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Chapter 3

Hénon-like strange attractors in a
family of maps of the solid torus

3.1 Introduction

The research presented in this Chapter is motivated by the following question:

Are there maps having quasi-periodic Hénon-like attractors?

Numerical examples of quasi-periodic Hénon-like attractors are given in Chapters one
and two. We begin by giving definitions of the concepts used here, mainly following
the terminology in [42, 86, 120]. Consider a C1 diffeomorphism F : M → M , where
M is an m-dimensional smooth manifold. A set A ⊂ M is called an attractor if A

is a topologically transitive compact F -invariant set such that the stable set (basin of
attraction) W s(A ) has nonempty interior. We recall that an F -invariant set A ⊂ M
is called topologically transitive if there exists a point z ∈ A such that the orbit
Orb(z) = {F j(z)}j≥0 of z under F is dense in A . An attractor A is called strange if
there exist constants κ > 0, λ > 1, a dense orbit Orb(z) ⊂ A and a vector v ∈ TzM
such that

‖DF n(z)v‖ ≥ κλn for n ≥ 0. (3.1)

Condition (3.1) means that the attractor A has a positive Lyapunov exponent on
the dense orbit Orb(z). The attractor A is called Hénon-like [42, 86, 120] if there
exist a saddle periodic orbit Orb(p) = {s, F (p), . . . , F n(p)}, a point z in the unstable
manifold W u(Orb(p)), constants κ > 0, λ > 1, and tangent vectors v, w ∈ TzM , with
w 6= 0, such that

A = clos W u(Orb(p)),

Orb(z) is dense in A , equation (3.1) holds, and furthermore

‖DF n(z)w‖ → 0 as n → ±∞. (3.2)

Hénon-like attractors are strange by (3.1), and are non-uniformly hyperbolic by (3.2).
In particular, Hénon-like attractors contain critical points, that is, points belonging
to a dense orbit for which a nonzero tangent vector w exists, which is contracted both
by positive and by negative iteration of the derivative DF .
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We say that the attractor A is quasi-periodic Hénon-like if there exist a quasi-
periodic invariant circle C of saddle type, a point p ∈ W u(C ), constants κ > 0, λ > 1,
and a vector v ∈ TpM such that condition (3.1) holds, while

A = clos W u(C ).

In the last decade several mathematical results have been obtained concerning the
structure of strange attractors in families of maps. A basic example is provided by
the Hénon attractor [58], occurring in the family of maps

Ha,b : R2 → R2, (x, y) 7→ (1 − ax2 + y, bx), (3.3)

where a and b are real parameters. Benedicks and Carleson [10, 11] proved that there
exists a set of parameter values S, with positive Lebesgue measure, such that for
all (a, b) ∈ S the Hénon map Ha,b (3.3) has an attractor coinciding with the closure
clos W u(p) of the unstable manifold of a saddle fixed point p. By using analogous
ideas, strange attractors were proved to occur in parametrised families of maps, near
homoclinic tangencies in two or higher dimensions [86, 96, 113, 120], and near tan-
gencies in the saddle-node critical case [42]. See [127] for a general set-up to prove
existence of strange attractors having one positive Lyapunov exponent. All strange
attractors considered in the cited papers are Hénon-like, see the definition above.
See [121] for a result concerning existence of strange attractors with two or more
positive Lyapunov exponents.

In this Chapter we provide two partial answers to the question formulated at the
beginning of this introduction. Our first result concerns the C3-family of skew-product
diffeomorphisms Tα,δ,a,ε, defined on the solid torus R2×S1, where S1 = R/Z, and given
by

Tα,δ,a,ε : R2 × S1 → R2 × S1,




x
y
θ


 7→




1 − ax2 + εf(a, x, y, θ, ε, α, δ)
εg(a, x, y, θ, ε, α, δ)
θ + α + δ sin(2πθ)


 . (3.4)

The restriction of (3.4) to S1 is the Arnol′d family of circle maps [4]:

Aα,δ : S1 → S1, θ 7→ θ + α + δ sin(2πθ). (3.5)

For 0 ≤ δ < (1/2π) and α ∈ [0, 1], the map Aα,δ is a diffeomorphism of the circle
S1. There exist open subsets Aq/n of the (α, δ) plane (Arnol′d tongues), such that the
rotation number of Aα,δ is q/n for all (α, δ) ∈ Aq/n.

The map (3.4) is a generalization of the planar Hénon-like families considered
in [86, 120]. The latter are families of planar diffeomorphisms, which are C3-small
perturbations of the logistic family

Qa : R → R, x 7→ 1 − ax2. (3.6)

In Tα,δ,a,ε, the planar part also depends on the circle dynamics by the perturbative
terms f and g. The only requirement on f and g is that their C3-norms are bounded
on compact sets. Occurrence of Hénon-like attractors is proved in the family Tα,δ,a,ε

for all parameter values belonging to a set of of positive (Lebesgue) measure. For all
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values in this set, the parameters (α, δ) are such that the dynamics of the Arnol′d
family Aα,δ (3.5) is of Morse-Smale type: there exist periodic points θs and θr in
S1, such that θs is attracting and θr repelling for Aα,δ. The attractors A we obtain
coincide with the closure of the one-dimensional unstable manifold

A = clos W u (Orb(p)),

where p = (x0, y0, θ
s) ∈ R2 × S1 belongs to a hyperbolic periodic orbit of saddle type.

Occurrence of such attractors holds on a positive measure set of parameter values for
all sufficiently C3-small perturbations of f and g. This result is formulated in more
detail in the next section.

A second situation is analysed subsequently. Fix n > 0 and let K : R2 → R2 be a
dissipative planar Cn-diffeomorphism having a hyperbolic saddle fixed point p′ ∈ R2

with a transversal homoclinic point. Then it is well-known that the closure of the
unstable manifold clos W u(p′) attracts an open set of points (initial states) [86, 95].
This result is here generalised to certain families of maps of the solid torus, having
an invariant circle of saddle type. Let Pα be a family of diffeomorphisms of R2 × S1

given by the product of a map K as above with a rigid rotation of angle α on S1, i.e.,

Pα : R2 × S1 → R2 × S1, (x, y, θ) 7→
(
K(x, y), θ + α

)
.

The map Pα has the invariant saddle-like circle C = {p′} × S1. Then for any suf-
ficiently C2-small perturbation of Pα, the circle C persists as a normally hyperbolic
C1-manifold, and the invariant set closW u(C ) attracts an open set of points, i.e.,

int(W s(clos W u(C ))) 6= ∅. (3.7)

Notice that in general clos W u(C ) is not topologically transitive, as required in the
definition of attractor we use. For example, closW u(C ) might contain periodic at-
tractors. Property (3.7) holds for an open set in the parameter space. However, by
standard KAM arguments, the quasi-periodicity of C (which implies the transitivity
of C ) generically is persistent only for a nowhere dense set of positive measure in the
parameter space, see e.g. [17].

3.1.1 Hénon-like strange attractors in a family of skew prod-
uct maps

We here formulate our main result about the family Tα,δ,a,ε in (3.4). Throughout, the
family Tα,δ,a,ε is assumed to be C3 in all variables and parameters. The parameter
space is the set of all (α, δ, a, ε) ∈ R4 such that

α ∈ [0, 1], δ ∈
[
0, 1/(2π)

)
, a ∈ [0, 2], |ε| < 1. (3.8)

Furthermore, we require the C3-norm of f and g to be bounded on compact sets. We
call such skew-product families rotating Hénon-like. For the statement of the result
we need a few definitions and notations.

