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Unraveling the Electronic Structure

of Individual Photosynthetic

Pigment-Protein Complexes
Antoine M. van Oijen,1* Martijn Ketelaars,2

Jürgen Köhler,1† Thijs J. Aartsma,2 Jan Schmidt1

Low-temperature single-molecule spectroscopic techniques were applied to a
light-harvesting pigment-protein complex (LH2) from purple photosynthetic
bacteria. The properties of the electronically excited states of the two circular
assemblies (B800 and B850) of bacteriochlorophyll a (BChl a) pigment mole-
cules in the individual complexes were revealed, without ensemble averaging.
The results show that the excited states of the B800 ring of pigments aremainly
localized on individual BChl a molecules. In contrast, the absorption of a photon
by the B850 ring can be consistently described in terms of an excitation that
is completely delocalized over the ring. This propertymay contribute to the high
efficiency of energy transfer in these photosynthetic complexes.

The primary process in bacterial photosynthesis

is the absorption of a photon by the light-

harvesting antenna system, followed by the rap-

id and efficient transfer to the reaction center

where the charge separation takes place. Typi-

cally, photosynthetic purple bacteria contain

two types of antenna complexes, light-harvest-

ing complexes 1 and 2 (LH1 and LH2, respec-

tively), both of which are integral membrane

proteins. The reaction center is presumed to be

surrounded by the LH1 complex, whereas the

LH2 complexes are arranged around the perim-

eter of the LH1 ring in a two-dimensional struc-

ture (1). The structure of the LH2 complex of

the purple bacterium Rhodopseudomonas aci-

dophila is known in great detail from x-ray

crystallography (2), which has shown that the

LH2 complex comprises 27 BChl a and (pre-

sumably) 18 carotenoid molecules nonco-

valently bound to the protein matrix. The BChl

a molecules are organized in two concentric

rings (Fig. 1). One ring, referred to as B800,

features a group of nine well-separated BChl a

molecules with an absorption band at ;800

nm. The other ring, referred to as B850, consists

of 18 closely interacting BChl a molecules with

an absorption band at ;860 nm. The entire

LH2 complex is cylindrically symmetric with a

ninefold symmetry axis. Upon excitation, ener-

gy transfer occurs from B800 to B850 mole-

cules on a picosecond time scale (3–5), whereas

among the B850 molecules, it is an order of

magnitude faster (6–8). The transfer of energy

from LH2 to LH1 and subsequently to the

reaction center occurs in vivo on a time scale of

5 to 25 ps (9), very fast in comparison to the

decay of B850 in isolated LH2, which corre-

sponds to a lifetime of 1.1 ns.

Despite the fact that the LH2 complex has

been intensively investigated in recent years

with a wide variety of spectroscopic tools, in-

cluding the observation of the fluorescence dy-

namics of single LH2 complexes (10), no clear

picture of the electronic structure of its excited

states exists. Here, we present the results of a

study of isolated single LH2 complexes by

single-molecule fluorescence-excitation spec-

troscopy, a method successfully applied in re-

cent years to the detection of single guest mol-

ecules in crystalline and amorphous matrices

(11). This technique allows the observation of

optical spectra of individual complexes devoid

of the ensemble averaging over static intercom-

plex disorder, thus directly revealing the salient

properties of the electronic structure of the ex-

cited states.

The LH2 complexes of R. acidophila were

prepared as described elsewhere (3). Hydro-

lyzed poly(vinyl alcohol) (PVA) with a weight-

average molecular weight of 125,000 (obtained

from British Drug House) was purified over a
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Fig. 1. Geometrical ar-
rangement of the 27
BChl a molecules of
the LH2 complex of R.
acidophila obtained
by x-ray crystallogra-
phy. The B800 BChl a
molecules are depict-
ed in blue, and the
B850 pigments are
red. The phytol chains
of the BChl a mole-
cules are omitted for
clarity. The data have
been taken from the Protein Data Bank (identification code: 1kzu).
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mixed resin in order to remove ionic impurities.

Thin polymer films, with a thickness of ,1

mm, were prepared by adding 1% w/w purified

PVA to a solution of 5 3 10211 M LH2 in

buffer (0.1% lauryldimethylamine N-oxide, 10

mM tris, and 1 mM EDTA, with pH 8.0), which

was then spin coated on a LiF substrate (12).

The samples were mounted in a cryostat, cooled

to 1.2 K, and illuminated with a tunable con-

tinuous wave Ti-sapphire laser (spectral band-

width of 1 cm21). Microscopic images could be

obtained by wide-field illumination of the sam-

ple and imaging of the fluorescence at 890 nm

on a charge-coupled device camera. Fluores-

cence-excitation spectra were then acquired by

confocally exciting a spatially well-isolated

complex and detecting its fluorescence (also at

890 nm) with an avalanche photodiode. In both

cases, the detection bandwidth was 20 nm.

More details can be found in (13).

