋ = J(x)
∂H

∂x
(x) + g(x)e

f = gt(x)
∂H

∂x
, (2.1.6)

where for clarity we have omitted the argument t, and J : T ∗X → TX is a
skew-symmetric vector bundle map and g : Fb → TQ is the independent input
vector field.

In this thesis we deal predominantly with Dirac structures on linear spaces,
which can be defined as follows. Let F and E be linear spaces. Given an f ∈ F

and an e ∈ E, the pairing will be denoted by 〈e|f〉 ∈ R. By symmetrizing the
pairing, we obtain a symmetric bilinear form 〈〈, 〉〉 : F×E→ R naturally given
as 〈〈(f1, e1), (f2, e2)〉〉 = 〈e1|f2〉+ 〈e2|f1〉.
Definition 2.1.5. A constant Dirac structure is a linear subspace D ⊂ F× E

such that D = D⊥, with ⊥ standing for the orthogonal complement with respect
to the bilinear form 〈〈, 〉〉.
Remark 2.1.4. It immediately follows that for any (f, e) ∈ D

0 = 〈〈(f, e), (f, e)〉〉 = 2〈e|f〉 .

Interpreting (f, e) as a pair of power variables, the condition (f, e) ∈ D implies
power-conservation 〈e|f〉 = 0.



STOKES-DIRAC STRUCTURE 13

2.2 Stokes-Dirac Structure

Throughout this section, let M be an oriented n-dimensional smooth man-
ifold with a smooth (n − 1)-dimensional boundary ∂M endowed with the
induced orientation, representing the space of spatial variables. By Ωk(M),
k = 0, 1, . . . , n, denote the space of exterior k-forms on M , and by Ωk(∂M),
k = 0, 1, . . . , n − 1, the space of k-forms on ∂M . A natural non-degenerative
pairing between α ∈ Ωk(M) and β ∈ Ωn−k(M) is given by 〈β|α〉 =

∫
M β ∧ α.

Likewise, the pairing on the boundary ∂M between α ∈ Ωk(∂M) and β ∈
Ωn−k−1(∂M) is given by 〈β|α〉 =

∫
∂M β ∧ α.

For any pair p, q of positive integers satisfying p + q = n + 1, define the
flow and effort linear spaces by

Fp,q = Ωp(M)× Ωq(M)× Ωn−p(∂M)

Ep,q = Ωn−p(M)× Ωn−q(M)× Ωn−q(∂M) .

The bilinear form on the product space Fp,q × Ep,q is given by

〈〈(f1
p , f

1
q , f

1
b︸ ︷︷ ︸

∈Fp,q

, e1
p, e

1
q , e

1
b︸ ︷︷ ︸

∈Ep,q

), (f2
p , f

2
q , f

2
b , e

2
p, e

2
q , e

2
b)〉〉 =

∫
M

(
e1
p ∧ f2

p + e1
q ∧ f2

q + e2
p ∧ f1

p + e2
q ∧ f1

q

)
+

∫
∂M

(
e1
b ∧ f2

b + e2
b ∧ f1

b

)
.

(2.2.1)

Theorem 2.2.1 (Stokes-Dirac structure [98]). Given linear spaces Fp,q and
Ep,q, and bilinear form 〈〈, 〉〉, define the following linear subspace D of Fp,q×Ep,q

D =
{

(fp, fq, fb, ep, eq, eb) ∈ Fp,q × Ep,q
∣∣(

fp
fq

)
=

(
0 (−1)pq+1d
d 0

)(
ep
eq

)
,(

fb
eb

)
=

(
1 0
0 −(−1)n−q

)(
ep|∂M
eq|∂M

)}
,

(2.2.2)

where d is the exterior derivative and |∂M stands for a trace on the boundary
∂M . Then D = D⊥, that is, D is a Dirac structure.

In order to define Hamiltonian dynamics, consider a Hamiltonian density
H : Ωp(M)×Ωq(M)→ Ωn(M) resulting with the HamiltonianH =

∫
M H ∈ R.

Now, consider a time function t 7→ (αp(t), αq(t)) ∈ Ωp(M) × Ωq(M), t ∈ R,
and the Hamiltonian t 7→ H(αp(t), αq(t)) evaluated along this trajectory, then
at any t

dH

dt
=

∫
M
δpH ∧

∂αp
∂t

+ δqH ∧
∂αq
∂t

,
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where (δpH, δqH) ∈ Ωn−p(M)×Ωn−q(M) are the (partial) variational deriva-
tives of H at (αp, αq).

Setting the flows fp = −∂αp
∂t , fq = −∂αq

∂t and the efforts ep = δpH, eq =
δqH, the distributed-parameter port-Hamiltonian system is defined by
the relation (

−∂αp
∂t

,−∂αq
∂t

, fb, δpH, δqH, eb

)
∈ D. (2.2.3)

Remark 2.2.1. For the port-Hamiltonian system (2.2.3), it straightaway fol-
lows that dH

dt =
∫
∂M eb ∧ fb, expressing the fact that the system is lossless. In

other words, the increase in the energy of the system is equal to the power
supplied to the system through the boundary ∂M .

The spaces of differential forms Ωp(M) and Ωq(M), as we see from the
formulation of port-Hamiltonian system, represent the energy variables of two
different physical energy domains interacting with each other, while Ωn−p(∂M)
and Ωn−q(∂M) stand for the boundary variables whose product represents the
boundary energy flow. For example, in Maxwell’s equation we have n = 3 and
p = q = 2; that is, Ωp(M) = Ω2(M) and Ωq(M) = Ω2(M) being the space of
electric field inductions and the space of magnetic field inductions, respectively,
while Ωn−p(∂M) = Ω2(∂M) denote the electric and magnetic field intensities
at the boundary with product being the Poynting vector [98].

2.3 Dirac Structures on Hilbert Spaces

In the previous section we have covered the basic ingredients for the formula-
tion of port-Hamiltonian systems on smooth configuration spaces. Sometimes
the smooth formulation is too restrictive. For instance, the boundary in-
terconnection of two smooth port-Hamiltonian systems, in general, is not a
port-Hamiltonian system on a smooth manifold. Hilbert spaces offer a frame-
work general enough to cover problems similar to this one and at the same
time supply ample tools for their analysis.

Dirac structures in the context of Hilbert spaces previously were studied
in [39, 37, 60, 53]. The underlying spaces were Hilbert spaces of functions.
Our goal in this section is to identify the geometric content of the underlying
Hilbert spaces. For that purpose, we firstly recall the essentials of the Hilbert
spaces of differential forms, and then we review the necessary notation and
results from [60]. Here we deal with the so-called colligation-type Dirac struc-
tures on abstract Hilbert spaces. This formulation turns out to be sufficiently
general to cover the Stokes-Dirac structure, so the only novelty is that I iden-
tify the appropriate Hilbert spaces. The L2 spaces of differential forms are the
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carrier spaces of the Stokes-Dirac structure on the de Rham complex. At the
end of the section I show that the boundary composition of two Stokes-Dirac
structures is again a Dirac structure.

2.3.1 The de Rham Complex as a Hilbert Complex

We review the basic notions of a Hilbert complex on a Riemannian manifold
with boundary. Much more can be found in [7, 8, 9, 17, 31, 55, 61, 122]. The
first subsection 2.3.1 is strongly based on Section 2 of [8].

Henceforth, we restrict attention to the case when M is a bounded domain
in Rn with a piecewise smooth, Lipschitz boundary. In this section we show
that the de Rham complex is a Hilbert complex which satisfies the compactness
property.

On an oriented Riemannian manifold, the Sobolev spaces Hs(M) and
W s
p (M) are the spaces of functions with s ≥ 0 derivatives in L2(M) and

Lp(M). In the literature, the spaces HsΩk(M) are Hilbert spaces of differen-
tial forms for which all their partial derivatives of order at most s, in some
coordinate system, are square integrable.

Analogously, HΩk(M) is defined to be the space of forms in L2Ωk(M) with
a weak exterior derivative in L2Ωk+1(M), that is

HΩk(M) =
{
ω ∈ L2Ωk(M) |dω ∈ L2Ωk+1(M)

}
with the norm defined as

‖ω‖2HΩk(M) = ‖ω‖2L2Ωk(M) + ‖dω‖2L2Ωk+1(M) .

The space HΩ0(M) is in fact H1Ω0(M), or simply H1(M), while HΩn(M)
coincides with L2Ωn(M). For 0 < k < n, H1Ωk(M) ⊆ HΩk(M) ⊆ L2Ωk(M).

Standard smoothing arguments imply that C∞Ωk(M) is dense inHΩk(M).
Taking HΩk(M) for the domain of the exterior derivative, this operator is
densely defined in L2Ωk(M). Since HΩk is complete, d is a closed operator.
The spaces L2Ωk(M), together with the exterior derivative d, form a Hilbert
complex

0→ HΩ0(M)
d−→ HΩ1(M)

d−→ · · · d−→ HΩn(M)→ 0. (2.3.1)

This is the L2 de Rham complex.
Similarly to definition of HΩk(M), we define

H∗Ωk(M) =
{
ω ∈ L2Ωk(M) | δω ∈ L2Ωk−1(M)

}
,
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where δ is the coderivative operator δ : Ωk(M)→ Ωk−1(M) defined by

∗ δω = (−1)kd ∗ ω, (2.3.2)

with ∗ being the Hodge star operator and ω ∈ Ωk(M).
Since H∗Ωk(M) is isometric to HΩn−k, the dual de Rham complex is

0← H∗Ω0(M)
δ←− H∗Ω1(M)

δ←− · · · δ←− H∗Ωn(M)← 0.

Trace operators. The trace operator tr : Ωk(M) → Ωk(∂M) extends by
continuity to a mapping of H1Ωk(M) onto the Sobolev space H1/2Ωk(∂M).
The trace cannot be extended to all L2Ωk(M), but it is possible to give a
meaning to the trace of ω ∈ HΩk(M). Following Arnold, Falk and Winther
[8], let ρ ∈ H1/2Ωk(∂M), and let ∗̄ρ ∈ H1/2Ωn−k−1(∂M) be the Hodge star
of ρ with respect to the boundary. Then, there is η ∈ H1Ωn−k−1(M) with
tr η = ∗̄ρ, and

‖η‖H1Ωk−1(M) ≤ c‖∗̄ρ‖H1/2Ωn−k−1(∂M) ≤ c‖ρ‖H1/2Ωn−k−1(∂M) .

For ω ∈ Ωk(M), employing the integration by parts formula, we have

〈trω, ρ〉 =

∫
∂M

trω ∧ ∗̄ρ =

∫
∂M

trω ∧ tr η

=

∫
M

(
dω ∧ η + (−1)k ∧ dη

)
≤ c‖ω‖HΩ‖η‖H1

≤c‖ω‖HΩ‖ρ‖H1/2 .

This implies that the trace operator extends boundedly from HΩk(M) to
H−1/2Ωk(∂M), the dual of H1/2Ωk(∂M).

The integration by parts formula in the context of Hilbert spaces is

〈dω, µ〉 = 〈ω, δµ〉+
∫
∂M

trω∧tr ∗µ, ω ∈ HΩk−1(M), µ ∈ H1Ωk(M). (2.3.3)

Because of the isometry between H∗Ωk(M) and ∗(HΩn−k), (2.3.3) holds
also for ω ∈ H1Ωk−1(M) and µ ∈ H∗Ωk(M).

Here it is important to emphasize that for a smooth k-form ω, trω vanishes
if and only if its tangential part vanishes, while tr (∗ω) vanishes if and only if
its normal part vanishes.

Vetor calculus aspects. On any oriented Riemannian manifold of dimension
n, we have a natural way to view 0-forms and n-forms as real-valued functions,
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and 1-forms and (n−1)-forms as vector fields. In fact, 0-forms are real-valued
functions and 1-forms are covector fields, which can be identified with vector
fields via the inner product. The Hodge star operation then carries these
identifications to n-forms and (n − 1)-forms. In the case of a 3-dimensional
domain in R3, via these identifications all k-forms can be viewed as either scalar
or vector fields (sometimes called proxy fields). With these identifications, the
Hodge star operation becomes trivial in the sense if a certain vector field is
the proxy for, e.g., a 1-form ω, the exact same vector field is the proxy for the
2-form ∗ω. Via proxy fields, the exterior derivatives coincide with standard
differential operators grad, curl and div, and the de Rham complex (2.3.1) is
realized as

0→ H1(M)
grad−−−→ H(curl;M)

curl−−→ H(div;M)
div−−→ L2(M)→ 0,

where

H(curl; Ω) = {u : M → R3 |u ∈ L2(M), curlu ∈ L2(M) },
H(div; Ω) = {u : M → R3 |u ∈ L2(M), div u ∈ L2(M) }.

The exterior coderivatives δ become, of course, −div, curl, and −grad, when
acting on 1-forms, 2-forms, and 3-forms, respectively. The trace operation on
0-forms is just the restriction to the boundary, and the trace operator on 3-
forms vanishes (since there are no nonzero 3-forms on ∂Ω). The trace operator
from 1-forms on Ω to 1-forms on the boundary takes a vector field u on Ω to
a tangential vector field on the boundary, namely at each boundary point x,
(tru)x is the tangential projection of ux. For a 2-form u, the trace corresponds
to the scalar u · n (with n the unit normal) at each boundary point.

2.3.2 Constant Dirac Structures on Hilbert Spaces

Let E and F be two Hilbert spaces to which we shall refer to as the effort space
and the flow space, respectively. Assume that there is a unitary operator rE,F
from E to F with the adjoint r∗E,F.

By the Hilbert space F⊕ E we consider the product space F× E equipped
with the inner product〈(

f1

e1

)
,

(
f2

e2

)〉
F⊕E

= 〈f1, f2〉F + 〈e1, e2〉E , (2.3.4)

for any f1, f2 ∈ F and e1, e2 ∈ E.
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The bond space B is defined to be a Hilbert space F × E equipped with
the inner product 〈, 〉B given by〈(

f1

e1

)
,

(
f2

e2

)〉
B

=

〈(
f1

e1

)
,

(
0 rE,F

r∗E,F 0

)(
f2

e2

)〉
F⊕E

= 〈f1, rE,Fe2〉F + 〈e1, r
∗
E,Ff2〉E .

(2.3.5)

Given a linear subspace C ⊂ B, the orthogonal companion C⊥⊥ of C is
defined by

C⊥⊥ =
{
b̄ ∈ B : 〈b, b̄〉B = 0 for all b ∈ C

}
. (2.3.6)

Due to the indefinite inner product 〈, 〉B, for any linear subspace C of B the
following holds

C⊥⊥ =

(
0 rE,F

r∗E,F 0

)
C⊥ , (2.3.7)

where C⊥ stands for the orthogonal complement of C with respect to the
scalar product 〈, 〉F⊕E. Since the inner product 〈, 〉B is non-degenerate, any
orthogonal companion of C is closed.

Definition 2.3.1. A Dirac structure D of the bond space B is a subspace
D ⊂ B which is maximally isotropic under the inner product 〈, 〉B, that is
D = D⊥⊥.

Colligation-type Dirac structures on Hilbert spaces. In this section
we lay down the framework for the analysis of Dirac structures in the context
of Hilbert spaces.

Definition 2.3.2 ([60]). Given three Hilbert spaces U,X, Y , let G,L,K be
linear operators, with common domain in X, that map into U , X, and Y ,
respectively.

1. The pair

 G
L
K

 ,

 U
X
Y

 is called an operator colligation or colli-

gation.

2. The colligation is said to be strong if Ξ =

 G
L
K

 and L are closed

operators, with domain dom(L) = dom(Ξ).
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3. The minimal (interior) operator of Ξ is defined as

L0 = L|{x∈domL|Kx=0,Gx=0} .

When the spaces are clear from the context, the operator Ξ will be called col-
ligation.

Assume that the Hilbert spaces U and Y have the same cardinality. This
allows as to fix a unitary map rU,Y between U and Y . Introduce the effort and
flow spaces as

E = X ⊕ U and F = X ⊕ Y . (2.3.8)

The unitary mapping from E to F is

rE,F =

(
id 0
0 −rU,Y

)
, (2.3.9)

where id is the identity operator in X.

The indefinite power product on the bond space B = F × E is given by

〈
z1

y1

x1

u1

 ,


z2

y2

x2

u2


〉
B

=〈z1, x2〉X − 〈y1, rU,Y u2〉Y

+ 〈x1, z2〉X − 〈u1, r
∗
U,Y y2〉U ,

(2.3.10)

where x1, z1, x2, z2 ∈ X, y1, y2 ∈ Y , and u1, u2 ∈ U . Let

 G
L
K

 ,

 U
X
Y


be a colligation defined on dom(Ξ) as specified in Definition 2.3.2. Consider
the space D defined by

D =


L
K
id
G

dom(Ξ) ⊂ F × E = (X ⊕ Y )× (X ⊕ U) . (2.3.11)

The following proposition from [60] gives the conditions for D to be con-
tained in D⊥⊥.
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Proposition 2.3.1 ([60]). Let the bond space B = F×E with the power product
as in (2.3.8)–(2.3.10), and let D be defined by (2.3.11). Then, D ⊂ D⊥⊥ if
and only if

〈Lx, x〉X = 〈Kx, rU,YGx〉Y , x ∈ dom(Ξ). (2.3.12)

The main result from [60] supplies necessary and sufficient conditions for
D to be a Dirac structure.

Theorem 2.3.2 ([60]). Given the bond space B = F×E with the power product
be as in (2.3.8)–(2.3.10), let D be defined as in (2.3.11), and assume that the
operator L is closed. The space D is a Dirac structure on B if and only if the
following holds:

1. Equation (2.3.12) is satisfied.

2. The minimal operator L0 is densely defined and L∗0 = −L holds.

3. The range of the operator

(
G
K

)
is dense in U ⊕ Y .

Composition of Dirac structures. Consider two Dirac structures DA and
DB respectively defined on two n-dimensional manifolds MA and MB, such
that

∂MA = Γ ∪ ΓA , Γ ∩ ΓA = ∅ ,
∂MB = Γ ∪ ΓB , Γ ∩ ΓB = ∅ ,

for certain (n−1)-dimensional manifolds Γ,ΓA,ΓB (see Figure 1). This means
that the boundaries ∂MA and ∂MB share a common (n − 1)-dimensional
manifold Γ. The two structures DA and DB compose a Dirac structure on
MA ∪MB ∪ Γ with boundary ΓA ∪ ΓB.

Let j ∈ {A,B}, let U j , Xj , and Y j be Hilbert spaces and assume that U j

and Y j are split into U j = U jb ⊕Uc and Y j = Y j
b ⊕ Yc. Let Gj , Lj , and Kj be

linear operators with common domain dom Ξj dense in Xj that map into U j ,
Xj , and Y j , respectively. Split Gj and Kj according to the decomposition of
U j and Y j into

Gj =

(
Gjb
Gjc

)
and Kj =

(
Kj
b

Kj
c

)
. (2.3.13)
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Figure 2.1: Composition of two Stokes-Dirac structures through the associated
boundary.

There exist the unitary operators

rUj ,Y j =

(
r
Ujb ,Y

j
b

0

0 rUc,Yc

)
:

(
U jb
Uc

)
→
(
Y j
b

Yc

)
. (2.3.14)

The colligations

Ξj =


Gjb
Gjc
Lj

Kj
b

Kj
c

 for j = A,B, (2.3.15)

are defined on the dense subspaces dom Ξj of Xj .
This leads to the following set-up for split Dirac structures:

Ej =

(
Xj

U jb

)
, Fj =

(
Xj

Y j
b

)
, E2 = Uc F2 = Yc , j = A,B. (2.3.16)

Set Bj = Fj ⊕ F2 × Ej ⊕ E2, and define the subspace Dj ⊂ Bj as

Dj =



Lj

Kj
b

Kj
c

id

Gjb
Gjc


dom Ξj , j = A,B. (2.3.17)
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The composition of DA and DB is done by setting fA2 = −fB2 and eA2 = eB2 ,
that is

KA
c x

A +KB
c x

B = 0 and GAc x
A = GBc x

B (2.3.18)

for xA ∈ dom ΞA and xB ∈ dom ΞB. Introduce the subspace

dom ΞAB =

{(
xA

xB

) ∣∣∣∣xj ∈ dom Ξj and (2.3.18) holds

}
(2.3.19)

of XA ⊕XB, the operators

GAB =

(
GAb 0
0 GBb

)
: dom ΞAB → UAb ⊕ UBb ,

LAB =

(
LA 0
0 GB

)
: dom ΞAB → XA ⊕XB,

KAB =

(
KA
b 0

0 KB
b

)
: dom ΞAB → Y A

b ⊕ Y B
b ,

(2.3.20)

and the colligation ΞAB =

 GAB

LAB

KAB

.

Theorem 2.3.3 ([60]). Assume that the colligations ΞA and ΞB defined by
(2.3.15) are strong and that DA and DB in (2.3.15) are Dirac structures.
Then

DA ◦DB =


LAB

KAB

id
GAB

 dom ΞAB (2.3.21)

is a Dirac structure associated with the strong colligation ΞAB with the unitary
map

rE,F =


idXA 0 0 0

0 idXB 0 0
0 0 −rUAb ,Y Ab 0

0 0 0 −rUBb ,Y Bb

 . (2.3.22)

In the next section we shall apply the results presented here in the context
of the Stokes-Dirac structure on the L2 de Rham complex.
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2.3.3 The Stokes-Dirac Structure on the de Rham Complex

Let the configuration space be Xp,q = L2Ωk−1(M)⊕L2Ωk(M). Introduce the
space of boundary efforts Eb = H−1/2Ωk−1(∂M) and let the space of boundary
flows be Fb = H1/2Ωn−k(∂M). The complete spaces of efforts and flows are
given as

Ep,q = Xp,q ⊕ Eb and Fp,q = Xp,q ⊕ Fb . (2.3.23)

The unitary mapping from Ep,q to Fp,q is

rEp,q ,Fp,q =

(
id 0
0 −∗̄

)
, (2.3.24)

where id is the identity operator in L2Ωk−1(M)⊕L2Ωk(M) and ∗̄ is the Hodge
operator on the boundary ∂M .

The bilinear form on the bond space Bp,q = Fp,q × Ep,q is

〈


f1
p

f1
q

f1
b

e1
p

e1
q

e1
b

 ,



f2
p

f2
q

f2
b

e2
p

e2
q

e2
b


〉

Bp,q

= 〈f1
p , e

2
p〉L2Ωk−1 + 〈f1

q , e
2
q〉L2Ωk − 〈f1

b , ∗̄e2
b〉Fb

+ 〈e1
p, f

2
p 〉L2Ωk−1 + 〈e1

q , f
2
q 〉L2Ωk − 〈e1

b , ∗̄f2
b 〉Eb ,

(2.3.25)

where f1
p , f

2
p , e

1
p, e

2
p ∈ L2Ωk−1(M), f1

q , f
2
q , e

1
q , e

2
q ∈ L2Ωk(M), and the boundary

variables f1
b , f

2
b ∈ H1/2Ωn−k(∂M) and e1

b , e
2
b ∈ H−1/2Ωk−1(∂M).

By now we have all the necessary ingredients for the (re)formulation of the
Stokes-Dirac structure on the de Rham complex.

Theorem 2.3.4. Given linear spaces Fp,q and Ep,q, and bilinear form 〈, 〉Bp,q ,
define the following linear subspace Dp,q of Fp,q × Ep,q

Dp,q =
{

(fp, fq, fb, ep, eq, eb) ∈ Fp,q × Ep,q
∣∣(

fp
fq

)
=

(
0 −δ
d 0

)(
ep
eq

)
,(

eb
fb

)
=

(
tr 0
0 tr ∗

)(
ep
eq

)
,

such that (ep, eq) ∈ HΩk−1(M)⊕H1Ωk(M)
}
.

(2.3.26)

Then Dp,q = D⊥⊥p,q, that is, Dp,q is a Dirac structure.
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Proof. For the proof we shall use the ‘if’ part of Theorem 2.3.2. To this end,

we identify the following operators: L =

(
0 −δ
d 0

)
, G =

(
tr 0

)
and

K =
(

0 tr ∗
)
.

Observe that domL = HΩk−1(M) ⊕ H1Ωk(M) = dom Ξ. The operators

L and Ξ =

 G
L
K

 are closed in L2 (since all the operators in L, G and K

are, see [7, 8]), thus Ξ is a strong colligation (cf. Definition 2.3.2).
The minimal operator of Ξ is

L0 = L|{(ep,eq)∈HΩk−1(M)⊕H1Ωk(M)|tr ep=0,tr ∗eq=0} . (2.3.27)

The relation (2.3.12) in our case is〈
L

(
ep
eq

)
,

(
ep
eq

)〉
Xp,q

=

〈(
0 tr ∗

)( ep
eq

)
, ∗̄
(

tr 0
)( ep

eq

)〉
Fb

.

(2.3.28)
After writing out all the components, the last equation is nothing other than
the integration by parts formula (2.3.3), which in the present scenario is writ-
ten as

〈dep, eq〉L2Ωk = 〈ep, δeq〉L2Ωk−1 +

∫
∂M

tr ep ∧ tr ∗ eq

= 〈ep, δeq〉L2Ωk−1 + 〈tr ∗ eq, ∗̄tr ep〉H1/2Ωn−k .

(2.3.29)

This implies that the first condition of Theorem 2.3.2 is satisfied.
The exterior derivative d and the codifferential operator δ are dense in L2

[8], hence the minimal operator L0 is dense and L∗0 =

(
0 δ
−d 0

)
= −L.

Furthermore, the trace operators tr : HΩk−1(M)→ H−1/2Ωk−1(∂M) and
tr ∗ : H1Ωk(M) → H1/2Ωn−k(∂M) are dense in Eb and Fb, respectively, and
thus the third condition of Theorem 2.3.2 is fulfilled. This concludes the
proof.

2.3.4 Port-Hamiltonian Systems on the de Rham Complex

Port-Hamiltonian dynamics can be introduced in the same manner as it has
been done in the smooth scenario. To that end, consider a Hamiltonian density
h : L2Ωk−1(M) × L2Ωk(M) → L2Ωn(M) resulting in the Hamiltonian H =∫
M h ∈ R. Now, consider a trajectory t 7→ (αp(t), αq(t)) ∈ L2Ωk−1(M) ×



DIRAC STRUCTURES ON HILBERT SPACES 25

L2Ωk(M), t ∈ R, and the Hamiltonian t 7→ H(αp(t), αq(t)) evaluated along
this trajectory, then at any instance t

dH

dt
=

〈
δpH,

∂αp
∂t

〉
L2Ωk−1

+

〈
δqH,

∂αq
∂t

〉
L2Ωk−1

, (2.3.30)

where (δpH, δqH) ∈ HΩk−1(M)×H1Ωk(M) are the variational derivatives of
H at (αp, αq).

Specifying the flows fp = −∂αp
∂t , fq = −∂αq

∂t and the efforts ep = δpH,
eq = δqH results in the distributed-parameter port-Hamiltonian system(

−∂αp
∂t

,−∂αq
∂t

, fb, δpH, δqH, eb

)
∈ Dp,q. (2.3.31)

Proposition 2.3.5. The port-Hamiltonian system (2.3.31) is lossless, that is
dH
dt =

∫
∂M eb ∧ fb. In other words, the increase in the energy of the system

(2.3.31) is equal to the power supplied to the system through the boundary ∂M .

Now we give a physical example of the port-Hamiltonian system (2.3.31)
on a two-dimensional bounded domain.

Example: Two-dimensional vibrating string. Consider the wave equa-
tion µ∂2/∂t2u = −E∆u, with u(t, z) ∈ R, z = (z1, z2) ∈ M , where µ is the
mass density, E is the Young’s modulus, ∆ is the two-dimensional Laplace
operator, and M is a two-dimensional spatial domain with a piecewise smooth
boundary. The port-Hamiltonian formulation of the vibrating string in the
smooth scenario was presented in [39].

The energy variables are the 2-dimensional kinetic momentum p, and the
1-form elastic strain ε. The co-energy variables are the 0-form velocity v and
the 1-form stress σ. The energy density in terms of the co-energy variables is

h =
1

2
(µ v ∧ ∗v + E ε ∧ ∗ε) ,

while the Hamiltonian is

H =

∫
M

h =
1

2

(
µ‖v‖2L2Ω0 + E‖ε‖2L2Ω1

)
.

The port-Hamiltonian systems is(
∂v
∂t
∂ε
∂t

)
=

(
0 −δ
d 0

)(
δvH
δεH

)
=

(
δε
dv

)
(
eb
fb

)
=

(
tr 0
0 tr ∗

)(
δvH
δεH

)
=

(
tr v 0
0 tr ∗ ε

)
,

(2.3.32)

where the state variables are v ∈ HΩ0(M) and ε ∈ H1Ω1(M), while the
boundary port-variables are eb ∈ H−1/2Ω0(∂M) and fb ∈ H1/2Ω1(∂M).
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2.3.5 Composition of Stokes-Dirac Structures

In order to relate the results of Theorem 2.3.3 to the composition of the
two Stokes-Dirac structures, let Xj

p,q = L2Ωk−1(Mj) ⊕ L2Ωk(Mj), U
j
b =

H−1/2Ωk−1(Γj), and Y j
b = H1/2Ωn−k(Γj). The boundary operators GAB and

KAB are given as

GAB =

(
tr ΓA 0 0 0

0 0 tr ΓB 0

)
KAB =

(
0 tr ΓA∗ 0 0
0 0 0 tr ΓB∗

)
.

(2.3.33)

The internal operator LAB is biven by

LAB =


0 −δ 0 0
d 0 0 0
0 0 0 −δ
0 0 d 0

 . (2.3.34)

The consequences of Theorem 2.3.3 are summarized by the following state-
ment.

Corollary 2.3.6. The boundary composition of the two Stokes-Dirac struc-
tures DA and DB is a Stokes-Dirac structure

DA ◦DB =



0 −δ 0 0
d 0 0 0
0 0 0 −δ
0 0 d 0

0 tr ΓA∗ 0 0
0 0 0 tr ΓB∗

idL2Ωk−1(MA) 0 0 0

0 idL2Ωk(MA) 0 0

0 0 idL2Ωk−1(MB) 0

0 0 0 idL2Ωk(MB)

tr ΓA 0 0 0
0 0 tr ΓB 0



dom ΞAB ,
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where

dom ΞAB =

{
(eAp , e

A
q , e

B
p , e

B
q )

∣∣∣∣(eAp , eAq , eBp , eBq ) ∈ XA
p,q ⊕XB

p,q

such that tr Γ ∗ eAq + tr Γ ∗ eBq = 0 and tr Γe
A
p = tr Γe

B
p

}
and the power product (2.3.5) induced by the unitary operator

rE,F = diag(idXA
p,q
, idXB

p,q
,−∗̄UAb ,Y Ab ,−∗̄UBb ,Y Bb ).

2.4 Port-Hamiltonian Systems on Jets

So far we were looking at the formulation of port-Hamiltonian systems with re-
spect to Dirac structures. A different, but related, approach to port-Hamilto-
nian systems is a field theoretic approach. Studying distributed-parameter
port-Hamiltonian systems as classical field theories can be quite naturally
conducted by employing the geometry of fiber bundles. This approach is the
running topic of this section and will be revisited in Chapter 5.

Throughout, we closely follow [103, 104] in both the content and notation.
Much more on jet bundles can be found in [94, 125], while a comprehensive
treatment of port-Hamiltonian systems on jets is given in [116].

2.4.1 Preliminaries

We begin by considering the bundle π : X → M, (ξA, xα) → (ξA), where
x are the dependent and ξ the independent coordinates for M . The first jet
manifold J1(X) possesses the coordinates (ξA, xα, xαA), where the capital Latin
indices A,B are used for the smooth n-dimensional manifold M (independent
coordinates) and xαA denote derivative coordinates of first order (derivatives
of the dependent coordinates with respect to the independent ones). The jet
structure also induces the so-called total derivative

dA = ∂A + xαA∂α + xαAB∂
B
α

acting on elements including first order derivatives and xαAB correspond to
derivative coordinates of second order living in the second jet manifold J2(X).
It is possible, but we will not take higher order jets and derivatives into ac-
count.

In the sequel we will pay a special attention to densities of the form
H = Hdξ for H ∈ C∞(J1(X)), where dξ denotes the volume element on
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the manifold M , i.e. dξ = dξ1 ∧ . . .∧dξn. The integrated quantity of H is
H =

∫
M H, where the map x = Φ(ξ) leading to xA = ∂AΦ(ξ) needs to be

specified in order to evaluate the integral.
The bundle structure π : X→M induces the space

∧n
1 (X)∧n

1 (X) = T ∗X ∧
∧n(T ∗M) ,

where
∧n(T ∗M) is the k-fold exterior product of T ∗M . The space of sections

of
∧n(T ∗M) is the module of k-forms Ωk(M). The coordinate representation

of a typical element ω in
∧n(T ∗M) is ω = ωαdxα ∧ dξ. It is worth pointing

out that the functions ωα may depend on derivative coordinates, however, to
simplify the notation we will not explicitly indicate pull backs, that is, it should
be clear from the context which order of derivative is included in the differential
form. For instance, if ωα ∈ J1(X) then ω ∈ (π1

0)∗
∧n

1 (X) with π1
0 : J1(X)→ X,

but for simplicity we suppress the pull back and write ω ∈
∧n

1 (X).
An important object is the horizontal exterior derivative dh given as dh(Φ) =

dξA ∧ dA(Φ) when it acts on a differential form Φ, where dA(Φ) denotes the
Lie-derivative of Φ with respect to dA. To understand the relation between
the operators d and dh and Stokes’ theorem, consider a bundle π : X → M
and its m-th order jet manifold Jm(X) as well as the bundle πm0 : Jm(X)→ X

together with a section Φ : M → X, that is x = Φ(ξ).
The exterior derivative d is related to the horizontal derivative dh through(

jm+1Φ
)∗

(dh (ω)) = d ((jmΦ)∗ (ω)) (2.4.1)

for a form ω living on Jm(X). Roughly speaking, the pull back (jmΦ)∗ (ω)
denotes ω ◦ (jmΦ) for jmΦ corresponding to the m-th order jet-lift of the
section Φ.