Definition 3.1. Consider a map M : J → J , where J ⊂ R is an interval.
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1. The map M is called topologically mixing if for any open intervals J1, J2 ⊂ J
there exists n0 such that

Mn(J1) ∩ J2 6= ∅ for all n ≥ n0.

2. A point p ∈ R is preperiodic for M if there exists an m ≥ 2 such that Mm(p)
is a periodic point of M .

3. For a given integer n > 1, denote by Φ(n) the set of all integers q such that q
and n are relatively prime, where 1 ≤ q < n. If n = 1 put Φ(n) = {1}.

4. The interval Ka = [Q2
a(0), Qa(0)] is called the core or the restrictive interval of

the logistic family Qa (3.6).

It is well-known that Qa([0, 1]) = Qa(Ka) = Ka for all a, where Ka is the core of
Qa (3.6), see e.g. [83].

Theorem 3.1. Choose a∗ ∈ (0, 2) such that the quadratic map Qa∗ in (3.6) is topo-
logically mixing on its core K = [1 − a∗, 1] and its critical point c = 0 is preperiodic.
Let n ≥ 1 be an integer and p0 be a (repelling) periodic point of the n-th iterate Qn

a∗.
Then there exist positive constants ε̄n, ān and χn such that the following holds.

1. For all (α, δ, a, ε) as in (3.8), with

(α, δ) ∈ ∪q∈Φ(n) clos Aq/n, |a − a∗| < ān, |ε| < ε̄n (3.9)

the map Tα,δ,a,ε has a saddle periodic point p such that the unstable manifold
W u(Orb(p)) is one-dimensional.

2. For all (α, δ, ε) as in (3.9) there exists a set Sα,δ,ε with

Sα,δ,ε ⊂ [a∗ − ān, a
∗ + ān], meas(S) > χn

such that for all a ∈ Sα,δ,ε the closure clos W u(Orb(p)) is a Hénon-like strange
attractor of Tα,δ,a,ε.

Corollary 3.1. The set of parameter values for which Tα,δ,a,ε has a Hénon-like at-
tractor contains the set

S =
⋃

n∈N

{
(α, δ, a, ε) | (α, δ) ∈ ∪q∈Φ(n) clos Aq/n, |ε| < ε̄n, a ∈ Sα,δ,ε

}
,

and the set S has positive Lebesgue measure

meas(S) ≥ 2
∞∑

n=1

ε̄nχn

∑

q∈Φ(n)

meas Aq/n.

Our proof of Theorem 3.1 is given in Sec. 3.2. It is based on a result of Dı́az-Rocha-
Viana [42], and relies on the following facts:

1. For (α, δ) inside any tongue Aq/n, the asymptotic dynamics of Tα,δ,a,ε is described
by an O(ε)-perturbation of the n-th iterate Qn

a .
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2. For all n the map Qn
a is a generic n-modal family, in the sense of [42]. See the

definition given in Sec. 3.2.

Two attractors occurring in the family



x
y
θ


 7→




1 − (a + ε sin(2πθ))x2 + y
bx

θ + α + δ sin(2πθ)


 , (3.10)

are shown in Figure 3.1 (A) and (B), for (α, δ) in an Arnol′d tongue of period two and
three, respectively. The Hénon-like character of these attractors remains conjectural
for the specific parameter values considered. Notice that the family (3.10) takes the
form (3.4) after a rescaling y 7→

√
|b|y and by choosing b = O(ε).

-1
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Figure 3.1: Attractors of the family in (3.10) for (α, δ) in Arnol′d tongues of periods
two and three. (A) Parameters are fixed at a = 1.3, b = 0.3, ε = 0.2, (α, δ) =
(0.51, 0.116). (B) Same as (A) for α = 0.33793.

A case which is not covered by Theorem 3.1 is when the dynamics of the forcing
map Aα,δ in (3.4) is quasi-periodic. In such a situation, by [11] it is straightforward
that at ε = 0 Hénon-like strange attractors occur for a positive measure set of param-
eters (α, δ, a). To fix ideas, consider the family in (3.10). Choose a and b such that
the Hénon map (3.3) has a strange attractor A ′, coinciding with the closure of the
unstable manifold of a saddle fixed point p. According to [11], such (a, b) form a set of
positive measure. Since at ε = 0 the dynamics of (3.10) on R2 is uncoupled from that
on S1, map (3.10) has a strange attractor A = A ′ × S1. Furthermore, A coincides
with the closure of the unstable manifold of the quasi-periodic saddle-type invariant
circle {p} × S1. Numerical experiments (see Figure 3.2 (A)) suggest that attractors
like A persist for small ε. Occurrence of the same kind of quasi-periodic Hénon-like
strange attractors has been observed in several numerical studies. Compare [90] and
the literature on strange nonchaotic attractors [49, 53, 65, 66, 68, 74, 91, 119]. In Chap-
ter two of this thesis a diffeomorphism P of R3 = {x, y, z} is studied (also see [24]).
There we conjectured that the attractor A of P in Figure 3.2 (B) is contained inside
the closure clos W u(C ) of the unstable manifold of a quasi-periodic invariant circle
C of saddle type. A cross-section Σ of A , magnified in Figure 3.3 left, suggests that
the two-dimensional unstable manifold of C is folded onto itself, thereby creating a
Hénon-like structure. To illustrate the dynamics inside A we computed the image
P (Σ). This yields a folded curve looking like a planar Hénon attractor.
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u

v

w
(A)
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-1
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Σ
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x

z

Figure 3.2: (A) Attractor of map (3.10) in the quasi-periodic case. Parameter
values are fixed at a = 1.85, b = −0.2, δ = 0, α = (

√
5 − 1)/2, ε = 0.1. For a

better visualisation of the folds, the plot is given in the variables (u, v, w), where
u = (r + 4) cos(θ), v = (r + 4) sin(θ), with r = x cos(θ) + 10y sin(θ), and w =
−x sin(θ)+ 10y cos(θ). (B) Projection on the (x, z)-plane of a strange attractor of the
three-dimensional Poincaré map PF,G,ε of Chapter two, also see [24].
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Figure 3.3: (A) Projection on (x, ỹ), with ỹ = y − 0.133 ∗ z, of a slice Σ of the
attractor A in Figure 3.2 (B). The slice Σ contains all points such that the distance
from the plane z = 0 is less than 0.0001. (B) The attractor A , with the slice Σ and
the image P (Σ) under the diffeomorphism P . The image P (Σ) is magnified in the
central box.

