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Appendices.
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Appendix A: KRS–experiments.

The following figures represent different training cases, which has been
performed to show the results from sample reordering algorithm. Every case
is described by three figures. The first shows the original training signal; the
second shows KRS plots by different example reorderings. The third plot
represents either a snapshot from the Interact visualizer, or the
generalization curves when testing. Some of the plots also appear in various
places in the thesis. The systematization made here aims to give a quick
overview of more made experiments and an easy way for their comparison
and to allow a easy reference to various experiments, when the pictures are
not really necessary to be plotted within the text. One is refered to table 5–1
for more numerical data.

A.1 Signal No 1.

Sinewave with noise (see also figure 5–2).
It shows, how even the addition of noise on the input signal does not remove the poten-
tial internal cancelation. However, dividing the signal into intervals removes the tend-
ence to paralysis.
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A.2 Signal No 2.

Complex goniometrical signal (see also figure 4–7).
The envelope of the signal is learned very fast, but then the internal cancelation prohib-
its any further progress.
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A.3 Signal No 3.

Not appearing elsewhere in this thesis.
An arbitrary signal with local symmetry and additional noise has learning problems un-
less the input space is divided in small enough intervals.
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A.4 Signal No 4.
Power generator signal (see also figure 5–5a).
Approximation for the signalpart corresponding to the first 400 timesteps is limited to
the training of the envelope.
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A.5 Signal No 5.

Power generator signal (see also figure 5–5a).
Approximation for the signalpart corresponding to the first 512 timesteps will not even
learn the envelope for longer time fragments.
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A.6 Signal No 6.

Single QRS signal (see also section 5.3.2).
The signal with some global but foremost local symmetry becomes (better) trainable
when the number of intervals is raised.
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A.7 Signal No 7.

Double QRS signal (see also section 5.3.2).
For the larger signal length the global symmetry is less apparent and training is already
performed for the smaller interval numbers.
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A.8 Signal No 8.

Symmetrical signal with second–order problem (see also figure 5–1a).
A complex signal with high global symmetry will have already have problems at the
onset of learning.
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A.9 Signal No 9.

Asymmetrical signal with second–order problem (see also figure 5–1b).
A complex signal with little global symmetry will encounter local symmetries later in
the training process.
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Appendix B: The Random walk.
There are numerous intuitions about the outcome of myriad experiments with
events of a random nature, which happen to be wrong. The random walk
theory reveals this misjudgment and is a basis for more advanced theories.
For the analysis, made in this thesis, several properties of a random walk are
interesting. First, it is of use to know how often the successive cumulative
gains are becoming zero. This quantification is related to getting a notion of
how fast network parameters can degrade to the zero point during
adaptation. Second, it is of interest how the random walk depends on the
length of the step. This gives inside to the problem why the initial symmetrical
phase, when the network parameters has small values, is the most often
encountered degradation problem. The third interesting question is what the
spread and distribution of the endpoints by many random walks is, which will
help to understand how many experiments, which because of the reasons
explained in the thesis are governed nearly by the lows of the random
processes,  have the chance to escape the stationary areas, and how this
chance is related to the number of training examples in a cancelation set.

B.1 The random walk in one direction.

A ideal coin–tossing game is a well accepted way to describe the random walk problem.
The outcomes of individual tosses are represented geometrically on a rectangular coor-
dinate system with horizontal t–axis and vertical  y–axis. Every point on this coordinate
system has as an abscis the number p of the current trial and as an ordinate the partial
sum of the previous coin tossings sp. All the partial sums draw a path (s1,s2, . . . ,sp). Ev-
ery path is the outcome of a random walk experiment. Correspondingly the statistical
characteristics of the multitude of paths can be quantified.

The probability, that at epoch n the path S has reached the point r, is denoted by pn,r.

pn,r � P{ Sn � r} � � n
n � r

2
�2�n (B–1)

To the investigations, made in this thesis, the case is interesting, when the point r is the
zero point. In the theory of random walks, this case is known as a return to the origin.

A return to the origin occurs at epoch k, if  Sk � 0.  Here k is necessarily even, and for
k � 2� the probability of a return to the origin equals p2�,0.  Because of its frequent oc-
currence this probability it will be denoted by u2�.

u2� � (2�
�
)2�2� (B–2)

The probability, that the first return to the origin occurs at epoch 2n is given by the fol-
lowing equation:

f2n �
1

2n � 1 u2n (B–3)
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Another quantifiable characteristic for a set of paths is the spread of the endpoints. It
is defined by the probability, that the maximum of a path of length n leading to  point
A � (n, k) and having a maximum � r with k � r is denoted by
pn,2r�k � P{ Sn � 2r � k}.

B.2 Generalizing the random walk.

All the conclusions made in the previous section concern the one–dimensional random
walk by which the step length equals to unity. They can be illustrated with the outcome
of a coin–tossing game. Here generalizations for multi–dimensional random walks as
well as for random walks with unequal step length will be made.

In a two–dimensional random walk it can be imagined, that a particle moves in unit
steps in the four directions, parallel to the t � and y�axes. For a particle which starts
from the beginning of the coordinate system, there are four possible positions which
have real–valued coordinates. Similarly, in three dimensions every point has six neigh-
bors. The random walk is then specified by the corresponding four or six probabilities.
The generalizations will be made for a symmetric random walk, where all four or six
directions are equally probable. The probability of a return to the origin is:

u2� �
1

42n
�

n

k�0

(2n)!

k!k!(n � k)!(n � k)!
�

1
42n
�2n

n � �
n

k�0

�nk�
2

(B–4)

Equation (B–4) can be generalized for a higher dimensional case.

By the generalized one–dimensional random walk the restriction, that the particle
moves in unit steps is avoided. In this case at each step the particle shall have the proba-
bility pk to move from any point x to x� k. where the integer k can be zero, positive
or negative. This generalization is also known as sequential sampling.

B.3 Interpretation.

The theory of random walks is not (or at least not directly) applicable to neural net-
works. On each presentation, the weights will be adapted. In other words, each state of
the neural network represents a different history and therefore a permuted input set will
lead to a different state. Nevertheless, the characteristics of a non–learning neural net-
work seem comparable. This can be interpreted in the following way. When a neural
network is still in a state of infancy, it makes no difference what this state is: by provid-
ing a canceling input stream all that has been learned can be unlearned. It is only when
a neural network has matured and “knows” what to do, that the different streams have
a reduced input.

It is clear, that a neural random walk requires an enhanced theoretical model. The rea-
son why this has not been attempted here, is largely that we intended to eliminate the
occurrence of a longest ruin by construction rather than by analysis. Despite that, such
a model will still be a welcome addition to the theory of neural design.
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Appendix C: Software.
As illustration to the provided algorithms, we supply here the basic routine
that allows for the reordering schemes as discussed in this thesis.

C.1 The Permutation procedure.

�!* �##�!�"� =2/ 9?/;+66 8>7,/; 90 :+==/;8<
$��#*��'� 6+;1/<= >8<318/. 38=/1/;

?93.  /;7>=+=398 �38= 8;	 38= :=B:/�
��***************************************************************** ��
�� ���� </6/-= 38=/;?+6 +8. :/;7>=/ =2/ /6/7/8=< @3=238 ��
�� ��
�� �� $#� 38= 8; @38.9@ -9>8= ��
�� 38= :=B:/ :/;7>=+=398 <=B6/� ����'"&�  �� ��
�� ��#�"&�  �� ��
�� %��$�""&�  �� ��
��  �!�&3=2���"�# ��
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