Integrating jm+1 (Φ)∗ (dhω) over the oriented compact manifold M results
in ∫

M
jm+1 (Φ)∗ (dhω) =

∫
M

d (jm (Φ)∗ (ω)) =

∫
∂M

jm (Φ)∗ (ω)

for any ω ∈ (πm0 )∗(
∧m−1(X)), which is nothing else than Stokes’ theorem on

jet bundles.

2.4.2 Hamiltonian Structure

Let us consider a vertical vector field v : X→ V (X) locally given as v = vα∂α,
where vα may depend on derivative coordinates, together with its first jet-
prolongation j1(v) given by

j1(v) = vα∂α + dA(vα)∂Aα .
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Then we compute the Lie-derivative of the density F as it has been defined
before with respect to the vector field j1(v) and we obtain the important
relation

j1(v)(Hdξ) =
(
vα(∂αH − dA∂AαH) + dA(vα∂AαH)

)
dξ

=
(
vαδαH + dA(vα∂AαH)

)
dξ. (2.4.2)

The Euler-Lagrange operator δ

δ : J2(X)→
∧n

1 (X) (2.4.3)

comes into play, whose coordinate expressions involves the variational deriva-
tive δα, which acts on H as

δαH = ∂αH − dA∂AαH.

Applying the Stokes theorem to (2.4.2) yields∫
M
j1(v)(Hdξ) =

∫
M
vα (δαH) dξ +

∫
∂M

vα
(
∂AαH

)
dξA

=

∫
M
vcδH +

∫
∂M

vcδ∂H, (2.4.4)

where dξA = ∂Acdξ, with c being a contraction operator, and the boundary
operator given by

δ∂H = ∂AαH dxα ∧ dξA.

The relation (2.4.4) is of a key interest since it provides a natural decompo-
sition of the expression

∫
M j1(v)(Hdξ) into a term on the domain M and a

term on the boundary ∂M .

2.4.3 Port-Hamiltonian Representation

In order to introduce a port-Hamiltonian system on a bundle X → M , we
start with a Hamiltonian density function of first order H ∈ C∞(J1(X)) and
the resulting Hamiltonian H = Hdξ.

Consider the skew-symmetric mapping

J :
∧n

1 → V (X) ,

which satisfies

J(ω1)c(ω2) + J(ω2)c(ω1) = 0 for any ω1, ω2 ∈
∧n

1 . (2.4.5)
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For the purposes of dealing with open systems, introduce the input and
the output bundles as U → X and Y → X. Given a map G : U → V (X), its
adjoint G∗ :

∧n
1 → Y satisfies

(ucG)cω = uc(G∗cω). (2.4.6)

This allows us to define Hamiltonian dynamics

ẋ = J(δH) + ucG
y = G∗cδH, (2.4.7)

together with appropriate boundary conditions.

Since in local coordinates δH is represented by

δH : (δαH)→ (δαH)dxα ∧ dξ, where δα = ∂α − dA∂Aα , (2.4.8)

if the mapping J is linear, the local coordinate representation of (2.4.7) is

ẋα = Jαβ(δβH) +Gαi u
i

yi = Gαi δαH.
(2.4.9)

The time derivative of the Hamiltonian is

Ḣ =

∫
M
J(δH)cδH +

∫
M

(ucG)cδH +

∫
∂M

ẋcδ∂H

=

∫
M
ucy +

∫
∂M

ẋcδ∂H , (2.4.10)

which reflects the power balance, since the total change of the functional H
along solutions of (2.4.7) depends on collocation on the domain and an expres-
sion corresponding to a boundary port (if it exists) depending on the boundary
conditions, see [116, 103, 104].

2.4.4 Vibrating String

As a recurring example of this thesis, consider an elastic string of length l,
elasticity modulus T , and mass density µ, subject to traction forces at its ends.
The underlying manifold is the segment M = [0, l] ⊂ R. The independent
coordinate is the spatial coordinate ξ and the dependent coordinates are the
deflection u and the temporal momentum p. This leads to the following bundle
X → M, (ξ, u, p) → ξ. The first jet manifold J1(X) additionally includes the
derivative coordinates uξ and pξ. The boundary ∂M consists of just two points
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only, namely ξ = 0 and ξ = l. The set of partial differential equations that
describe the system is

u̇ = p
µ

ṗ = dξ(Tuξ)
(2.4.11)

together with additional boundary conditions. To rewrite this system in a
Hamiltonian fashion consider the Hamiltonian density H = Hdξ with

H =
1

2ρ
p2 +

1

2
Tu2

ξ . (2.4.12)

The total Hamiltonian is H =
∫ L

0 Hdξ. To obtain partial differential equations
in the form as in (2.4.7) we set G to zero. Then(

u̇
ṗ

)
=

(
0 1
−1 0

)(
δuH
δpH

)
= J(δH) ,

where x = (u, p) and the variational derivatives are

δuH =
(
∂u − dξ∂ξu

)
H = −dξ(Tuξ)

and
δpH =

(
∂p − dξ∂ξp

)
H =

p

µ
.

Evaluating (2.4.10) gives

Ḣ =

∫
∂M

ẋcδ∂H = u̇Tuξ|l0 . (2.4.13)

Let fb = tr( pµ) ∈ Fb be the boundary flow and eb = tr(Tuξ) ∈ F∗b be the
boundary effort variable. The time derivative of the Hamiltonian in (2.4.13)
now can be rewritten as

Ḣ =

∫
∂M

ebfb = eb(l)fb(l)− eb(0)fb(0)

expressing the fundamental property of all port-Hamiltonian systems.
The correlation between formulation (2.4.7) and Stokes-Dirac structures

will be studied in Chapter 5.





3
Structure-Preserving Discretization

A common way to generate questions (not only) in geometry is to con-
front properties of objects specific to different categories: what is a possible
topology (e.g. homology) of a manifold with a given type of curvature? . . .
These seduce us by simplicity and apparent naturality, sometimes leading
to new ideas and structures but often the mirage of naturality lures us
into featureless desert with no clear perspective where the solution, even if
found, does not quench our thirst for structural mathematics.

– Misha Gromov, Spaces and questions

I
n this chapter I propose a geometric framework for structure-preser-
ving discretization of distributed-parameter port-Hamiltonian sys-
tems. The approach to time-continuous spatially-discrete port-Ha-
miltonian theory is based on discrete exterior geometry and as such

proceeds ab initio by mirroring the continuous setting. The theory is not
merely tied to the goal of discretization but rather aims to offer a sound and
consistent framework for defining port-Hamiltonian dynamics on a discrete
manifold which is usually, but not necessarily, obtained by discretization of a
smooth Riemannian manifold.

In order to make this chapter as self-contained as possible for a variety of
readers, I present a brief overview of the discrete exterior geometry needed to
define a discretized Stokes-Dirac structure and port-Hamiltonian dynamics.
The third section is a brief summary of the essential definitions and results in
discrete exterior calculus as developed in [26, 27, 49]. The contribution of this
thesis in this regard is a proper treatment of the boundary of the dual cell com-
plex. Namely, in order to allow the inclusion of nonzero boundary conditions
on the dual cell complex, I offer a definition of the dual boundary operator that
differs from the standard one. Such a construction leads to a discrete analogue

33
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of the integration by parts formula, which is a crucial ingredient in establish-
ing a discrete Stokes-Dirac structure on a primal simplicial complex and its
circumcentric dual. The main result is presented in Section 3.2, where I intro-
duce the notion of simplicial Dirac structures on a primal-dual cell complex,
and in the following section define port-Hamiltonian systems with respect to
these structures. Finally, I demonstrate how the simplicial Dirac structures
relate to some spatially discretized distributed-parameter systems with bound-
ary variables: Maxwell’s equations on a bounded domain, a two-dimensional
wave equation, and the telegraph equations.

3.1 Fundaments of Discrete Exterior Calculus

The discrete manifolds we employ are oriented manifold-like simplicial com-
plexes and their circumcentric duals. Typically, these manifolds are simpli-
cial approximations of smooth manifolds. Familiar examples are meshes of
triangles embedded in R3 and tetrahedra obtained by tetrahedrization of a
3-dimensional manifold. There are many ways to obtain such complexes; how-
ever, we do not address the issue of discretization and embedding.

As said, we proceed ab initio and mostly our treatment is purely formal,
that is without proofs that the discrete objects converge to the continuous
ones, though we briefly address the issue of convergence in Chapter 4 (see
Section 4.4). By construction of discrete exterior calculus, a number of impor-
tant geometric structures are preserved and propositions like Stokes theorem
are true by definition. The basic building blocks of discrete exterior geometry
are discrete chains and cochains, and their geometric duals. The former are
simplices and the latter are discrete differential forms related one to another
by bilinear pairing that can be understood as the evaluation of a cochain on
an appropriate simplex, and as such parallels integration in the continuous
setting.

In discrete exterior calculus, a dual mesh is instrumental for defining the
diagonal Hodge star. In the thesis at hand, the geometric duality is a crucial
ingredient in establishing a bijective relationship between the flow and effort
spaces, as well as for the construction of nondegenerate discrete analogues of
the bilinear form (2.2.1).

This section, with some modification concerning the treatment of the
boundary of the dual cell complex, is a brief summary of the essential defini-
tions and results in discrete exterior calculus as developed in [26, 27, 49]. As
therein, first we define discrete differential forms, the discrete exterior deriva-
tive, the codifferential operator, the Hodge star, and the discrete wedge prod-
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uct. For more information on the construction of the other discrete objects
such as vector fields, a discrete Lie derivative, and discrete musical operators,
we refer the reader to [49]. Construction of all these discrete objects is in a
way simpler than their continuous counterparts since we require only a local
metric; ergo the machinery of the Riemannian geometry is not demanded.
With the exception of the treatment of the notions related to the boundary of
the dual cell complex, a good part of this section is a recollection of the basic
concepts and results of algebraic topology [46, 73].

3.1.1 Simplicial Complexes and Their Circumcentric Duals

Definition 3.1.1. A k-simplex σk is the convex span of k + 1 geometrically
independent points,

σk = [v0, v1, . . . , vk] :=

{
k∑
i=0

αivi
∣∣αi ≥ 0,

n∑
i=0

αi = 1

}
.

The points v0, . . . , vk are called the vertices of the simplex, and the number
k is called the dimension of the simplex. Any simplex spanned by a (proper)
subset of {v0, . . . , vk} is called a (proper) face of σk. If σl is a proper face of
σk, we denote this by σl ≺ σk.

As an illustration, consider four non-collinear points v0, v1, v2, and v3

in R3. Each of these points individually is a 0-simplex with an orientation
dictated by the choice of a sign. An example of a 1-simplex is a line seg-
ment [v0, v1] oriented from v0 to v1. The triangle [v0, v1, v2] is an example of
a 2-simplex oriented in counterclockwise direction. Finally, the tetrahedron
[v0, v1, v2, v3] is a 3-simplex.

Definition 3.1.2. A simplicial complex K in RN is a collection of simplices
in RN , such that:

(1) Every face of a simplex of K is in K.

(2) The intersection of any two simplices of K is a face of each of them.

The dimension n of the highest dimension simplex in K is the dimension of
K.

The above given definition of a simplicial complex is more general than
needed for the purposes of exterior calculus. Since the discrete theory em-
ployed in this thesis mirrors the continuous framework, we restrict our consid-
erations to manifold-like simplicial complexes [49].
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Definition 3.1.3. A simplicial complex K of dimension n is a manifold-
like simplicial complex if the underlying space is a polytope |K|. In such
a complex all simplices of dimension k = 0, . . . , n− 1 must be a face of some
simplex of dimension n in the complex.

Introducing these simplicial meshes has an added advantage of allowing a
simple and intuitive definition of orientability of simplicial complexes [49].

Definition 3.1.4. An n-dimensional simplicial complex K is an oriented
manifold-like simplicial complex if the n-simplices that share a common (n−1)-
face have the same orientation and all the simplices of lower dimensions are
individually oriented.

Henceforth in this chapter, we shall work with manifold-like simplicial
complexes. When no confusion can arise, we address these objects simply as
simplicial complexes.

An essential constituent of discrete exterior calculus is the dual complex
of a manifold-like simplicial complex. The most popular notions of duality are
barycentric and circumcentric, also known as Voronoi, duality. Following the
standard approach of discrete exterior calculus, in this chapter we employ the
latter.

The circumcenter of a k-simplex σk is given by the center of the k-circum-
sphere, which is the unique k-sphere that has all k + 1 vertices of σk on its
surface. That is, the circumcenter is the unique point in the k-dimensional
affine space that contains the k-simplex that is equidistant from all the k + 1
vertices of the simplex. We denote the circumcenter of a simplex σk by c(σk).

If the circumcenter of a simplex lies in its interior we call it a well-centered
simplex . For instance, a triangle with all acute angles is a well-centered 2-
simplex. A simplicial complex K whose all simplices of all dimensions are well-
centered is called a well-centered simplicial complex and its dual obtained by
circumcentric subdivision is also a simplicial complex denoted by csdK and its
elements by σ̂0, . . . , σ̂n. Throughout this thesis, we adopt the convention that
all symbols related to the dual (simplicial and cell) complex are labeled by a
caret. The underlying spaces |K| and |csdK| are the same. The simplicial
complex csdK consists of all simplices of the form [c(σ1), . . . , c(σk)] for k =
1, . . . , n, where σ1 ≺ σ2 ≺ . . . ≺ σk, meaning σi is a proper face of σj for all
i < j.

A circumcentric dual cell complex (block complex in the terminology of
[73]) is obtained by aggregation of certain simplices of csdK. Let K be a well-
centered simplicial complex of dimension n and let σk be one of its simplices.
By D(σp) we denote the union of all open simplices of csdK of which c(σk)
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Figure 3.1: A 2-dimensional simplicial complex K subdivided into the cir-
cumcentric simplicial complex csdK indicated by dotted lines. The dual cells
displayed are shaded.

is the final vertex; this cell is the dual cell to σk. The closure of the dual cell
of σk is D̄(σk). The collection of all dual cells is a cell complex denoted by
D(K) with closure D̄(K).

To illustrate the duality, consider the 2-dimensional simplicial complex
pictured in Figure 3.1. The dual cell of the vertex vr is the topological interior
of the Voronoi region around it as shown shaded in the figure. This dual
cell is comprised of the vertex vr, the interior of the open edges emanating
from vr, and interiors of the all dual simplices containing vr. The dual cell
of any 2-simplex consists of its circumcenter alone. The dual cell of an edge
consists of its circumcenter and two open edges joining this circumcenter to
the circumcenters of two triangles having the primal edge as a face. The dual
of a boundary edge has only one half-edge since there is only one triangle
adjacent to that boundary edge. Note that if the complex is not flat, then the
dual edge will not be a straight line.

Remark 3.1.1. A triangulation of a compact n-dimensional Riemannian
manifold M results in an n-dimensional simplicial complex K. Intuitively,
the simplices are glued to the manifold M in such a way that they form a
‘curved’ manifold-like simplicial complex. It is worth noticing that in practical
applications, the smooth manifold sometimes is unknown and can only be sam-
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pled by physical measurements. In such situations, it makes sense to model the
spatial domain as inherently discrete. This is where discrete port-Hamiltonian
theory in the framework of discrete exterior calculus stands in its own right.

3.1.2 Chains and Cochains

The discrete analogue of a smooth k-form is a k-cochain, a linear function, on
k-chains representing a formal sum of simplices. In the discrete theory, the
role of integration is replaced by (simple) evaluation of a cochain (a discrete
form) on a k-chain. The discrete exterior derivative is defined by duality to the
boundary operator, rendering the Stokes theorem true by definition. Parallel
to the smooth case, the discrete exterior wedge product pairs lower degree
forms into a higher degree one.

Definition 3.1.5. Let K be a simplicial complex. We denote the free Abelian
group generated by a basis consisting of oriented k-simplices by Ck(K;Z). This
is the space of finite formal sums of the k-simplices with coefficients in Z.
Elements of Ck(K;Z) are called k-chains.

Definition 3.1.6. A primal discrete k-form α is a homomorphism from the
chain group Ck(K;Z) to the additive group R. Thus, a discrete k-form is
an element of Hom(Ck(K),R), the space of cochains. This space becomes an
Abelian group if we add two homomorphisms by adding their values in R.
The standard notation for Hom(Ck(K),R) in algebraic topology is Ck(K;R);
however, like in [26, 27, 49] we shall throughout employ the notation Ωk

d(K)
for this space as a reminder that this is the space of discrete k-forms on the
simplicial complex K. Thus,

Ωk
d(K) := Ck(K;R) = Hom(Ck(K),R) .

Given a k-chain
∑

i aic
k
i , ai ∈ Z, and a discrete k-form α, we have

α

(∑
i

aic
k
i

)
=
∑
i

aiα(cki ) ,

and for two discrete k-forms α, β ∈ Ωk
d(K) and a k-chain c ∈ Ck(K;Z),

(α+ β)(c) = α(c) + β(c) .

The natural pairing of a k-form α and a k-chain c is defined as the bilinear
pairing 〈α, c〉 = α(c).
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As previously pointed out, a differential k-form αk ∈ Ωk
d(K) can be thought

of as a linear functional that assigns a real number to each oriented cell σk ∈ K.
In order to understand the process of discretization of the continuous problem
consider a smooth k-form f ∈ Ωk(|K|). The discrete counterpart of f on a
k-simplex σk ∈ K is a discrete form αk defined as αk(σk) :=

∫
σk f .

Definition 3.1.7. The boundary operator ∂k : Ck(K;Z) → Ck−1(K;Z) is
the homomorphism defined by its action on a simplex σk = [v0, . . . , vk] as

∂kσ
k = ∂k([v0, . . . , vk]) =

k∑
i=0

(−1)i[v0, . . . , v̂i, . . . , vk] ,

where [v0, . . . , v̂i, . . . , vk] is the (k− 1)-simplex obtained by omitting the vertex
vi. Note that ∂k ◦ ∂k+1 = 0.

Definition 3.1.8. On a simplicial complex of dimension n, a chain complex
is the collection of chain groups and homomorphisms ∂k, satisfying

0−→Cn(K)
∂n−→ Cn−1

∂n−1−−−→ · · ·
∂k+1−−−→ Ck(K)

∂k−→ · · · ∂1−→ C0(K)
∂0−→ 0 ,

and ∂k ◦ ∂k+1 = 0.

For instance, given an oriented triangle [v0, v1, v2] the boundary, by the
above definition, is the chain [v0, v1] + [v1, v2]− [v0, v2], which is composed of
the 3 boundary edges of the triangle.

Definition 3.1.9. The discrete exterior derivative d : Ωk
d(K)→ Ωk+1

d (K)
is defined by duality to the boundary operator ∂k+1 : Ck+1(K;Z)→ Ck(K;Z),
with respect to the natural pairing between discrete forms and chains. For a
discrete form αk ∈ Ωk

d(K) and a chain ck+1 ∈ Ck+1(K;Z) we define d by

〈dαk, ck+1〉 = 〈αk, ∂k+1ck+1〉 .

The discrete exterior derivative is the coboundary operator from algebraic
topology [73] and as such it induces the cochain complex

0←−Ωn
d (K)

d←−− Ωn−1
d

d←−− · · · d←−− Ω0
d(K)←− 0 ,

where d ◦ d = 0.

Such as in the continuous theory, we drop the index of the boundary op-
erator ∂k when its dimension is clear from the context. The discrete exterior
derivative d has been constructed in such a manner that the Stokes theorem
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is satisfied by definition. This means, given a (k + 1)-chain c and a discrete
k-form α, the discrete Stokes theorem states that

〈dα, c〉 = 〈α, ∂c〉 .

Consider a k-chain
∑

i aici, ai ∈ Z, ci ∈ Ck(K;Z), and (k − 1)-form α ∈
Ωk−1
d (K;Z). By linearity of the chain-cochain pairing, the discrete Stokes

theorem can be stated as〈
dα,

∑
i

aici

〉
=

〈
α, ∂

(∑
i

aici

)〉
=

〈
α,
∑
i

ai∂ci

〉
=
∑
i

ai 〈α, ∂ci〉 .

As in the continuous setting, the discrete wedge product pairs two dis-
crete differential forms by building a higher degree form. The primal-primal
wedge product inherits some important properties of the cup product such
as the bilinearity, anticommutativity and naturality under pull-back [26, 49];
however, it is in general non-associative and degenerate, and thus unsuitable
for construction of canonical pairing between the flow and effort space. For a
definition of nondegenerate pairing between the flow and effort discrete forms
we shall use a primal-dual wedge product as will be defined in the subsequent
section.

3.1.3 Metric-Dependent Part of Discrete Exterior Calculus

A cellular chain group associated with the dual cell complex D(K), in [73] de-
noted by Dp(K), is the group of formal sums of cells with integer coefficients.
Since in D(K) the information of dual simplices is lost, to retain the book-
keeping information Hirani in [49] introduces a duality operator which takes
values in the domain group Cp(csdK;Z). As will be clear from the subse-
quent section, this bookkeeping is not indispensable for the formulation of the
Dirac structure on a simplicial complex; nevertheless, since the information
of dual simplices might be needed in defining dynamics, we also employ this
construction.

In order to explicitly construct the duality on the boundary, in the next
definition we introduce the boundary star operator. Shortly afterward we shall
explain the rational behind this construction.

Definition 3.1.10. Let K be a well-centered simplicial complex of dimension
n. The interior circumcentric duality operator ?i : Ck(K;Z)→ Cn−k(csdK;Z)

?i(σ
k) =

∑
σk≺σk+1≺···≺σn

sσk,...,σn
[
c(σk), c(σk+1), . . . , c(σn)

]
,
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and the boundary star operator ?b : Ck(∂K;Z)→ Cn−1−k(∂(csdK);Z)

?b(σk) =
∑

σk≺σk+1≺···≺σn−1

sσk,...,σn−1

[
c(σk), c(σk+1), . . . , c(σn−1)

]
,

where the sσk,...,σn and sσk,...,σn−1 coefficients ensure that the orientation of the

cell [c(σk), c(σk+1), . . . , c(σn)] and [c(σk), c(σk+1), . . . , c(σn−1)] is consistent
with the orientation of the primal simplex, and the ambient volume forms on
K and ∂K, respectively.

The subset of chains Cp(csdK;Z) that are equal to the cells of D(K) ×
D(∂K) forms a subgroup of Cp(csdK;Z). We denote this subgroup of Cp(csdK;
Z) by Cp(?K;Z), where ?K is its basis set. A cell complex ?K in RN is a
collection of cells in RN such that: (1) there is a partial ordering of cells in
?K, σ̂k ≺ σ̂l, which is read as σ̂k is a face of σ̂l; (2) the intersection of any two
cells in ?K, is either a face of each of them, or it is empty; (3) the boundary
of a cell is expressed as a sum of its proper faces.

Given a simplicial well-centered complex K, we define its interior dual
cell complex ?iK (block complex in terminology of algebraic topology [73]) as
the circumcentric dual restricted to |K|. An important property of the the
Voronoi duality is that primal and dual cells are orthogonal to each other. The
boundary dual cell complex ?bK is a dual to ∂K. The dual cell complex ?K
is defined as ?K = ?iK × ?bK. A dual mesh ?iK is a dual to K in sense of a
graph dual, and the dual of the boundary is equal to the boundary of the dual,
that is ∂(?K) = ?(∂K) = ?bK. This construction of the dual is compatible
with [120, 48] and as such is very similar to the use of the ghost cells in
finite volume methods in order to account for the duality relation between the
Dirichlet and the Neumann boundary conditions. Because of duality, there is
a one-to-one correspondence between k-simplices of K and interior (n − k)-
cells of ?K. Likewise, to every k-simplex on ∂K there is a uniquely associated
(n− 1− k)-cell on ∂(?K).

In what follows, we shall abuse notation and use the same symbol ? for both
the interior circumcentric and the boundary star operator. The difference, if
not clear from the exposition, will be delineated by indicating that ?σk ∈
∂(?K) when ?σk is a dual cell on the boundary of the dual cell complex ?K.
As sets, the set of D̄(σp) and ?σp are equal, the only difference being in the
bookkeeping, since in ?σp one retains the information about the simplices it
is built of.

Here we do not address the problem of the orientation of dual ?K, for
which we direct the reader to [49]. The circumcentric dual cell complex of the
2-dimensional simplicial complex from Figure 3.1 is pictured in Figure 3.2.
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Figure 3.2: The circumcentric dual cell complex ?K of the simplicial complex
K given in Figure 3.1. The boundary of ?K is the dual of the boundary of K.
Some support volumes are shaded. For instance, the support volume of the
primal vertex vr is the area of its Voronoi region; also V[vi,vj ] = VD̄([vi,vj ])

.

An important concept in defining a wedge product between primal and dual
cochains is the notion of a support volume associated with a given simplex or
cell.

Definition 3.1.11. The support volume of a simplex σk is an n-volume given
by the convex hull of the geometric union of the simplex and its circumcentric
dual. This is given by

Vσk = CH(σk, ?iσ
k) ∩ |K| ,

where CH(σk, ?iσ
k) is the n-dimensional convex hull generated by σk ∪ ?iσ

k.
The intersection with |K| is necessary to ensure that the support volume does
not extend beyond the polytope |K| which would otherwise occur if K is non-
convex. The support volume of a dual cell ?iσ

k is

V?iσk = CH(?iσ
k, ?i ?i σ

k) ∩ |K| = Vσk .

Everything that has been said about the primal chains and cochains can be
extended to dual cells and dual cochains. We do not elaborate on this since it
can be found in the literature [49, 27], however, in order to properly account
for the behaviours on the boundary, we need to adapt the definition of the
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boundary dual operator as presented in [49, 27]. We propose the following
definition.

Definition 3.1.12. The dual boundary operator ∂ : Ck(?iK;Z)→ Ck−1(?K;Z)
is a homomorphism defined by its action on a dual cell σ̂k = ?iσ

n−k =
?i[v0, . . . , vn−k],

∂σ̂k = ∂ ?i [v0, . . . , vn−k] = ∂i ?i [v0, . . . , vn−k] + ∂b ?i [v0, . . . , vn−k] ,

where

∂i ?i [v0, . . . , vn−k] =
∑

σn−k+1�σn−k
?i(sσn−k+1σn−k+1)

∂b ?i [v0, . . . , vn−k] = ?b

(
sσn−kσ

n−k
)
.

Note that the dual boundary operator as defined in [49] is equal to ∂i.
Hence, the dual boundary is not the geometric boundary of a cell, because
near the boundary of a manifold that would be wrong. As an example con-
sider the complex in Figure 3.3. The dual of the vertex v1 is the Voronoi
region shown shaded. Its geometric boundary has five sides (two half primal
edges and three dual edges), whereas the dual boundary according to the def-
inition given in [49] consists of just dual edges, i.e. [c([v0, v1]), c([v0, v1, v2])],
[c([v0, v1, v2]), c([v1, v3, v2])] and [c([v1, v3, v2]), c([v1, v3])], all up to a sign de-
pending on the chosen orientation. However, according to the above given
definition, the boundary is comprised of four edges, three already given plus
the boundary edge [c([v0, v1]), c([v1, v3])] obtained by aggregation of the two
dual simplices [c([v0, v1]), v1] and [v1, c([v1, v3])] . This construction of the
dual boundary ensures a natural pairing between a primal 0-form defined on
v1 and a dual 1-form on [c([v0, v1]), c([v1, v3])]. The offered definition of the
dual boundary operator, as will be demonstrated later, is crucial for the in-
clusion of the boundary variables in the discrete setting.

Definition 3.1.13. The dual discrete exterior derivative d : Ωk
d(?K)→

Ωk+1
d (?iK) is defined by duality to the boundary operator ∂ : Ck+1(?iK;Z) →

Ck(K;Z). For a dual discrete form α̂k ∈ Ωk
d(?K) and a chain ĉk+1 ∈ Ck+1(?iK;

Z) we define d by
〈dα̂k, ĉk+1〉 = 〈α̂k, ∂ĉk+1〉 .

The dual discrete exterior derivative d can be decomposed into the two opera-
tors di and db, which are respectively dual to ∂i and ∂i, that is

〈dα̂k, ĉk+1〉 = 〈diα̂
k, ĉk+1〉+ 〈dbα̂

k, ĉk+1〉 = 〈α̂k, ∂iĉk+1〉+ 〈α̂k, ∂bĉk+1〉 .
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Figure 3.3: A 2-dimensional simplicial complex taken from Figure 3.3, Section
3.6, [49]. The shaded region is a Voronoi dual of the primal vertex v1. The dual
boundary, according to [49], is not the geometric boundary near the boundary
of the manifold. However, in line with our construction, the boundary of the
dual is the dual of the boundary.

The support volumes of a simplex and its dual cell are the same, which
suggests that there is a natural identification between primal k-cochains and
dual (n− k)-cochains.

In the exterior calculus for smooth manifolds, the Hodge star, denoted ∗,
is an isomorphism between the space of k-forms and (n− k)-forms. Since the
Hodge star operator is metric-dependent, in the discrete theory, it is defined
as an equality of averages between primal and their dual forms [49, 47].

Definition 3.1.14. The discrete Hodge star is a map ∗ : Ωk
d(K)→ Ωn−k

d (?iK)
defined by its value over simplices and their duals. For a k-simplex σk, and a
discrete k-form αk,

1

| ?i σk|
〈∗αk, ?iσ

k〉 =
1

|σk|
〈αk, σk〉 .

Similarly we can define the discrete Hodge operator on the boundary, that
is on an (n − 1)-dimensional simplicial complex and its dual. It is trivial to
show that for a k-form αk the following holds: ∗ ∗ αk = (−1)k(n−k).

Remark 3.1.2. The discrete Hodge star can be represented by a matrix (see
Section 3.1.4 and Section 4.1.2). According to Definition 3.1.14, this matrix
is diagonal. In the case Whitney forms are used, the discrete Hodge operator
is sparse but not diagonal in general [47].

Next, we define a natural pairing, via the so-called primal-dual wedge
product, between a primal k-cochain and a dual (n−k)-cochain. The resulting
discrete form is a volume form. In order to insure anticommutativity of the
primal-dual wedge product, we take the following definition.
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Definition 3.1.15. Let αk ∈ Ωk
d(K) be a primal k-form and β̂n−k ∈ Ωn−k

d (?iK).

We define the discrete primal-dual wedge product ∧ : Ωk
d(K)×Ωn−k

d (?iK)→
Ωn
d (Vk(K)) by

〈αk ∧ β̂n−k, Vσk〉 =

(
n

k

)
|Vσk |

|σk|| ?i σk|
〈αk, σk〉〈β̂n−k, ?iσ

k〉

= 〈αk, σk〉〈β̂n−k, ?iσ
k〉

= (−1)k(n−k)〈β̂n−k ∧ αk, Vσk〉 ,

where Vσk is the n-dimensional support volume obtained by taking the convex
hull of the simplex σk and its dual ?iσ

k.

As an illustration, consider the two-dimensional simplicial complex K de-
picted in Figure 3.1 and its dual ?K in Figure 3.2. Let α1 ∈ Ω1

d(K) and

β̂1 ∈ Ω1
d(?K). The dual cell of the primal edge [vk, vi] is [v̂m, v̂m−1], up to

a sign depending on the chosen orientation. The primal-dual wedge product
of α1 and β̂1 on the support volume V[vk,vi] = V[v̂m,v̂m−1], represented by the
diamond shaped region generated by [vk, vi] and [v̂m, v̂m−1], is simply a dot
product α([vk, vi]) · β̂1([v̂m, v̂m−1]). Now, in order to look at the primal-dual
wedge product on the boundary, let γ0 ∈ Ω0

d(∂K) and η̂1 ∈ Ω1
d(∂(?K)). For

instance, η̂1 can be a restriction of β̂1 on the boundary ∂(?K). The primal-
dual wedge product 〈γ0 ∧ η̂1, Vvk〉 = γ0(vk) · η̂1([v̂p, v̂p−1]). The volume for
Vvk = V[v̂p,v̂p−1] is simply the measure of the cell [v̂p, v̂p−1].

Here we note the advantage of employing circumcentric with respect to
barycentric dual since one needs to store only volume information about primal
and dual cells, and not about the primal-dual convex hulls.

Definition 3.1.16. Given two primal discrete k-forms, αk, βk ∈ Ωk
d(K), their

discrete L2 inner product, 〈αk, βk〉d is given by

〈αk, βk〉d =

(
n

k

)
|Vσk |

|σk|| ?i σk|
〈αk, σk〉〈∗βk, ?iσ

k〉

= 〈αk, σk〉〈∗βk, ?iσ
k〉 .

The proposed definition of the dual boundary operator assures the validity
of the summation by parts relation that parallels the integration by parts
formula for smooth differential forms.

Proposition 3.1.1. Let K be an oriented well-centered simplicial complex.
Given a primal (k−1)-form αk−1 and a dual (n−k)-discrete form β̂n−k, then

〈dαk−1 ∧ β̂n−k,K〉+ (−1)k−1〈αk−1 ∧ dβ̂n−k,K〉 = 〈αk−1 ∧ β̂n−k, ∂K〉 ,
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where in the boundary pairing αk−1 is a primal (k − 1)-form on ∂K, while
β̂n−k is a dual (n− k)-form taken on the boundary dual ?(∂K).