3.1.2 Homoclinic intersections of saddle invariant circles

Hénon-like attractors coincide with the closure closW u(Orb(p)) of the unstable man-
ifold of a saddle periodic orbit. For the dissipative Hénon map (3.3), i.e., for |b| < 1,
under suitable hypotheses the Hénon attractor is contained in clos W u(Orb(p)) [11,
86, 95]. We generalise this result to families of maps of the following type. Fix an
integer n ≥ 2 and let K = (K1, K2) : R2 → R2 be a dissipative (area contracting) Cn-
diffeomorphism. Denote by Rα : S1 → S1 the rigid rotation Rα(θ) = θ + α. Consider
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the Cn-family of diffeomorphisms

Pα,ε : R2 × S1 → R2 × S1, (x, y, θ) 7→
(
K1(x, y) + f(x, y, θ, α, ε),

K2(x, y) + g(x, y, θ, α, ε),

θ + α + h(x, y, θ, α, ε)
)
,

(3.11)

where f = g = h = 0 for ε = 0. A hyperbolic saddle fixed point p of K corresponds
to an invariant circle Cα,0 of saddle type for the map Pα,ε at ε = 0. The circle Cα,0

is normally hyperbolic (see [60] for a definition), and, therefore, it is persistent under
small perturbations. Notice that the perturbation in Pα,ε is of a more general type
than in Tα,δ,a,ε, since no preservation of the skew-product structure is now required.
A few basic results are summarised in the following proposition.

Proposition 3.2. Suppose that K has a saddle fixed point p = (x0, y0). Then for all
α ∈ [0, 1] the map Pα,0 has an invariant circle Cα of saddle type. The manifold Cα

is r-normally hyperbolic for all integers r with 1 ≤ r ≤ n. Moreover, for all r < n
there exists an εr > 0 such that for all ε < εr and all α ∈ [0, 1], Pα,ε has a Cr-saddle
invariant circle Cα,ε, Cr-close to Cα,0.

Proof: The dynamics of Pα,0 on Cα,0 is parallel with rotation number α. This implies
that Cα,0 is an r-normally hyperbolic invariant manifold for all r ≤ n and, therefore,
it is Cn. So Cα,0, as well as its stable and unstable manifolds, is persistent under
Cn-small perturbations. This directly follows from [60].

Proposition 3.2 allows us to construct a basin of attraction with nonempty interior for
the invariant set clos W u(Cα,ε), provided that the one-dimensional unstable manifold
W u(p)R2 of the map K does not escape to infinity. For (x, y, θ) ∈ R2 × S1, denote by
ω(x, y, θ) the ω-limit set of (x, y, θ) under Pα,ε.

Theorem 3.2. Fix integers n and r such that n ≥ 2 and 1 ≤ r < n. Choose ε < εr as
in Proposition 3.2 and let α ∈ [0, 1]. Suppose that K : R2 → R2 is Cn and satisfies:

1. K has a saddle fixed point p ∈ R2 and a transversal homoclinic point q ∈
W s(p) ∩ W u(p).

2. The map K is uniformly dissipative: there exists κ < 1 such that |det(DK(x, y))| ≤
κ for all (x, y) ∈ R2.

3. W u(p) is contained in a bounded subset of R2.

Then there exists an ε∗ < εr such that for all ε < ε∗ there exists an open, nonempty
bounded set U ⊂ R2 × S1 such that for all (x, y, θ) ∈ U

ω(x, y, θ) ⊂ clos W u(Cα,ε). (3.12)

Under the conditions of Theorem 3.2, the invariant set closW u(Cα,ε) attracts all orbits
with initial state in an open set U . This holds for an open set of ε-values. In general,
however, clos W u(Cα,ε) is not an attractor in the sense of our definition (compare
Sec. 3.1), since it might be non-topologically transitive. This occurse for example if
clos W u(Cα,ε) contains a periodic attractor.

In the next theorem we prove that at least the circle Cα,ε is quasi-periodic (and,
hence, topologically transitive) for a set of parameter values of large relative measure.
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Theorem 3.3. Let Pα,ε be a Cn-family of diffeomorphisms as in (3.11), where n is
sufficiently large (n ≥ 5 will do). Choose ε∗ as in Theorem 3.2. Then for all ε < ε∗

sufficiently small the following holds.

1. There exists a set Dε ⊂ [0, 1] with Lebesgue measure meas(Dε) > 0 such that
for α ∈ Dε the restriction of Pα,ε to the circle Cα,ε is smoothly conjugate to an
irrational rigid rotation.

2. meas(Dε) tends to 1 for ε → 0.

Proofs of Theorems 3.2 and 3.3 are given in Sec. 3.3.

Remark 3.1. The quasi-periodicity of the dynamics inside Cα,ε may have conse-
quences for the dynamics in its stable and unstable manifolds. This is certainly the
case if α is irrational and if the map Pα,0 is perturbed within the class of skew-products,
that is

Pα,ε(x, y, θ) =
(
K(x, y) + εf(x, y, θ, α, ε), θ + α

)
.

In this case, indeed, the dynamics inside W u(Cα,ε) and W s(Cα,ε) has a quasi-periodic
component, given by a rotation over angle α, see [57]. More precisely, W u(Cα,ε) can
be parametrised as

W u(Cα,ε) =
{
(W (θ, η), θ) | θ ∈ S1 and η ∈ R

}
,

where W : S1 ×R → R2. Furthermore,

Pα,ε(W (θ, η), θ) =
(
W (θ + α,N(θ, η)), θ + α

)
,

where N : S1 ×R → R. See [57] for rigorous statements and proofs.

3.2 Existence of Hénon-like attractors

Our proof of Theorem 3.1 is based on a result of Dı́az-Rocha-Viana [42]. We begin
by stating this result.

3.2.1 Perturbations of multimodal families

Two definitions from [42] are introduced now. For more information about the termi-
nology, we refer to [83].

Definition 3.2. Let J ⊂ R be a compact interval. Fix d ≥ 1, k ≥ 3, a∗ ∈ R, and
an interval of parameter values U = [a−, a+], with a∗ ∈ int U. A Ck-family of maps
Ma : J → J , with a ∈ U, is called a d-family if it satisfies the following conditions:

1. Invariance: Ma∗(J) ⊂ int(J);

2. Nondegenerate critical points: Ma∗ has d critical points {c1, . . . , cd} def

= Cr Ma∗ that
satisfy

M ′′
a∗(ci) 6= 0 for all i and Ma∗(ci) 6= cj for all i, j;



3.2 Existence of Hénon-like attractors 91

3. Negative Schwarzian derivative: SMa∗ < 0 for all x 6= ci, where

Sf(x) =
f ′′′(x)

f ′(x)
− 3

2

(
f ′′(x)

f ′(x)

)2

;

4. Topological mixing: for any open intervals J1, J2 in the core of Ma∗ there exists
n0 such that

Mn
a∗(J1) ∩ J2 6= ∅ for all n ≥ n0

(for the definition of core of a multimodal map, see e.g. [83]);

5. Preperiodicity: for each 1 ≤ i ≤ d there exists mi such that pi = Mmi

a∗ (ci) is a
(repelling) periodic point of Ma∗;

6. Genericity of unfolding: For all ci ∈ Cr Ma∗, denote by ci(a) and pi(a) the contin-
uations of ci and pi, respectively, for a close to a∗. Then

d

da

(
Mmi

a (ci(a)) − pi(a)
)
6= 0 at a = a∗.

Next we introduce the notion of η-perturbation of a d-family Ma, with a ∈ U and
d ≥ 1 fixed.

Definition 3.3. Fix σ > 0 and consider the family Ma obtained by extending Ma as
follows:

Ma : J × Iσ → J × Iσ, Ma(x, y)
def

=(Ma(x), 0). (3.13)

Also denote by M the map

M : U × J × Iσ → J × Iσ, M(a, x, y)
def

= Ma(x, y) = (Ma(x), 0).

Given a Ck-family of diffeomorphisms

Ga : J × Iσ → J × Iσ, a ∈ J,

for a k ≥ 3, denote by G its extension

G : U × J × Iσ → J × Iσ, G(a, x, y)
def

= Ga(x, y).