In Fig. 2, the fluorescence-excitation spectra

of several single LH2 complexes and an ensem-

ble of LH2 complexes are compared. The en-

semble spectrum features two broad structure-

less bands at ;800 and 860 nm, corresponding

to the absorptions of the B800 and B850 pig-

ments, respectively. When observing the single

complexes, the ensemble averaging in these

bands is removed, and remarkable spectral fea-

tures become visible. The striking differences

between the two absorption bands can be ratio-

nalized by considering the intermolecular inter-

action strength J between neighboring BChl a

molecules in a ring and the spread in transition

energies D. J is mainly determined by the inter-

molecular distance and the relative orientation

of the molecular dipole moments. Variations in

site energies D can often be attributed to struc-

tural variations in the environment of the BChl a

molecules, resulting in changes in the electro-

static interaction with the surrounding protein. If

the ratio J/D is small, it is expected that the

excitations are mainly localized on individual

BChl a molecules. If the coupling strength J

between the BChl a molecules is much larger

than D, the description should be in terms of

delocalized excited-state wave functions with

relatively short energy relaxation times.

As can be seen in Fig. 2, the B800 band of

an individual LH2 complex consists of several

relatively narrow spectral lines. From the width

of the B800 ensemble line, a value of ;125

cm21 for the diagonal disorder D can be ex-

tracted, and from the x-ray structure, it can be

calculated, with a point-dipole approximation,

that the interaction energy J between neighbor-

ing pigments amounts to 224 cm21 (14). The

ratio ?J/D? ' 0.2 is characteristic for electroni-

cally excited states, which are largely localized

on individual pigments. Therefore, the narrow

lines around 800 nm can be attributed to the

absorptions of individual BChl a molecules in

the B800 ring. This interpretation is corroborat-

ed by the strong dependence of the relative

intensities of these lines on the polarization of

the incident radiation, consistent with the dif-

ferent directions of the dipole moments of lo-

calized transitions of BChl a molecules in the

ring (15).

In the B850 band, the interaction strength

between the BChl a molecules is determined to

be ;300 cm21 (14), that is, considerably larger

than the disorder (estimated to be ;125 cm21).

Therefore, we have to consider excitonic inter-

actions in order to understand the optical spec-

tra. As a starting point, we calculated the excit-

ed-state manifold of a cylindrically symmetric

B850 assembly with zero disorder. Of the two

nondegenerate (denoted as k 5 0 and k 5 9)

and eight pairwise degenerate (k 5 61, k 5

62, . . ., k 5 68) exciton states, only the

low-energy degenerate pair k 5 61 will carry

appreciable oscillator strength (Fig. 3A, left).

Upon introducing diagonal disorder in the ring,

the pairwise degeneracies will be lifted, and the

oscillator strength is redistributed over adjacent

exciton states (16) (Fig. 3A, right). The transi-

tion dipole moments associated with the k 5

61 transitions will have orthogonal polariza-

tions. This orthogonality is maintained when

disorder is introduced, assuming that the diag-

onal disorder is dominated by variations in

electrostatic interactions and possibly intermo-

lecular distances, rather than by changes in the

orientations of the BChl a molecules.

Fig. 2. Comparison of fluorescence-excitation
spectra for an ensemble of LH2 complexes (top
trace) and several individual LH2 complexes at 1.2
K. The vertical scale applies to the bottom spec-
trum; all other spectra are offset for clarity. cps,
counts per second.
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Fig. 3. (A) Schematic representation of the energy-level scheme of the lowest states in the excited-state
manifold of the B850 ring in LH2 of R. acidophila. Compared are the relative positions of the lowest
levels in the presence (left) and in the absence (right) of ninefold rotational symmetry. The gray circles
indicate the initial population of a given excited state, and the arrows indicate the relative orientation
of the transition dipole moments in the plane of the ring. (B) Fluorescence-excitation spectrum of the
long-wavelength region of an individual LH2 complex for mutually orthogonal polarized excitation as
schematically indicated in (A) by the colored arrows. (C) Fluorescence-excitation spectrum of the red
wing of the long-wavelength absorption in the B850 band. In the bottom panel, a stack of 200
consecutively recorded spectra (3 s per scan) is shown where the fluorescence intensity is given by the
color code (yellow corresponds to high intensities). The spectrum in the top panel corresponds to an
average of only those scans that are covered by the box. For this particular complex, the whole set of
lines in the B850 band is shifted toward higher energies in comparison to the complex shown in (B).
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In all spectra of the single LH2 complexes

we observed, the B850 band consisted of two

broad absorption lines at ;860 nm, some-

times accompanied by a weaker third transi-

tion at the higher energy side. These obser-

vations can be explained in terms of the

exciton model. The two absorptions corre-

spond to the k 5 61 transitions, with their

degeneracy lifted. By performing polariza-

tion-dependent experiments on these two

bands (17 ), the orthogonality of the associat-

ed transition dipole moments, predicted by

the exciton model, could be ascertained (Fig.