Proof. We have

〈dαk−1 ∧ β̂n−k,K〉 =
∑

σk−1∈K

〈dαk−1, σk〉〈β̂n−k, ?iσ
n−k〉

=
∑

σk−1∈K

〈αk−1, ∂σk〉〈β̂n−k, ?iσ
n−k〉

=
∑

σk−1∈K

∑
σk−1≺σk

〈αk−1, σk〉〈β̂n−k, ?iσ
n−k〉 ,

and

〈αk−1 ∧ dβ̂n−k,K〉

=
∑
σk−1

〈αk−1, σk−1〉〈dβ̂n−k, ?iσ
k−1〉 =

∑
σk−1

〈αk−1, σk−1〉〈β̂n−k, ∂(?iσ
k−1)〉

=
∑
σk−1

〈αk−1, σk−1〉

 ∑
σk−1≺σk

〈β̂n−k, ?i(sσkσ
k)〉+ 〈β̂n−k, ?b(sσk−1σk−1)〉

 .

Inducing the orientation of the dual such that sσk = sσk−1 = (−1)k completes
the proof.

Remark 3.1.3. Decomposing the dual form β̂n−k into the internal and the

boundary part as β̂n−k =

{
β̂i ∈ Ωn−k

d (?iK) on ?iK

β̂b ∈ Ωn−k
d (?bK) on ∂(?K)

and decomposing the

dual exterior derivative in the same manner, the summation by parts formula
can be written as

〈dαk−1 ∧ β̂i,K〉+ (−1)k−1〈αk−1 ∧ (diβ̂i + dbβ̂b),K〉 = 〈αk−1 ∧ β̂b, ∂K〉 .
(3.1.1)

In the standard literature of discrete exterior calculus, the codifferential
operator is adjoint to the discrete exterior derivative, with respect to the
inner products of discrete forms [49]. According to Proposition 3.1.1, this
is not the case since on the right a term corresponding to the primal-dual
pairing on the boundary appears. As the subsequent section demonstrates,
this term is precisely responsible for the inclusion of the boundary variables
in the discretized Stokes-Dirac structure.
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3.1.4 Matrix Representations

Discrete exterior calculus can be implemented using the formalism of linear
algebra. All discrete k-forms can be stored into a vector with entries assuming
the values that those forms take on the ordered set of k-simplices. The bound-
ary operator is a linear mapping from the space of k-simplices to the space of
(k − 1)-simplices and can be represented by a sparse matrix containing only
±1 elements, while the exterior derivative is its transpose. There is a num-
ber of different Hodge star implementations, but the so-called mass-lumped is
the simplest, with the Hodge star being a diagonal matrix. The problem of
standard vector representation of discrete exterior calculus will be addressed
separately in the forthcoming chapter.

3.2 Dirac Structures on a Simplicial Complex

The Stokes-Dirac structure, which captures a differential symmetry of the
Hamiltonian field equations, as presented in [98], is metric-independent. The
essence of its construction lies in the antisymmetry of the wedge product and
the Stokes theorem. In a discrete framework, the primal-primal wedge product
[49] inherits a number of important properties of the cup product [73], such as
bilinearity, anti-commutativity and naturality under pullback; however, it is
degenerate and thus unsuitable for defining a Dirac structure. This motivates
a formulation of a Dirac structure on a simplicial complex and its dual. We
introduce Dirac structures with respect to the bilinear pairing between primal
and duals forms on the underlying discrete manifold. We call these Dirac
structures simplicial Dirac structures.

In the discrete setting, the smooth manifold M is replaced by an n-
dimensional well-centered oriented manifold-like simplicial complex K. The
flow and the effort spaces will be the spaces of complementary primal and dual
forms. The elements of these two spaces are paired via the discrete primal-dual
wedge product. Since the Stokes-Dirac structure D expresses the coupling be-
tween fp and eq, also fq and ep, via the exterior derivative, whose discrete
analogue maps primal into primal and dual into dual cochains, the flow space
cannot be entirely built on a primal simplicial complex and the effort space
on a dual cell complex, or vice versa. Instead, the flow and the effort spaces
will be mixed spaces of the primal and dual cochains. One of the two possible
choices is

Fdp,q = Ωp
d(?iK)× Ωq

d(K)× Ωn−p
d (∂(K))
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and

Edp,q = Ωn−p
d (K)× Ωn−q

d (?iK)× Ωn−q
d (∂(?K)) .

The primal-dual wedge product ensures a bijective relation between the
primal and dual forms, between the flows and efforts. A natural discrete
mirror of the bilinear form (2.2.1) is a symmetric pairing on the product space
Fdp,q × Edp,q defined by

〈〈( f̂1
p , f

1
q , f

1
b︸ ︷︷ ︸

∈Fdp,q

, e1
p, ê

1
q , ê

1
b︸ ︷︷ ︸

∈Edp,q

), (f̂2
p , f

2
q , f

2
b , e

2
p, ê

2
q , ê

2
b)〉〉d

= 〈e1
p ∧ f̂2

p + ê1
q ∧ f2

q + e2
p ∧ f̂1

p + ê2
q ∧ f1

q ,K〉
+ 〈ê1

b ∧ f2
b + ê2

b ∧ f1
b , ∂K〉 .

(3.2.1)

A discrete analogue of the Stokes-Dirac structure is the finite-dimensional
Dirac structure constructed in the following theorem.

Theorem 3.2.1 (Simplicial Dirac structure). Given linear spaces Fdp,q and

Edp,q, and the bilinear form 〈〈, 〉〉d. The linear subspace Dd ⊂ Fdp,q×Edp,q defined
by

Dd =
{

(f̂p, fq, fb, ep, êq, êb) ∈ Fdp,q × Edp,q
∣∣(

f̂p
fq

)
=

(
0 (−1)pq+1di

d 0

)(
ep
êq

)
+ (−1)pq+1

(
db

0

)
êb ,

fb = (−1)pep|∂K
} (3.2.2)

is a Dirac structure with respect to the pairing 〈〈, 〉〉d .

Proof. In order to show that Dd ⊂ D⊥d , let (f̂1
p , f

1
q , f

1
b , e

1
p, ê

1
q , ê

1
b) ∈ Dd, and

consider any (f̂2
p , f

2
q , f

2
b , e

2
p, ê

2
q , ê

2
b) ∈ Dd. Substituting (3.2.2) into (4.2.1) yields

〈(−1)pq+1e1
p ∧
(
diê

2
q + dbê

2
b

)
+ ê1

q ∧ de2
p

+(−1)pq+1e2
p ∧
(
diê

1
q + dbê

1
b

)
+ ê2

q ∧ de1
p,K〉

+(−1)p〈ê1
b ∧ e2

p + ê2
b ∧ e1

p, ∂K〉 .
(3.2.3)

By the anticommutativity of the primal-dual wedge product on K

〈ê1
q ∧ de2

p,K〉 = (−1)q(p−1)〈de2
p ∧ ê1

q ,K〉

〈ê2
q ∧ de1

p,K〉 = (−1)q(p−1)〈de1
p ∧ ê2

q ,K〉 ,
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and on the boundary ∂K

〈ê1
b ∧ e2

p, ∂K〉 = (−1)(p−1)(q−1)〈e2
p ∧ ê1

b , ∂K〉

〈ê2
b ∧ e1

p, ∂K〉 = (−1)(p−1)(q−1)〈e1
p ∧ ê2

b , ∂K〉 ,

the expression (3.2.3) can be rewritten as

(−1)q(p−1)〈de2
p ∧ ê1

q + (−1)n−pe2
p ∧
(
diê

1
q + dbê

1
b

)
,K〉

+(−1)q(p−1)〈de1
p ∧ ê2

q + (−1)n−pe1
p ∧
(
diê

2
q + dbê

2
b

)
,K〉

+(−1)p+(p−1)(q−1)〈ê1
b ∧ e2

p + ê2
b ∧ e1

p, ∂K〉 .

According to the discrete summation by parts formula (3.1.1), the following
holds

〈de2
p ∧ ê1

q+(−1)n−pe2
p ∧
(
diê

1
q + dbê

1
b

)
,K〉=〈e2

p ∧ ê1
b , ∂K〉

〈de1
p ∧ ê2

q+(−1)n−pe1
p ∧
(
diê

2
q + dbê

2
b

)
,K〉=〈e1

p ∧ ê2
b , ∂K〉 .

Hence, (3.2.3) is equal to 0, and thus Dd ⊂ D⊥d .

Since dimFdp,q = dimEdp,q = dimDd, and 〈〈, 〉〉d is a non-degenerate form,

Dd = D⊥d .

Remark 3.2.1. As with the continuous setting, the simplicial Dirac structure
is algebraically compositional. Since the simplicial Dirac structure Dd is a
finite-dimensional constant Dirac structure, it is integrable.

The other possible discrete analogue of the Stokes-Dirac structure is de-
fined on the spaces

F̃dp,q = Ωp
d(K)× Ωq

d(?iK)× Ωn−p
d (∂(?K))

Ẽdp,q = Ωn−p
d (?iK)× Ωn−q

d (K)× Ωn−q
d (∂K) .

A natural discrete mirror of the bilinear form (2.2.1) in this case is a symmetric
pairing on the product space F̃dp,q × Ẽdp,q defined by

〈〈( f1
p , f̂

1
q , f̂

1
b︸ ︷︷ ︸

∈F̃dp,q

, ê1
p, e

1
q , e

1
b︸ ︷︷ ︸

∈Ẽdp,q

), (f2
p , f̂

2
q , f̂

2
b , ê

2
p, e

2
q , e

2
b)〉〉d̃

= 〈ê1
p ∧ f2

p + e1
q ∧ f̂2

q + ê2
p ∧ f1

p + e2
q ∧ f̂1

q ,K〉+ 〈e1
b ∧ f̂2

b + e2
b ∧ f̂1

b , ∂K〉 .
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Theorem 3.2.2. The linear space D̃d defined by

D̃d =
{

(fp, f̂q, fb, ep, eq, eb) ∈ F̃dp,q × Ẽdp,q
∣∣(

fp
fq

)
=

(
0 (−1)pq+1d
di 0

)(
êp
eq

)
+

(
0
db

)
f̂b ,

eb = (−1)peq|∂K
} (3.2.4)

is a Dirac structure with respect to the bilinear pairing 〈〈, 〉〉d̃.

In the following section, the simplicial Dirac structures (3.2.2) and (3.2.4)
will be used as terminus a quo for the geometric formulation of spatially dis-
crete port-Hamiltonian systems.

3.3 Port-Hamiltonian Systems

In the continuous theory, a distributed-parameter port-Hamiltonian system is
defined with respect to the Stokes-Dirac structure (2.3.26) by imposing consti-
tutive relations. On the other hand, in the discrete framework one can define
an open Hamiltonian system with respect to the simplicial Dirac structure
Dd or the simplicial structure D̃d. The choice of the structure has immedi-
ate consequence on the open dynamics since it restricts the choice of freely
chosen boundary efforts or flows. Firstly, we define dynamics with respect to
the structure (3.2.2) and (3.2.4). Then, in the manner of finite-dimensional
port-Hamiltonian systems, we include energy dissipation by terminating some
of the ports by resistive elements.

3.3.1 Port-Hamiltonian Dynamics

Let a function H : Ωp
d(?iK)×Ωq

d(K)→ R stand for the Hamiltonian (α̂p, αq) 7→
H(α̂p, αq), with α̂p ∈ Ωp

d(?iK) and αq ∈ Ωq
d(K). The value of the Hamiltonian

after arbitrary variations of α̂p and αq for δα̂p ∈ Ωp
d(?iK) and δαq ∈ Ωq

d(K),
respectively, can, by Taylor expansion, be expressed as

H(α̂p + δα̂p, αq + δαq) = H(α̂p, αq) + 〈 ∂H
∂α̂p
∧ δα̂p +

ˆ∂H

∂αq
∧ δαq,K〉

+ higher order terms in δα̂p, δαq .

(3.3.1)

Here, it is important to emphasize that the variations δα̂p, δαq are not re-
stricted to vanish on the boundary.
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A time derivative of H along an arbitrary trajectory t → (α̂p(t), αq(t)) ∈
Ωp
d(?iK)× Ωq

d(K), t ∈ R, is

d

dt
H(α̂p, αq) =

〈
∂H

∂α̂p
∧ ∂α̂p

∂t
+

ˆ∂H

∂αq
∧ ∂αq

∂t
,K

〉
. (3.3.2)

The relation between the simplicial Dirac structure (3.2.2) and time deriva-
tives of the variables are

f̂p = −∂α̂p
∂t

, fq = −∂αq
∂t

, (3.3.3)

while the coenergy variables are set

ep =
∂H

∂α̂p
, êq =

ˆ∂H

∂αq
. (3.3.4)

This allows us to define the spatially discrete, and thus finite-dimensional,
port-Hamiltonian system on a simplicial complex K (and its dual ?K) by(

−∂α̂p
∂t

−∂αq
∂t

)
=

(
0 (−1)rdi

d 0

)( ∂H
∂α̂p
∂̂H
∂αq

)
+(−1)r

(
db

0

)
êb ,

fb = (−1)p
∂H

∂α̂p

∣∣∣∣
∂K

,

(3.3.5)

where r = pq + 1.
It immediately follows that dH

dt = 〈êb∧fb, ∂K〉, enunciating a fundamental
property of the system: the increase in the energy on the domain |K| is equal
to the power supplied to the system through the boundary ∂K and ∂(?K).
Due to its structural properties, the system (3.3.5) can be called a spatially-
discrete time-continuous boundary control system with êb being the boundary
control input and fb being the output.

An alternative formulation of a spatially discrete port-Hamiltonian system
is given in terms of the simplicial Dirac structure (3.2.4). We start with the
Hamiltonian function (αp, α̂q) 7→ H(αp, α̂q), where αp ∈ Ωp

d(K) and α̂q ∈
Ωq
d(?iK). In a similar manner as in deriving (3.3.5), we introduce the port-

Hamiltonian system(
−∂αp

∂t

−∂α̂q
∂t

)
=

(
0 (−1)pq+1d
di 0

)( ∂̂H
∂αp
∂H
∂α̂q

)
+

(
0
db

)
f̂b ,

eb = (−1)p
∂H

∂α̂q
|∂K .

(3.3.6)
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In contrast to (3.3.5), in the case of the formulation (3.3.6), the boundary
flows f̂b can be considered to be freely chosen, while the boundary efforts eb
are determined by the dynamics.

3.3.2 Modeling Dissipation

Incorporation of dissipation parallels the continuous case and for the present
moment we shall consider only dissipation modeled by port termination. As
an illustration, consider a mapping R̂d : Ωq

d(K)→ Ωn−q
d (?iK) that satisfies

〈R̂d(fq) ∧ fq,K〉 ≥ 0 ∀fq ∈ Ωq
d(K) .

Furthermore, let R̂d = R∗ with R being a positive real constant.
In case of the simplicial Dirac structure (3.2.2), introduce the relation

êq = −(−1)q(n−q)R̂d(fq) = −(−1)q(n−q)R ∗ fq ,

as well as associate to every primal (n−p)-cell an energy storage effort variable
and to every dual p-cell a sign consistent energy flow leading to

f̂p = −∂x̂p
∂t

, ep =
∂H

∂x̂
, x̂ ∈ Ωp

d(?iK) ,

with H being a total stored energy.
This leads to relaxation dynamics of a diffusion process

∂x̂

∂t
= (−1)q−1Rdi ∗ d

∂H

∂x̂
+ (−1)pqdbêb ,

with

dH

dt
= 〈∂H

∂x̂
∧ ∂x̂
∂t
,K〉

= 〈∂H
∂x̂
∧
(

(−1)q−1Rdi ∗ d
∂H

∂x̂
+ (−1)pqdbêb

)
,K〉

= −R〈d∂H
∂x̂
∧ ∗d∂H

∂x̂
,K〉+ (−1)p〈êb ∧

∂H

∂x̂
, ∂K〉

≤ 〈êb ∧ fb, ∂K〉 .

Let f̂p = ∗fp = −∂x
∂t , fp, x ∈ Ω0

d(K), that is p = n and q = 1. As the stored
energy take H = 1

2〈x ∧ ∗x,K〉. Then

∂x

∂t
= R ∗ di ∗ dx = −Rδdx+ (−1)ndbêb = −R∆x+ (−1)ndbêb ,
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where ∆ is the Laplace operator, ∆ : Ω0
d(K)→ Ω0

d(K). One needs to be careful
here with the minus sign since by the chosen convention ∆x = −div gradx [1].
The boundary flow is fb = (−1)nx|∂K .

Remark 3.3.1. Consider a diffusion process on a one-dimensional simplicial
complex K with a dual ?K that is also a one-dimensional simplicial complex
(the spatial domain is identical to the domain of the telegraph equations, confer
to Figure 3.5). This means that n = q = 1 and p = 0. The operator R̂d is a
positive definite operator that maps the set of primal edges into the set of dual
nods. The resulting dissipative port-Hamiltonian system is

∂x̂

∂t
= diR̂d(dx)

for êb = 0, which conduces to the standard compartmental model. This can be
extended to structure-preserving discretization of reaction-diffusion systems as
will be discussed in Chapter 6.

3.4 Physical Examples

In this section we formulate discrete analogues of distributed-parameter port-
Hamiltonian systems on a three-, two-, and one-dimensional manifold.

3.4.1 Maxwell’s Equations

Let K be a well-centered 3-dimensional manifold-like simplicial complex with
circumcentric dual ?K, endowed with a discrete Riemannian metric. Mirror-
ing the continuous case [98], we formulate the discrete Maxwell’s equations in
terms of discrete differential forms, and then we demonstrate that the under-
pinning differential/gauge structure is preserved.

The energy variables are chosen such that they live on the discrete man-
ifolds that are dual to one another. For instance, we choose the magnetic
(field) induction 2-form to be defined on the primal simplicial complex K as
αq = B ∈ Ω2

d(K) and the electric induction 2-form α̂p = D̂ ∈ Ω2
d(?iK). This

means that B and D̂ do not reside at the same discrete locations, but rather
at separate faces of staggered lattices.

Remark 3.4.1. In the case of a spatio-temporal discretization based on the
asynchronous variational integrator scheme, as proposed in [120], the electric
and magnetic induction are also defined at different time locations leading to
improved numerical performance (for more details refer to [120]).
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The coenergy variables are chosen coherently as implied by the choice of the
energy variables such that the discrete Maxwell’s equations fit the simplicial
Dirac structure (3.2.2) for n = 3, p = q = 2. This entails that the magnetic
field intensity êq = Ĥ ∈ Ω1

d(?iK) and the electric intensity ep = E ∈ Ω1
d(K),

as such, are related to the energy variables via

D̂ = ∗εE
B = ∗µĤ ,

where ε and µ denote the constant electric and magnetic permittivity, respec-
tively.

The corresponding simplicial Dirac structure is(
f̂p
fq

)
=

(
0 −di

d 0

)(
ep
êq

)
−
(

db

0

)
êb

fb = ep|∂K .
(3.4.1)

The Hamiltonian is H = 1
2〈E ∧ D̂+ Ĥ ∧B,K〉 , or expressed only in terms of

the primal forms as H = 1
2〈E ∧ ∗εE + 1

µ ∗B ∧B,K〉.
Under the assumption that there is no current in the medium, the spatially

discretized Maxwell’s equations with respect to the simplicial Dirac structure
(3.4.1) in the port-Hamiltonian form are given by(

−∂D̂
∂t

−∂B
∂t

)
=

(
0 −di

d 0

)( ∂H
∂D̂
∂̂H
∂B

)
−
(

db

0

)
êb

fb =
∂H

∂D̂

∣∣∣∣
∂K

.

(3.4.2)

The readily proved energy balance is dH
dt = 〈êb ∧ fb, ∂K〉. Incorporating a

nonzero current density into the discrete Maxwell’s equations is straightfor-
ward as in the continuous case.

3.4.2 Two-Dimensional Wave Equation

In order to demonstrate practically that we do not face a problem of inter-
connection of the elementary Dirac structures encountered in the mixed finite
element method, as reported by [128] (see pages 183–196), we consider the sim-
plicial Dirac structure behind the discretized two-dimensional wave equation.
The normalized wave equation is given by

∂2φ

∂t2
−∆φ = 0 ,
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Figure 3.4: A simplicial complex K consists of five triangles arranged into a
pentagon. The dual edges introduced by subdivision are shown dotted.

where φ is a smooth 0-form on a compact surface M ⊂ R2 with a closed bound-
ary, and ∆ is the Laplace operator. This equation, together with nonzero
energy flow, can be formulated as a port-Hamiltonian system with boundary
port variables [121, 39].

The energy variables of the discretized system are chosen as follows: the
kinetic momentum is a dual 2-form whose time derivative is set to be f̂p,
the elastic strain is a primal 1-form with time derivative corresponding to fq,
the coenergy variables are a primal 0-form ep and a dual 1-form êq. Such
a formulation of the discrete wave equation is consonant with the simplicial
Dirac structure (3.2.2) for the case when p = n = 2 and q = 1. We shall,
nevertheless, practically confirm the arguments of Theorem 4.2.1 in a simple
low-dimensional model.

Consider a ring of counterclockwise oriented triangles that could be, say,
obtained by a very coarse discretization of a disk. The dual of the central
vertex v0 is its Voronoi region, while the duals of the boundary vertices are
the convex boundary pentagons. The orientation of the primal edges is chosen
as indicated in Figure 3.4. The orientation of the dual edges is induced such
that the basis of the primal and dual cells combined give the orientation of
the embedding space that, in our case, has been given by the right-hand rule
(for more on orientation see pages 11–22 of [49]).

It suffices to check the power conserving property of the founding Dirac
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structure. We need to show that

〈ep ∧ f̂p + êq ∧ fq,K〉+ 〈êb ∧ fb, ∂K〉 = 0 .

This is equivalent to the validity of the following relation

〈dep ∧ êq + ep ∧ (diêq + dbêb),K〉 = 〈ep ∧ êb, ∂K〉 .

We calculate

〈dep ∧ êq,K〉 =
∑
σ1∈K

〈dep, σ1〉〈êq, ?σ1〉

=
∑
σ1∈K

〈ep, ∂σ1〉〈êq, ?σ1〉 =
∑
σ1∈K
σ0≺σ1

〈ep, σ1〉〈êq, ?σ1〉

= (ep(v2)− ep(v1)) êq([v̂1, v̂6]) + (ep(v3)− ep(v2)) êq([v̂2, v̂7])

+ (ep(v4)− ep(v3)) êq([v̂3, v̂8]) + (ep(v5)− ep(v4)) êq([v̂4, v̂9])

+ (ep(v1)− ep(v5)) êq([v̂5, v̂10]) + (ep(v0)− ep(v1)) êq([v̂6, v̂10])

+ (ep(v0)− ep(v2)) êq([v̂7, v̂6]) + (ep(v0)− ep(v3)) êq([v̂8, v̂7])

+ (ep(v0)− ep(v4)) êq([v̂9, v̂8]) + (ep(v0)− ep(v5)) êq([v̂10, v̂9])

and

〈ep ∧ (diêq+dbêb),K〉

=
∑

?σ0∈?K

〈ep, σ0〉〈diêq + dbêb, ?σ
0〉

=
∑

?σ0∈?K

〈ep, σ0〉
(
〈êq, ∂i(?σ

0)〉+ 〈êb, ∂b(?σ0)〉
)

= ep(v1)
(
êq([v̂1, v̂6]) + êq([v̂6, v̂10])− êq([v̂5, v̂10]) + êb([v̂5, v̂1])

)
+ ep(v2)

(
êq([v̂2, v̂7]) + êq([v̂7, v̂6])− êq([v̂1, v̂6]) + êb([v̂1, v̂2])

)
+ ep(v3)

(
êq([v̂3, v̂8]) + êq([v̂8, v̂7])− êq([v̂2, v̂7]) + êb([v̂2, v̂3])

)
+ ep(v4)

(
êq([v̂4, v̂9]) + êq([v̂9, v̂8])− êq([v̂3, v̂8]) + êb([v̂3, v̂4])

)
+ ep(v5)

(
êq([v̂5, v̂10]) + êq([v̂10, v̂9])− êq([v̂4, v̂9]) + êb([v̂4, v̂5])

)
+ ep(v0)

(
− êq([v̂7, v̂6])− êq([v̂8, v̂7])− êq([v̂9, v̂8])− êq([v̂10, v̂9])

− êq([v̂6, v̂10])
)
.
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After summation of the last two relations, all terms, except those associ-
ated with the primal and dual boundary, cancel out, leading to

〈dep ∧ êq,K〉+ 〈ep∧(diêq + dbêb),K〉
= ep(v1)êb([v̂5, v̂1]) + ep(v2)êb([v̂1, v̂2])

+ ep(v3)êb([v̂2, v̂3]) + ep(v4)êb([v̂3, v̂4])

+ ep(v5)êb([v̂4, v̂5]) .

(3.4.3)

This confirms that the boundary terms genuinely live on the boundary of |K|.

3.4.3 Telegraph Equations

We consider an ideal lossless transmission line on a 1-dimensional simplicial
complex. The energy variables are the charge density q ∈ Ω1

d(K), and the flux

density φ̂ ∈ Ω1
d(?K), hence p = q = 1. The Hamiltonian representing the total

energy stored in the transmission line with discrete distributed capacitance C
and discrete distributed inductance L is

H =

〈
1

2C
q ∧ ∗q +

1

2L
φ̂ ∧ ∗φ̂,K

〉
,

with co-energy variables: êp = ∂̂H
∂q = ∗ qC = V̂ representing voltages and

eq = ∂H
∂φ̂

= ∗ φ̂L = I currents.

Selecting fp = −∂q
∂t and f̂q = −∂φ̂

∂t leads to the port-Hamiltonian formula-
tion of the telegraph equations(

−∂q
∂t

−∂φ̂
∂t

)
=

(
0 d
di 0

)( ∗ qC
∗ φ̂L

)
+

(
0
db

)
f̂b

eb = − ∗ φ̂
L

∣∣∣∣
∂K

.

(3.4.4)

In the case we wanted to have the electrical current as the input, the charge
and the flux density would be defined on the dual mesh and the primal mesh,
respectively. Instead of the port-Hamiltonian system in the form (3.3.5), that
is (3.4.4), the discretized telegraph equations would be in the form (3.3.5).
The free boundary variable is always defined on the boundary of the dual cell
complex.

Note that the structure (3.4.4) is in fact a Poisson structure on the state
space Ω1

d(K)×Ω1
d(?K). This will become obvious in the next chapter when we
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Figure 3.5: The primal 1-dimensional simplicial complex K with even nodes
indices and its dual ?K with odd indices, both with conventional orientation
of one simplices (from the node with a lower-index to the higher-index node).
By construction, the nodes v̂0 and v̂2n are added to the boundary as previously
explained to insure that the boundary of the dual is the dual of the boundary,
i.e., ∂(?K) = ?(∂K).

present this structure in a matrix representation. Before that, it is illustrative
to demonstrate how the pairings between primal and dual forms can be rather
easily calculated.

Using the notation from Figure 3.5, we have

〈deq ∧ êp,K〉 =
∑
σ1∈K

〈deq, σ1〉〈êp, ?σ1〉 =
∑
σ1∈K

〈eq, ∂σ1〉〈êp, ?σ1〉

= (eq(v2)− eq(v0))êp(v̂1) + (eq(v4)− eq(v2))êp(v̂3) + . . .

+ (eq(v2n−2)− eq(v2n−4))êp(v̂2n−3)

+ (eq(v2n)− eq(v2n−2))êp(v̂2n−1)

= −eq(v0)êp(v̂1)− eq(v2)(êp(v̂3)− êp(v̂1))

− eq(v4)(êp(v̂5)− êp(v̂3)) − . . .
− eq(v2n−2)(êp(v̂2n−1)− êp(v̂2n−3)) + eq(v2n)êp(v̂2n−1)

and

〈eq ∧ (diêp + dbf̂b),K〉 =
∑

?σ0∈?K

〈eq, σ0〉〈diêp + dbf̂b, ?σ
0〉

=
∑

?σ0∈?K

〈eq, σ0〉
(
〈êp, ∂i(?σ

0)〉+ 〈f̂b, ∂b(?σ0)〉
)

= eq(v0)(êp(v̂1)− f̂b(v̂0)) + eq(v2)(êp(v̂3)− êp(v̂1))

+ eq(v4)(êp(v̂5)− êp(v̂3)) + . . .

+ eq(v2n−2)(êp(v̂2n−1)− êp(v̂2n−3))

+ eq(v2n)(f̂b(v̂2n)− êp(v2n−1)) .
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The arguments of the discrete Stokes theorem (3.1.1) are trivially verified

〈deq ∧ êp,K〉+ 〈eq ∧ (diêp + dbf̂b),K〉 = 〈eq ∧ f̂b, ∂K〉
= −eq(v0)f̂b(v̂0) + eq(v2n)f̂b(v̂2n)

showing the power-preserving property of the simplicial Dirac structure (3.4.4)
which implies that for any (êp, fp, eq, f̂q, eb, f̂b) in the simplicial structure (3.4.4)
the following holds

〈êp ∧ fp,K〉+ 〈eq ∧ f̂q,K〉+ 〈eb ∧ f̂b, ∂K〉 = 0 .

The energy balance for the transmission line thus is

dH

dt
= 〈eb ∧ f̂b, ∂K〉 = eb(v2n)f̂b(v̂2n)− eb(v0)f̂b(v̂0) , (3.4.5)

which demonstrates that the boundary objects genuinely live on the boundary
∂K.

3.5 Capitulation

In this chapter we have established the theoretical foundation for the formu-
lation of Dirac structures on simplicial manifolds. Dynamical systems defined
with respect to simplicial Dirac structures and their representations will be
treated in the next chapter.





4
Matrix Representations

Algebra is concerned with manipulation in time and geometry is con-
cerned with space. These are two orthogonal aspects of the world, and they
represent two different points of view in mathematics. . . .

One way to put the dichotomy in a more philosophical or literary frame-
work is to say that algebra is to the geometer what you might call the
‘Faustian offer’. As you know, Faust in Goethe’s story was offered what-
ever he wanted (in his case the love of a beautiful woman), by the devil,
in return for selling his soul. Algebra is the offer made by the devil to the
mathematician. The devil says: “I will give you this powerful machine, it
will answer any question you like. All you need to do is give me your soul:
give up geometry and you will have this marvellous machine.” (Nowadays
you can think of it as a computer!) Of course we like to have things both
ways; we would probably cheat on the devil, pretend we are selling our soul,
and not give it away. Nevertheless, the danger to our soul is there, because
when you pass over into algebraic calculation, essentially you stop thinking;
you stop thinking geometrically, you stop thinking about the meaning.

– Sir Michael Atiyah, Mathematics in the 20th Century

I
n the previous chapter I have proposed a discrete exterior geom-
etry approach to structure-preserving discretization of distributed-
parameter port-Hamiltonian systems. The spatial domain in the
continuous theory represented by a finite-dimensional smooth man-

ifold is replaced by a homological manifold-like simplicial complex and its
circumcentric dual. The smooth differential forms, in discrete setting, are
mirrored by cochains on the primal and dual complexes, while the discrete
exterior derivative is defined to be the coboundary operator. Discrete ana-
logues of the Stokes-Dirac structure are the so-called simplicial Dirac struc-
tures defined on spaces of primal and dual discrete differential forms. These

61
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finite-dimensional Dirac structures offer a natural framework for the formula-
tion of finite-dimensional port-Hamiltonian systems that emulate their infinite-
dimensional counterparts. The resulting port-Hamiltonian systems are in the
standard input-output form, unlike in [39], where the discretized models are
acausal (given by a set of differential and algebraic equations). The explicit
input-output form obtained by our scheme has the advantage from both nu-
merical and control perspective over the implicit model presented in [39].

In this chapter I address the issue of matrix representations of simplicial
Dirac structures by representing cochains by their coefficient vectors. In this
manner, all linear operators from the continuous world can be represented by
matrices, including the Hodge star, the coboundary and the trace operator.
The simplicial Dirac structures induce a natural input-output representation
of port-Hamiltonian systems. When the resulting dynamics is linear we estab-
lish bounds for the energy norms of discretization errors. I also demonstrate
how these simplicial Dirac structures relate to the spatially discretized wave
equation on a bounded domain and to the telegraph equations on a segment.
Towards the end of the chapter, we consider the existence of structural invari-
ants, which are crucial for the control by energy shaping.

4.1 Algebraic Aspects of Discrete Exterior Calculus

In the discrete setting, the smooth manifold M is replaced by an oriented
manifold-like simplicial complex. An n-dimensional simplicial manifold K
is a simplicial triangulation of an n-dimensional polytope |K| with an (n− 1)-
dimensional boundary.

4.1.1 Chains and Cochains as Vectors

The discrete analogue of a smooth k-form on the manifold M is a k-cochain
on the simplicial complex K. A k-chain is a formal sum of k-simplices of K
such that its value on a simplex changes sign when the simplex orientation is
reversed. The free Abelian group generated by a basis consisting of oriented
k-simplices with real-valued coefficients is Ck(K;R). The space Ck(K;R) is a
vector space with dimension equal to the number of k-simplices in K, which is
denoted by Nk. The space of k-cochains is the vector space dual of Ck(K;R)
denoted by Ck(K;R) or Ωk

d(K), as a reminder that this is the space of dis-
crete k-forms.

The discrete exterior derivative or the coboundary operator dk : Ωk
d(K)

→ Ωk+1
d (K) is defined by duality to the boundary operator ∂k+1 :Ck+1(K;Z)→
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Ck(K;Z), with respect to the natural pairing between discrete forms and
chains (cf. Definition 3.1.9). For a discrete form α ∈ Ωk

d(K) and a chain
ck+1 ∈ Ck+1(K;Z) we define dk by

〈dkα, ck+1〉 = 〈α, (dk)tck+1〉 = 〈α, ∂k+1ck+1〉 ,

where the boundary operator ∂k+1 is the incidence matrix from the space of
(k + 1)-simplices to the space of k-simplices and is represented by a sparse
Nk+1 × Nk matrix containing only 0 or ±1 elements [28]. The important
property of the boundary operator is ∂k ◦ ∂k+1 = 0. The exterior derivative
also satisfies dk+1 ◦ dk = 0, what is a discrete analogue of the vector calculus
identities curl ◦ grad = 0 and div ◦ curl = 0.