Then G is called a η-perturbation of the d-family {Ma}a if

‖M − G‖Ck ≤ η,

where ‖·‖Ck denotes the Ck-norm over U × J × Iσ.

The following result asserts that for η sufficiently small, any η-perturbation Ga of
a d-family has a non-uniformly hyperbolic strange attractor for all parameter values
a in a set S of positive Lebesgue measure. See [10, 11, 86, 96, 120, 127] for similar
results.

Proposition 3.3. [42, Theorem 5.2] Let {Ma}a be a d-family and p a periodic
point of Ma∗. Then there exist η > 0, ā and χ > 0 such that, given any η-perturbation
{Ga}a of {Ma}a the following holds.

1. For all a with |a − a∗| < ā the map Ga has a periodic point pa which is the
continuation of the periodic point (p, 0) of the map Ma in (3.13).

2. There exists a set S, contained in the interval [a∗ − ā, a∗ + ā] ⊂ U, with
meas(S) > χ, such that for all a ∈ S the set clos W u(pa) is a Hénon-like
strange attractor of the map Ga.



92 Chapter 3. Hénon-like attractors for maps of the solid torus

3.2.2 Strange attractors in rotating Hénon-like families

We here present a proof of Theorem 3.1. The argument is based on three facts. First,
suppose that a∗ ∈ [0, 2] is such that the quadratic family Qa(x) = 1 − ax2 in (3.6) is
a d-family in the sense of Definition 3.2, with d = 1. Then for all n ≥ 1 the family
Ma

def

= Qn
a given by the n-th iterate of Qa is a d-family for some d ≤ 2n. Second, for

all η1 > 0, the composition of an η1-perturbation of Qa with an η1-perturbation of
Qn

a is an η2-perturbation of Qn+1
a , where η2 = C(n)η1 and C(n) is a positive constant

depending on n. Third, for each n > q ≥ 1 and for each (α, δ) ∈ Aq/n, the asymptotic
dynamics of Tα,δ,a,ε is described by a map that turns out to be an η-perturbation of
the d-family Ma, with η = O(ε). Application of Proposition 3.3 then concludes the
proof.

In the next lemma we show that Ma is a d-family. For each ã ∈ [0, 2) there exists
a β > 0 such that for all a with a ∈ [0, ã] the interval J = [−1−β, 1+β] ⊂ R satisfies
Qa(J) ⊂ int(J). In the sequel, it is always assumed that the family Qa is defined on
such an interval J , and that the values of a we consider are such that Qa(J) ⊂ int(J).

Lemma 3.4. Suppose a∗ ∈ [0, 2)
def

= U is such that the quadratic family

Qa : J → J, Qa(x) = 1 − ax2

satisfies hypotheses 4 and 5 of Definition 3.2. Then for all n ≥ 1 there exists d ≥ 1
such that the family

Ma : J → J, Ma
def

= Qn
a

is a d-family with d ≤ 2n − 1 critical points.

Proof. Take a∗ as above. We first prove the case n = 1, that is, Qa : Ja → Ja is a
1-family. Conditions 1, 2, 3 of Definition 3.2 are obviously satisfied by Qa. Condition
6 will now be proved. By Conditions 4 and 5 (assumed by hypothesis), Qa∗ is a
Misiurewicz map [84], i.e., it has no periodic attractor and c 6∈ ω(c), where c = 0
is the critical point of Qa∗ . Moreover, by [83, Theorem 6.3] the map Qa∗ is Collet-
Eckmann (see e.g. [83, Sec. V.4]), that is, there exist constants κ > 0 and λ > 1 such
that ∣∣DQj

a∗(Qa∗(c))
∣∣ ≥ κλj for all j ≥ 0. (3.14)

Therefore, according to [115, Theorem 3]

lim
n→∞

d
da

Qn
a(c) |a=a∗

d
dx

Qn−1
a∗ (Qa∗(c))

> 0. (3.15)

Assume Qk
a∗(c) = p, with p periodic (and repelling) under Qa∗ . By p(a) denote the

continuation of p for a close to a∗. Then, for all n sufficiently large,

d

da
Qn

a(c) |a=a∗ =
∂Qn−k

a

∂a
(Qk

a∗(c)) |a=a∗ +
∂Qn−k

a

∂x
(Qk

a∗(c)) |a=a∗

d

da
Qk

a(c) |a=a∗=

=
∂

∂a
Qn−k

a (p) |a=a∗ +
∂

∂x
Qn−k

a (p) |a=a∗

d

da

[
p(a) + Qk

a(c) − p(a)
]
|a=a∗=

=
d

da

(
Qn−k

a (p(a))
)

+
∂

∂x
Qn−k

a∗ (p)
d

da

[
Qk

a(c) − p(a)
]
|a=a∗ .

(3.16)



3.2 Existence of Hénon-like attractors 93

The point Qn−k
a (p(a)) belongs to a hyperbolic periodic orbit, that varies smoothly

with the parameter a. Therefore, its derivative with respect to a (which is the first
term in the last equality) is uniformly bounded in n. On the other hand,

d

dx
Qn−1

a∗ (Qa∗(c)) =
∂

∂x
Qn−k

a∗ (p)
d

dx
Qk−1

a∗ (Qa∗(c)).

Therefore, by (3.14), (3.15), and (3.16) we conclude that

0 < lim
n→∞

d
da

Qn
a(c) |a=a∗

d
dx

Qn−1
a∗ (Qa∗(c))

=
d
da

[
Qk

a(c) − p(a)
]
a=a∗

d
dx

Qk−1
a∗ (Qa∗(c))

. (3.17)

This proves that Qa satisfies Condition 6 of Definition 3.2.
We now show that the n-th iterate Ma of the quadratic map is a d-family for all

n > 1 and for some d ≤ 2n. For simplicity, we denote Qa∗ by Q for the rest of the
proof. Condition 1 holds for Ma∗ since it holds for Qa∗ . Condition 3 follows from
the fact that the composition of maps with negative Schwarzian derivative also has
negative Schwarzian derivative, see e.g. [83]. Condition 4 is obviously satisfied.

Condition 2 is now proved by induction on n, where the case n = 1 is obvious.
Since Q is 2-to-1, the set Cr Ma∗ of critical points of Ma∗ has cardinality d ≤ 2n − 1.
Moreover,

Cr Ma∗ = Q−1
(
Cr Qn−1

)
∪ Cr Q =

n−1⋃

j=0

(Q−j)(Cr Q). (3.18)

Suppose that Condition 2 holds for a given n ≥ 1. We first show that

(Qn+1)′′(x) 6= 0 for all x ∈ Cr Qn+1. (3.19)

By (3.18), if x ∈ Cr Qn+1 then either x = c, or Q(x) ∈ Cr Qn. If x = c then

(Qn+1)′′(x) = (Qn)′ (Q(c)) · (Q)′′(c). (3.20)

The second factor is nonzero. If the first factor is zero, then

0 = (Qn)′ (Q(c)) = Q′(Qn(c)) . . . Q′(Q(c)).