3B). This orthogonality was observed in all

individual LH2 complexes that we studied

and is a strong indication for a high degree of

delocalization of the excitation. The observed

homogeneous linewidth of the k 5 61 tran-

sitions of ;50 cm21 is consistent with an-

isotropy decay times of ;100 fs found in

pump-probe experiments (8). The extent of

delocalization will decrease, and the dynam-

ical properties will change at a higher tem-

perature, where mixing of the exciton states

by vibronic coupling will occur (18).

Another observation supporting the ex-

citonic level scheme is the detection of the

lowest exciton state k 5 0. By repeatedly

scanning the excitation wavelength quickly

through the low-energy side of the k 5 61

pair and following the spectral features

through time, the presence of the spectrally

rapidly diffusing lowest exciton state could

be made visible in a fraction (;25%) of the

studied complexes (Fig. 3C). The low in-

tensity of the k 5 0 transition, which in

principle is dipole forbidden, and spectral

diffusion on a time scale faster than that of

the experiment explain the absence of this

lowest exciton transition in most of the

complexes. The linewidth of the k 5 0 state

should be ;0.005 cm21, as determined by

the 1.1-ns fluorescence lifetime of the sys-

tem, but the observed value of ;5 cm21 is

mainly determined by residual spectral dif-

fusion and the bandwidth of the excitation

source.

The energy splitting dE61 between the

k 5 11 and k 5 21 states was measured for

all complexes investigated (Fig. 4). As men-

tioned previously, the presence of the disor-

der D forms a plausible cause for the lifting of

the degeneracy of these exciton states. How-

ever, simulations show that the observed av-

erage dE61 of ;110 cm21 cannot be ex-

plained by taking into account only random

disorder (as depicted in Fig. 4) for a simulat-

ed D with a full width at half-maximum

(FWHM) of 125 cm21 (19). Even an unrea-

sonably large value of D ' 500 cm21 for the

width of the distribution of site energies did

not result in an energy separation between the

k 5 61 exciton states, as observed experi-

mentally. To exclude the possibility that

these abnormally high splittings are caused

by an anisotropic environment in the poly-

mer matrix, we repeated the experiment on

single LH2 complexes in a glycerol matrix,

which resulted in similar values of dE61. A

Jahn-Teller–like deformation in the excited

state can probably be ruled out in view of

the unrealistically high values needed for

the electronic-nuclear coupling strength.

Although random disorder can give rise to

large variations in the absorption wave-

lengths of the B850 bands (Fig. 2), the ob-

served energy separation of the k 5 61 states

can only be explained in terms of largely

correlated disorder, such as a static symmet-

ric distortion of the protein complex in the

ground state. In the case of an elliptical de-

formation of the ring, it can be shown, on the

basis of symmetry arguments, that only the

k 5 61 exciton states will be split. This is

consistent with the absence in the spectra of a

splitting and a polarization effect of the k 5

62 states. The eigenfunctions of the k 5 61

states belong to the long and short axes of the

ellipse and hence exhibit orthogonal polariza-

tion of their transition moments, as observed

experimentally. Our simulations show that

the observed splittings can be explained by

assuming an eccentricity « of the ring of 0.52,

corresponding to a ratio of the long and short

radius of 0.85, and a random disorder of 125

cm21 (Fig. 4); « 5 (1 – a2/b2)1/2, where a and

b are the length of the short and long axes,

respectively. An explanation for the sym-

metry lowering in the LH2 from ninefold in

the crystals used for resolving the x-ray

structure to the twofold symmetry observed

in our experiments may be found in the

extremely dense packing of LH2 in the x-ray

crystals, causing a stabilization of the struc-

ture. In our case of completely isolated com-

plexes, these stabilizing forces are absent,

and the complex deforms. What the symme-

try properties of the LH2 are in a natural

environment, surrounded by a limited num-

ber of LH2 complexes in the photosynthetic

membrane, is therefore an intriguing question

and deserves further study.

This work demonstrates that single-mole-

cule spectroscopy is a powerful tool to reveal in

detail the factors determining the electronic

structure of pigment-protein complexes and,

more generally, of molecular aggregates. Vari-

ous manifestations of disorder can be probed

directly, providing valuable information for the

theoretical modeling of energy-transfer pro-

cesses in these systems, a better understanding

of the structure of these biologically important

systems, and an understanding of how these

systems function.
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Fig. 4. The distribution of the energy separations
dE61 of the k 5 61 transitions. The histogram
represents the experimental data (exp) for all
complexes studied. The values obtained by nu-
merical calculations (19), assuming only a disor-
der of 125 cm–1, are depicted by solid black
circles. After an additional elliptic deformation,
with an eccentricity of « 5 0.52, is introduced in
the simulations (sim), one obtains the data rep-
resented by solid black squares.
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