Everything that has been said about the primal discrete forms carries over
to the dual cochains, which can be interpreted as covectors. The space of dual
k-cochains will be denoted as Ωk

d(?iK). The covectors are labeled by a caret

symbol, e.g., β̂ ∈ Ωk
d(?iK).

The trace operator trk : Ωk
d(K) → Ωk

d(∂K) is a matrix that isolates the
elements of a k-cochain vector assumed on the geometric boundary ∂K.

The dual exterior derivative dn−ki : Ωn−k
d (?iK)→ Ωn−k+1

d (?iK) is defined
by duality to the primal exterior operator dk in Definition 3.1.13 assumes the
matrix form

dn−ki = (−1)k(dk−1)t .

The negative sign appears as the orientation of the dual is induced by the
primal orientation.

The dual boundary exterior derivative dn−kb : Ωn−k
d (?bK)→ Ωn−k+1

d (?iK)
defined in Definition 3.1.13 has the matrix representation

dn−kb = (−1)k−1(trk−1)t .

For more details on geometric aspects of these operators refer to the pre-
vious chapter and for an example see Section 4.5.

4.1.2 Discrete Wedge and Hodge Operators

There exists a natural pairing, via the so-called primal-dual wedge product, be-
tween a primal k-cochain and a dual (n−k)-cochain. Namely, let αk ∈ Ωk

d(K)

and β̂n−k ∈ Ωn−k
d (?iK). We define the discrete primal-dual wedge product

∧ : Ωk
d(K) × Ωn−k

d (?iK) → R by 〈αk ∧ β̂n−k, Vσk〉 = 〈αk, σk〉〈β̂n−k, ?iσ
k〉 =
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(−1)k(n−k)〈β̂n−k ∧ αk, Vσk〉, where Vσk is the n-dimensional support volume
obtained by taking the convex hull of the simplex σk and its dual ?iσ

k.

The proposed definition of the dual boundary operator ensures the valid-
ity of the summation by parts relation that parallels the integration by parts
formula for smooth differential forms. The matrix representation of Proposi-
tion 3.1.1 is given by the following statement.

Proposition 4.1.1 (Summation-by-parts formula). Let K be an oriented well-
centered simplicial complex. Given a primal (k − 1)-form α and an internal
dual (n−k)-form β̂i ∈ Ωn−k

d (?iK) and a dual boundary form β̂b ∈ Ωn−k
d (?bK),

then

〈dk−1α ∧ β̂i,K〉+(−1)k−1〈α ∧ (dn−ki β̂i + dn−kb β̂b),K〉 = 〈trk−1α ∧ β̂b, ∂K〉 .

Proof. For completeness, we give the simple proof. Observe that

〈dk−1α ∧ β̂i,K〉 =
(
dk−1α

)t
β̂i = αt

(
dk−1

)t
β̂i

= (−1)kαtdn−ki β̂i

= (−1)k〈α ∧ dn−ki β̂i,K〉 ,

and

〈α ∧ dn−kb β̂b,K〉 = αtdn−kb β̂b =
(

(dn−kb )tα
)t
β̂b

= (−1)k−1
(
trk−1α

)t
β̂b

= (−1)k−1〈trk−1α ∧ β̂b, ∂K〉 .

The support volumes of a simplex and its dual cell are the same, which
suggests that there is a natural identification between primal k-forms and dual
(n− k)-forms. In the exterior calculus for smooth manifolds, the Hodge star,
denoted ∗k, is an isomorphism between the space of k-forms and (n−k)-forms.
The discrete Hodge star is a map ∗k : Ωk

d(K) → Ωn−k
d (?iK) defined by its

value over simplices and their duals. In case of the circumcentric duality, the
Hodge star ∗k is a diagonal Nk ×Nk matrix with the entry corresponding to
a simplex σk being | ?i σ

k|/|σk|.
Another possibility for the construction of the Hodge operator is to use

Whitney forms. The Whitney map is an interpolation scheme for cochains.
It maps discrete forms to square integrable forms that are piecewise smooth
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on each simplex. The Whitney maps are built from barycentric coordinate
functions and the resulting matrix is sparse but in general not diagonal [15],
[47].

The linear operators used in this chapter are succinctly presented in the
following diagram

Ω0
d(∂K) Ω0

d(K)
tr0

oo

d0

��

∗0 // Ωn
d (?iK)

∗−1
0

oo Ωn−1
d (?bK)

dn−1
boo

Ω1
d(∂K) Ω1

d(K)
tr1

oo

d1

��

∗1 // Ωn−1
d (?iK)

∗−1
1

oo

dn−1
i

OO

Ωn−2
d (?bK)

dn−2
boo

...
...

dn−2

��

...

dn−2
i

OO

...

Ωn−1
d (∂K) Ωn−1

d (K)
trn−1

oo

dn−1

��

∗n−1 // Ω1
d(?iK)

∗−1
n−1

oo

d1
i

OO

Ω0
d(?bK)

d0
boo

Ωn
d (K)

∗n // Ω0
d(?iK)

∗−1
n

oo

d0
i

OO

(4.1.1)

4.2 Simplicial Dirac Structures

In this section, we develop the matrix representations of simplicial Dirac
structures. These structures, as we have seen in the previous chapter, are
discrete analogues of the Stokes-Dirac structure and as such are defined in
terms of primal and duals cochains on the underlying discrete manifold.

The role of the smooth manifold M in the discrete setting is played by
an n-dimensional well-centered oriented manifold-like simplicial complex K.
The flow and the effort spaces will be the spaces of complementary primal
and dual forms. The elements of these two spaces are paired via the discrete
primal-dual wedge product. Let

Fdp,q = Ωp
d(?iK)× Ωq

d(K)× Ωn−p
d (∂(K))

Edp,q = Ωn−p
d (K)× Ωn−q

d (?iK)× Ωn−q
d (∂(?K)) .

A natural discrete mirror of the bilinear form (2.2.1) is a symmetric pairing
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on the product space Fdp,q × Edp,q defined by

〈〈( f̂1
p , f

1
q , f

1
b︸ ︷︷ ︸

∈Fdp,q

, e1
p, ê

1
q , ê

1
b︸ ︷︷ ︸

∈Edp,q

), (f̂2
p , f

2
q , f

2
b , e

2
p, ê

2
q , ê

2
b)〉〉d

= 〈e1
p ∧ f̂2

p + ê1
q ∧ f2

q + e2
p ∧ f̂1

p + ê2
q ∧ f1

q ,K〉 (4.2.1)

+ 〈ê1
b ∧ f2

b + ê2
b ∧ f1

b , ∂K〉 .

A matrix analogue of the simplicial Dirac structure is the finite-dimensional
Dirac structure constructed in the following theorem.

Theorem 4.2.1. Given linear spaces Fdp,q and Edp,q, and the bilinear form

〈〈, 〉〉d. The linear subspace Dd ⊂ Fdp,q × Edp,q defined by

Dd =
{

(f̂p, fq, fb, ep, êq, êb) ∈ Fdp,q × Edp,q
∣∣[

f̂p
fq

]
=

[
0 (−1)rdn−qi

dn−p 0

] [
ep
êq

]
+ (−1)r

[
dn−qb

0

]
êb ,

fb = (−1)ptrn−pep} , (4.2.2)

with r = pq + 1, is a Dirac structure with respect to the pairing 〈〈, 〉〉d .

Proof. Note that since dn−qi = (−1)q(dn−p)t and dn−qb = (−1)n−p(trn−p)t,
the operator  0 (−1)rdn−qi (−1)rdn−qb

dn−p 0 0
(−1)ptrn−p 0


is skew-symmetric, and thus (4.2.2) is a Poisson structure on the state space
Ωp
d(?iK)× Ωq

d(K).

Remark 4.2.1. The Dirac structure (4.2.2) is purely topological and as such
does not depend on the choice of the geometric duality. Thus, the equivalent
result holds in case of the barycentric duality.

The other discrete analogue of the Stokes-Dirac structure is defined on the
spaces

F̃dp,q = Ωp
d(K)× Ωq

d(?iK)× Ωn−p
d (∂(?K))

Ẽdp,q = Ωn−p
d (?iK)× Ωn−q

d (K)× Ωn−q
d (∂K) .
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A natural discrete mirror of (2.2.1) in this case is a symmetric pairing defined
by

〈〈(f1
p , f̂

1
q , f̂

1
b︸ ︷︷ ︸

∈F̃dp,q

, ê1
p, e

1
q , e

1
b︸ ︷︷ ︸

∈Ẽdp,q

), (f2
p , f̂

2
q , f̂

2
b , ê

2
p, e

2
q , e

2
b)〉〉d̃

= 〈ê1
p ∧ f2

p + e1
q ∧ f̂2

q + ê2
p ∧ f1

p + e2
q ∧ f̂1

q ,K〉+ 〈e1
b ∧ f̂2

b + e2
b ∧ f̂1

b , ∂K〉 .

Theorem 4.2.2. The linear space D̃d defined by

D̃d =
{

(fp, f̂q, fb, ep, eq, eb) ∈ F̃dp,q × Ẽdp,q
∣∣[

fp
fq

]
=

[
0 (−1)pq+1dn−q

dn−pi 0

] [
êp
eq

]
+

[
0

dn−pb

]
f̂b ,

eb = (−1)ptrn−qeq
}

(4.2.3)

is a Dirac structure with respect to the bilinear pairing 〈〈, 〉〉d̃.

Composition of Simplicial Dirac Structures

Consider two simplicial Dirac structures DA and DB defined on two simplicial
manifolds KA and KB and their geometric duals ?KA and ?KB. Furthermore,
for the purpose of interconnection, let

∂KA = ΓA ∪ Γc , and ∂(?KA) = Γ̂A ∪ Γ̂c ,

∂KB = ΓB ∪ Γc , and ∂(?KB) = Γ̂b ∪ Γ̂c ,

where ΓA,ΓB,Γc are discrete boundaries and Γ̂A, Γ̂B, Γ̂c are their duals. The
composition DA ◦DB is then defined on the primal manifold KA ∪KB with
the boundary ΓA ∪ ΓB, and their duals. Since simplicial Dirac structures are
finite-dimensional Dirac structures their composition is again a Dirac structure
[20]. It is important to emphasize that the dual boundary Γ̂c in general is not
a geometric dual of Γc as Figure 4.1 illustrates it on a simple example. The
implications of this in discretization are that the common dual boundary will
frequently protrude over the common continuous boundary.

In the following section, the simplicial Dirac structures (4.2.2) and (4.2.3)
will be used for the formulation of spatially discrete input-output port-Hami-
ltonian systems.
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Figure 4.1: Composition of simplicial Dirac structures through the associated
discrete boundary. The bold dotted line pictures the common dual boundary
which protrudes out of the common primal boundary.

4.3 Input-Output Representations

Let the function H : Ωp
d(?iK) × Ωq

d(K) → R stand for the Hamiltonian
(α̂p, αq) 7→ H(α̂p, αq), with α̂p ∈ Ωp

d(?iK) and αq ∈ Ωq
d(K). The time deriva-

tive of H along an arbitrary trajectory t→ (α̂p(t), αq(t)) ∈ Ωp
d(?iK)×Ωq

d(K),
t ∈ R, is

d

dt
H(α̂p, αq) =

〈
∂H

∂α̂p
∧ ∂α̂p

∂t
+

ˆ∂H

∂αq
∧ ∂αq

∂t
,K

〉
. (4.3.1)

The relations between the simplicial-Dirac structure (4.2.2) and time deriva-

tives of the variables are: f̂p = −∂α̂p
∂t , fq = −∂αq

∂t , while the efforts are:

ep = ∂H
∂α̂p

, êq = ∂̂H
∂αq

.
This allows us to define a time-continuous port-Hamiltonian system on a

simplicial complex K (and its dual ?K) by[
−∂α̂p

∂t

−∂αq
∂t

]
=

[
0 (−1)rdn−qi

dn−p 0

][ ∂H
∂α̂p
∂̂H
∂αq

]
+(−1)r

[
dn−qb

0

]
êb ,

fb = (−1)ptrn−p
∂H

∂α̂p
, (4.3.2)

where r = pq + 1.
The system (4.3.2) is evidently in the form (2.1.6). It immediately follows

that d
dtH = 〈êb ∧ fb, ∂K〉, enunciating a fundamental property of the system:

the increase in the energy on the domain |K| is equal to the power supplied
to the system through the boundary ∂K and ∂(?K). The boundary efforts êb
are the boundary control input and fb are the outputs.
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An alternative formulation of a spatially discrete port-Hamiltonian system
is given in terms of the simplicial Dirac structure (4.2.3). We start with the
Hamiltonian function (αp, α̂q) 7→ H(αp, α̂q), where αp ∈ Ωp

d(K) and α̂q ∈
Ωq
d(?iK). In a similar manner as in deriving (4.3.2), we introduce the input-

output port-Hamiltonian system[
−∂αp

∂t

−∂α̂q
∂t

]
=

[
0 (−1)rdn−q

dn−pi 0

][ ∂̂H
∂αp
∂H
∂α̂q

]
+

[
0

dn−pb

]
f̂b ,

eb = (−1)ptrn−q
∂H

∂α̂q
. (4.3.3)

In contrast to (4.3.2), in the case of the formulation (4.3.3), the boundary
flows f̂b can be considered to be freely chosen, while the boundary efforts eb
are determined by the dynamics. Note that the free boundary variables are
always defined on the boundary of the dual cell complex.

4.4 Error Analysis

In this section we consider the spatial discretization of a linear distributed-
parameter port-Hamiltonian system of the form

− ∗cp
∂ec

p

∂t
= (−1)pq+1dec

q

− ∗cq
∂ec

q

∂t
= dec

p

ec
q|∂|K| = ec

b

f c
b = (−1)pec

p|∂|K|

(4.4.1)

on an n-dimensional polytope |K|. The operators ∗cp and ∗cq are the Hodge
stars spawned by Riemannian metrics.

Note that all continuous (spatially undiscretized) quantities are labeled
by a superscript c, for example, ec

p and ec
q are the continuous efforts. The

approach to convergence analysis we take here is that of [48].
The discrete analogue of (4.4.1) defined with respect to the simplicial Dirac

structure (4.2.2) is

− ∗n−p ėp = (−1)pq+1
(
dn−qi êq + dn−qb êb

)
− ∗−1

q
˙̂eq = dn−pep

fb = (−1)ptrn−pep ,

(4.4.2)
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where ∗n−p ∈ RNp×Np and ∗−1
q ∈ RNq×Nq are diagonal Hodge matrices with

Np = dim Ωn−p
d (K) and Nq = dim Ωq

d(K). A dot over a variable denotes the
time derivative.

Integrate the first equation of (4.4.1) over dual p-cells and the second over
primal q-faces to obtain

− ∗n−p ė∗p − ˙̂rp = (−1)pq+1
(
dn−qi ê∗q + dn−qb ê∗b

)
− ∗−1

q
˙̂e∗q − ṙq = dn−pe∗p

f∗b = (−1)ptrn−pe∗p ,

(4.4.3)

where e∗p and ê∗q are integral forms on the primal mesh and its circumcentric

dual, while ˙̂rp and ṙq are time derivatives of the residues of the Hodge operator
approximations given by∫

σ̂pk

∗cpėc
p = (∗n−p)k ėp,k +

(
˙̂rp

)
k

(4.4.4)∫
σql

∗cq ėc
q =

(
∗−1
q

)
l

˙̂eq,l + (ṙq)l , (4.4.5)

with subscripts k and l acting as selectors for vector components.

Define discrete energy errors as δep = e∗p − ep and δêq = ê∗q − êq, and the
output error as δfb = f∗b − fb.

Subtracting (4.4.2) from (4.4.3) leads to

− ∗n−p δėp − ˙̂rp = (−1)pq+1
(
dn−qi δêq + dn−qb δê∗b

)
− ∗−1

q δ ˙̂eq − ṙq = dn−pδep

δfb = (−1)ptrn−pδep ,

(4.4.6)

since δêb = ê∗b − êb = (
∫
?σn−qb

ec
b − 〈êb, ?σ

n−q
b 〉)?σn−qb ∈∂(?K) = 0.

Multiplying the first equation in (4.4.6) by δep and the second by δêq gives

−〈δep, ∗n−pδėp〉 − 〈δep, ˙̂rp〉 = (−1)pq+1〈δep,dn−qi δêq〉
−〈δêq, ∗−1

q δ ˙̂eq〉 − 〈δêq, ṙq〉 = 〈δêq,dn−pδep〉 .

Then we have

−〈δep, ∗n−pδėp〉 − 〈δep, ˙̂rp〉 − 〈δêq, ∗−1
q δ ˙̂eq〉 − 〈δêq, ṙq〉

= (−1)pq+1〈δep,dn−qi δêq〉+ 〈δêq,dn−pδep〉 = 0 .
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That is

〈δep, ∗n−pδėp〉+ 〈δêq, ∗−1
q δ ˙̂eq〉 = −〈δep, ˙̂rp〉 − 〈δêq ṙq〉 . (4.4.7)

Integration of (4.4.7) from 0 to tf yields

1

2

∥∥∥(∗n−p)
1
2 δep(tf )

∥∥∥2
+

1

2

∥∥∥(∗−1
q

) 1
2 δêq(tf )

∥∥∥2

= −
∫ tf

0
〈δep(τ), ˙̂rp(τ)〉+ 〈δêq(τ), ṙq(τ)〉dτ

≤
∫ tf

0
‖ ˙̂rp(τ)‖‖δep(τ)‖+ ‖ṙq(τ)‖‖δêq(τ)‖dτ .

Let t∗ be such that∥∥∥(∗n−p)
1
2 δep(t

∗)
∥∥∥2

+
∥∥∥(∗−1

q

) 1
2 δêq(t

∗)
∥∥∥2

= max
0≤t≤tf

(∥∥∥(∗n−p)
1
2

∥∥∥ ‖δep(t)‖+
∥∥∥(∗−1

q

) 1
2

∥∥∥ ‖δêq‖) ,
then (∥∥∥(∗n−p)

1
2 δep(t

∗)
∥∥∥+

∥∥∥(∗−1
q

) 1
2 δêq(t

∗)
∥∥∥)2

≤ 2

(∥∥∥(∗n−p)
1
2 δep(t

∗)
∥∥∥2

+
∥∥∥(∗−1

q

) 1
2 δêq(t

∗)
∥∥∥2
)

≤ 4

∫ tf

0
‖ ˙̂rp(τ)‖‖δep(τ)‖+ ‖rq(τ)‖ ‖δêq(τ)‖ dτ

≤ 4

∫ tf

0

(∥∥∥(∗n−p)
1
2 δep(t)

∥∥∥+
∥∥∥(∗−1

q

) 1
2 δêq(t)

∥∥∥)
·
(∥∥∥(∗n−p)

1
2 ˙̂rp(τ)

∥∥∥+
∥∥∥(∗−1

q

) 1
2 ṙq(τ)

∥∥∥)dτ .

It follows that∥∥∥(∗n−p)
1
2 δep(t

∗)
∥∥∥+

∥∥∥(∗−1
q

) 1
2 δêq(t

∗)
∥∥∥

≤ 4

∫ tf

0

∥∥∥(∗n−p)−
1
2 ˙̂rp(τ)

∥∥∥+
∥∥∥(∗−1

q

)− 1
2 ṙq(τ)

∥∥∥dτ .

Thus

‖δep(t∗)‖+ ‖δêq(t∗)‖ ≤ 4
(
‖ (∗n−p)−

1
2 ‖∞ + ‖

(
∗−1
q

)− 1
2 ‖∞

)
·
∫ tf

0
‖ (∗n−p)−

1
2 ˙̂rp(τ)‖+ ‖

(
∗−1
q

)− 1
2 ṙq(τ)‖dτ .
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Estimation of the residues r̂p and rq can be conducted by employing
Bramble-Hilbert techniques in the case of a weak formulation, or using a Tay-
lor’s expansion of the efforts under the standard smoothness assumptions [47].
For the results on the estimates of the Hodge star in one, two and three di-
mension the reader is invited to consult [47] and references therein.

4.5 Revisiting Physical Examples

In this section we consider the discrete wave equation on a 2-dimensional
simplicial complex and the telegraph equations on a segment.

4.5.1 Two-Dimensional Wave Equation

Consider the wave equation µ ∂2uc

∂t2
= −E∆uc, with uc(t, z) ∈ R, z = (z1, z2) ∈

M , where µ is the mass density, E is the Young’s modulus, ∆ is the two-
dimensional Laplace operator, and M is a compact surface with a closed
boundary. Throughout, the superscript c designates the continuous quanti-
ties.

The energy variables are the 2-dimensional kinetic momentum pc, and the
1-form elastic strain εc. The coenergy variables are the 0-form velocity vc

and the 1-form stress σc. The energy density of the vibrating membrane is
H(p, ε) = 1

2 (εc ∧ σc + pc ∧ vc), where the coenergy and energy variables are
related by the constitutive relations σc = E ∗ εc and vc = 1/µ ∗ pc. The Hodge
operator here corresponds to the standard Euclidian metric on M . The full
details of the port-Hamiltonian formulation of the vibrating membrane is given
in [39].

Let us now consider the simplicial Dirac structure underpinning the dis-
cretized two-dimensional wave equation. The energy variables of the dis-
cretized system are chosen as follows: the kinetic momentum is a dual 2-form
whose time derivative is set to be f̂p, the elastic strain is a primal 1-form
with time derivative corresponding to fq, the coenergy variables are a primal
0-form ep and a dual 1-form êq. Such a formulation of the discrete wave equa-
tion is consonant with the simplicial Dirac structure (4.2.2) for the case when
p = n = 2 and q = 1, and is given by

[
f̂p
fq

]
=

[
0 −d1

i

d0 0

] [
ep
êq

]
−
[

d1
b

0

]
êb ,

fb = tr0ep .
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Figure 4.2: A simplicial complex K consists of two triangles. The dual edges
introduced by subdivision are shown dotted.

The boundary control variable is the 1-form stress êb, while the output is
the boundary velocity. The Hamiltonian of the discrete model is

H =
1

2

〈
ε ∧ E ∗1 ε+ p̂ ∧ 1

µ
∗−1

0 p̂,K

〉
.

The coenergy variables are the dual 1-form σ̂ = ∂H
∂ε = E ∗1 ε and the primal

0-form v = ∂H
∂p̂ = ∗−1

0 p̂.

The resulting port-Hamiltonian system is[ ∂p̂
∂t
∂ε
∂t

]
=

[
0 d1

i

−d0 0

] [ 1
µ∗
−1
0 0

0 E∗1

] [
p̂
ε

]
+

[
d1

b

0

]
êb

fb =
1

µ
tr0 ∗−1

0 p̂ ,

where the operators d0, d1
i , tr0 = (d1

b)t, ∗1, and ∗−1
0 conform to the diagram

(4.1.1) when n = 2.

Example 4.5.1. Consider a simplicial complex pictorially given by Fig. 4.2.
The primal and dual 2-faces have counterclockwise orientations. The matrix
representation of the incidence operator ∂1, from the primal edges to the primal
vertices, is

[v0, v1] [v1, v2] [v2, v0] [v1, v3] [v3, v2]
v0 −1 0 0 0 0
v1 1 −1 0 −1 0
v2 0 1 −1 0 1
v3 0 0 1 1 −1
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while the discrete exterior derivative from the vertices to the edges is the trans-
pose of the incidence operator, i.e., d0 = ∂t1 . The dual exterior derivative is
d1

i = −
(
d0
)t

, while the matrix representation of the d1
b operator is

[v̂2, v̂1] [v̂1, v̂3] [v̂3, v̂4] [v̂4, v̂2]
?iv0 1 0 0 0
?iv1 0 1 0 0
?iv2 0 0 0 1
?iv3 0 0 1 0

The trace operator is tr0 = (d1
b)t.

It is trivial to show

〈d0ep ∧ êq,K〉+ 〈ep ∧ (d1
i êq + d1

bêb),K〉
= êb[v̂2, v̂1]fb(v0) + êb[v̂1, v̂3]fb(v1) (4.5.1)

+êb[v̂3, v̂4]fb(v3) + êb[v̂4, v̂2]fb(v2) ,

what confirms that the boundary terms genuinely live on the boundary of |K|.
If the geometric duality is circumcentric, the diagonal Hodge operators are

∗0 = diag (| ?i v0|, | ?i v1|, | ?i v2|, | ?i v3|)

∗1 = diag

(
|[v̂1, v̂0]|
|[v0, v1]|

,
|[v̂0, v̂5]|
|[v1, v2]|

,
|[v̂2, v̂0]|
|[v2, v0]|

,
|[v̂3, v̂5]|
|[v1, v3]|

,
|[v̂4, v̂5]|
|[v3, v2]|

)
.

4.5.2 Telegraph Equations

We consider an ideal lossless transmission line on a 1-dimensional simplicial
complex (see Figure 3.5). The energy variables are the charge density q ∈
Ω1
d(K), and the flux density φ̂ ∈ Ω1

d(?K), hence p = q = 1. The Hamiltonian
representing the total energy stored in the transmission line with distributed
capacitance C and distributed inductance L̂ is

H =

〈
1

2C
q ∧ ∗1q +

1

2L̂
φ̂ ∧ ∗−1

0 φ̂,K

〉
, (4.5.2)

where ∗0 and ∗1 are the discrete diagonal Hodge operators that relate the
appropriate cochains according to the following schematic diagram

Ω0
d(∂K)

tr0←−−− Ω0
d(K)

d0

−−−→ Ω1
d(K)

↓∗b ↓∗0 ↓∗1
Ω0
d(∂(?K))

d0
b−−−→ Ω1

d(?iK)
d0
i←−−− Ω0

d(?iK) ,
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where ?b is the identity.
The co-energy variables are: êp = ∂̂H

∂q = ∗ qC = V̂ representing voltages,

and eq = ∂H
∂φ̂

= ∗ φ̂
L̂

= I currents. Selecting fp = −∂q
∂t and f̂q = −∂φ̂

∂t leads to

the port-Hamiltonian formulation of the telegraph equations[
−∂q
∂t

−∂φ̂
∂t

]
=

[
0 d0

d0
i 0

][ ∗1 qC
∗−1

0
φ̂

L̂

]
+

[
0
d0

b

]
f̂b (4.5.3)

eb = − tr0 ∗−1
0

φ̂

L̂
,

where f̂b are the input voltages and eb are the output currents.

In the case we want to have the electrical currents as the inputs, the
charge and the flux densities would be defined on the dual mesh and the
primal mesh, respectively. Instead of the port-Hamiltonian system in the
form (4.5.3), the discretized telegraph equations would be in the form (4.3.2).
The charge density is defined on the dual cell complex as q̂ ∈ Ω1

d(?iK) and the
discrete flux density is φ ∈ Ω1

d(K). The finite-dimensional port-Hamiltonian
system is of the form[

−∂q̂
∂t

−∂φ
∂t

]
=

[
0 d0

i

d0 0

][
∗−1

0
q̂

Ĉ

∗1 φL

]
+

[
d0

b

0

]
êb (4.5.4)

fb = − tr0 ∗−1
0

q̂

Ĉ
,

where êb are the input currents and fb are the output voltages.

The exterior derivative d0 : Ω0
d(K) → Ω1

d(K) is the transpose of the in-
cidence matrix of the primal mesh. The discrete derivative d0

i : Ω0
d(?iK) →

Ω1
d(?iK) in the matrix notation is the incidence matrix of the primal mesh.

Thus, we have

− (d0
i )t = d0 =


−1 1 0 · · · 0 0

0 −1 1 · · · 0 0
. . .

0 0 0 · · · −1 1

 , (4.5.5)

tr0 = (d0
b)t =

[
−1 0 0 · · · 0 0

0 0 0 · · · 0 1

]
. (4.5.6)



76 MATRIX REPRESENTATIONS

Figure 4.3: The finite-dimensional approximation of the lossless transmission
line when the inputs are voltages and the outputs are currents. The induc-
tances L1, . . . , Ln+1 are the values that the discrete distributed inductance L̂
takes on the simplices [v̂0, v̂1], . . . , [v̂2n−1, v̂2n]; the capacitances C1, . . . Cn are
the values C takes on [v0, v2], . . . , [v2n−2, v2n].

Figure 4.4: The finite-dimensional approximation of the lossless transmis-
sion line when the inputs are currents and the outputs are voltages. The
inductances are: L1 =

∫
[v0,v2] L

c = L([v0, v2]), L2 =
∫

[v2,v4] L
c = L([v2, v4]),

. . ., Ln =
∫

[v2n−2,v2n] L
c = L([v2n−2, v2n]); the values of capacitors are:

C1 =
∫

[v̂0,v̂1]C
c = Ĉ([v̂0, v̂1]), C2 =

∫
[v̂1,v̂3]C

c = Ĉ([v̂1, v̂3]), C3 =
∫

[v̂3,v̂5]C
c =

Ĉ([v̂3, v̂5]), . . ., Cn+1 =
∫

[v̂2n−1,v̂2n]C
c = Ĉ([v̂2n−1, v̂2n]).

Remark 4.5.1. The discrete analogue of the Stokes-Dirac structure obtained
in [39] is a finite-dimensional Dirac structure, but not a Poisson structure
(4.2.2) or (4.2.3). The implication of this on the physical realization is that,
in contrast to our results, the transmission line in the finite-dimensional case
is not only composed of inductors and capacitors but also of transformers.

The physical realizations of the port-Hamiltonian systems (4.5.3) and (4.5.4)
are given on Fig. 4.3 and Fig. 4.4, respectively. Stabilization of either of those
systems is easily achieved by terminating boundary ports with resistive ele-
ments.
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Error Analysis for the Telegraph Equations

Expressing the flows of (4.5.3) in terms of efforts and choosing L = C = 1 for
convenience, the matrix formulation of (4.5.3) is

− (∗1)−1 ˙̂ep = d0eq

− ∗0 ėq = −d0
i êp − d0

bf̂b

eb = −tr0eq ,

(4.5.7)

where (∗1)−1 = diag(h1, h3, . . . , h2n−1) ∈ Rn×n and ∗0 = diag
(
ĥ0, ĥ2, . . . , ĥ2n

)
∈ R(n+1)×(n+1), with h1 = |[v0, v2]|, h3 = |[v2, v4]|, . . . , h2n−1 = |[v2n−2, v2n]|
and ĥ0 = |[v̂0, v̂1]|, ĥ2 = |[v̂1, v̂3]|, . . . , ĥ2n = |[v̂2n−1, v̂2n]|.

The time derivatives of the rp components defined in (4.4.4) are

(ṙp)l = h2l−1ėp(v̂2l−1)−
∫

[v2l−1,v2l]
∗ėc
p = h2l−1ėp(v̂2l−1)−

∫ v2l

v2l−1

ėc
p(z)dz .

The Taylor’s expansion of ėc
p around v̂2l−1 is

ėc
p(z) = ėc

p(v̂2l−1) +
∂ėc

p

∂z
(v̂2l−1)(z − v̂2l−1) +

∂2ėc
p

∂z2
(v̂2l−1)

(z − v̂2l−1)2

2
+O(z3) .

Thus ∫ v2l

v2l−2

ėc
p(z)dz = ėc

p(v̂2l−1)h2l−1 +
1

3

∂2ėc
p

∂z2
(v̂2l−1)

(
ĥ2l

2

)3

+O(h4
2l) ,

and

(ṙp)l =
1

3

∂2ėc
p

∂z2
(v̂2l−1)

(
h2l

2

)3

+O(h4
2l) .

Likewise
(
cf. (4.4.5)

)
,(

˙̂rq

)
k+1

= ĥ2kėq(v2k)−
∫

[v̂2k−1,v̂2k+1]
∗ėc
q = ĥ2kėq(v2k)−

∫ v̂2k+1

v̂2k−1

ėc
q(z)dz ,

where k = 0, 1, . . . , n and v̂−1 = v̂0. In the similar fashion, we obtain(
˙̂rq

)
k+1

=
1

3

∂2ėc
q

∂z2
(v2k)

(
ĥ2k

2

)3

+O(ĥ4
2k) for k = 1, . . . , n− 1

(
˙̂rq

)
1

=
1

2

∂ėc
q

∂z
(v0)ĥ2

0 +O(ĥ3
0)(

˙̂rq

)
n+1

= −1

2

∂ėc
q

∂z
(v2n)ĥ2

2n +O(ĥ3
2n) .
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Figure 4.5: On the left, the voltage distribution ep for n = 10, and on the
right, the voltage error at the point z = e − 1, that is eb(v20)(t) − sin(t − 1)
for t ≥ 0.

It follows that there exist K1,K2 ∈ R such that

‖δêp(t∗)‖+ ‖δeq(t∗)‖ ≤ hK2

∫ tf

0
‖tr0

∂ėc
q

∂z
(τ)‖dτ

+ h2K1

∫ tf

0

(
‖
∂2ėc

p

∂z2
(τ)‖+ ‖

∂2ėc
q

∂z2
(τ)‖

)
dτ +O(h3)

(4.5.8)

where tr0 is a trace operator, tr0 =
(
d0

b

)t
, and h is the measure of mesh

quality h = min{h1, h3, . . . , h2n−1, ĥ0, ĥ2, . . . , ĥ2n}.
Numerical example. To evince how exactly the discrete model relates to
the continuous one, we take the example from Section 5 in [39].

The spatial domain of the transmission system is the line segment M =
[0, e − 1]. The distributed capacitance and the distributive inductance are
z 7→ Cc(z) = 1

1+z and z 7→ Lc(z) = 1
1+z , z ∈M . On the left-hand side a causal

input voltage t 7→ u(t) is assigned, and at the other end the transmission line
is terminated by a load of unit resistance, meaning ∗q(t, e− 1) = ∗φ(t, e− 1).
Initial conditions are assumed to be zero, i.e. qc(0, z) = 0 and φc(0, z) = 0 for
z ∈ Z. The exact solution for the voltage distribution is (t, z) 7→ ec

p(t, z) =
u(t− ln(z + 1)), for t ≥ 0.