Therefore there exists j such that Qj(c) = c, so that c is an attracting periodic point
of Q. But this contradicts the fact that Q is Misiurewicz, so that (3.20) is nonzero.
The other possibility is that c 6= x and Q(x) ∈ Cr Qn. In this case,

(Qn+1)′′(x) = (Qn)′′ (Q(x)) · Q′(x)2,

which is nonzero. Indeed, Q′(x) 6= 0, otherwise x = c. Moreover (Qn)′′ (Q(x)) 6= 0
by the induction hypotheses since the critical points of Qn are nondegenerate. This
proves (3.19), from which the first part of Condition 2 follows.

We now prove, again arguing by contradiction, that

Qn+1(x) 6= y for all x, y ∈ Cr Qn+1.
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Suppose that there exist x, y ∈ Cr Qn+1 such that Qn+1(x) = y. By (3.18) there exist
i and j such that Qi(x) = Qj(y) = c, where 0 ≤ i, j ≤ n. This would imply that

Qn+1+j−i(c) = Qj(Qn+1(x)) = Qj(y) = c,

with n + 1 + j − i ≥ 1 and, therefore, c would be an attracting periodic point of Q,
which is impossible since Q is Misiurewicz. Condition 2 is proved.

To prove Condition 5, fix y ∈ Cr Ma∗ and j ≥ 0 such that Qj(y) = c. Since c is
preperiodic for Q by hypothesis, there exists k ≥ 1 such that Qj+k(y) = p, where p is
periodic under Q with period u ≥ 1. The orbit of y under Ma∗ is, except for a finite
number of initial iterates, a subset of the orbit of p under Q. This shows that y is
preperiodic for Ma∗ .

To prove Condition 6, take y ∈ Cr Ma∗ , j, u, k and p ∈ J as in the proof of
Condition 5. Then there exist integers l and m, with 0 ≤ l < u and m ≥ 1, such that

Mm
a∗(y) = Qk+l(c) = Ql(p) ∈ OrbQ(p). (3.21)

By Condition 5 (assumed by hypothesis) and by (3.21), the point z = Ql(p) is periodic
(and repelling) under Ma∗ . Denote by y(a), z(a), and p(a) the continuations of y, z,
and p, respectively, for a close to a∗. In particular,

Qj
a(y(a)) = c and Ql

a(p(a)) = z(a).

We have to show that

d

da
[Mm

a (y(a)) − z(a)]|a=a∗ 6= 0. (3.22)

By the chain rule we get

d

da
Ql+k

a (c)
∣∣
a=a∗

=
∂Ql

a

∂a
(Qk

a(c))
∣∣
a=a∗

+
∂Ql

a

∂x
(Qk

a(c))
∣∣
a=a∗

dQk
a

da
(c)|a=a∗ =

=
∂Ql

a∗

∂a
(p) +

∂Ql
a∗

∂x
(p)

dQk
a∗

da
(c),

d

da
Ql

a(p(a))
∣∣
a=a∗

=
∂Ql

a∗

∂a
(p) +

∂Ql
a∗

∂x
(p)

d

da
p(a∗),

where p = p(a∗) = Qk
a∗(c). Therefore,

d

da
[Mm

a (y(a)) − z(a)]|a=a∗ =
d

da

[
Qk+l

a (c) − Ql
a(p(a))

]∣∣
a=a∗

=

=
∂Ql

a∗

∂x
(p)

d

da

[
Qk

a(c) − p(a)
]∣∣

a=a∗
.

The factor d
da

[
Qk

a(c(a)) − p(a)
]∣∣

a=a∗
is nonzero by (3.17). The same holds for the

other factor, otherwise p would be an attracting periodic point of Qa∗ . This proves
inequality (3.22).

In the next lemma we show that the composition of a small perturbation of the
map Qa(x, y) = (Qa(x), 0) (we use here the notation of Definition 3.3) with a small
perturbation of Qn

a(x, y) = (Qn
a(x), 0) yields a small perturbation of Qn+1

a (x, y). As
in Definition 3.3, denote by Q,Qn : [0, 2] × J × I → J × I the functions Q(a, x, y) =
(Qa(x), 0) and Qn(a, x, y) = (Qn

a(x), 0), respectively.
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Lemma 3.5. For each η > 0 there exists a ζ > 0 such that for all F,G : [0, 2]×J×I →
J × I such that

‖G − Q‖C3 < ζ and ‖F − Qn‖C3 < ζ, (3.23)

we have ∥∥G ◦ F − Qn+1
∥∥

C3 < η. (3.24)

Proof. Write

G(a, x, y) =

(
Qa(x) + g1(a, x, y)

g2(a, x, y)

)
and F (a, x, y) =

(
Qn

a(x) + f1(a, x, y)
f2(a, x, y)

)
.

Then

G ◦ F (a, x, y) −
(

Qn+1
a (x)

0

)
=

(
−2a(f1(a, x, y))2 − 2af1(a, x, y)Qn

a(x) + g1

(
a, f̃1(a, x, y), f2(a, x, y)

)

g2

(
a, f̃1(a, x, y), f2(a, x, y)

)
)

,

where f̃1(a, x, y) = Qn
a(x) + f1(a, x, y). The C3-norm of the terms −2a(f1(a, x, y))2

and −2af1(a, x, y)Qn
a(x) is bounded by a constant times the C3-norm of f1. We now

estimate the norm of g̃1, defined by

g̃1(x0, x1, x2) = g1(a, f̃1(a, x, y), f2(a, x, y)).

Denote x0 = a, x1 = x, and x2 = y. Then any second order derivative of g̃1 is a sum
of terms of the following type:

∂2g1

∂xjxk

∂f̃k

∂xl

,
∂g1

∂xk

∂2f̃k

∂xjxl

,

where we put f̃2 = f2 to simplify the notation. For the third order derivatives a
similar property holds. Since the C3-norm of f̃k is bounded, we get that each term
in the third order derivative of g̃1 is bounded by a constant times the C3-norm of the
gj. This concludes the proof.

Proof of Theorem 3.1. The theorem will be first proved for a∗ < 2. The case
a∗ = 2 follows by choosing another value ā∗ < 2 sufficiently close to 2. Fix a∗ ∈ [0, 2)
verifying the hypotheses of Lemma 3.4. To begin with, we consider the case (α, δ) ∈
int A1, the interior of the tongue of period one. Then the Arnol′d family Aα,δ on S1

has two hyperbolic fixed points θs
1 (attracting) and θr

1 (repelling), see [41, Sec. 1.14].
The θ-coordinate of both points depends on the choice of (α, δ) ∈ int A1. So for all
θ ∈ S1 with θ 6= θr

1, the orbit of θ under Aα,δ converges to θs
1. This means that the

manifold
Θ1 =

{
(x, y, θ) ∈ R2 × S1 | θ = θs

1

}
⊂ R2 × S1

is invariant and attracting under Tα,δ,a,ε. Denote by Ga,1 the restriction of Tα,δ,a,ε to
Θ1:

Ga,1 : Θ1 → Θ1, (x, y, θs
1) 7→ (1 − ax2 + εf1, εg1, θs

1),
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where f1 = f(a, x, y, θs
1, α, δ) and similarly for g1. Since Qa∗(J) ⊂ int(J), there exists

a constant σ > 0 such that for all ε sufficiently small and all a close enough to a∗,

Ga,1(J × Iσ × {θs
1}) ⊂ int(J × Iσ × {θs

1}) and

Tα,δ,a,ε

(
J × Iσ × (S1 \ {θr

1})
)
⊂ int

(
J × Iσ × (S1 \ {θr

1})
)
. (3.25)

Since Θ1 is diffeomorphic to R2, we consider Ga,1 as a map of R2. Then Ga,1, is
an η-perturbation of the quadratic family Qa(x), where η = O(ε). We now apply
Proposition 3.3 to the family Ga,1. Let p0 be a periodic point of Ma∗ . For all ε
sufficiently small there exists a constant ā > 0 and a set S of positive Lebesgue
measure, contained in the interval [a∗ − ā, a∗ + ā], such that the following holds. For
all a ∈ [a∗ − ā, a∗ + ā], Ga,1 has a saddle periodic point p̄ which is the continuation of

the point p0. Furthermore, for all a ∈ S the closure Ã = clos W u(p̄) is a Hénon-like
strange attractor of Ga,1 contained inside Θ1. The point p = (p̄, θs

1) is a saddle periodic
point of the map Tα,δ,a,ε, and W u(p) = W u(p̄) × {θs

1}. Therefore A = clos W u(p) =

Ã × {θs
1}. Moreover, the basin of attraction of closW u(p) has nonempty interior in

R2 × S1 because of (3.25). This proves the claim for (α, δ) ∈ int A1.
We pass to the case of higher period tongues. Suppose that (α, δ) ∈ int Aq/n, with

n > q ≥ 1. Then Aα,δ has (at least) two hyperbolic periodic orbits

Orb(θs
1) = {θs

1, θ
s
2, . . . , θ

s
n} attracting, and

Orb(θr
1) = {θr

1, θ
r
2, . . . , θ

r
n} repelling.

For j = 1, . . . , n, denote by Θj the manifold

Θj =
{
(x, y, θ) ∈ R2 × S1) | θ = θs

j

}
,

and define maps Gj as the restriction of Tα,δ,a,ε to Θj:

Gj : Θj → Θj+1 for j = 1, . . . , n − 1

Gn : Θn → Θ1, where

(x, y, θs
1)

Gj7→ (Qa(x) + εfj, εgj, θs
j+1), for j = 1, . . . , n − 1

(x, y, θs
n)

Gn7→ (Qa(x) + εfn, εgn, θs
1).

Here, fj = f(a, x, y, θs
j , α, δ). The manifold Θ1 is invariant and attracting under the

n-th iterate of the map Tα,δ,a,ε. For all (x, y, θ) in the complement of the set

{(x, y, θ) | θ ∈ Orb(θr
1)} ,

the asymptotic dynamics is given by the map

Ga,1,...n
def

= Gn ◦ Gn−1 ◦ · · · ◦ G1.

Notice that each of the Gj’s is an ηj-perturbation of the family Qa in the sense of
Definition 3.3, where ηj = Bε and B can be chosen uniform on θs

j (and, therefore, on
(α, δ)).
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Let p0 be a periodic point of Ma
def

= Qn
a . Then (p0, 0) is a saddle periodic point for

the map Ma defined as in (3.13). Take η, ā, and χ as in Proposition 3.3. By inductive
application of Lemma 3.5 there exists an ε̄ > 0 depending on η and n such that

‖Ga,1,...n − Qn‖C3 < η,

for all (α, δ) ∈ int Aq/n and all |ε| < ε̄. That is, Ga,1,...n is an η-perturbation of Ma for
all q with 1 ≤ q < n and all (α, δ, a, ε) with

(α, δ) ∈ Aq/n, ε ∈ [−ε̄, ε̄].

By Proposition 3.3 there exist an ā > 0 and a set S contained in the interval [a∗ −
ā, a∗ + ā] such that meas(S) ≥ χ and the following holds. For all a ∈ [a∗ − ā, a∗ + ā]
the map Ga,1,...,n has a periodic point p̄a which is the continuation of the periodic point

(p0, 0) of Ma. Moreover, for all a ∈ S the closure Ã = clos W u(p̄a) is a Hénon-like
strange attractor of Ga,1,...,n, contained inside Θ1.

To finish the proof, observe that pa = (p̄a, θ
s
1) is a saddle periodic point of Tα,δ,a,ε.

The set A = clos W u(pa) is compact and invariant under Tα,δ,a,ε, where

A =
(
Ã × {θs

1}
)
∪ Tα,δ,a,ε

(
Ã × {θs

1}
)
∪ · · · ∪ T n−1

α,δ,a,ε

(
Ã × {θs

1}
)
.

To show that A has a dense orbit, suppose that the orbit of z = (x0, y0, θ
s
1) under

Ga,1,...n is dense in Ã . Then given η > 0 and a point

q = T j
α,δ,a,ε(q

′) ∈ T j
α,δ,a,ε(Ã × {θs

1}), with 1 ≤ j ≤ n − 1,

there exists m > 0 such that dist(Gm
a,1,...n(z), q′) < η. By continuity of T j

α,δ,a,ε, for all
% > 0 there exists η > 0 such that

dist(T j
α,δ,a,ε(q

′′), T j
α,δ,a,ε(q

′)) < % for all q′′ with dist(q′′, q′) < η.

We conclude that for all % > 0 there exists m > 0 such that

dist(T j
α,δ,a,ε(G

m
a,1,...n(z)), T j

α,δ,a,ε(q
′)) = dist(T j+mn

α,δ,a,ε(z), q) < %.

This proves that the orbit of z under Tα,δ,a,ε is dense in A . Properties (3.1) and (3.2)
will now be proved. Since Ga,1,...,n = T n

α,δ,a,ε on Θ1, for any m ∈ N and any z ∈ A we
have

DTm
α,δ,a,ε(z) = DT r

α,δ,a,ε(G
s
a,1,...,n(z))DGs

a,1,...,n(z),

where s = m mod n and r = m − s. Take z ∈ A having a dense orbit and v =
(vx, vy, 0) ∈ TzA such that

∥∥DGs
a,1,...,n(z)v

∥∥ ≥ κλs for all s, where κ > 0 and λ > 1
are constants. Since T r

α,δ,a,ε is a diffeomorphism for all r = 1, . . . , s− 1 and Gs
a,1,...,n(z)

belongs to the compact set A for all s ∈ N, then there exists a constant c > 0 such
that

∥∥DTm
α,δ,a,ε(z)v

∥∥ =
∥∥DT r

α,δ,a,ε(G
s
a,1,...,n(z))DGs

a,1,...,n(z)v
∥∥ ≥ c

∥∥DGs
a,1,...,n(z)v

∥∥ ,

where c is uniform in r. This proves property (3.1). Property (3.1) is proved similarly.
This shows that the closure clos W u(pa) is a Hénon-like strange attractor of Tα,δ,a,ε.