Using equidistant division of M and diagonal Hodge operators, the results
of numerical simulation when the input ec

p(0, t) = u(t) = sin t, t ≥ 0, are
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given in Figure 4.5. The time integration technique is Runge-Kutta 4 and the
integration step is 0.01.

All numerical experiments indicate that the discrepancy between the exact
value of the voltage and the value obtained by numerical simulation is the
greatest at the spatial point z = e − 1. Thence, in the left-hand side of
Figure 4.5 we show this error as a function of time. In all computational
experiments, this error, similar to the results in [39], exhibits an oscillatory
behavior with the amplitude not exceeding the maximum displayed in the first
period.

Repeating simulation experiments for uniform grids of different densities
indicates that the accuracy of the proposed method is 1/n, what comes as no
surprise since we worked with diagonal Hodge operators, which are of first-
order accuracy as shown in (4.5.8) for the system (4.5.3).

4.6 Conservation Laws

Let us consider the existence of conservation laws and structural invariants for
the port-Hamiltonian systems on simplicial complexes.

4.6.1 Finite-Dimensional Invariants

The following proposition gives the conditions for the existence of conservation
laws in the discrete setting.

Proposition 4.6.1. Consider the port-Hamiltonian system (4.3.2). Let (α̂p, αq)
7→ C(α̂p, αq) be a real-valued function. Then, C is a conservation law for the
port-Hamiltonian system (4.3.2) satisfying

dC

dt
=
(
fCb
)t
êb (4.6.1)

with fCb = −(−1)q(p+1)trn−p ∂C∂α̂p , if and only if

∂C

∂α̂p
∈ ker dn−p (4.6.2)

∂̂C

∂αq
∈ ker dn−qi . (4.6.3)
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Proof. Differentiating C along the flow of the system (4.3.2), we have

dC

dt
=

〈
∂C

∂α̂p
∧ ∂α̂p

∂t
+
∂̂C

∂αq
∧ ∂αq

∂t
,K

〉

= (−1)pq
∂tC

∂α̂p

(
dn−qi

ˆ∂H

∂αq
+ dn−qb êb

)
− (−1)q(n−q)

(
dn−q

∂H

αq

)t ∂̂C

∂αq

= (−1)q(p+1)

(
dn−p

∂C

∂α̂p

)t ˆ∂H

∂αq
− (−1)q(p+1)

(
trn−p

∂C

∂α̂p

)t

êb

+(−1)pq

(
dn−qi

∂̂C

∂αq

)t
∂H

∂α̂p
,

because dn−qi = (−1)q(dn−p)t and dn−qb = (−1)n−p(trn−p)t. Furthermore,
regardless of H, the result (4.6.1) follows iff (4.6.2) and (4.6.3) hold.

Remark 4.6.1. If either êb = 0 or fCb = 0, the quantity C satisfying (4.6.2)
and (4.6.3) is a conserved quantity—a Casimir function.

4.6.2 One-Dimensional Domain

An interesting case for which it is possible explicitly to solve (4.6.2) is when
p = n. The matrix d0 is nothing but the transpose of the incidence matrix
∂1, from the set of edges to the set of vertices, of a connected graph. It is a
well-known property of the incidence matrix ∂1 that ker ∂t1 = span 1, where 1
stands for the vector with all elements equal 1. A direct consequence of this
is that ∂C

∂α̂p
= 1 up to a multiplicative constant.

In the one-dimensional case the null space of d0
i is trivial, cf. (4.5.5), what

allows us to explicitly express the conservation law.

Corollary 4.6.2. Consider the port-Hamiltonian system (4.3.2), with p = q =
n = 1, on the one-dimensional simplicial manifold given on Figure 3.5. The
quantity Cp = 1tα̂p = α̂p([v̂0, v̂1]) +

∑n−1
k=1 α̂p([v̂2k−1, v̂2k+1]) + α̂p([v̂2n−1, v̂2n])

satisfies the balance law

dCp
dt

= êb(v̂0)− êb(v̂2n). (4.6.4)

In case of the telegraph equations on the segment M = [0, 1], the total
charge Ccq =

∫ 1
0 q

c(t, z)dz as well as the total magnetic flux Ccφ =
∫ 1

0 φ
c(t, z)dz

are both conservation laws. In the discrete setting, the only conservation law
for the system (4.5.4) is the total charge Cq = 1tq̂ whose derivative along
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the admissible trajectories is
dCq
dt = êb(v̂0) − êb(v̂2n). Similarly, the total flux

Cφ = 1tφ̂ in the system (4.5.3) satisfies the balance law
dCφ
dt = f̂b(v̂0)−f̂b(v̂2n),

where f̂b(v̂0) and f̂b(v̂2n) are input currents. These result differ from those
presented in [63], where both the total flux and total charge are conserved.

4.7 Energy-Casimir Method

Consider the interconnection of (4.3.2) with the (possibly nonlinear) integrator

dζ

dt
= gc uc (4.7.1)

yc = gt
c

∂Hc

∂ζ
, (4.7.2)

where ζ ∈ Rm, gc ∈ Rm×Nb with Nb = dim Ωn−q
d (∂(?K)), input uc, out-

put yc, and ζ 7→ Hc(ζ) the controller’s Hamiltonian. The interconnection is
power-preserving with uc = fb and eb = −yc. The composition is the port-
Hamiltonian system in the form

∂α̂p
∂t
∂αq
∂t
dζ
dt

=

 0 (−1)r−1dn−qi (−1)rdn−qb gt
c

dn−p 0 0
(−1)pgc trn−p 0




∂Hcl
∂α̂p
ˆ∂Hcl
∂αq
∂Hcl
∂ζ

 , (4.7.3)

with (α̂p, αq, ζ) 7→ Hcl(α̂p, αq, ζ) is the closed-loop HamiltonianHcl(α̂p, αq, ζ) =
H(α̂p, αq) +Hc(ζ).

The energy shaping for the system (4.7.3) is achieved by restricting the
behavior of (4.7.3) to a certain subspace [96]. To this end, we look at the
Casimir functions of the closed-loop system.

Proposition 4.7.1. The real-valued function (α̂p, αq, ζ) 7→ C(α̂p, αq, ζ) is a
Casimir function of the closed system (4.7.3) iff

∂C

∂α̂p
∈ ker dn−p ∩ ker

(
gc trn−p

)
[

∂̂C
∂αq
∂C
∂ζ

]
∈ ker

[
dn−qi (−1)n−qdn−qb gt

c

]
. (4.7.4)

Proof. Solving d
dtC(α̂p, αq, ζ) = 0 irrespective of Hcl directly leads to (4.7.4).
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Remark 4.7.1. Since the structural matrix of the port-Hamiltonian system
(4.3.2) is not of full rank in case when gc is identity, not all Casimirs of
(4.7.3) are of the form C(α̂q, αq, ζ) = Si(α̂p, αq)− ζi, i = 1, . . . ,m.

Remark 4.7.2. In case when p = q = m = n = 1 and gc = [1, 1] the only
Casimir for the system (4.7.3) is 1tαq + ζ.

4.8 Final Remarks

By preserving the Hamiltonian structure, the methodology of this chapter
utilizes the analysis and control synthesis for the discretized systems.

An important avenue for future research is to make a connection between
continuous and discretized systems in the presence of a port-Hamiltonian con-
troller. Here, gauging the input-output errors is of great significance for ro-
bustness.



5
Symmetry Reduction

In beauty, that of favor, is more than that of color; and that of decent and
gracious motion, more than that of favor. That is the best part of beauty,
which a picture cannot express; no, nor the first sight of the life. There is
no excellent beauty, that hath not some strangeness in the proportion.

– Sir Francis Bacon, Of Beauty

T
he port-Hamiltonian formalism, as we have seen, transcends the
lumped-parameter scenario and has been successfully applied to study
of a number of distributed-parameter systems stemming from me-
chanics, electromagnetism and chemistry [98, 64, 107]. The center-

piece of the efforts concerning infinite-dimensional case is the Stokes-Dirac
structure. The Hamiltonian equations associated to this Dirac structure allow
for non-zero energy exchange through the boundary.

Although the differential operator in the Stokes-Dirac structure, in the
presence of nonzero boundary conditions, is not skew-symmetric, it is possible
to associate a Poisson structure to the Stokes-Dirac structure [98]. In the
absence of algebraic constraints imposed by boundary conditions, the Stokes-
Dirac structure specializes to a Poisson structure [29], and as such it can be
derived through symmetry reduction from a canonical Dirac structure on the
phase space [127]. How to conduct this reduction for the Poisson structure
associated to the Stokes-Dirac structure on a manifold with boundary is the
central theme of this chapter.

This chapter very closely follows [127]. The reduction scheme we are deal-
ing with is the one from [127], the only difference being in that we consider
slightly augmented spaces in order to account for the behaviors associated
with the boundary. The perspective as well as the notation in Section 5.1 are
taken verbatim from [127], but now for the generalized Dirac structures that

83
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allow for the formulation of open Hamiltonian systems. The proposed Poisson
reduction is firstly applied in the reduction of a generalized canonical Dirac
structure to the Poisson structure associated with the Stokes-Dirac structure.
In the context of dynamics, the canonical port-Hamiltonian systems are those
defined as in [102, 103], now only in the context of differential forms, while the
reduced port-Hamiltonian systems are exactly those presented in [98]. In the
final section I demonstrate how this reduction applies to the Poisson reduction
of the port-Hamiltonian systems on simplicial manifolds [110, 109].

5.1 Dirac Structures and Reduction

Dirac structures. Let Q be a manifold and define a pairing on TQ ⊕ T ∗Q
given by

〈〈(v, α), (w, β)〉〉 =
1

2
(α(w) + β(v)).

For a subspace D of TQ ⊕ T ∗Q, we define the orthogonal complement D⊥ as
the space of all (v, α) such that 〈〈(v, α), (w, β)〉〉 = 0 for all (w, β). A Dirac
structure is then a subbundle D of TQ⊕ T ∗Q which satisfies D = D⊥.

The canonical Dirac structure. Let Q be equipped with a symplectic
form ω and note that ω induces a map [ : TQ→ T ∗Q given by [(v) = ivω for
v ∈ TQ. Since ω is symplectic, [ can be inverted and we denote the inverse
map by ] : T ∗Q → TQ, referred to as the Poisson structure induced by ω.
It can easily checked that the graph of [ (or equivalently of ]), given by

DT ∗Q := {(v, [(v)) : v ∈ TQ}
= {(](α), α) : α ∈ T ∗Q} (5.1.1)

is a Dirac structure. In the literature [127], [135] a Dirac structure given by
(5.1.1) is called a canonical Dirac structure.

The notion of Dirac structures just entertained is suitable for the formu-
lation of closed Hamiltonian systems, however, our aim is a treatment of open
Hamiltonian systems in such a way that some of the external variables remain
free port variables. For this reason we recall the notion of the augmented
(generalized) Dirac structure.

The augmented Dirac structures. In addition to the configuration mani-
fold Q, let F be a linear vector space of external flows, with dual the space F∗

of external efforts. We deal with Dirac structures on the product space Q×F.
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The pairing on (TQ× F)⊕ (T ∗Q× F) is given by〈〈(
(v, f), (α, e)

)
,
(

(w, f̃), (β, ẽ)
)〉〉

=
(
α(w) + e(f̃) + β(v) + ẽ(f)

)
.

(5.1.2)

An augmented Dirac structure D is a subbundle of (TQ×F)⊕ (T ∗Q×F)
which is maximally isotropic under (5.1.2).

A canonical Dirac structure on TQ⊕ T ∗Q is considered to be a symplectic
structure (5.1.1). However, in this thesis we shall deal with slightly different
canonical Dirac structures. To that end, let the map ] : T ∗Q× F∗ → TQ× F

induce a Poisson structure on TQ× F. The graph of ] given by

DT ∗Q×F∗ := {(](α, e), (α, e)) : α ∈ T ∗Q , e ∈ F∗} (5.1.3)

is a Dirac structure. If the mapping ] is symplectic on TQ, that is if ](α, 0) = 0
implies α = 0, the Dirac structure (5.1.3) is the generalized canonical
Dirac structure .

Example 5.1.1. Let (v, f) ∈ TQ×F, and (α, e) ∈ T ∗Q×F∗. If J = −J∗ and
ker J = 0, then (

v
f

)
=

(
J −g
g∗ 0

)(
α
e

)
is a generalized canonical Dirac structure. Note that, if F = ∅, we are dealing
with a symplectic structure.

Reduction of Dirac structures. There is a number of techniques for sym-
metry reduction of Dirac structures [13, 135]. The reduction considered in
this chapter is the Poisson reduction from [127]. For that purpose, let G be a
Lie group which acts on Q from the right and assume that the quotient space
Q/G is again a manifold. Denote the action of g ∈ G on q ∈ Q by q · g and the
induced actions of g ∈ G on TQ× F and T ∗Q× F∗ by (v, f) · g and (α, e) · g,
for v ∈ TQ, f ∈ F, α ∈ T ∗Q, and e ∈ F∗. The action on the T ∗Q × F∗ is
defined by 〈(α, e) · g, (v, f)〉 =

〈
(α, e), (v, f) · g−1

〉
. In what follows, we will

focus mostly on the reduced cotangent bundle (T ∗Q × F∗)/G. Furthermore,
we will deal with the reduced space denoted by T ∗Q/G× F∗.

Consider now the canonical Dirac structure on T ∗Q × F∗. Let ] : T ∗Q ×
F∗ → TQ × F be the map (5.1.3) used in the definition of DT ∗Q×F∗ . The
reduced Dirac structure DT ∗Q/G×F∗ on T ∗Q/G × F∗ can now be described as
the graph of a reduced map []] : T ∗(T ∗Q/G× F∗)→ T (T ∗Q/G× F∗) defined
as follows.
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Let πG : T ∗Q × F∗ → T ∗Q/G × F∗ be the quotient map and consider an
element (ρ, π, ρb) in T ∗Q×F∗. The tangent map of πG at (ρ, π, ρb) is denoted
by T(ρ,π,ρb)πG : T(ρ,π,ρb)(T

∗Q × F∗) → T(ρ,π,ρb)(T
∗Q/G × F∗), and its dual by

T ∗(ρ,π,ρb)πG : T ∗πG(ρ,π,ρb)
(T ∗Q/G × F∗) → T ∗πG(ρ,π,ρb)

(T ∗Q × F∗). The reduced

map []] now fits into the following extended commutative diagram

T ∗(ρ,π,ρb)(T
∗Q× F∗)

] // T(ρ,π,ρb)(T
∗Q× F∗)

T(ρ,π,ρb)πG

��
T ∗πG(ρ,π,ρb)

(T ∗Q/G× F∗)

T ∗
(ρ,π,ρb)

πG

OO

[]]
// TπG(ρ,π,ρb)(T

∗Q/G× F∗)

(5.1.4)

5.2 Properties of the Stokes-Dirac Structure

As usual, throughout the chapter, let M be an oriented n-dimensional smooth
manifold with a smooth (n− 1)-dimensional boundary ∂M endowed with the
induced orientation, representing the space of spatial variables. By Ωk(M),
k = 0, 1, . . . , n, denote the space of exterior k-forms on M , and by Ωk(∂M),
k = 0, 1, . . . , n − 1, the space of k-forms on ∂M . A natural non-degenerative
pairing between ρ ∈ Ωk(M) and σ ∈ Ωn−k(M) is given by 〈σ|ρ〉 =

∫
M σ ∧ ρ.

Likewise, the pairing on the boundary ∂M between ρ ∈ Ωk(∂M) and σ ∈
Ωn−k−1(∂M) is given by 〈σ|ρ〉 =

∫
∂M σ ∧ ρ.

The Stokes-Dirac structure. For any pair p, q of positive integers satisfying
p+ q = n+ 1, define the flow and effort linear spaces by

Fp,q = Ωp(M)× Ωq(M)× Ωn−p(∂M)

Ep,q = Ωn−p(M)× Ωn−q(M)× Ωn−q(∂M) .

Given linear spaces Fp,q and Ep,q, and the natural bilinear form 〈〈, 〉〉, we recall
that the bundle D ⊂ Fp,q × Ep,q

D =
{

(fp, fq, fb, ep, eq, eb) ∈ Fp,q × Ep,q
∣∣(

fp
fq

)
=

(
0 (−1)pq+1d
d 0

)(
ep
eq

)
,(

fb
eb

)
=

(
tr 0
0 −(−1)n−qtr

)(
ep
eq

)}
,

(5.2.1)
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is the Stokes-Dirac structure.

Poisson brackets on the Stokes-Dirac structure. Although Dirac struc-
tures generalize the notion of Poisson structures, to any Stokes-Dirac structure
we can associate a Poisson structure. Here we just sketch the essence and refer
the reader to [98].

We define the space of admissible efforts as

Eadm := {e ∈ Ep,q|∃f ∈ Fp,q such that (f, e) ∈ D}.

On Eadm define the bilinear form [e1, e2] = 〈e1|f2〉 ∈ R, where f2 ∈ Fp,q
is such that (f2, e2) ∈ D. This bilinear form is well-defined, since for any
f ′2 ∈ F such that (f ′2, e2) ∈ D we obtain by linearity (f2 − f ′2, 0) ∈ D, and
hence 0 = 〈〈(f1, e1), (f2 − f ′2, 0)〉〉 = 〈e1|f2〉 − 〈e1|f ′2〉. Furthermore, [, ] is skew-
symmetric since for any (f1, e1), (f2, e2) ∈ D we have 0 = 〈〈(f1, e1), (f2, e2)〉〉 =
〈e1|f2〉+ 〈e2|f ′1〉.

The set of admissible mappings is now defined to be

Kadm = {k : Fp,q → R|∀a ∈ Fp,q, ∃e(k, a) ∈ Eadm such that

∀a ∈ Fp,q, k(a+ ∂a) = k(a) + 〈e(k, a)|∂a〉+O(∂a)}.

Notice that e(k, a), if it exists, is uniquely defined modulo the following linear
space E0 = {e ∈ Ep,q|〈e|f〉 = 0 for all f ∈ Fp,q}, which is a subspace of
Ep,q. The quantity e(k, a) is the derivative of k at a, and we denote it by
δk(a). On Kadm we define the bracket {k1, k2}D(a) = [δk1(a), δk2(a)], for
any k1, k2 ∈ Kadm. This bracket is clearly independent from the choice of the
representations δk1(a), δk2(a). By skew-symmetry of [, ] it immediately follows
that {, } is skew-symmetric.

For the Stokes-Dirac structure the set of admissible mappings Kadm con-
sists of those functions k : Ωp(M)×Ωq(M)×Ωn−p(∂M)→ R whose derivatives
δk(z) = (δpk(z), δqk(z), δbk(z)) ∈ Ωn−p(M)× Ωn−q(M)× Ωn−q(∂M) satisfy

δbk(z) = −(−1)n−qtr(δqk(z)).

The Poisson bracket on Kadm is given as

{k1, k2}D =

∫
M

((δpk
1) ∧ (−1)rd((δqk

2) + (δqk
1) ∧ d(δpk

2))

−
∫
∂M

((−1)n−q(δqk
1) ∧ (δpk

2)) .

Using Stokes’ theorem, it follows that the bracket is skew-symmetric and
that it satisfies the Jacobi identity: {{k1, k2}D, k3}D + {{k2, k3}D, k1}D +
{{k3, k1}D, k2}D = 0 for all ki ∈ Kadm.
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In this chapter we will exclusively be dealing with Poisson and associated
Poisson structures.

5.3 Reduction of the Stokes-Dirac Structure

The configuration manifold is a vector space Q := Ωk(M) with the tangent
bundle TQ = Q × Q and the cotangent bundle T ∗Q = Q × Q∗, where Q∗ =
Ωn−k(M). The space of the boundary flows F will be an admissible subset of
Ωn−k−1(∂M), while the space of the boundary efforts is E := F∗ = Ωk(∂M).

The tangent bundle T (T ∗Q × F∗) is isomorphic to (Q × Q∗ × F∗) × (Q ×
Q∗×F∗), with a typical element denoted by (ρ, π, ρb, ρ̇, π̇, ρ̇b), while T ∗(T ∗Q×
F∗) = (Q × Q∗ × F∗) × (Q∗ × Q × F), with a typical element denoted by
(ρ, π, ρb, eρ, eπ, eb). For the duality pairing between T (T ∗Q×F∗) and T ∗(T ∗Q×
F∗) we chose

〈(ρ, π, ρb, eρ, eπ, eb), (ρ, π, ρb, ρ̇, π̇, ρ̇b)〉

=

∫
M

(eρ ∧ ρ̇+ eπ ∧ π̇) +

∫
∂M

(eb ∧ ρ̇b + eb ∧ tr ρ̇) .
(5.3.1)

The choice for this non-degenerate pairing will become clear in Section 5.4.

5.3.1 The Symmetry Group

Let G be an Abelian group of (k − 1)-forms. For any α ∈ G and ρ ∈ Q, the
group G action on Q is

ρ · α = ρ+ dα. (5.3.2)

This action of gauge group lifts to TQ × F and T ∗Q × F∗ as (ρ, ρ̇, eb) · α =
(ρ+ dα, ρ̇, eb) and (ρ, π, ρb) · α = (ρ+ dα, π, ρb) for α ∈ G, (ρ, ρ̇, eb) ∈ TQ× F

and (ρ, π, ρb) ∈ T ∗Q× F∗.

The elements of Q/G are equivalence classes [ρ] of k-forms up to exact
forms, so that the exterior differential determines a well-defined map from
Q/G to dΩk, given by [ρ] 7→ dρ, see, e.g., [10]. If the k-th cohomology of M
vanishes, we have Q/G = dΩk. Consequently, the quotient (T ∗Q/G × F∗) is
isomorphic to Q/G× Q∗ × F∗, or explicitly

T ∗Q/G× F∗ = dΩk(M)× Ωn−k(M)× Ωk(∂M).

The quotient map denoted as πG : T ∗Q× F∗ → (T ∗Q)/G× F∗ is given by

πG(ρ, π, ρb) = (dρ, π, ρb). (5.3.3)
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Let a representative element of T ∗Q/G×F∗ be (ρ̄, π̄, ρ̄b), with ρ̄ ∈ dΩk(M),
π̄ ∈ Ωn−k(M) and ρ̄b ∈ Ωk(∂M). Elements of T (T ∗Q/G×F∗) will be denoted
by (ρ̄, π̄, ρ̄b, ˙̄ρ, ˙̄π, ˙̄ρb), while the elements of T ∗(T ∗Q/G×F∗) will be denoted by
(ρ̄, π̄, ρ̄b, ēρ, ēπ, ēb). The duality pairing is given as

〈(ρ̄, π̄, ρ̄b, ēρ, ēπ, ēb), (ρ̄, π̄, ρ̄b, ˙̄ρ, ˙̄π, ˙̄ρb)〉

=

∫
M

(ēρ ∧ ˙̄ρ+ ēπ ∧ ˙̄π) +

∫
∂M

ēb ∧ ˙̄ρb.
(5.3.4)

Whenever the base point (ρ̄, π̄, ρ̄b) is clear from the context, we will denote
(ρ̄, π̄, ρ̄b, ˙̄ρ, ˙̄π, ˙̄ρb) simply by ( ˙̄ρ, ˙̄π, ˙̄ρb), and similarly (ρ̄, π̄, ρ̄b, ēρ, ēπ, ēb) is then
denoted by (ēρ, ēπ, ēb).

5.3.2 The Reduced Dirac Structure

The generalized canonical Dirac structure is a Poisson structure induced by
the linear mapping ] : T ∗(T ∗Q× F∗)→ T (T ∗Q× F∗) given by

](ρ, π, ρb, eρ, eπ, eb) = (ρ, π, ρb, eπ,−(−1)k(n−k)eρ,−tr eπ). (5.3.5)

In order to obtain the reduced Poisson structure from the canonical Dirac
structure (5.3.5), we need to specify what are the operators TπG and T ∗πG in
the diagram (5.1.4). The space F is the set of admissible forms Ωn−k−1(∂M)
that are the traces of (dΩk)∗, as will be made clear in Lemma 5.3.1. Consider
an element (ρ, π, ρb) ∈ T ∗Q× F∗, and we recall that πG(ρ, π, ρb) = (dρ, π, ρb).
Let T(ρ,π,ρb)πG : T(ρ,π,ρb)(T

∗Q × F∗) → T(dρ,π,ρb)(T
∗Q/G × F∗) be the tan-

gent map to πG at (ρ, π, ρb) and consider the cotangent map T ∗(ρ,π,ρb)πG :

T ∗(dρ,π,ρb)(T
∗Q/G× F∗)→ T ∗(ρ,π,ρb)(T

∗Q× F∗).

Lemma 5.3.1. The tangent and cotangent maps T(ρ,π,ρb)πG and T ∗(ρ,π,ρb)πG
are given by

T(ρ,π,ρb)πG(ρ, π, ρb, ρ̇, π̇, ρ̇b) = (dρ, π, ρb,dρ̇, π̇, ρ̇b) (5.3.6)

and

T ∗(ρ,π,ρb)πG(dρ, π, ρb, ēρ, ēπ,−(−1)n−ktr ēρ)

= (ρ, π, ρb, (−1)n−kdēρ, ēπ,−(−1)n−ktr ēρ).
(5.3.7)
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Proof. The expression (5.3.6) for T(ρ,π,ρb)πG follows from (5.3.3). To prove
(5.3.7), we let (ρ̇, π̇, ρ̇b) ∈ T(ρ,π,ρb)(T

∗Q× F∗) and consider〈
T ∗(ρ,π,ρb)πG(ēρ, ēπ,−(−1)n−kēρ), (ρ̇, π̇, ρ̇b)

〉
=
〈

(ēρ, ēπ,−(−1)n−ktr ēρ), T(ρ,π,ρb)πG(ρ̇, π̇, ρ̇b)
〉

=
〈

(ēρ, ēπ,−(−1)n−ktr ēρ), (dρ̇, π̇, ρ̇b)
〉
.

Applying Stokes’ theorem, we have〈
(ēρ, ēπ,−(−1)n−ktr ēρ), (dρ̇, π̇, ρ̇b)

〉
=

∫
M

(ēρ ∧ dρ̇+ ēπ ∧ π̇) +

∫
M

(−(−1)n−ktr ēρ ∧ ρb − (−1)n−ktr ēρ ∧ tr ρ̇)

=

∫
M

((−1)n−kdēρ ∧ ρ̇+ ēπ ∧ π̇)−
∫
∂M

(−1)n−ktr ēρ ∧ tr ρ̇ .

Thus, T ∗(ρ,π,ρb)πG(ēρ, ēπ,−(−1)n−ktr ēρ) = ((−1)n−kdēρ, ēπ,−(−1)n−ktr ēρ).

As in the case of a boundaryless manifold [127], the reduced Poisson struc-
ture in (5.1.4) is given by

[]](dρ,π,ρb) = T(ρ,π,ρb)πG ◦ ] ◦ T
∗
(dρ,π,ρb)

πG

for all (dρ, π, ρb) ∈ T ∗Q/G× F∗.

Theorem 5.3.2. The reduced Poisson structure is given by

[]](ēρ, ēπ,−(−1)n−ktr ēρ) = (dēπ,−(−1)n(k+1)dēρ,−tr ēπ) . (5.3.8)

Proof. Follows from direct calculation of []](ēρ, ēπ,−(−1)n−ktr ēρ). A similar
proof will be given in Section 5.5, but in the discrete context.

Relation to the Stokes-Dirac structure. The matrix form of the reduced
Poisson structure is ˙̄ρ

˙̄π
˙̄ρb

 =

 0 d 0

−(−1)n(k+1)d 0 0
0 −tr 0

 ēρ
ēπ

(−1)n−ktr ēρ

 . (5.3.9)

The sign convention in (5.3.9) and the Stokes-Dirac structure (5.2.1) is not
the same. To match the signs we introduce new flow variables fp, fq, fb
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and effort variables ep, eq, eb defined as ep = ēρ, eq = (−1)rēπ, fp = ˙̄ρ, fq =
(−1)n(k+1)+1 ˙̄π, fb = −(−1)r ˙̄ρb, where p = k + 1, q = n − k, and r = pq + 1.
With this choice of signs, (5.3.9) becomes(

fp
fq

)
=

(
0 (−1)rd
d 0

)(
ep
eq

)
fb = tr eq

(−1)n−ktr ep = eb .

(5.3.10)

Here, it is important to point out that the boundary effort eb, unlike in the
case of the Stokes-Dirac structure, does not follow from the associate Poisson
structure, but rather belongs to the set of admissible derivatives of the flow
restricted to the boundary.

5.4 Symmetry in Port-Hamiltonian Systems

Let t 7→ (αρ̇, απ̇) ∈ Ωk(M)×Ωn−k(M) be a time function, and let the Hamil-
tonian be

H(αρ̇, απ̇) =

∫
M

H(dαρ̇, απ̇) .

It follows that at any time instance t ∈ R

dH

dt
=

∫
M

δH

δαρ̇
∧ ∂αρ̇

∂t
+
δH

δαπ̇
∧ ∂απ̇

∂t
+

∫
∂M

∂H

∂(dαρ̇)
∧ ∂αρ̇

∂t
.

The differential forms
∂αρ̇
∂t ,

∂απ̇
∂t represent the generalized velocities of the en-

ergy variables αρ̇, απ̇. The connection with the canonical Dirac structure is
made by setting the flows

ρ̇ = −∂αρ̇
∂t

π̇ = −∂απ̇
∂t

,

and the efforts

eρ =
δH

δαρ̇
, eπ =

δH

δαπ̇
.

The canonical distributed-parameter port-Hamiltonian system on
an n-dimensional manifold, with the state space Ωk(M)×Ωn−k(M), the Hamil-
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tonian H and the canonical Dirac structure (5.3.5), is given as(
−∂αρ̇

∂t

−∂απ̇
∂t

)
=

(
0 1

−(−1)k(n−k) 0

)( δH
δαρ̇
δH
δαπ̇

)
(
fb
eb

)
=

(
0 −tr
−tr 0

)( ∂H
∂(dαρ̇)

δH
δαπ̇

)
.

(5.4.1)

Proposition 5.4.1. For the port-Hamiltonian system (5.4.1) the following
property

dH

dt
=

∫
∂M

eb ∧ fb

expresses the fact that the increase in energy on the domain M is equal to the
power supplied to the system through the boundary ∂M .

Remark 5.4.1. The system (5.4.1) is precisely the system (2.4.7) on X =

Ωk(M) × Ωn−k(M), with G = 0, J = −
(

0 1

(−1)k(n−k) 0

)
, and the natural

boundary variables.

5.4.1 The Reduced Port-Hamiltonian Systems

The Hamiltonian H is invariant if a spatially independent k-form is added to
αρ̇, thus Poisson reduction is applicable. Let the reduced field be ᾱρ̇ := dαρ̇,
then the reduced Hamiltonian is

Hr(ᾱρ̇, απ̇) =

∫
M

Hr(ᾱρ̇, απ̇) .

The port-Hamiltonian system with respect to the reduced Poisson structure
is (

−∂ᾱρ̇
∂t

−∂απ̇
∂t

)
=

(
0 d

−(−1)n(k+1)d 0

)( δHr
δᾱρ̇
δHr
δαπ̇

)
(
fb
eb

)
=

(
0 −tr

−(−1)n−ktr 0

)( δHr
δᾱρ̇
δHr
δαπ̇

)
.

(5.4.2)

This is precisely the port-Hamiltonian system given in [98].
We will show how the general considerations of the reduction of port-

Hamiltonian systems apply to physical examples of Maxwell’s equations and
the vibrating string.
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5.4.2 Maxwell’s Equations

The spatial domain is a three-dimensional Riemannian manifold with bound-
ary. Let ε and µ be the electric and the magnetic permeability, and let ∗ be
the Hodge star corresponding to the Euclidian metric.

The configuration space Q is the space of one-forms representing the vector
potential A. The group G = Ω0(M) acts on Q as

f ·A = A+ df ,

with the quotient space Q/G being the space of of magnetic fields B = dA.
The Hamiltonian corresponding to Maxwell’s equations is

H(A,D) =
1

2

∫
M

(ε−1D ∧ ∗D + µ−1dA ∧ ∗dA)

and as such is invariant under the gauge symmetry A 7→ A+ df .
The canonical Hamiltonian equations are(

−∂A
∂t

−∂D
∂t

)
=

(
0 1
−1 0

)( δH
δA
δH
δD

)
fb = tr(ε−1 ∗D)

eb = tr

(
∂H

∂(dA)

)
= tr

(
µ−1 ∗ dA

)
,

(5.4.3)

where δH
δD = ∗D and δH

δA = −d ∗ dA.
The energy balance in the case of the unreduced Maxwell’s equations takes

the form
dH

dt
=

∫
∂M

µ−1 ∗ dA ∧ ε−1 ∗D =

∫
∂M

eb ∧ fb .

The reduced Hamiltonian takes the form

Hr(B,D) =
1

2

∫
M

(ε−1D ∧ ∗D + µ−1B ∧ ∗B) .

The reduced port-Hamiltonian system defined with respect to the Stokes-
Dirac structure is (

−∂B
∂t

−∂D
∂t

)
=

(
0 d
−d 0

)(
∗B
∗D

)
fb = tr(ε−1 ∗D)

eb = tr
(
µ−1 ∗B

)
.

(5.4.4)
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5.4.3 Vibrating String

Consider an elastic string of length l, elasticity modulus T , and mass density µ,
subject to traction forces at its ends. The underlying manifold is the segment
M = [0, l] ⊂ R, with coordinate z.

Under the assumption of linear elasticity, the Hamiltonian is given by

H(u, p) =

∫
M

H(u, p) =
1

2

∫
M

(µ−1p ∧ ∗p+ Tdu ∧ ∗du) ,

where p ∈ Ω1(M) is the momentum conjugate to the displacement u ∈ Ω0(M),
and ∗ is the Hodge star.

The canonical Hamiltonian equations are(
∂u
∂t
∂p
∂t

)
=

(
0 1
−1 0

)( δH
δu
δH
δp

)
fb = tr(∗µ−1p)

eb = tr

(
∂H

∂(du)

)
,

(5.4.5)

or component-wise

∂u

∂t
= ∗µ−1p

∂p

∂t
= d(∗T du)

fb = tr(∗µ−1p)

eb = tr(∗T du) .

The Hamiltonian formulation (5.4.5) is identical to the formulation of the
vibrating string in (2.4.11) with the boundary variables given as in (2.4.13).
The system (5.4.5) is also mentioned in [103] as the heavy chain system.

The energy balance for the vibrating string is

dH

dt
=

∫
M

δH

δu
∧ ∂u
∂t

+
δH

δp
∧ ∂p
∂t

+

∫
∂M

∂H

∂(du)
∧ ∂u
∂t

=

∫
M
−d(∗T du) ∧ ∗µ−1p+ ∗µ−1p ∧ d(∗T du)

+

∫
∂M
∗µ−1p ∧ ∗T du

=

∫
∂M
∗µ−1p ∧ ∗T du

=

∫
∂M

eb ∧ fb .
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The Hamiltonian is invariant if a time function is added to u. The potential
energy can be expressed in terms of the strain α = du so that the reduced
Hamiltonian is given by

Hr(α, p) =

∫
M

Hr(u, p) =
1

2

∫
M

(µ−1p ∧ ∗p+ Tα ∧ ∗α) .

The Hamiltonian equations of the vibrating string now read as(
∂α
∂t
∂p
∂t

)
=

(
0 d
d 0

)( δHr
δα
δHr
δp

)
(
fb
eb

)
=

(
0 tr
tr 0

)( δHr
δα
δHr
δp

)
.

(5.4.6)

These are the equations that correspond to the formulation of the vibration
string system with respect to the Stokes-Dirac structure that is given in [98].

5.5 Symmetry Reduction in the Discrete Setting

In the discrete world, the configuration space is the set of primal discrete
forms Q = Ωk(K) with the dual Q∗ = Ωn−k(?iK). The space of the boundary
efforts is E = F∗ = Ωk(∂(K)), and the space of the boundary flows is F =
Ωn−k−1(∂(?K)).

Canonical Dirac structure. For the duality pairing between T (T ∗Q× F∗)
and T ∗(T ∗Q× F∗) we choose

〈(ρ, π, ρb, eρ, eπ, eb), (ρ, π, ρb, ρ̇, π̇, ρ̇b)〉
= 〈eρ ∧ ρ̇+ eπ ∧ π̇,K〉+ 〈eb ∧ ρ̇b, ∂K〉,

(5.5.1)

where ∧ is the primal-dual wedge product.
The generalized canonical Dirac structure is a Poisson structure induced

by the linear mapping ] : T ∗(T ∗Q× F∗)→ T (T ∗Q× F∗) given by

](ρ, π, ρb, eρ, eπ, eb)

= (ρ, π, ρb, eπ,−(−1)k(n−k)eρ + (−1)(k+1)(n−1)dn−k−1
b eb, (−1)n−ktrkeπ).

(5.5.2)

Omitting the base point, the matrix representation of (5.5.2) is

](eρ, eπ, eb)

=

 0 I 0

−(−1)k(n−k)I 0 (−1)(k+1)(n−1)dn−k−1
b

0 (−1)n−ktrk 0

 eρ
eπ
eb

 ,
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what is an example of generalized canonical Dirac structure.

Symmetry reduction. The group G that acts on Q is described by the
following action

α · ρ = ρ+ dk−1α

for α ∈ G and ρ ∈ Q, where dk−1 is the discrete exterior derivative.

The quotient is (T ∗Q/G× F∗) = dkΩk(K)× Ωn−k(?iK)× Ωk(∂(K)).

As in the continuous setting, the quotient map denoted as πG : T ∗Q×F∗ →
(T ∗Q)/G× F∗ is given by

πG(ρ, π, ρb) = (dkρ, π, ρb). (5.5.3)

For the duality pairing between T ∗(T ∗Q/G×F∗) and T (T ∗Q/G×F∗), we
take

〈(ρ̄, π̄, ρ̄b, ēρ, ēπ, ēb), (ρ̄, π̄, ρ̄b, ˙̄ρ, ˙̄π, ˙̄ρb)〉 = 〈ēρ ∧ ˙̄ρ+ ēπ ∧ ˙̄π,K〉+ 〈ēb ∧ ˙̄ρb, ∂K〉.

As before, whenever the base point (ρ̄, π̄, ρ̄b) is clear, we will denote (ρ̄, π̄, ρ̄b, ˙̄ρ,
˙̄π, ˙̄ρb) simply by ( ˙̄ρ, ˙̄π, ˙̄ρb), and similarly for (ρ̄, π̄, ρ̄b, ēρ, ēπ, ēb).

Lemma 5.5.1. The tangent and cotangent maps T(ρ,π,ρb)πG and T ∗(ρ,π,ρb)πG
are given by

T(ρ,π,ρb)πG(ρ, π, ρb, ρ̇, π̇, ρ̇b) = (dkρ, π, ρb,d
kρ̇, π̇, ρ̇b) (5.5.4)

and

T ∗(ρ,π,ρb)πG(dkρ, π, ρb, ēρ, ēπ, ēb) = (ρ, π, ρb, (−1)n−kdn−k−1
i ēρ, ēπ, ēb). (5.5.5)

Theorem 5.5.2 (Reduced simplicial Dirac structure). The reduced simplicial
Poisson structure is given by

[]](ēρ, ēπ, ēb) =

 dkēπ

(−1)(k+1)(n−1)(dn−k−1
i ēρ + dn−k−1

b ēb)

(−1)n−ktrkēπ

 .
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Proof. To compute the value of []](ēρ, ēπ, ēb) we follow the diagram:

(ēρ, ēπ, ēb)

T ∗
��(

(−1)n−kdn−k−1
i ēρ, ēπ, ēb

)
]

��(
ēπ,−(−1)(k+1)(n−k)

(
dn−k−1
i ēρ + dn−k−1

b ēb

)
, (−1)n−ktrkēπ

)
T

��(
dkēπ,−(−1)(k+1)(n−k)

(
dn−k−1
i ēρ + dn−k−1

b ēb

)
, (−1)n−ktrkēπ

)
This concludes the proof.

Port-Hamiltonian systems on a simplicial complex. The canonical
port-Hamiltonian system with respect to the canonical Dirac structure is

−∂αρ̇
∂t

=
∂H

∂απ̇
(αρ̇, απ̇)

−∂απ̇
∂t

= −(−1)k(n−1) ∂H

∂αρ̇
(αρ̇, απ̇) + (−1)(k+1)(n−1)dn−k−1

b ēb

ρ̇b = (−1)n−ktrk
∂H

∂απ̇
(αρ̇, απ̇) .

(5.5.6)

The rank of the underlying Poison structure is the rank of the symplectic
phase space Ωk(K)× Ωn−k(?iK).

The canonical Hamiltonian (αρ̇, απ̇) 7→ H(αρ̇, απ̇) can be expressed as

H(αρ̇, απ̇) := Hr(d
kᾱρ̇, απ̇) . (5.5.7)

The reduced port-Hamiltonian equations assume the following form

−∂α̇ρ̇
∂t

= −dk
∂αρ̇
∂t

= dk
∂H

∂απ̇
(αρ̇, απ̇) = dk

∂Hr

∂απ̇
(ᾱρ̇, απ̇)

−∂απ̇
∂t

= −(−1)k(n−k) ∂H

∂αρ̇
(αρ̇, απ̇) + (−1)(k+1)(n−1)dn−k−1

b ēb

= −(−1)(k+1)(n−k)

(
dn−k−1
i

∂Hr

∂ᾱρ̇
(ᾱρ̇, απ̇) + dn−k−1

b ēb

)
ρ̇b = (−1)n−ktrk

∂H

∂απ̇
(αρ̇, απ̇) = (−1)n−ktrk

∂Hr

∂απ̇
(ᾱρ̇, απ̇) ,
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or in the compact matrix form −
∂α̇ρ̇
∂t

−∂απ̇
∂t

ρ̇b

 =

 0 dk 0

−(−1)mdn−k−1
i 0 −(−1)mdn−k−1

b

0 (−1)n−ktrk 0




∂Hr
∂ᾱρ̇
∂Hr
∂απ̇

ēb

 .

This is precisely the port-Hamiltonian system on a simplicial manifold as pre-
sented in Chapter 4 [110, 109].

5.6 Final Remark

In this chapter I have addressed the issue of the symmetry reduction of the
generalized canonical Dirac structure to the Poisson structure associated with
the Stokes-Dirac structure. In the discrete world this reduction is pretty stan-
dard since the reduced Dirac structure is a Poisson structure. The open avenue
for the future work is to find a reduction procedure that would directly lead to
the Stokes-Dirac structure. Finding a reduction scheme for other, especially
non-constant, Dirac structures is an interesting and open problem.



6
Reaction-Diffusion Systems in the
Port-Hamiltonian Framework

If the Lord Almighty had consulted me before embarking on creation, I
should have recommended something simpler.

– Alfonso X of Castile

R
eaction-diffusion systems model the evolution of the constituents
distributed in space under the influence of chemical reactions and
diffusion [117, 123]. These spatially distributed models are essential
for the understanding of many important phenomena concerning the

development of organisms, coordinated cell behavior, and pattern formation
[74]. Guided by the models of reaction-diffusion equations, designing multi-
cellular systems for pattern formation is one of the present research topics in
synthetic biology, with application foreseen in tissue engineering, biomaterial
fabrication and biosensing [11].

In this chapter I will treat exclusively the effects of diffusion on balanced
reaction networks governed by mass action kinetics, though most of the result
are valid for any kind of balanced networks. After a brief review of balanced
reaction networks closely following the exposition of [101], I will introduce
a Dirac structure that captures the geometry of reaction-diffusion systems.
We start from the fact that the considered reaction systems are defined with
respect to a finite Dirac structure on a manifold. This means that the reaction
system from a network modeling perspective can be described by a set of
energy-storing elements, a set of energy-dissipating (resistive) elements, and a
set of ports (by which the interconnection is modeled), all interconnected by
a power-conserving interconnections [96].

From a control and interconnection viewpoint a prime desideratum is to
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formulate reaction-diffusion systems with varying boundary conditions in or-
der to allow energy flow through the boundary, since the interaction with the
environment takes the place through the boundary. The Stokes-Dirac struc-
ture offers a geometric framework for this. Apart from being closed under
power-conserving interconnections, it has a property of spatial compositional-
ity, as has been shown in Chapter 2.

It is well-known that adding diffusion to the reaction system can gener-
ate behaviors absent in the ode case. This primarily pertains to the problem
of diffusion-driven instability which constitutes the basis of Turing’s mecha-
nism for pattern formation [124], [75]. Here, the port-Hamiltonian perspec-
tive permits us to draw immediately some conclusions regarding passivity of
reaction-diffusion systems. In order to apply the Krasovskii-LaSalle principle,
we need the precompactness and the global boundedness of classical solution.
For this reason, stability analysis seems to be a hard problem. Under certain
assumptions in Section 6.5, I will present a result that warrants stability for
the asymptotic behavior of the solution of a class of reaction-diffusion systems
with Neumann boundary conditions.

In Section 6.7, by adopting a discrete differential geometry-based approach
and discretizing the reaction-diffusion system in port-Hamiltonian form, apart
from preserving a geometric structure, a compartmental model analogous to
the standard one is obtained [54, 56]. Furthermore, I will show asymptotic
stability of the compartmental model and verify this result on an example of
glycolisis pathway reaction.

Notation. The space of n dimensional real vectors consisting of all strictly
positive entries is denoted by Rn+ and the space of n dimensional real vectors
consisting of all nonnegative entries is denoted by R̄n+. 1m denotes a vector of
dimension m with all entries equal to 1. The time-derivative dx

dt (t) of a vector
x depending on time t will be usually denoted by ẋ.

Define the mapping Ln : Rm+ → Rm, x 7→ Ln(x), as the mapping whose
i-th component is given by (Ln(x))i := ln(xi). Similarly, define the mapping
Exp : Rm → Rm+ , x 7→ Exp(x), as the mapping whose i-th component is
given by (Exp(x))i := exp(xi). Also, define for any vectors x, z ∈ Rm the
vector x · z ∈ Rm as the element-wise product (x · z)i := xizi, i = 1, 2, . . . ,m,
and the vector x

z ∈ Rm as the element-wise quotient
(
x
z

)
i

:= xi
zi
, i = 1, · · · ,m.

Note that with these notations Exp(x+ z) = Exp(x) ·Exp(z) and Ln(x · z) =
Ln(x) + Ln(z), Ln

(
x
z

)
= Ln(x)− Ln(z).

The space of smooth k-forms in the interior of an n-dimensional manifold
M with boundary is Ωk(M), while the space of k-forms on ∂M is Ωk(∂M).
Define Ωk

m(M) := Ωk(M)× · · · × Ωk(M), with the product being taken m
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times. Analogously we define the space Ωk
m(∂M). We will also employ the

notion C∞m (M) := C∞(M)× · · · × C∞(M).

6.1 Introduction

Consider a dynamical system

dx

dt
= f(x) , x ∈ X ⊆ Rm, t ≥ 0 , (6.1.1)

where X is a smooth manifold and x 7→ f(x) is a smooth vector field. In
the present chapter, the dynamical system (6.1.1) is addressed as a reaction
system, where the term “reaction” for the moment being is taken in a gen-
eral, formal sense. A physicochemical interpretation would be that of an
open system at mechanical equilibrium involving m reacting constituents with
x1, . . . , xm as mass density variables [75]. Later on we will substitute f with
a specific vector function.

An important problem in the theory of reaction-diffusion systems is con-
cerned with modeling and describing the effects of adding diffusion to the
reaction system [117], [123]. This means that the state x varies from point
to point in space and thus (6.1.1) is replaced with a reaction-diffusion sys-
tem with m structural variables on a n-dimensional smooth manifold M with
smooth (n−1)-dimensional boundary ∂M . The state-space description of this
spatially distributed system is

∂x

∂t
= div(D(x)gradx) + f(x) , (6.1.2)

with x := (x1(ξ, t), . . . , xm(ξ, t))t : (M,R+) → X, and x 7→ D(x) ∈ Rm×m
is a positive-semidefinite diagonal matrix. The operators grad and div act
component-wise with respect to the local coordinates ξ = (ξ1, . . . , ξn). The
constraints acting on the system from the outside M impose appropriate
boundary conditions. Most frequently these are either Dirichlet conditions

x = cD on ∂M , (6.1.3)

or Neumann conditions

gradx · ν = cN on ∂M , (6.1.4)

where ν is the normal to ∂M , and cD, cN are constant vectors. The initial
condition of the formulated boundary problem is

x(ξ, 0) = x0(ξ) for ξ ∈M , (6.1.5)
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where x0 is given.

Three assumption are frequently made concerning this boundary problem
[123]:

1. The mapping f is smooth and bounded on X.

2. The initial-value problem is well-posed, i.e., for every smooth x0 the
problem (6.1.2)–(6.1.5) possesses a unique solution x, and the semigroup
operator, generated by the boundary problem, S(t) : x0 7→ x(t) is smooth
for all t ≥ 0.

3. There exists a closed convex region Σ ⊂ X which is positively invariant.
This means that if x0(ξ) ∈ Σ for every ξ ∈ M , then x(ξ, t) ∈ Σ for all
t > 0 for which the solution of (6.1.2)–(6.1.5) exists. For an exhaustive
treatment of sufficient or necessary and sufficient conditions on D, f ,
and Σ, which guarantee the positive invariance of Σ, we refer to [117].

Requiring the smoothness of all the mappings is not necessary and as will
be clear from subsequent sections the extension to Ck differentiability (with
k as large as the number of derivatives used in the formulas) is immediate.
Furthermore, for a class of systems, the second assumption can be relaxed to
the case of, say, square integrable functions with the analysis in appropriate
Sobolev spaces. The problem, however, is the boundedness of f , because the
mass action kinetics leads to polynomial systems, as will be demonstrated in
the forthcoming section.

6.2 Balanced Chemical Reaction Networks

In this section, closely following [101], we revisit the analysis of reversible
chemical reactions. Inspired by the recent advances in the network control and
graph theory, [101] offers an elegant formulation for the dynamics of reversible
chemical reactions. The graph description of the chemical reaction networks
considered in [101] has a direct thermodynamical interpretation, which can
be regarded as a graph-theoretic version of the formulation derived in the
work of Katchalsky, Oster and Perelson [82, 81]. Based on this formulation,
it is possible to characterize the space of equilibrium points and provide their
dynamical analysis on the state space modulo the space of equilibrium points.

We firstly summarize the mathematical structure of chemical reaction net-
works. Here, we revisit the work of Horn and Jackson [52, 51] and Feinberg
[32, 33] by defining the complexes of a reaction to be the vertices of a graph.
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Following [101], these achievements will be formalized in a slightly more ab-
stract manner, also making use of the exposition given in [84]; see also [5] for
a nice account.

In Section 6.2.3 we recall the law of mass action kinetics and in Section 6.2.4
we review the framework that describes the dynamics of reversible chemical
reaction networks. The resulting form of the dynamical equations for balanced
reaction networks will be fundamental to the analysis throughout the chapter.

Finally, we call back to our attention results that characterize the set of
equilibria of a balanced chemical reaction network and show their asymptotic
stability.

6.2.1 Stoichiometry

Consider a chemical reaction network involving m chemical species (metabo-
lites), among which r chemical reactions take place. The basic structure un-
derlying the dynamics of the vector x ∈ R̄m+ of concentrations xi, i = 1, . . . ,m,
of the chemical species is given by the balance laws

ẋ = Sv, (6.2.1)

where S is an m×r matrix, called the stoichiometric matrix. The elements
of the vector v ∈ Rr are commonly called the (reaction) fluxes. The stoichio-
metric matrix S, which consists of (positive and negative) integer elements,
captures the basic conservation laws of the reactions.

6.2.2 The Complex Graph

The network structure of a chemical reaction network cannot be directly cap-
tured by a graph involving the chemical species, because, in general, there are
more than two species involved in a reaction. Following the approach orig-
inating in the work of Horn and Jackson [52, 51] and Feinberg [32, 33], we
will introduce the space of complexes. The set of complexes of a chemical
reaction network is simply defined as the union of all the different left- and
right-hand sides (substrates and products) of the reactions in the network.
The expression of the complexes in terms of the chemical species is formalized
by an m× c matrix Z, whose ρ-th column captures the expression of the ρ-th
complex in the m chemical species.

Since the complexes are left- and right-hand sides of the reactions they
can be naturally associated with the vertices of a directed graph, with edges
corresponding to the reactions. The complexes on the left-hand side of the
reactions are called the substrate complexes and those on the right-hand side of
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the reactions are called the product complexes. Formally, the reaction σ 
 π
between the σ-th and the π-th complex defines a directed edge with tail vertex
being the σ-th complex and head vertex being the π-th complex. The resulting
graph is called the complex graph.

Any directed graph is defined by its incidence matrix B. This is an c×r
matrix, c being the number of vertices and r being the number of edges, with
(ρ, j)-th element equal to −1 if vertex ρ is the tail vertex of edge j and 1 if
vertex ρ is the head vertex of edge j, while 0 otherwise (see, for instance, [14]).
There is a close relation between the matrix Z and the stoichiometric matrix
S, which is expressed as S = ZB, with B being the incidence matrix of the
complex graph. For this reason we will call Z the complex stoichiometric
matrix. Hence the relation ẋ = Sv between the fluxes v through the chemical
reaction network and the time-derivative of vector of chemical species x can
be also written as ẋ = ZBv, with the vector Bv belonging to the space of
complexes Rc.

6.2.3 The General Form of Mass Action Kinetics

The evolution of the state vector x is given once the internal fluxes v are
specified as a function v = v(x) of x, defining the reaction rates. The most
basic model for specifying the reaction rates is mass action kinetics. For a
reversible reaction network with r reactions, the mass action rate of the n-th
reactions with a substrate complex S and a product complex P is given by

vj(x) = kforw
j

m∏
i=1

x
ZiSj
i − krev

j

m∏
i=1

x
ZiPj
i , (6.2.2)

where Ziρ is the (i, ρ)-th element of the complex stoichiometric matrix Z, and
kforw
j , krev

j ≥ 0 are the forward/reverse reaction constants of the j-th reaction,
respectively. Without loss of generality we will throughout assume that for
every j the constants kforw

j , krev
j are not both equal to zero (since in this case

the j-th reaction is not active).
Let ZSj and ZPj denote the columns of the complex stoichiometry matrix Z

corresponding to the substrate and the product complexes of the j-th reaction.
The mass action reaction equation (6.2.2) for the j-th reaction from substrate
complex Sj to product complex Pj can be rewritten as

vj(x) = kforw
j exp

(
Zt
Sj

Ln(x)
)
− krev

j exp
(
Zt
Pj

Ln(x)
)
. (6.2.3)

Let the mass action rate for the complete set of reactions be given by the vector
v(x) =

[
v1(x) · · · vr(x)

]t
. For every σ, π ∈ {1, . . . , c}, denote by aσπ =
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krev
j , aπσ = kforw

j if (σ, π) = (Sj ,Pj), j ∈ {1, . . . , r} and aσπ = 0 elsewhere.
Define the weighted adjacency matrix A of the complex graph as the matrix
with (σ, π)-th element aσπ, where σ, π ∈ {1, . . . , c}. Furthermore, define the
weighted Laplacian matrix L as the c× c matrix L := ∆− A, where ∆ is the
diagonal matrix whose (ρ, ρ)-th element is equal to the sum of the elements of
the ρ-th column of A. Then it can be verified that the vector Bv(x) for the
mass action reaction rate vector v(x) is equal to Bv(x) = −LExp (ZtLn(x)).
Hence the dynamics can be compactly written as

ẋ = −ZLExp (ZtLn(x)) . (6.2.4)

Here it needs to be noted that a similar expression of the dynamics corre-
sponding to mass action kinetics, in less explicit form, was already obtained
in [118].

6.2.4 Balanced Mass Action Kinetics

A vector of concentrations x∗ ∈ Rm+ is called an equilibrium for the dynamics
ẋ = Sv(x) if Sv(x∗) = 0. Furthermore, x∗ ∈ Rm+ is called a thermodynamic
equilibrium if v(x∗) = 0. Clearly, any thermodynamic equilibrium is an
equilibrium, but not necessarily the other way around (since in general S = ZB
is not injective).

Consider the j-th reaction from substrate Sj to product Pj , described by
the mass action rate equation

vj(x) = kforw
j exp

(
Zt
Sj

Ln(x)
)
− krev

j exp
(
Zt
Pj

Ln(x)
)
.

Then x∗ ∈ Rm+ is a thermodynamic equilibrium, i.e., v(x∗) = 0, if and only if

κj(x
∗) := kforw

j exp
(
Zt
Sj

Ln(x∗)
)

= krev
j exp

(
Zt
Pj

Ln(x∗)
)
, j = 1, · · · , r.

(6.2.5)
The mass action reaction rate of the j-th reaction now can be written as

vj(x) = κj(x
∗)
(

exp
(
Zt
Sj

Ln
( x
x∗

))
− exp

(
Zt
Pj

Ln
( x
x∗

)))
,

where for any vectors x, z ∈ Rm the quotient vector x
z ∈ Rm is defined ele-

mentwise. Defining the r × r diagonal matrix of balanced reaction constants
as

K(x∗) := diag
(
κ1(x∗), · · · , κr(x∗)

)
, (6.2.6)
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it follows that the mass action reaction rate vector of a balanced reaction
network can be written as

v(x) = −K(x∗)BtExp
(
ZtLn

( x
x∗

))
,

and thus the dynamics of a balanced reaction network takes the form

ẋ = −ZBK(x∗)BtExp
(
ZtLn

( x
x∗

))
, K(x∗) > 0. (6.2.7)

This form will be the starting point for the analysis of balanced chemical
reaction networks in the rest of this chapter.

Furthermore, we shall assume the validity of the global persistency con-
jecture, which states that for any positive initial condition x0 ∈ Rm+ , the so-
lution t 7→ x(t) of (6.2.7) satisfies: lim inft→∞x(t) > 0. The global persistency
conjecture recently was proven for the single linkage class case in [3], but for
the system (6.2.7) remains an open problem.

The matrix BK(x∗)Bt in (6.2.7) again defines a weighted Laplacian matrix
for the complex graph, with weights given by the balanced reaction constants
κ1(x∗), . . . , κr(x

∗). Note that this is in general a different weighted Laplacian
matrix than the one obtained before. In particular, a main difference is that
the weighted Laplacian BK(x∗)Bt is necessarily symmetric. Among others,
cf. [14], this implies that the Laplacian BK(x∗)Bt is in fact independent of
the orientation of the graph. Thus we may replace any reaction S 
 P by
P 
 S without altering the Laplacian BK(x∗)Bt, in agreement with the usual
understanding of a reversible reaction network. The symmetrization of the
Laplacian has been accomplished by the modification of Ln(x) into Ln

(
x
x∗

)
,

and using the assumption that x∗ is a thermodynamic equilibrium.

Note that K(x∗), and therefore the Laplacian matrix BK(x∗)Bt, is in prin-
ciple dependent on the choice of the thermodynamic equilibrium x∗. In [101]
the authors showed that actually this dependence is minor: for a connected
complex graph the matrix K(x∗) is, up to a positive multiplicative factor, in-
dependent of the choice of the thermodynamic equilibrium x∗ (see Section 3.3
in [101]).

It also follows that once a thermodynamic equilibrium x∗ is given, the set
of all thermodynamic equilibria is described by the following proposition.

Proposition 6.2.1 ([101]). Let x∗ ∈ Rm+ be a thermodynamic equilibrium,
then the set of all thermodynamic equilibria is given by

E := {x∗∗ ∈ Rm+ | StLn (x∗∗) = StLn (x∗)}. (6.2.8)
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6.2.5 Stability of Balanced Reaction Networks

Let us define, up to a constant, µ(x) := Ln
(
x
x∗

)
as the chemical potential

vector and the Gibbs’ free energy

G(x) = xtLn
( x
x∗

)
+ (x∗ − x)t 1m, (6.2.9)

where 1m denotes a vector of dimension m with all ones. It can be immediately
checked that

∂G

∂x
(x) = Ln

( x
x∗

)
= µ(x).

It follows that the equations of a balanced chemical reaction network (6.2.7)
can be equivalently written as

ẋ = −ZBK(x∗)BtExp

(
Zt∂G

∂x
(x)

)
, µ(x) =

∂G

∂x
(x). (6.2.10)

In [101] the function x 7→ G(x) was employed as a Lyapunov function for
the chemical reaction network. In particular the authors showed that G is
non-increasing along solution trajectories.

Remark 6.2.1 ([101]). Note that the definition of G depends on the chosen
thermodynamical equilibrium. Denoting the functions for different thermody-
namic equilibria x∗ and x∗∗ by G∗, respectively G∗∗, it is seen that G∗∗(x) =
G∗(x) + xt(Ln(x∗)− Ln(x∗∗)) + (x∗∗ − x∗)t1m.

Making use of the formulation of the dynamics of balanced reaction net-
works in (6.2.7), in [101] it was shown that all equilibria of a balanced reaction
network are actually thermodynamic equilibria, and thus given by (6.2.8). A
similar result was obtained in the classical papers [51, 52, 33] for a differ-
ent class of chemical reaction networks (roughly speaking, weakly reversible
networks of deficiency zero or deficiency one under additional conditions).

Theorem 6.2.2 ([101]). Consider a balanced chemical reaction network ẋ =
Sv = ZBv with m species and r reactions governed by mass action kinetics,
with thermodynamic equilibrium x∗, i.e., v(x∗) = 0, described as in (6.2.7).
Then the set of all equilibria is equal to the set E := {x∗∗ ∈ Rm+ | STLn(x∗∗) =
StLn(x∗) = 0} of thermodynamic equilibria given in (6.2.8).

The function G serves as a Lyapunov function for (6.2.7) to assert global
asymptotic stability of the set of equilibria E.
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Theorem 6.2.3 ([101]). Consider a balanced mass action reaction network
given by (6.2.7) or, equivalently, by (6.2.10). Then for every initial condition
x(0) ∈ Rm+ , the species concentration x converges for t→∞ to E.

In the remaining of this chapter, we will extend some of the results of
balanced chemical reaction networks to spatially distributed systems.

6.3 Geometric Formulation

The Stokes-Dirac structure for reaction-diffusion systems employed in this the-
sis will be defined on the space of differential forms on a Riemannian manifold
with boundary. The geometric content of the involved physical (chemical,
etc.) variables is expressed by identifying them as differential k-forms, for
appropriate k. This interpretation, as we have seen in the previous chap-
ters, is ubiquitous in the case of Maxwell’s equation, the telegraph equations,
and many other electrical and electromechanical systems, but in the case of
reaction-diffusion systems this interpretation is far less-known.

6.3.1 Exterior Formulation

The formulation of a reaction-diffusion system as a port-Hamiltonian system
on a compact n-dimensional smooth Riemannian manifold M with boundary
∂M is given as follows. We identify the mass density variables with an m
component vector of 0-forms, that is x ∈ Ω0

m(M). The influence of the exter-
nal world (reaction-diffusion system) to the system (outside world) is modeled
through the efforts eb ∈ Ω0

m(∂M) (and flows fb ∈ Ωn−1
m (∂M)). The reaction

part is in its nature finite-dimensional and as such is modeled as the inter-
connection of the atomic elements, each of them characterized by a particular
energetic behavior (energy storing, energy conversion or dissipation). Each
of these elements can interact with the environment by means of a port—a
couple of inputs and outputs whose combination gives the power flow. The
geometric content of the reaction part is captured by a standard Dirac struc-
ture. The transport of the constituents in space is governed by the laws of
diffusion, which is modeled as a thermal damping by termination of the ap-
propriate ports (see Figure 6.1). The picture for this choice of variables will
become clear later on.

Let the space of flows be F and its dual the space of efforts be E = F∗.
We set F := Fx ⊕ Fd ⊕ Fr ⊕ Fb, where Fx = Ω0

m(M) is the carrier space of
concentrations, Fd = Ω1

m(M) the space of gradients, Fr = Ω0
m(M) the reaction

flows, and Fb = Ωn−1
m (∂M) being the space of boundary fluxes. In the interior



GEOMETRIC FORMULATION 109

Figure 6.1: Reaction-diffusion system as a dissipative distributed port-
Hamiltonian system. The conjugate variables u and y represent the inflows
and the outflows of the reaction dynamics. In this thesis, the reaction system
is considered to be closed; that is, either u = 0 or y = 0.

of the domain M , there is a natural identification of k and (n−k) forms via the
Hodge star operator. The space of efforts is defined as E := Ex⊕Ed⊕Er⊕Eb,
with Ex = Ω0

m(M), Ed = Ω1
m(M), Er = Ω0

m(M), and Eb = Ω0
m(∂M).

A non-degenerate pairing between F and E is defined by the following
bilinear form on F × E with values in R

〈〈(f1
x , f

1
d , f

1
γ , f

1
b , e

1
x, e

1
d, e

1
r , e

1
b), (f

2
x , f

2
d , f

2
r , f

2
b , e

2
x, e

2
d, e

2
r , e

2
b)〉〉

:=
〈
f1
x , e

2
x

〉
L2Ω0

m
+
〈
f1
d , e

2
d

〉
L2Ω1

m
+
〈
f1
r , e

2
r

〉
L2Ω0

m

+
〈
f2
x , e

1
x

〉
L2Ω0

m
+
〈
f2
d , e

1
d

〉
L2Ω1

m
+
〈
f2
r , e

1
r

〉
L2Ω0

m

+

∫
∂Z

(
f1
b ∧ e2

b + f2
b ∧ e1

b

)
,

(6.3.1)

where (f ix, f
i
d, f

i
r, f

i
b) ∈ F and (eix, e

i
d, e

i
r, e

i
b) ∈ E, i = 1, 2. The inner product

in Ωk
m(M) is given by

〈α, β〉L2Ωkm
=

∫
M
α ∧ ∗β, α, β ∈ Ωk

m(M),

where the Hodge star ∗ and the wedge product act component-wise.
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The Stokes-Dirac structure that underpins the geometry of reaction-diffusion
systems is a maximally isotropic subbundle of F × E. The following theorem
gives the construction of a such Dirac structure.

Theorem 6.3.1. Define D ⊂ F × E by

D :=
{

(fx, fd, fr,fb, ex, ed, er, eb) ∈ F × E
∣∣ fx

fd
er

 =

 0 −δ −Z
d 0 0
Zt 0 0

 ex
ed
fr

 ,

(
eb
fb

)
=

(
tr 0 0
0 tr∗ 0

) ex
ed
fr

},
(6.3.2)

where Z is an m× c matrix, d is the exterior derivative, δ is the codifferential
operator, ∗ is the Hodge star, and tr is the trace on the boundary ∂M . The
subbundle D is a Dirac structure with respect to the bilinear form 〈〈, 〉〉.

Proof. Using the fact that 〈Zfr, ex〉L2Ω0
m

= 〈fr, Ztex〉L2Ω0
m

for any fr ∈ Ω0
m(M)

and ex ∈ Ω0
m(M), and applying the integration by parts formula

〈dex, ed〉L2Ω1
m

= 〈ex, δed〉L2Ω0
m

+

∫
∂M

tr ex ∧ tr(∗ed),

for ex ∈ Ω0
m(M), ed ∈ Ω1

m(M), similar to Theorem 2.3.4, it can be shown that
D = D⊥.