Remark 3.2. At the boundary of a tongue Aq/n the Arnol′d family Aα,δ has a saddle-
node periodic point θ1. However, the basin of attraction of Orb θ1 still has nonempty
interior, so that the above conclusions hold for all (α, δ) in the closure clos Aq/n.
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3.3 Basins of attraction and invariant circles

In this section we give proofs of Theorems Theorem 3.2 and Theorem 3.3. The setting
of the problem is now briefly recalled, also see Sec. 3.1.2. Suppose K : R2 → R2 is
a dissipative (area contracting) Cn-diffeomorphism, where n ≥ 2. Define the direct
product map

Pα,0 : R2 × S1 → R2 × S1, (x, y, θ) 7→ (K(x, y), θ + α), (3.26)

where S1 = R/Z. We consider Cn-small perturbations Pα,ε of Pα,0, to be written as

Pα,ε : R2 × S1 → R2 × S1,

(x, y, θ) 7→
(
K(x, y) + εfε(x, y, θ, α), θ + α + εgε(x, y, θ, α)

)
,

see (3.11). Here the dependence of Pα,ε on the parameters (α, ε) is Cn. In general
Pα,ε has not a skew-product structure such as the rotating Hénon map (3.4). We
assume that K has a saddle fixed point p = (x0, y0). This corresponds to an invariant
circle Cα of saddle type of Pα,ε at ε = 0. Normal hyperbolicity of Cα guarantees its
persistence under small perturbations, see Proposition 3.2. Our proof of Theorem 3.3
is based on a version of the KAM Theorem holding for finite differentiability. We
begin by proving Theorem 3.2

3.3.1 Basins of attraction: The Tangerman-Szewc argument
generalised

Let K : R2 → R2 be a dissipative diffeomorphism having a saddle fixed point
p = (x0, y0). Suppose the stable and unstable manifolds W s(p) and W u(p) inter-
sect transversally at the homoclinic point q ∈ W s(p) ∩ W u(p), see Figure 3.4. Also
assume that W u(p) is bounded as a subset of R2. The Tangerman-Szewc Theorem

c

d

p

q

∂u

∂s

U ′

Figure 3.4: Segments ∂s and ∂u of the stable and unstable manifold, respectively, of
a saddle fixed point p bound a region U , see text for more explanation.

states that the basin of attraction of the closure of W u(p) contains the open region
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U ′ bounded by the two arcs ∂s ⊂ W s(p) and ∂u ⊂ W u(p) with extremes p and q,
see Figure 3.4. This argument is by now standard, see e.g. [95] Appendix 3. It is
also used to prove existence of strange attractors close to homoclinic tangencies of a
saddle fixed point of a dissipative diffeomorphism, cf. [86, 120, 127].

We first prove Theorem 3.2 for ε = 0. This is a straightforward generalisation of
the above Tangerman-Szewc Theorem. For small ε, the result is obtained by using
persistence of normally hyperbolic invariant manifolds [60] and two transversality
lemmas.

Proof of Theorem 3.2. Consider the circle Cα = Cα,0, invariant under map Pα,0 in
(3.26). The manifolds W u(Cα) and W s(Cα) are given by W u(p)×S1 and W s(p)×S1,
respectively. They intersect transversally at a circle H = {q} × S1, consisting of
points homoclinic to Cα. Consider the two arcs ∂s ⊂ W s(p) and ∂u ⊂ W u(p) with
extremes p and q (Figure 3.4).They bound an open set U ′ ⊂ R2. Define Ds and Du

to be the portions of stable, and unstable manifold of Cα, respectively, given by

Ds = ∂s × S1 ⊂ W s(Cα) and Du = ∂u × S1 ⊂ W u(Cα).

Both surfaces Ds and Du are compact, and their union forms the boundary of the
open region U = U ′ × S1, which is topologically a solid torus.

The volume of U decreases under iteration of Pα,0. Denoting by meas(·) the
Lebesgue measure both on R2 and on R2 × S1, due to Condition 2 in Theorem 3.2 we
have

meas(P n
α,0(U)) = 2π

∫

Kn(U ′)

dxdy = 2π

∫

U ′

|det DKn| dxdy ≤ 2πκn meas(U ′).

This implies that the forward evolution of every point (x, y, θ) ∈ U approaches the
boundary of P n

α,0(U):

dist
(
P n

α,0(x, y, θ), ∂P n
α,0(U)

)
→ 0 as n → +∞.

Indeed, suppose that this does not hold. Then there exists a % > 0 such that for all
n there exists N > n such that the ball with centre PN

α,0(x, y, θ) and radius % > 0 is
contained inside PN

α,0(U). But this would contradict the fact that meas(P n
α,0(U)) → 0

as n → +∞.
The boundary of P n

α,0(U) also consists of two portions of stable and unstable
manifold of C :

∂P n
α,0(U) = P n

α,0(D
s) ∪ P n

α,0(D
u).

The diameter of P n
α,0(D

s) tends to zero as n → +∞, because all points in Ds are
attracted to the circle Cα. Since W u(Cα) is bounded, all evolutions starting in U are
bounded and approach W u(Cα), that is,

dist(P n
α,0(x, y, θ), P n

α,0(D
u)) → 0 as n → +∞

for all (x, y, θ) ∈ U . This implies that ω(x, y, θ) ⊂ clos W u(Cα) for all (x, y, θ) ∈ U .
To extend this result to small perturbations Pα,ε of Fα, the following transversality

lemmas are used.
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Lemma 3.6. [94, 103] Consider a map f : V → M , where V and M are Cr-
differentiable manifolds and f is Cr. Suppose V is compact, W ⊂ M is a closed
Cr-submanifold and f is transversal to W at V (notation: f t W ). Then f−1(W ) is
a Cr-submanifold of codimension codimV (f−1(W )) = codimM(W ). Further suppose
that there is a neighbourhood of f(∂V ) ∪ ∂W disjoint from f(V ) ∩ W , where ∂V and
∂W are the boundaries of V and W . Then any map g : V → M , sufficiently Cr-close
to f , is also transversal to W , and the two submanifolds g−1(W ) and f−1(W ) are
diffeomorphic.

Lemma 3.7. [59] Let V1, V2, and M be Cr-differentiable manifolds and consider
two diffeomorphisms fi : Vi → M , i = 1, 2. Then f1 t f2 if and only if f1 × f2 t ∆,
where f1×f2 : V1×V2 → M ×M is the product map and ∆ ⊂ M ×M is the diagonal:
∆ = {(y, y) | y ∈ M}.

Fix r ∈ N and take ε < εr, where εr is given in Proposition 3.2. Then the map
Pα,ε has an r-normally hyperbolic invariant circle Cα,ε of saddle type. Furthermore,
the manifolds W u(Cα,ε), W s(Cα,ε), and Cα,ε are Cr-close to W u(Cα), W s(Cα), and Cα.
We now show that the two manifolds W u(Cα,ε), W s(Cα,ε) still intersect transversally.
To apply Lemma 3.6 we restrict to two suitable compact subsets Au ⊂ W u(Cα) and
As ⊂ W s(Cα) as follows. Consider the segments pc ⊂ W u(p) and pd ⊂ W s(p) in
Figure 3.4. Define

Au = pc × S1, As = pd × S1.

In this way, the circle H is the intersection of the manifolds Au and As, bounded
away from their boundaries. Consider the inclusions i : Au → M and j : As → M .
By the closeness of W u(Cα) to W u(Cα,ε) there exists a Cr-diffeomorphism h : Au →
Au

ε ⊂ W u(Cα,ε) such that the map i is Cr-close to iε ◦ h, where iε : Au
ε → M is the

inclusion [94]. Similarly, there exists a diffeomorphism k : As → As
ε ⊂ W s(Cα,ε) such

that the map j is Cr-close jε ◦ k, where jε : As
ε → M is the inclusion. By Lemma 3.7

the map i × j : Au × As → M × M is transversal to the diagonal ∆. For ε small, the
map (iε ◦ h) × (jε ◦ k) : Au × As → M × M is Cr-close to i × j:

Au × As i×j−−−→ M × M

h×k

y

Au
ε × As

ε

iε×jε−−−→ M × M.