6.3.2 Vector Calculus Formulation

Because the manifold M is equipped with a Riemannian metric, it is possible
to identify each 0-form and n-form with a scalar valued function. Also, each
1-form and (n− 1)-form can be identified with a vector field. The associated
fields are called proxy fields for the differential forms. This means that the
space Ω1(M) and Ωn−1(M) are identified with the space C∞(M ;Rn).

Interpreted in terms of the proxy fields, the exterior derivative operators
d : Ω0(M) → Ω1(M) and d : Ωn−1(M) → Ωn(M) become grad : C∞(M) →
C∞(M ;Rn) and div : C∞(M ;Rn) → C∞(M). In the similar manner, the
codifferential operator δ : Ω1(M) → Ω0(M) becomes −div : C∞(M ;Rn) →
C∞(M).

The trace operation on 0-forms is just the restriction to the boundary, and
for a (n− 1)-form f , the trace corresponds to the scalar f · ν (with ν the unit
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normal) at each boundary point. For more details confer to Chapter 2 or see,
for instance, [8].

Now, the flows and the efforts space can be identified such that Fx =
Ex = C∞m (M), Fd = Ed = C∞m (M ;Rn), Fr = Er = C∞m (M), and Fb = Eb =
C∞m (∂M). Furthermore, F = E = Fx ⊕ Fd ⊕ Fr ⊕ Fb.

The inner product in C∞m (M) is given by

〈α, β〉L2
m(M) =

∫
M
αt(ξ)β(ξ)dξ, α, β ∈ C∞m (M),

where dξ := dξ1 ∧ · · · ∧ dξn is the volume element on M . Similarly, the inner
product on the boundary ∂M is defined by

〈α, β〉L2
m(∂M) =

∫
∂M

αt(ξ)β(ξ)dξA, α, β ∈ C∞m (∂M),

where dξA := dξ1 ∧ · · · ∧ dξn−1 is the volume form on the boundary ∂M .
Analogously, we defined the inner product in C∞m (M ;Rn) and C∞m (∂M ;Rn−1).

The proxy representation of (6.3.1) is
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,

where (f ix, f
i
d, f

i
r, f

i
b) ∈ F and (eix, e

i
d, e

i
r, e

i
b) ∈ E, i = 1, 2.

The subspace D ⊂ F × E specified by

D =

{
(fx, fd, fr, fb, ex, ed, er, eb) ∈ F × E

∣∣
fx = div ed − Zfr and fd = grad ex and er = Ztex in M,

eb = tr ex and fb = ν · tr ed on ∂M

}
,

(6.3.3)

a Dirac structure with respect to the proxy bilinear form 〈〈, 〉〉.

6.4 Reaction-Diffusion Dynamics

In order to obtain port-Hamiltonian formulation of reaction-diffusion system,
we define the energy storage relations

fx = −∂x
∂t

, ex =
∂G

∂x
(x) , (6.4.1)
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where G is the Hamiltonian (Gibbs’ free energy associated with the reaction
system), while the energy of reaction-diffusion system is G =

∫
M Gdξ, with dξ

being the standard volume form.
The power-dissipation of the reaction part is

fr = −BK(x∗)BtExp(er) , (6.4.2)

where the mapping BK(x∗)BtExp(·) satisfies

etrfr ≤ 0 for all er ∈ Er . (6.4.3)

This is due to the fact that the exponential function is strictly increasing, so

γtBKBtExp(γ) =
r∑
j=1

(
γPj (x)− γSj (x)

) (
exp

(
γPj (x)

)
− exp

(
γSj (x)

))
κj(x

∗)

≥ 0

for κj(x
∗) > 0, j = 1, . . . , r.

Ordinarily, diffusion is treated as power-dissipation by thermal motion of
particles and as such quantitatively is characterized by the diffusion matrix
D introduced in (6.1.2), which explicitly refers to the state variable x. In the
work at hand diffusion is modeled by termination of the diffusion port as

ed = −Rd(fd) , (6.4.4)

where Rd : Fd → Ed is in general a nonlinear mapping satisfying the dissipation
inequality

etdfd ≤ 0 for all fd ∈ Fd .

The operator Rd, instead of acting upon the state x, acts upon its gradient and
takes the gradient of the co-energy variable as its argument (i.e., the chemical
potential µ). We call this operator the energy-diffusion operator.

When the energy-diffusion operator Rd is a matrix function of the state
x, these constitutive relations define the reaction-diffusion system in the port-
Hamiltonian framework as

∂x

∂t
= div

(
Rd(x)grad Ln

( x
x∗

))
− ZBK(x∗)BtExp

(
ZtLn

( x
x∗

))
eb = Ln

( x
x∗

)
|∂M

fb = Rd(x)grad Ln
( x
x∗

)
· ν|∂M ,

(6.4.5)
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with the Gibbs’ free energy associated with the reaction system being G(x) =
xtLn

(
x
x∗

)
+ (x∗ − x)t 1m for x ∈ C∞m (M), while the total energy of reaction-

diffusion system is G =
∫
M Gdξ

Because grad Ln
(
x
x∗

)
= diag

(
1
x1
, . . . , 1

xm

)
gradx, the system (6.4.5) is in

the form (6.1.2) with Rd(x) = diag (x1, . . . , xm)D(x) and the reaction dynam-
ics f(x) = −ZBK(x∗)BtExp

(
ZtLn

(
x
x∗

))
.

Stnadard model. The dynamical analysis of the balanced reaction networks
presented in [101] is given on the state space modulo the space of equilibrium
points. For the sake of thermodynamical consistency, we rewrite the system
(6.4.5) into the form given in terms of the disagreement vector x

x∗ as

∂x

∂t
= div

(
Rd(x)grad

( x
x∗

))
− ZBK(x∗)BtExp

(
ZtLn

( x
x∗

))
eb = Ln

( x
x∗

)
|∂M

fb = Rd(x)grad
( x
x∗

)
· ν|∂M ,

(6.4.6)

where Rd(x) := Rd(x)diag
(
x∗1
x1
, . . . , x

∗
m
xm

)
.

The existence of solutions for the systems (6.4.5) and (6.4.6) is a complex
issue. The extensive literature dealing with nonlinear reaction-diffusion sys-
tems [117, 123, 91] does not provide a result which will warrant the existence
of a solution in some sense. In the forthcoming section I will address this
problem for the class with Rd(x) = ddiag (x1, . . . , xm), d > 0, and Neumann
boundary conditions.

6.4.1 Passivity

Define the complex affinity as γ(x) = ZtLn
(
x
x∗

)
. Assuming the existence

of a classical solution to (6.4.5), as an immediate consequence we obtain the
following energy balance

d

dt
G(x) =

〈
∂G

∂x
(x),

∂x

∂t

〉
L2
m(M)

=

〈
µ(x),

∂x

∂t

〉
L2
m(M)

= −〈Ztµ(x), BK(x∗)BtExp(Ztµ(x))〉L2
m(M)

+ 〈µ(x),div(Rd(x)gradµ(x))〉L2
m(M)

= −〈γ(x), BK(x∗)BtExp(γ(x))〉L2
m(M)

− 〈gradµ(x),Rd(x)gradµ(x)〉L2
m(M)

+ 〈µ(x),Rd(x)gradµ(x) · ν〉L2
m(∂M) .

(6.4.7)



114 REACTION-DIFFUSION SYSTEMS

Because the exponential function is strictly increasing the following inequality
holds

γtBKBtExp(γ) =

r∑
j=1

(
γPj (x)− γSj (x)

) (
exp

(
γPj (x)

)
− exp

(
γSj (x)

))
κj(x

∗)

≥ 0

for κj(x
∗) > 0, j = 1, . . . , r, which immediately implies

〈Ztµ(x), BK(x∗)BtExp(Ztµ(x))〉L2
m(M) ≥ 0 .

Furthermore, since

〈gradµ(x),Rd(x)gradµ(x)〉L2
m(M) ≥ 0,

the passivity property holds

d

dt
G ≤ 〈eb, fb〉L2

m(∂M) . (6.4.8)

6.4.2 Reaction-Diffusion House

In [101] the authors have offered a geometric interpretation of balanced chem-
ical reaction networks. The geometric interpretation of the reaction-diffusion
equations (6.4.5) can be summarized as follows. Denote the dual space of the
space of concentrations of chemical species X := C∞m (M) by X∗. Similarly,
denote the dual space of C := C∞c (M) by C∗, and the dual of the space of
reaction rates R = C∞r (M) by R∗. Define v∗ := BtExp(γ) and y := Bv(x)
at each base point of the spatial domain M . All ingredients of the equation
(6.4.5) are then summarized in the following diagram∑

��
v ∈ R

B // y ∈ C

Z

;;wwwwwwwwwwwwwww
∂x
∂t ∈ X

G(x)

eg ∈ F∗g

div

ddHHHHHHHHHHHHHHH

v∗ ∈ R∗

K(x∗)

OO

γ ∈ C∗
Bt

oo

Exp

WW µ ∈ X∗
Z

oo
grad

// fd ∈ Fd

Rd

OO (6.4.9)
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where the effects of the reaction system are expressed on the left-hand side
and the contribution of the diffusion on the right-hand side. The concentration
vector x and its time-derivative ∂x

∂t are elements of the linear space X, while the
chemical potential vector µ ∈ X∗. The state x and the potential µ are related
by the Gibbs’ function G(x) as µ = ∂G

∂x (x). Furthermore, the vector y is in
the linear space C, with conjugate vector the complex affinity γ. The duality
between µ and γ is given by γ = Ztµ. The gradient of the potential belongs
to the space Fd := C∞m (M ;Rn), whose dual is F∗d. The relation between y,
eg, and ∂x

∂t is ∂x
∂t = div ed + Zy = divRd(fd) + ZBv, where ZB = S and

fd = gradµ. The vector of fluxes v lives in the linear space R, with conjugate
vector v∗ := −

(
K(x∗)

)−1
v ∈ R∗. The added complication in the diagram

is the map Exp : C∗ → C∗, which introduces a discrepancy between v∗ and
α := −Btγ = −Stµ.

6.5 Stability Analysis

Whereof one cannot speak, thereof one must be silent.

– Ludwig Wittgenstein, Tractatus Logico-Philosophicus

The primary objective of this section is to certify asymptotic stability of
the thermodynamic equilibrium for a class of the balanced reaction networks
under the influence of diffusion. The notation employed passim this section is
the same as in [92, 91, 71], but is briefly described for the reader’s convenience.

Let M be a bounded domain in Rn with C2+α smooth boundary ∂M ,
where 0 < α ≤ 1. For a Hölder continuous function g : M → Rm we denote
by ‖.‖α, with 0 < α ≤ 1, the Hölder norm

‖g‖α = sup
ξ 6=ξ̄
ξ,ξ̄∈M

‖g(ξ)− g(ξ̄)‖
‖ξ − ξ̄‖α

.

For g in the Banach space C2+α(M) the norm is

‖g‖2+α = ‖g‖∞+
n∑
p=1

∥∥∥∥ ∂g∂ξp
∥∥∥∥
∞

+
n∑

p,r=1

∥∥∥∥ ∂2g

∂ξp∂ξr

∥∥∥∥
∞

+
n∑

p,r=1

∥∥∥∥ ∂2g

∂ξp∂ξr

∥∥∥∥
α

, (6.5.1)

where ‖.‖∞ is the usual sup norm. The first three terms in (6.5.1) constitute
the norm of the space C2(M) and hereafter will be denoted as ‖.‖2.
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We need a number of technical assumptions to ensure local existence of
the solution. Consider the system

∂x

∂t
(ξ, t) = d∆x(ξ, t) + g(x), (ξ, t) ∈ intM × (0, T ], (6.5.2)

x(ξ, 0) = x0(ξ) ≥ 0, ξ ∈M, (6.5.3)

∂x

∂ν
(ξ, t) = 0, (ξ, t) ∈ ∂M × (0, T ], (6.5.4)

where d is positive constant and intM stands for the interior of the domain
M .

We consider the following theorem. The first part on local existence is
from [2] and the second on global boundedness in C2+α is from [90].

Theorem 6.5.1. Assume that d > 0, x0(ξ) ∈ C2+α(M) and ∂x0/∂ν = 0 on
∂M . Assume that x 7→ g(x) is a locally Lipschitz continuous function. Then
there is a T > 0 such that (6.5.2)-(6.5.4) has a unique local classical solution
(ξ, t) 7→ x(ξ, t) ∈ C2(intM × [0, T ]) ∩ C1(M × [0, T ]).

If there is an a priori estimate

‖x(ξ, t)‖ ≤ K , (6.5.5)

where K is independent of t, then the solution x(ξ, t) exists for all t > 0 and
is bounded in C2+α(M)

sup
t≥0
‖x(ξ, t)‖2+α = Ks <∞ . (6.5.6)

The global boundedness of (ξ, t) 7→ x(ξ, t) guarantees that the set {x(ξ, t)|
t ≥ 0} is relatively compact in C2(M), see [91]. By definition of a compact
set, given a sequence {tk} such that tk → ∞ as k → ∞, there is {τk} → ∞
such that

y(ξ) = lim
k→∞

x(ξ, τk) in C2(M).

The ω-limit set for the system (6.5.2)–(6.5.4) when T = ∞ is defined as
follows.

Definition 6.5.1. The ω-limit set of the solution (ξ, t) 7→ x(ξ, t) is the fol-
lowing set of functions of ξ 7→ y(ξ):

ω+ =

{
y(ξ) ∈ C2(M)| lim

k→∞
‖x(ξ, tk)− y(ξ)‖2 = 0 for some tk →∞

}
. (6.5.7)
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The ω+ limit set is a nonempty and compact set of C2(M) if x(ξ, t) is
bounded in C2+α (cf. Theorem 1 in [92]).

In order to prove spatial uniformity of the steady state for a class of bal-
anced reaction-diffusion systems, we will need four technical lemmas. The
formulations of these well-known lemmas are given in [71, 91, 92, 131].

Lemma 6.5.2. If the functions (ξ, t) 7→ φ(ξ, t) and (ξ, t) 7→ ψ(ξ, t) belong to
C2(intM × (0, T ]) ∩ C1(M × [0, T ]) and satisfy

∂φ

∂t
≤ L(φ) and

∂ψ

∂t
≥ L(ψ) (ξ, t) ∈M × (0, T ] ,

φ(ξ, 0) ≤ ψ(ξ, 0), ξ ∈M ,

∂φ

∂ν
≤ ∂ψ

∂ν
, (ξ, t) ∈ ∂M × (0, T ] ,

(6.5.8)

where L is a uniformly elliptic operator, then φ ≤ ψ in M × [0, T ].

Lemma 6.5.3. Assume that the function φ ∈ C2(intM × (0, T ]) ∩ C1(M ×
[0, T ]) satisfies

∂φ

∂t
= d∆φ, (ξ, t) ∈ intM × (0,∞) ,

∂φ

∂ν
= 0 (ξ, t) ∈ ∂M × (0,∞) ,

(6.5.9)

and that φ(ξ, 0) ∈ C2+α(M). Then

lim
t→∞
‖φ(ξ, t)− c‖2 = 0 ,

with

c =
1

|M |

∫
M
φ(ξ, t)dξ ,

where |M | is the volume of M .

Lemma 6.5.4. Assume that (ξ, t) 7→ x(ξ, t) and (ξ, t) 7→ y(ξ, t) are solutions
of (6.5.2)-(6.5.4) whose initial condition satisfy

‖x(ξ, 0)− y(ξ, 0)‖ ≤ ρ in M .

If g : Rn → Rn satisfies the Lipschitz condition

‖g(z)− g(z̄)‖ ≤ K‖z − z̄‖ ,

then
‖x(ξ, t)− y(ξ, t)‖ ≤ ρ exp(Kt) in M × [0, T ] .
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Lemma 6.5.5. Let (ξ, t) 7→ G(ξ, t) be a bounded function from below satisfying
∂G/∂t − d∆G ≤ 0 in intM × (0,∞) and ∂G/∂ν = 0 on ∂M × (0,∞). Then
the function

h(t) =
1

|M |

∫
M
G(ξ, t)dξ

is decreasing, and limt→∞G(ξ, t) = a uniformly in C2(M).

Constant diffusion system.The reaction-diffusion system we consider is

∂x

∂t
(ξ, t) = d∆x(ξ, t) + f(x), (ξ, t) ∈M × (0, T ], (6.5.10)

x(ξ, 0) = x0(ξ) > 0, ξ ∈M, (6.5.11)

∂x

∂ν
(ξ, t) = 0, (ξ, t) ∈ ∂M × (0, T ], (6.5.12)

where T may be ∞, f is given as the right-hand side of (6.2.7), x0(ξ) ∈
C2+α(M) and ∂x0/∂ν = 0 on ∂M . We write x = (x1, . . . , xm)t for the vector
of m concentrations xi = xi(ξ, t), i = 1, . . . ,m. It is clear that we assume
that all diffusion coefficients di of the standard diagonal diffusion matrix are
constant and equal to d > 0.

Theorem 6.5.6. For the system (6.5.10)–(6.5.12) there is an a priori es-
timate of the type (6.5.5), hence (ξ, t) 7→ x(ξ, t) exists globally for t ≥ 0.
Furthermore, the set ω+ consists of constant functions only. This means that
if c ∈ ω+, then c ∈ R̄m+ and there exists a sequence {tk} such that

lim
k→∞

‖x(ξ, tk)− c‖2 = 0.

Proof. Consider G(x) = xtLn
(
x
x∗

)
+ (x∗ − x)t 1m, where (ξ, t) 7→ x(ξ, t) is a

solution of the reaction-diffusion system (6.5.10)–(6.5.12). Mildly abusing the
notation, we will also denote G(x) by G(ξ, t), in order to avoid introducing a
new symbol.

Firstly, we show that

∂G

∂t
− d∆G ≤ 0 in intM × (0, T ].

The time derivative of G along the trajectory of (6.5.10)–(6.5.12) is

∂G

∂t
=
∂tG

∂x
(f(x) + d∆x)

= Ln
( x
x∗

)t (
−ZBK(x∗)BtExp

(
ZtLn

( x
x∗

))
+ d∆x

)
.
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We compute ∇G = ∂tG
∂x ∇x, and then obtain

∆G =

(
1

x

)t

|∇x|2 + Ln
( x
x∗

)t
∆x .

We have

∂G

∂t
− d∆G

= −Ln
( x
x∗

)t
ZBK(x∗)BtExp

(
ZtLn

( x
x∗

))
− d

(
1

x

)t

|∇x|2

= −γt(x)BK(x∗)BtExp(γ(x))− d
m∑
i=1

|∇xi|2

xi

= −
r∑
j=1

(
γPj (x)− γSj (x)

) (
exp

(
γPj (x)

)
− exp

(
γSj (x)

))
κj(x

∗)

− d
m∑
i=1

|∇xi|2

xi
≤ 0 .

Since ξ 7→ G(ξ, 0) is continuous in M , there is a constant KG such that

max
ξ∈M

G(ξ, 0) ≤ KG .

The zero-flux boundary condition on x implies

∂G

∂ν
=

(
∂tG

∂x
∇x
)
· ν =

(
Ln
( x
x∗

)t
∇x
)
· ν

= Ln
( x
x∗

)t
(∇x · ν) = 0 .

In summary, the following holds

∂G

∂t
− d∆G ≤ 0, (ξ, t) ∈ intM × (0, T ],

G(ξ, 0) ≤ KG, ξ ∈M,

∂G

∂ν
= 0, (ξ, t) ∈ ∂M × (0, T ] .

Applying Lemma 6.5.2 to φ := G(ξ, t) and ψ := KG in M×[0, T ], it follows
that G(ξ, t) ≤ KG. Thus 0 < xi(ξ, t) ≤ δ in M × [0, T ], since G(x) → ∞ as
‖x‖ → ∞. From the theory of strict positivity of solutions of mass action
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kinetics [72], we know that if x0(ξ) > 0, then x(ξ, t) > 0 for all (ξ, t) ∈
M × [0, T ]. Therefore by Theorem 6.5.1 global boundedness of x in the C2+α

norm follows.
Let ω+ be the ω-limit set of the solution x. Following the proof of Theo-

rem 2 in [91] we will show that if ȳ ∈ ω+, then ȳ = const.
Let ȳ be an arbitrary element of ω+, that is

ȳ(ξ) = lim
k→∞

x(ξ, tk) in C2(M).

By (ξ, t) 7→ y(ξ, t) we denote the solution to (6.5.10)–(6.5.12) with an initial
condition y(ξ, 0) = ȳ(ξ).

Set H(ξ, t) = G(y(ξ, t)) along the solution y. Because the function f is
polynomial, it is locally Lipshitz, and since x lies in a bounded set {x ∈ Rm+ :
G(x) ≤ KG}, there is K such that ‖f(x) − f(y)‖ ≤ K‖x − y‖. Then, by
Lemma 6.5.4, the following estimate holds

‖x(ξ, t+ tk)− y(ξ, t)‖ ≤ ‖x(ξ, tk)− ȳ(ξ)‖ exp(Kt) . (6.5.13)

The last inequality implies that x(ξ, t+tk)→ y(ξ, t) and G(ξ, t+tk)→ H(ξ, t)
uniformly in ξ as k →∞.

By Lemma 6.5.5, limt→∞G(x(ξ, t + tk)) = const. uniformly in ξ, hence
H(ξ, t) = const. for all ξ and t.

Furthermore, we have

∂H

∂t
− d∆H

= −
r∑
j=1

(
γPj (y)− γSj (y)

) (
exp

(
γPj (y)

)
− exp

(
γSj (y)

))
κj(y

∗)

− d
m∑
i=1

|∇yi|2

yi
≤ 0 .

On the other hand, ∂H/∂t = d∆H = 0. Therefore, ∇y = 0. This shows that
y(ξ, t) and in particular y(ξ) = y(ξ, 0) are independent of ξ. This means that
y = y(t) is a solution of the balanced reaction system ∂y/∂t = f(y). Finally,
ȳ = y(ξ, 0) = const., which concludes the proof.
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6.5.1 Hypothesis on Stability

You will reply that reality hasn’t the slightest need to be of interest. And
I’ll answer you that reality may avoid the obligation to be interesting, but
that hypothesis may not.

– Jorge Luis Borges, Death and the Compass

Consider the reaction-diffusion system (6.4.5), when Rd(x) > rdIm, rd > 0,
with Neumann boundary conditions, fb = gradµ(x) ·ν = 0. We have seen that

when D = diag
(

1
x1
, . . . , 1

xm

)
Rd(x) = dIm, d > 0, an a priori bound of x can

be derived directly from a differential inequality for the Lyapunov function.
For the general case when D is positive-definite, the procedure presented in the
previous section does not yield a palpable result regarding the boundedness
of the solution. Instead, in this section, we hypothesize the boundedness of x
and at least C1 smoothness.

As previously introduced, let G(x) = xtLn
(
x
x∗

)
+(x∗ − x)t 1m and G(x) =∫

M G(x)dξ. Since G is proper, G(x) ≥ 0.
After imposing the boundary conditions gradx · ν = 0 on ∂M , the time

derivative of G given in (6.4.7) is

d

dt
G(x) = −〈γ(x), BK(x∗)BtExp(γ(x))〉L2

m(M)

− 〈gradµ(x), Rd(x)gradµ(x)〉L2
m(M) .

(6.5.14)

Assuming the validity of the global persistency conjecture, we have that 〈γ(x),
BK(x∗)BtExp(γ(x))〉L2

m(M) = 0 if and only if x ∈ E. Because Rd(x) is
positive-definite matrix for all x,

−〈gradµ(x), Rd(x)gradµ(x)〉L2
m(M) ≤ −rd 〈gradµ(x), gradµ(x)〉L2

m(M)

= −rd‖gradµ(x)‖2L2
m(M)

= 0

if and only if ‖gradµ(x)‖L2
m(M) = 0. Since µ = Ln

(
x
x∗

)
, the last condition

means ‖gradx‖L2
m(M) = 0 on M .

Together, the conditions x ∈ E and ‖gradµ(x)‖L2
m(M) = 0 on M imply that

d
dtG(x) = 0 if and only if x(ξ) ∈ E uniformly in ξ on M . By the Krasovskii-
LaSalle invariance principle for infinite-dimensional systems [43, 44], it follows
that x ∈ E is asymptotically stable in L2 sense.

Conjecture 6.5.7. The reaction-diffusion system (6.4.5), when Rd(x) >
rdIm, rd > 0, with Neumann boundary conditions, fb = gradµ(x) · ν = 0,
does not generate spatially nonuniform steady state.
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This speculation about the inability of system (6.4.5) to generate spatial
patterns obviously has significant biochemical consequences and thus deserves
a proper mathematical treatment. We cease our analysis of the spatially con-
tinuous models and for the rest of the chapter focus our attention on structured
discretization of reaction-diffusion systems.

6.6 Structure-Preserving Discretization

A single species system. Firstly, let us consider single component reaction-
diffusion system

∂x

∂t
= ∗d ∗ (D(x) dx) + g(x)

eb = trx

fb = tr (∗dx) ,

(6.6.1)

where x, g,D ∈ Ω0(M), D(x) > 0 for all x, and eb ∈ Ω0(M) and fb ∈
Ωn−1(M).

Let K be a homological simplicial complex obtained by triangulation of
the manifold M . Assume that K is well-centered, its circumcentric dual is
?K = ?iK × ?bK. A discrete analogue of (6.6.1) is

∂x

∂t
= (∗0)−1

(
dn−1

i ∗1 Dd(x)d0x+ dn−1
b f̂b

)
+ g(x)

eb = tr0 x,
(6.6.2)

where the state x now lives on the zero-skeleton of K, that is, x ∈ Ω0
d(K), the

input f̂b ∈ Ωn−1
d (?bK), and the output eb ∈ Ω0

d(∂K). The positive-definite
diffusion matrix is x 7→ Dd(x) ∈ RNe×Ne , with Ne = dimΩ1

d(K), while the
operators ∗0, ∗1, d0, dn−1

i , dn−1
b , and tr0 have been defined in Chapter 4. The

operator d0 : Ω(K) → Ω1(K) is nothing but the transpose of the incidence
matrix of the primal skeleton (from the primal edges to the primal vertices).
Furthermore, d0 = −

(
dn−1

i

)t
and dn−1

b =
(
tr0
)t

. The discrete Hodge oper-
ator ∗1 : Ω1(K) → Ωn−1(?iK) is a diagonal matrix with the k-th entry being
equal | ?i σ

1
k|/|σ1

k|, where σ1
k is the primal edge with the dual ?iσ

1
k. The matrix

∗0 is a diagonal matrix whose k-th element is | ?i σ
0
k|/|σ0

k|.

Remark 6.6.1. In fact, the model (6.6.2) slightly, but crucially, differs from
the standard compartmental model on graphs, where the matrix (∗0)−1 does
not appear [6]. This implies that in the standard graph model ∗0 = IN , N =
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Figure 6.2: A simplicial complex K consisting of two triangles. The dual
edges introduced by the circumcentric subdivision are shown dotted. The

state vector xj =
(
xj1, . . . , x

j
m

)t
is associated to the vertex vj for each j ∈

{1, . . . , N}. The number of compartments for this example is N = 4. The
shaded region, the dual cell ∗iv2 of the vertex v2, represents the compartment
with the state x2.

dim Ω0
d(K), that is, | ?i σ

0
k| = 1 for all k = 1, . . . , N , meaning that all the

compartments are of equal volume. This fact does not surprise, since the
graph formulation does not capture the geometric content of the underlying
model.

Multicomponent system. Let us now consider the reaction-diffusion sys-
tem with m components

(
cf. (6.4.5)

)
. To each node of the primal mesh we

associate reaction dynamics. That is, to a node σ0
j we associate the state

xj ∈ Rm+ . The geometric dual of σ0
j , ?iσ

0
j , is the dual volume cell which

represents the j-th compartment (see Figure 6.2). The number of the com-
partments is N = dim Ω0

d(K) = dim Ωn
d (?iK). The compartments interact

with each other through the diffusion modeled as follows.

By X denote the concatenated vector

X =
((
x1
)t
, . . . ,

(
xN
)t)t

, (6.6.3)

where xj ∈ Rm+ , and let

F (X) =
(
f
(
x1
)t
, . . . , f

(
xN
)t)t

(6.6.4)

be the vector field which describes the reaction dynamics of all compartments,

with f(xj) = −Z BK(x∗)BtExp
(
ZtLn

(
xj

x∗

))
, j = 1, . . . , N , as in (6.4.5).
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The open compartmental model of the reaction-diffusion system (6.4.5)
is given by

Ẋ = −
(

(∗0)−1 ⊗ Im
)(

(d⊗ Im)t (∗1 ⊗ Im)Rd(X) (d⊗ Im)
X

X∗

− (tr⊗ Im)t f̂b

)
+ F (X)

eb = (tr⊗ Im)
X

X∗
,

(6.6.5)

where ⊗ represents the Kronecker product, Im is the identity matrix of di-
mension m ×m, Rd(X) ≥ αImNe , α > 0, and Ne is the number of edges of
the primal mesh. Note that we have used d to denote d0 = −

(
dn−1

i

)t
and

X
X∗ =

((
x1

x∗

)t
,
(
x2

x∗

)t
, . . . ,

(
xN

x∗

)t)t
.

The total energy of the system, the sum of energies of all compartments,
is

Gd(X) =
N∑
j=1

Gj(x
j)Vσ0

j
,

where σ0
j is the vertex corresponding to the state xj and Vσ0

j
is the n-dimensional

support volume obtained by taking the convex hull of the simplex σ0
j and and

its dual cell ?iσ
0
j . Since Vσ0

j
= |σ0

j || ?i σ
0
j | = | ?i σ

0
j |, j = 1, . . . , N , the total

energy can be written as

Gd(X) =

N∑
j=1

Gj(x
j)| ?i σ

0
j | = (G1, . . . , GN ) ∗0 1N , (6.6.6)

where Gj is the Gibb’s energy of the j-th compartment given by (6.2.9). The
distributed chemical potential as the gradient of (6.6.6) is given as

∂Gd
∂X

=


∂G1
∂x1
| ?i σ

0
1|

...
∂GN
∂xN
| ?i σ

0
N |

 = (∗0 ⊗ Im) Ln

(
X

X∗

)
. (6.6.7)

Compartmental model. Imposing the zero-flux boundary condition, f̂b = 0,
leads to the closed compartmental model

Ẋ=−
(

(∗0)−1 ⊗ Im
)

(d⊗ Im)t (∗1 ⊗ Im)Rd(X) (d⊗ Im)
X

X∗
+ F (X), (6.6.8)
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with a positive initial condition X(0) = X0 ∈ RmN+ .
A simple but crucial observation is that F ∗k (X) ≥ 0 when Xk = 0 for any

k = 1, . . . ,mN and X ∈ R̄mN+ . We have

F ∗k (X) =− ZiBK(x∗)BtExp

(
ZtLn

(
xj

x∗

))
︸ ︷︷ ︸

ςijR

− | ?i σ
0
j |−1 (d⊗ Im)tk (∗1 ⊗ Im)Rd(X) (d⊗ Im)

X

X∗︸ ︷︷ ︸
ςijD

,

where k = ((j − 1)m + i) and Xk = xji , while Zi is the i-th row vector of Z
and (d⊗ Im)tk is the k-th column of (d⊗ Im).

When Xk = xji = 0, the terms corresponding to the positive i-th diagonal
element of the weighted Laplacian matrix BK(x∗)Bt are all zero, while there is
at least one term corresponding to a non-zero, and therefore strictly negative,
off-diagonal element of BK(x∗)Bt. This implies that ς ijR ≤ 0. Similarly, the
matrix (∗1 ⊗ Im)Rd(X) is a diagonal strictly positive definite matrix, thus the
terms corresponding to the positive ((j − 1)m+ i)-th diagonal element of the
augmented Laplacian matrix (d⊗ Im)t(∗1⊗ Im)Rd(X) (d⊗ Im) are all zero,
while there is at least one off-diagonal negative element. Thus, ς ijD ≤ 0, and
therefore F ∗(X) ≥ 0 when Xk = 0.

Lemma 6.6.1. Suppose that X : [0, t∗] → R̄mN+ is any solution of (6.6.8).
Then for any k = 1, . . . ,mN :

Xk(0) > 0 ⇒ Xk(t
∗) > 0.

Proof. The proof is a repetition of the arguments given in [118], Lemma 7.1,
for a different class of systems.

Suppose that k is so that Xk(0) > 0. Let Φ : R2 → R be the function
which for t ∈ [0, t∗] and y ∈ R coincides with

Φ(t, y) := F ∗k
(
X1(t), . . . Xk−1(t), y,Xk+1(t), . . . , XmN (t)

)
and has Φ(t, y) = Φ(0, y) for t < 0 and Φ(t, y) = Φ(t∗, y) for t > t∗. Since
F ∗k (X) ≥ 0 when Xk = 0, Φ(t, 0) ≥ 0 for all t. For t ∈ [0, t∗], the scalar
function y(t) := Xk(t) satisfies ẏ(t) = Φ(t, y(t)). We need to prove that y
never vanishes. To this end, let

Ψ(t, p) := Φ(t, p)− Φ(t, 0),



126 REACTION-DIFFUSION SYSTEMS

and let

ż(t) = Ψ(t, z(t)) with z(0) = y(0).

Because Ψ is locally Lipschitz and 0 is an equilibrium of ż = Φ(t, z),
z(t) > 0 for all t. Furthermore, ż = Ψ(t, z) ≤ Φ(t, z) for all t, and thus by
comparison z(t) ≤ y(t).

Since y(t∗) is well-defined, z(t) remains bounded, and thus is defined for
t = t∗. Hence, y(t∗) ≥ z(t∗) > 0.

Corollary 6.6.2. For the system (6.6.8) the positive orthant RmN+ is forward
invariant.

Jus like in the case of the system (6.2.7), in order to exclude the existence of
possible boundary equilibria, we shall assume the global persistency property.

Conjecture 6.6.3. Given X0 ∈ RmN+ , all the trajectories t 7→ X(t) of (6.6.8)
satisfy: lim inft→∞X(t) > 0.

In the absence of the diffusion terms, the dynamics of the spatially dis-
crete systems are decoupled, and as such coincide with the dynamics of the
balanced reaction system (6.2.7). In this scenario all the compartments exhibit
asymptotically stable dynamics, but the steady states of the all compartments,
in general, are not identical. The following theorem shows that the compart-
mental model (6.6.8) is asymptotically stable with the spatially uniform steady
state.

Theorem 6.6.4. Consider the compartmental model of balanced mass action
reaction network given by (6.6.8). For every initial condition X(0) ∈ RmN+ ,
the species concentrations x1, x2, . . . , xN as t → ∞ converge to x1 = x2 =
· · · = xN ∈ E.

Proof. In [101] the authors have shown that G in (6.2.9) satisfies G(x∗) = 0
and G(x) > 0, ∀x 6= x∗, and for every real c > 0 the set {x ∈ R̄m+ | G(x) ≤ c}
is compact. This easily can be checked. Let xi and x∗i denote the i-th elements
of x and x∗ respectively. From the strict concavity of the logarithmic function

z − 1 ≥ ln(z), ∀z ∈ R+, with equality if and only if z = 1. Putting z =
x∗i
xi

,

we have x∗i − xi + xi ln
(
xi
x∗i

)
≥ 0, with equality if and only if xi = x∗i . This

implies that G(x) =
∑m

i=1

(
x∗i − xi + xi ln

(
xi
x∗i

))
≥ 0, with equality if and

only if xi = x∗i , i = 1, · · · ,m. Thus G has a strict minimum at x = x∗ and
and G(x) > 0, ∀x 6= x∗.
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The above stated properties of G immediately imply that the function
X 7→ Gd(X) in (6.6.6) satisfies

Gd(X
∗) = 0, Gd(X) > 0, ∀X 6= X∗, (6.6.9)

and is proper, i.e., for every real C > 0 the set {X ∈ R̄mN+ | Gd(X) ≤ C} is
compact.

In what follows we will show that Ġd(X) = ∂tGd
∂X (X)Ẋ = dGd

dt (X) satisfies

Ġd(X) ≤ 0 for all X ∈ RmN+ , (6.6.10)

and
Ġd(X) = 0 if and only if x1 = x2 = · · · = xN ∈ E. (6.6.11)

We look for the time derivative of the total energy:

Ġd =
∂tGd
∂X

Ẋ =

(
(∗0 ⊗ Im) Ln

(
X

X∗

))t

Ẋ

= −Ln

(
X

X∗

)t

(∗0 ⊗ Im)t
(

(∗0)−1 ⊗ Im
)

· (d⊗ Im)t (∗1 ⊗ Im)Rd(X) (d⊗ Im)
X

X∗

+ Ln

(
X

X∗

)t

(∗0 ⊗ Im)t F (X).

(6.6.12)

Since (∗0 ⊗ Im)t
(

(∗0)−1 ⊗ Im
)

= ImN , we have

Ġd = −Ln

(
X

X∗

)t

(d⊗ Im)t (∗1 ⊗ Im)Rd(X) (d⊗ Im)
X

X∗

+ Ln

(
X

X∗

)t

(∗0 ⊗ Im)t F (X)

= −
(

(d⊗ Im) Ln

(
X

X∗

))t

(∗1 ⊗ Im)Rd(X) (d⊗ Im)
X

X∗

+
N∑
i=1

| ?i σ
0
i |
∂tGi
∂xi

f(xi)︸ ︷︷ ︸
εR(xi)

= −
〈

(d⊗ Im) Ln

(
X

X∗

)
, Rd(X) (d⊗ Im)

X

X∗

〉
d︸ ︷︷ ︸

εD

+

N∑
i=1

| ?i σ
0
i |εR(xi).

(6.6.13)
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We compute the expression εR(xi), along the lines of [101], as

εR(xi) = ∂tGi
∂xi

f(xi)

= −µt(xi)ZBK(x∗)BtExp(Ztµ(xi))

= −γt(xi)BK(x∗)BtExp(γ(xi))

=
∑r

j=1

(
γSj (x

i)−γPj (xi)
)(

exp
(
γPj (x

i)
)
− exp

(
γSj (x

i)
))
κj(x

∗)

≤ 0 ,
(6.6.14)

since κj(x
∗) > 0 for j = 1, . . . , r, and the exponential function is strictly

increasing. The summand in the third line of (6.6.14) is zero only if γSj (x
i)−

γPj (x
i) = 0 for every j. This is equivalent to having Btγ(x) = 0. Thus,

εR(xi) = 0 only if Btγ = BtZtLn
(
xi

x∗

)
= 0. It follows that

εR(xi) = 0 if and only if xi ∈ E for all i = 1, . . . , N. (6.6.15)

For the contribution of the compartmental diffusion dynamics we have

εD =

〈
(d⊗ Im)

∂G

∂X
,Rd(X) (d⊗ Im)

X

X∗

〉
d

≥
Ne∑
k=1

(
Ln

(
xi

x∗

)
− Ln

(
xj

x∗

))t

α|σ1
k|
(
xi

x∗
− xj

x∗

)
≥ 0 ,

where Ne is the number of edges of the primal mesh, and xi and xj are states
associated to the nods i and j, and k is the edge between nodes i and j.

Because ln(·) is an increasing function,
(

Ln
(
xi

x∗

)
− Ln

(
xj

x∗

))
possesses the

same sign as
(
xi

x∗ −
xj

x∗

)
, and hence εD ≥ 0. Furthermore,

εD = 0 if and only if x1 = x2 = · · · = xN . (6.6.16)

Now, Ġd = 0 if and only if εR = 0 and εD = 0. The intersection of the two
conditions (6.6.16) and (6.6.15) gives (6.6.11).

Since Gd is proper (in R̄mN+ ) and the state trajectory X(·) remains in RmN+ ,
(6.6.10) implies that X(·) is bounded in RmN+ . Therefore, boundedness of
X(·), together with equations (6.6.10) and (6.6.11), by the Krasovskii-LaSalle
invariance principle imply that all the species concentrations x1, x2, . . . , xN

converge to an element in E.
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Remark 6.6.2. Theorem 6.6.4 remains unaltered if we replace the reaction
vector field (6.2.7) by any vector function of the form (not corresponding any-
more to mass action kinetics)

f(xj) = −ZBKnew(xj , x∗)BtΦ

(
ZtLn

(
xj

x∗

))
, (6.6.17)

where Knew(xj , x∗) := diag
(
κnew

1 (xj , x∗), · · · , κnew
r (xj , x∗)

)
> 0 for all xj ∈

Rm+ and Φ : Rc → Rc is a mapping Φ(y1, · · · , yc) = diag(f1(y1), . . . , fc(yc)),
with the functions Φi, i = 1, . . . , c, all monotonically increasing.

In fact, a recent paper [89] shows that, for instance, Michaelis-Menten
kinetics are in the form (6.6.17), where Knew(xj , x∗) is a rational but strictly
positive definite matrix.

6.7 Chemical Example

We illustrate our analysis on a simple chemical reaction model

X1 +X2

kforw1 / X3
krev1

o
kforw2 / X1 +X4,
krev2

o (6.7.1)

where X1 is enzyme, X2 substrate, X3 intermediate product, and X4 product.
The first (binding) and third (unbinding) steps are reversible. Many reactions
in the glycolysis metabolic pathway are of this type.

For instance, glucose-6-phosphate isomerase (alternatively known as phos-
phoglucose isomerase or phosphohexose isomerase) is an enzyme that catalyzes
the conversion of glucose 6-phosphate (G6P) into fructose 6-phosphate (F6P)
in the second step of glycolysis. The change in structure is an isomerization,
in which the G6P (X1) has been converted to F6P (X4). The freely reversible
reaction requires an enzyme X2, phosphohexose isomerase, to proceed; for
more details see, e.g., [12].

The dynamical model of (6.7.1) governed by mass action kinetics is given
by

ẋ1 = −kforw
1 x1x2 + (kforw

2 + krev
1 )x3 − krev

2 x1x4

ẋ2 = −kforw
1 x1x2 + krev

1 x3

ẋ3 = kforw
1 x1x2 − (krev

1 + kforw
2 )x3 + krev

2 x1x4

ẋ4 = kforw
2 x3 − krev

2 x1x4 .

(6.7.2)

It easily can be checked that x∗1 = x∗2 = 1, x∗3 = kforw
1 /krev

1 , x∗4 = kforw
1 kforw

2 /
(krev

1 krev
2 ) is one of the equilibria of the system (6.7.2). The complex stoichio-

metric matrix Z, the incidence matrix B, and the stoichiometrric matrix S for
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the reaction network (6.7.1) are

Z =


1 0 1
1 0 0
0 1 0
0 0 1

 , B =

 1 0
−1 1
0 −1

 , S = ZB =


−1 1
−1 0
1 −1
0 1

 .

Since ZS1 = (1, 1, 0, 0)t, ZP1 = ZS2 = (0, 0, 1, 0)t, and ZP2 = (1, 0, 0, 1)t, for
the chosen x∗, the diagonal balanced reaction constants calculated according
to (6.2.5) are

K(x∗) =

(
kforw

1 0

0
kforw1 kforw2

krev1

)
.

The system (6.7.2) now can be rewritten into the form (6.2.10), while the
dynamics under the influence of diffusion is given by the reaction-diffusion
model (6.4.5).

The spatially uniform asymptotic behavior predicted by Theorem 6.6.4 is
demonstrated with the simulation in Figure 6.3. The elements of the matrix
Rd in the system (6.6.8) given in terms of the standard diffusion matrix D are
Rd :=

(
diag( 1

x∗1
, . . . , 1

x∗m
)D
)
⊗ Im, where in our case m = 4.

Eliminating the effects of diffusion leads to a spatially nonuniform steady
state as Figure 6.4 illustrates.

6.8 Observations and Outlook

Diffusion as an isolated process is associated with a homogenizing effect that
eliminates the gradients of the constituents and eventually leads to uniform
spatial state. However, diffusion in combination with reaction dynamics can
produce spatially heterogenous patterns, but also drive the system to global
instability. An open problem in this context is to characterize the properties
of the operator Rd in the case of spatial inhomogeneous steady state.

Control for reaction-diffusion systems in the port-Hamiltonian framework
can be understood as the coupling of a reaction-diffusion system to an ad-
ditional port-Hamiltonian system that plays the role of the controller. This,
among others, enables the application of passivity-based techniques in control
synthesis for reaction-diffusion systems. Not resisting the temptation of ex-
pressing my sentiment, only by having accurate structured discretization can
one hope to approach this challenging enterprise.
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Figure 6.3: Solutions of (6.7.2), in the presence of the diagonal diffusion
term diag(d1, d2, d3, d4)∆x, on the one-dimensional spatial domain M =
[0, 1] with initial conditions x1(ξ, 0) = 4ξ + 0.3, x2(ξ, 0) = 1.3ξ2 + 0.1,
x3(ξ, 0) = 2 sin2(ξ) + 0.2ξ + 0.2, x4(ξ, 0) = 3ξ + 0.1, and Neumann bound-
ary conditions. Diffusion coefficients are set to be d1 = 0.33, d2 = 0.72,
d3 = 0.91, and d4 = 0.67. The reaction rates are kforw

1 = 0.1, krev
1 = 0.4,

kforw
2 = 0.3, krev

2 = 0.5. Upon the transient phase the system reaches a
steady state x∗∗ = x(ξ,∞) = (2.1856, 1.7557, 0.9602, 0.2638)t uniform in
space. Immediately, we verify that x∗∗ is a thermodynamical equilibrium,
StLn(x∗∗) = StLn(x∗). The number of compartments used is N = 20.
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Figure 6.4: Solutions of (6.7.2), in the presence of the diagonal diffusion term
diag(d1, d2, d3, d4)∆x, on the one-dimensional spatial domain M = [0, 1] with
the initial conditions x1(ξ, 0) = 4ξ + 0.3, x2(ξ, 0) = 1.3ξ2 + 0.1, x3(ξ, 0) =
2 sin2(ξ) + 0.2ξ + 0.2, x4(ξ, 0) = 3ξ + 0.1, and Neumann boundary conditions.
Diffusion coefficients are set to be d1 = d2 = d3 = d4 = 0. The steady state is
not spatially uniform.



7
Conclusion

Coming to this
has its rewards: nothing is promised, nothing is taken away.
We have no heart or saving grace,
no place to go, no reason to remain.

– Mark Strand, Coming to This

I
n the framework of discrete exterior calculus, I have established a
theoretical foundation for formulation of time-continuous spatially-
discrete port-Hamiltonian systems. The staple fiber of this approach
is the formulation of simplicial Dirac structures as discrete analogues

of the Stokes-Dirac structure. These discrete finite-dimensional Dirac struc-
tures are the foundation for the definition of open finite-dimensional systems
with Hamiltonian dynamics. Such an approach to discretization transfers the
essential topological, geometrical, and physical properties from distributed-
parameter systems to their finite-dimensional analogues.

The explicit simplicial discretization proposed in Chapter 3 and 4 leads to
the standard input-output port-Hamiltonian systems without algebraic con-
straints. The analysis and the control synthesis for such systems belong to the
realm of standard finite-dimensional systems.

Chapter 5 offers a unifying perspective on symmetry reduction of distri-
buted-parameter port-Hamiltonian systems and their discrete analogues on
simplicial manifolds of arbitrary finite dimension.

In Chapter 6 I have shown how reaction-diffusion systems can be for-
mulated as port-Hamiltonian systems. Besides offering a clear geometric in-
terpretation, the port-based modeling allows us to look at these systems as
interconnected, what simplifies their analysis as has been demonstrated in Sec-
tion 6.6, where structured discretization of reaction-diffusion systems has led

133
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to finite-dimensional compartmental models.

7.1 What Remains to Be Done, or the Places where
I Have Nothing to Contribute to

A number of interesting topics and open questions still need to be addressed.
Here I provide a few miscellaneous reflections and some comments on future
research.

7.1.1 Numerical Aspects

The discrete exterior calculus employed in this thesis is founded on the idea
of a simplicial complex and its circumcentric dual. While for some problems
Delaunay triangulation is desirable since it reduces the maximum aspect of
the mesh, for others the construction of circumcentric duals might be too
expensive (see [105] and references therein). This motivates the development
of a discrete calculus on non-simplicial complex meshes, such as a general
CW complex [46] or a rectangular scheme. Although the latter might be
inappropriate for geometrically complex objects, a potential advantage would
be its conceptual simplicity since the circumcentric dual is again a rectangular
mesh.

A major challenge from the numerical analysis standpoint is to offer a
careful study of the convergence properties of discrete exterior calculus. Fur-
thermore, it would be desirable to have higher-order discrete analogues of
the smooth geometric operators. This primarily pertains to deriving higher-
accuracy Hodge star operators, which would possibly in return make structure-
preserving discretization more competitive even in the domains where struc-
ture is put aside. A recent article [8] reports some significant initial results
regarding stability of finite element exterior calculus. The abstract theory is
applied to linear elliptic partial differential equations with intention to cap-
ture the key structure of de Rham cohomology and as such mainly pertains
to vanishing boundary constraints. Another related publication [50] extends
the framework of [8] to approximate domains. In the future, in the context of
[8, 50], it would be interesting to study structure-preserving discretization of
port-Hamiltonian systems in the framework of Hilbert complexes.

7.1.2 Open Discretized Systems

The Stokes-Dirac structure has proven to be successful in capturing the es-
sential geometry behind many open systems with Hamiltonian dynamics. The
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concept of the Stokes-Dirac structure as presented in the introduction in order
to accommodate some port-Hamiltonian systems, such as the ideal isentropic
fluid, needs to be augmented [98]. The main idea behind these modifica-
tions is again the Stokes theorem. From a structure-preserving discretization
point of view, there appears not to be any impediments; nonetheless, in or-
der to discuss these questions in a systematic manner, a unified theory of
open infinite-dimensional Hamiltonian systems is needed. The main novelty
in discretizing some so formulated general underlying structures might concern
their integrability. The simplicial Dirac structures formulated in this thesis
are constant Dirac structures and as such they satisfy the usual integrability
conditions [23, 25, 29].

An important application of structure-preserving discretization of port-
Hamiltonian systems might be in (optimal) control theory, what also prompts
a need for time discretization. For closed Hamiltonian systems, it is well-
known that asynchronous variational integrators in general cannot preserve
the Hamiltonian exactly; however, these integrators, for small time steps, can
preserve a nearby Hamiltonian up to exponentially small errors [65, 66, 67, 68,
69]. An important issue in this context is to study the effects these integrators
have on passivity (and losslessness) of open dynamical systems.

7.1.3 Poisson Reduction

The idea of Poisson reduction forgoes the analysis conducted in Chapter 5,
where the configuration space is a space of differential forms and the symme-
try group acts linearly as in (5.3.2). Furthermore, the main idea behind the
construction of the Stokes-Dirac structure considered in this thesis applies to
a much larger class of systems. How to obtain, for instance, the Lie-Poisson
structure of the compressible isentropic fluid with varying boundary condition
is an open problem.

7.1.4 Model-Order Reduction

Structure-preserving discretization of distributed-parameter port-Hamiltonian
systems leads to high-order port-Hamiltonian systems. This inexorably moti-
vates the search for a structure-preserving model-order reduction, which allows
for the replacement of high-order port-Hamiltonian systems with reduced-
order models.

A substantial body of work has already been done in this spirit [86, 87, 88,
42], mostly concerning linear models. It would be of considerable importance
to look at model-order reduction of the spatially distributed time-continuous
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port-Hamiltonian systems obtained in Chapter 4.

7.1.5 Control of Port-Hamiltonian Systems

In Chapter 4 I have been looking at a simple control strategy for the en-
ergy shaping of discretized port-Hamiltonian systems. This attempt has only
scratched the surface of a very important problem. Since the discretized model
assumes a port-Hamiltonian structure, much more elaborate schemes for the
control of port-Hamiltonian systems can be applied. A nontrivial problem
in this regard would be to design a controller for the discretized model and
then test it on the continuous model and obtain the bounds of the discrepancy
norm between the two behaviors. Some initial work has already been done in
this vein, however, to my knowledge, mostly pertaining to the systems on a
one-dimensional spatial domain1 (see [63, 128, 129, 130] and references quoted
there). In higher dimensions, the interconnection of the finite controller and
the infinite-dimensional system (plant) would be naturally realized through
the interface of the simplicial triangulation of the boundary.

Defining the appropriate discrepancy norms is a subtle task in its own
right. The energy norms employed in Section 4.4 seem to be the most natural
choice when dealing with port-Hamiltonian systems, but other choices might
be even more convenient. Here we are still innocently playing on the sea-shore
whilst the great ocean of possibilities lays undiscovered before us2.

7.1.6 Weak Formulation

The port-Hamiltonian systems formulated on the L2 de Rham complex in
Section 2.3.4

(
cf. (2.3.31)

)
are not well-posed systems. For instance, take

Maxwell’s equations as an illustration. Using the tangential component of
the electric field intensity on the boundary ∂M as the input and the tangen-
tial component of the magnetic field intensity on ∂M as the output, or the
other way around, the system (2.3.31) is not well-posed [133]. Introducing the
scattering boundary variables in the case of Maxwell’s equations leads to a
well-posed system [133]. It is not a stretch to expect that a scattering repre-
sentation of (2.3.31), with a quadratic Hamiltonian density, would be always
well-posed, but this remains to be formally proven. How to generically extend

1If all the port interconnections were of the punctiform type, as once they have been, the
universe would be a much easier place to understand, as Calvino explains it in “All at One
Point” in Cosmicomics.

2Is it possible to paraphrase this giant without feeling like Snoopy?
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these results to nonlinear port-Hamiltonian systems is the problem that awaits
its solution for quite some time now.

Hilbert spaces are general enough to cover a large class of physical systems,
while simultaneously offer a rich toolbox for the analysis of such systems. A
natural question arises concerning the naturality of the Hilbert-based formu-
lation. The ill-posedness of port-Hamiltonian systems compels me to believe
that we should be dealing with more general formulations of open Hamiltonian
systems. General Banach spaces, for instance, might offer a more appropriate
gadget for the analysis of boundary controlled systems.

7.1.7 Covariant Formulation

It is known that, for instance, Maxwell’s equations are also consonant with
multisymplectic structures since they can be derived from the Hamiltonian
variational principle [1, 67]. The multisymplectic structure behind Maxwell’s
equations, unlike the Stokes-Dirac structure, is defined, not on a spatial mani-
fold M , but on a spacetime manifold X. Here we need to notice that one could
define a Stokes-Dirac type structure on a pseudo-Riemannian, say Lorentzian,
manifold. In Lorentzian spacetime, the forms E and B can be combined into
a single object, the Faraday 2-form F = E ∧ dt + B. The form F can also
be expressed in terms of the electromagnetic potential 1-form A as F = dA.
The Hodge star of F is a dual 2-form G = ∗F = H ∧ dt − D, known as the
Maxwell 2-form. The charge density ρ and current density J can be combined
into the source 3-form j = J ∧ dt− ρ. A well-known relativistically covariant
formulation of Maxwell’s equations [1] is: dF = 0 and dG = j.

In order to relate this formulation to the port-Hamiltonian framework,
define the following Stokes-Dirac structure on a Lorentzian manifold X by

DL =
{

(fp, fq, fb, ep, eq, eb) ∈
Ω2(X)× Ω3(X)× Ω2(∂X)× Ω2(X)× Ω1(X)× Ω1(∂X)

∣∣
fp = −deq , fq = dep , eb = −eq|∂X , fb = ep|∂X

}
.

(7.1.1)

Similar to the proof of Theorem 2.2.1, it is easy to verify that DL = DL
⊥, with

respect to a natural bilinear form. The dynamics of Maxwell’s equations can
now be imposed by setting fp = j, fq = F , ep = A, and eq = G. Furthermore,
since d2 = 0, it follows that dfp = ddeq = 0.

A natural choice for discretization of the structure DL, in the context
of discrete exterior calculus, would be on a simplicial 4-complex. This would
insure a completely covariant formulation of discrete Maxwell’s equations, sim-
ilar to Regge’s formalism for producing simplicial approximations of spacetime
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in numerical general relativity [93]. The relativistic effects in most engineer-
ing applications are however negligible, hence for these purposes, by choosing
a time coordinate, we can split the Lorentzian manifold into 3 + 1 space,
whose discrete analogue is a prismal cell complex. Similar to discretization of
multisymplectic structures, this would lead to a certain type of asynchronous
variational integrator.

An important and challenging avenue for future work is to make an explicit
relation between multisymplectic and Stokes-Dirac structures, and then to
compare their discrete analogues.

7.1.8 Structural Aspects of Reaction-Diffusion Systems

In Chapter 6 I have provided a geometric formulation of reaction-diffusion sys-
tems with a thermodynamical equilibrium. A model obtained by structure-
preserving scheme for the spatial discretization is a compartmental model,
which exhibits a striking similarity with consensus dynamics [76, 21]. Explor-
ing this resemblance is a very appealing research direction.

Certifying the spatial uniformity of the steady state for the balanced reac-
tion networks under the influence of diffusion would be a fine thing to hack.

7.2 Coming to This

In conclusion, the discrete exterior calculus approach to discretization pre-
serves a number of important topological and geometrical structures of the
the underlying continuous models. In this manner, Dirac structures arising
from smooth and discrete models can be treated in a unified framework. The
consequences of this are that many of the important results from the contin-
uous geometry can be transferred into the discrete realm and thereby lead to
numerically and physically faithful models, which later can be fed to comput-
ers and simulate crucial aspects of the physical reality.
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tronik und Übertragungstechnik, 49, pp. 362–371, 1995.

[96] A.J. van der Schaft, L2-Gain and Passivity Techniques in Nonlinear
Control, Lect. Notes in Control and Information Sciences, Springer-
Verlag, Berlin, 2000, p. xvi+249.

[97] A.J. van der Schaft, “Implicit Hamiltonian systems with symmetry,”
Rep. Math. Phys. 41, 203–221, 1998.



BIBLIOGRAPHY 147

[98] A.J. van der Schaft, B.M. Maschke, “Hamiltonian formulation of
distributed-parameter systems with boundary energy flow”, Journal of
Geometry and Physics, vol. 42, pp. 166–194, 2002.

[99] A.J. van der Schaft, B.M. Maschke, “Conservation laws and open sys-
tems on higherdimensional networks”, pp. 799–804 in Proc. 47th IEEE
Conf. on Decision and Control, Cancun, Mexico, December 9–11, 2008.

[100] A.J. van der Schaft, B.M. Maschke, “Conservation Laws and Lumped
System Dynamics,” Model-Based Control; Bridging Rigorous Theory
and Advanced Technology, P.M.J. Van den Hof, C. Scherer, P.S.C.
Heuberger, eds., Springer, ISBN 978-1-4419-0894-0, pp. 31–48, 2009.

[101] A. van der Schaft, S. Rao, B. Jayawardhana, “On the Mathematical
Structure of Balanced Chemical Reaction Networks Governed by Mass
Action Kinetics,” submitted to SIAM Journal on Applied Mathematics,
2012.

[102] K. Schlacher, “Mathematical modeling for nonlinear control: a Hamil-
tonian approach,” Mathematics and Computers in simulation, vol. 97,
pp. 829–849, 2008.

[103] M. Schoberl, A. Siuka, “On Casimir functionals for field theories in
Port-Hamiltonian description for control purposes,” In Proc. of the 50th
IEEE Conf. on Decision and Control and European Control Conference,
Orlando, Florida, 2011.

[104] M. Schoberl, A. Siuka, “On the port-Hamiltonian representation of sys-
tems described by partial differential equations,” In Proc. of the 4th
IFAC Workshop on Lagrangian and Hamiltonian Methods for Non Lin-
ear Control, pp. 1–6, 2012.

[105] J.R. Shewchuk, “What Is a Good Linear Element? Interpolation,
Conditioning, and Quality Measures,” Eleventh International Meshing
Roundtable (Ithaca, New York), pages 115–126, Sandia National Labo-
ratories, September 2002.

[106] S. Sen, S. Sen, J.C. Sexton, D.H. Adams, “Geometric discretization
scheme applied to the abelian Chern-Simons theory,” Phys. Rev. E (3),
61(3):3174–3185, 2000.

[107] M. Seslija, A.J. van der Schaft, J.M.A. Scherpen, “Reaction-Diffusion
Systems in the Port-Hamiltonian Framework,” Proceedings of 8th IFAC



148 BIBLIOGRAPHY

Symposium on Nonlinear Control Systems, University of Bologna, Italy,
September 01–03, 2010.

[108] M. Seslija, J.M.A. Scherpen, A.J. van der Schaft, “A discrete exterior
approach to structure-preserving discretization of distributed-parameter
port-Hamiltonian systems,” In Proc. of the 50th IEEE Conf. on Decision
and Control and European Control Conference, Orlando, Florida, 2011.

[109] M. Seslija, A.J. van der Schaft, J.M.A. Scherpen, “Discrete Ex-
terior Geometry Approach to Structure-Preserving Discretization of
Distributed-Parameter Port-Hamiltonian Systems,” Journal of Geom-
etry and Physics, Volume 62, Issue 6, Pages 1509–153, June 2012.

[110] M. Seslija, J.M.A. Scherpen, A.J. van der Schaft, “Port-Hamiltonian
systems on discrete manifolds,” MathMod 2012 – 7th Vienna Interna-
tional Conference on Mathematical Modelling, Vienna, 2012.

[111] M. Seslija, J.M.A. Scherpen, Arjan J. van der Schaft, “Composition of
canonical port-Hamiltonian systems on smooth and discrete manifolds,”
MTNS 2012 - the 20th International Symposium on Mathematical The-
ory of Networks and Systems, University of Melbourne, 9-13 July 2012.

[112] M. Seslija, J.M.A. Scherpen, A.J. van der Schaft, “Reduction of Stokes-
Dirac structures and gauge symmetry in port-Hamiltonian systems,”
4th IFAC Workshop on Lagrangian and Hamiltonian Methods for Non
Linear Control, Bertinoro, Italy, 29-31 August 2012.

[113] M. Seslija, J.M.A. Scherpen, A.J. van der Schaft, “Explicit Simplicial
Discretization of Distributed-Parameter Port-Hamiltonian Systems,”
arxiv.org/abs/1208.3549, Submitted to Automatica, August 2012.

[114] M. Seslija, A.J. van der Schaft, J.M.A. Scherpen, “Hamilto-
nian Perspective on Compartmental Reaction-Diffusion Networks,”
arxiv.org/abs/1212.4999, Submitted to Automatica, December 2012.

[115] M. Seslija, J.M.A. Scherpen, A.J. van der Schaft, “Reaction-Diffusion
Systems as Complex Networks,” Submitted to IFAC Workshop on Con-
trol of Systems Modeled by Partial Differential Equations in January
2013.

[116] A. Siuka, Geometry, Modelling and Control of Innite Dimensional Port-
Hamiltonian Systems, PhD thesis, Johannes Kepler Universität Linz,
2011.



BIBLIOGRAPHY 149

[117] J. Smoller, Shock Waves and ReactionDiffusion Equations, New York:
Springer-Verlag, 1994.

[118] E.D. Sontag, “Structure and stability of certain chemical networks and
applications to the kinetic proofreading model of T-cell receptor sig-
nal transduction,” IEEE Trans. Autom. Control, 46(7), pp. 1028–1047,
2001.

[119] M. Spivak, Calculus On Manifolds: A Modern Approach To Classical
Theorems Of Advanced Calculus, Westview Press, 1965.

[120] A. Stern, Y. Tong, M. Desbrun, J.E. Marsden, “Geometric computa-
tional electrodynamics with variational integrators and discrete differ-
ential forms,” arXiv:0707.4470v3, 2009.

[121] V. Talasila, G. Golo, A.J. van der Schaft, “The wave equation as a port-
Hamiltonian system and a finite dimensional approximation,” In D.S.
Gilliam, J. Rosenthal (Eds.), Proceedings of 15th international sym-
posium mathematical theory of networks and systems (MTNS), South
Bend, 2002.

[122] M.E. Taylor, Partial Differential Equations I: Basic Theory, Vol. 115 of
Applied Mathematical Sciences, Springer, New York, 1996.

[123] R. Temam, Infinite Dimensonal Dynamical Systems in Mechanics and
Physics, 2nd ed., Springer, 1997.

[124] A.M. Turing, “The chemical basis of morphogenesis,” Philosophical
trasactions of Royal Society of London, Series B, Biological Sciences,
Volume 237, Issue 641 (Aug. 14, 1952), pp. 37–72.

[125] J. Vankrerschaver, Continuous and discrete aspects of classical field theo-
ries with nonholonomic constraints, PhD dissertation, Ghent University,
2007.

[126] J. Vankerschaver, F. Cantrijn, “Discrete Lagrangian field theories on Lie
groupoids,” Journal of Geometry and Physics, vol. 57, no. 2, 665–689,
2007.

[127] J. Vankerschaver, H. Yoshimura, M. Leok, J.E. Marsden, “Stokes-Dirac
structures through reduction of infinite-dimensional Dirac structures,”
In Proc. 49th IEEE Conference on Decision and Control, Atlanta, USA,
December 2010.



150 BIBLIOGRAPHY

[128] T. Voss, Port-Hamiltonian modeling and control of piezoelectric beams
and plates : application to inflatable space structures, PhD thesis, Uni-
versity of Groningen, 2010.

[129] T. Voss, J.M.A. Scherpen, “Stabilization and shape control of a 1-D
piezoelectric Timoshenko beam,” Automatica, Vol 47, 12, 2780–2785,
2011.

[130] T. Voss, J.M.A. Scherpen, “Structure preserving spatial discretization
of a 1-D piezo electric Timoshenko beam,” SIAM Multiscale Modeling
and Simulation, Vol. 9, 129–154, 2011.

[131] W. Walter, Differential and integral inequalities, Ergeb. der Math. u.
ihrer Grenzgebiete Bd. 55, Springer-Verlag, Berlin, 1970.
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Samenvatting

Dit proefschrift behandelt de structuurbehoudende discretisatie van open ver-
deelde-parameter systemen met gegeneraliseerde Hamiltonse dynamica. Ge-
bruikmakend van het formalisme van discrete uitwendige differentiaalrekening
voer ik simpliciale Diracstructuren in als discrete analogieen van de Stokes-
Diracstructuur, en laat ik zien hoe zij een natuurlijk kader bieden om eindigdi-
mensionale poort-Hamiltonse systemen af te leiden die hun oneindigdimension-
ale tegenhangers nabootsen. Het ruimtelijke domein, in de continue theorie
weergegeven door een eindigdimensionale gladde varieteit met rand, wordt
vervangen door een homologisch simpliciaal complex en zijn circumcentrische
duale. De gladde differentiaalvormen worden in de discrete context vervan-
gen door co-ketens op de primaire en duale complexen, terwijl de discrete
uitwendige afgeleide wordt gedefinieerd met behulp van de duale randoperator.
Deze benadering door middel van de meetkunde van discrete uitwendige dif-
ferentiaalrekening maakt het mogelijk om, anders dan het discretiseren van de
partiele differentiaalvergelijkingen, eerst de onderliggende Stokes-Diracstruc-
tuur te discretiseren en daarna de eindigdimensionale poort-Hamiltonse dy-
namica hierop te definieren. Op deze manier worden een aantal belangrijke
intrinsieke topologische en meetkundige eigenschappen van het systeem be-
houden. Ik pas deze algemene beschouwingen toe op een aantal fysische voor-
beelden, waaronder reactie-diffusie systemen, in welk geval de structuurbe-
houdende discretisatie het standaard compartimentele model oplevert. Ver-
volgens laat ik zien hoe op een soortgelijke manier een Poissonsymmetrie re-
ductie van Diracstructuren geassocieerd met oneindig- en eindigdimensionale
modellen kan worden uitgevoerd.
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