Since ∆ is closed and Au × As is compact, Lemma 3.6 implies that there exists an
ε∗, with 0 < ε∗ < εr, such that (iε ◦ h) × (jε ◦ k) t ∆ for ε < ε∗. Furthermore, the
submanifolds

(i × j)−1(∆) and
(
(iε ◦ h) × (jε ◦ k)

)−1
(∆)

are diffeomorphic. We also have that
(
(iε ◦ h) × (jε ◦ k)

)−1
(∆) is diffeomorphic to

Au
ε ∩ As

ε, and (i × j)−1(∆) = Au ∩ As = H .
This shows that the intersection Hε = Au

ε∩As
ε is diffeomorphic to H . Define Du

ε as
the part of W u(Cα,ε) bounded by the invariant circle Cα,ε and the circle of homoclinic
points Hε. Define Ds

ε = k(Ds) similarly. Then the manifolds Du
ε ⊂ W u(Cα,ε) and

Ds
ε ⊂ W s(Cα,ε) form the boundary of an open region U ⊂ M homeomorphic to

a torus. By the closeness of the perturbed manifolds W s(Cα,ε) and W u(Cα,ε) to the
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unperturbed W s(C ) and W u(C ), both U and W u(Cα,ε) are bounded. Also notice that
Pα,ε is dissipative: by taking ε∗ small enough, we ensure that |det(DF (x, y, θ))| < c̃ <
1 for all ε < ε∗ and (x, y, θ) in U . Therefore, all forward evolutions beginning at
points (x, y, θ) ∈ U remain bounded. Like in the first part of the proof, one has

ω(x, y, θ) ⊂ clos W u(Cα,ε)

for all (x, y, θ) ∈ U , α ∈ [0, 1] and ε < ε∗.

3.3.2 Quasi-periodic invariant circles

So far, we did not discuss the dynamics in the saddle invariant circle Cα,ε of map
Pα,ε in (3.11). Generically, the dynamics on Cα,ε is of Morse-Smale type. In this
case, the circle consists of the union of the unstable manifold of some periodic saddle.
Theorem 3.3 describes a complementary case, for which the dynamics is quasi-periodic.
Fix τ > 2 and define the set of Diophantine frequencies Dγ by

Dγ =

{
α ∈ [0, 1] |

∣∣∣∣α − p

q

∣∣∣∣ ≥ γq−τ for all p, q ∈ N, q 6= 0

}
, (3.27)

where γ > 0. Since we will apply a dissipative version of the KAM theorem in the case
of finite differentiability (see [17, 18]), a certain amount of smoothness of the circle
Cα,ε is needed, depending on the Diophantine condition specified in (3.27). Therefore
we require that the perturbed family of maps Pα,ε is Cn, for n large enough.

Proof of Theorem 3.3. Consider map Fα in (3.26), and let p = (x0, y0) be a saddle
fixed point of the dissipative diffeomorphism K. The invariant circle Cα,0 of Fα can
be seen as a graph over S1:

Cα,0 =
{
(θ, x0, y0) ∈ R2 × S1 | θ ∈ S1

}
.

Fix r ∈ N large enough and ε < εr, where εr is taken as in Proposition 3.2. By the
Cr-closeness of Cα,0 and Cα,ε (Proposition 3.2), the circle Cα,ε of Pα,ε can be written
as a Cr-graph over S1:

Cα,ε =
{
(θ, xε(θ), yε(θ)) ∈ R2 × S1 | θ ∈ S1

}
, (3.28)

where xε : S1 → R, xε(θ) = x0 + O(ε), and similarly for yε(θ). So the restriction of
Pα,ε to Cα,ε has the following form

Pα,ε
∣∣
Cα,ε

: Cα,ε → Cα,ε, Pα,ε(θ) = θ + α + εgε(x0, y0, θ, α) + O(ε2).

By (3.28), we may consider Pα,ε as a map on S1. Fix γ > 0, τ > 3 and take Dγ

as in (3.27). For α ∈ Dγ, the map Pα,ε can be averaged repeatedly over the circle,
putting the θ-dependency into terms of higher order in ε, compare [23, Proposition
2.7] and [29, Sec. 4]. After such changes of variables, Pα,ε is brought into the normal
form

Pα,ε(θ) = θ + α + c(α, ε) + O(εr+1).
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In fact, it is convenient to consider α as a variable, and to define the cylinder maps

Pε : S1 × [0, 1] → S1 × [0, 1], Pε(θ, α) = (Pα,ε(θ), α)

R : S1 × [0, 1] → S1 × [0, 1], R(θ, α) = (Rα(θ), α),

where Rα : S1 → S1 is the rigid rotation of an angle α. We now apply a finite
differentiability version of the KAM Theorem to the family of diffeomorphisms Pε,
see e.g. [17, 18]. There exists an integer m with 1 ≤ m < r and a Cm-map

Φε : S1 × [0, 1] → S1 × [0, 1], Φε(θ, α) = (θ + εA(θ, α, ε), α + εB(α, ε)), (3.29)

such that the restriction of Φε to S1 × Dγ makes the following diagram commute:

S1 × Dγ
R−−−→ S1 × Dγ

Φε

x Φε

x

S1 × Dγ
Pε−−−→ S1 × Dγ .

The differentiability of Φε restricted to S1 × Dγ is of Whitney type. Since Pα,ε
∣∣
Cα,ε

is Cm-conjugate to a rigid rotation on S1, the circle Cα,ε is in fact Cm. This proves
parts 1 and 2 of the Theorem.

Furthermore, the constant γ in (3.27) can be taken equal to εr. This gives that
the measure of the complement of Dγ in [0, 1] is of order εr as ε → 0.

3.4 Overview and future research

In this Chapter we prove that Hénon-like strange attractors occur in a family Tα,δ,a,ε

of diffeomorphisms of the solid torus R2 × S1. The family Tα,δ,a,ε is a perturbation
of the quadratic family Qa(x) = 1 − ax2, and has a skew-product structure over S1.
The strange attractors we obtain coincide with the closure of the one-dimensional
unstable manifold W u(Orb(p)), where Orb(p) is a hyperbolic periodic orbit of saddle
type which is a sink for the restriction of Tα,δ,a,ε to S1.

In a slightly different context, we show that the invariant set clos W u(C ) attracts
an open set of points, where C is an invariant circle of saddle type. This is proved
for a family Pα,ε of diffeomorphisms of R2 × S1, obtained as follows. We first consider
the direct product of a rigid rotation on S1 with a diffeomorphism of R2 with a
saddle fixed point having a point of transversal homoclinic intersection. Then Pα,ε is
a perturbation of this product map.

Future research will focus on scenario’s in which A = clos W u(C ) is a strange
attractor, i.e., it is topologically transitive and has a dense orbit with a positive Lya-
punov exponent, where C is a quasi-periodic invariant circle of saddle type. Attractors
having these properties are called quasi-periodic Hénon-like attractors, see Chapter
two and compare the numerical examples in Figures 3.3 and 3.5. Similar types of
attractors have been found in several numerical studies [65, 66, 74, 91, 119].

We like to mention three other points of interest related to the above problem.
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1. Consider first the strange attractors we obtain for the map Tα,δ,a,ε (3.4), see
Theorem 3.1 and compare Figure 3.1. An open problem is to characterize the
bifurcations occurring when approaching the boundary of a resonance region for
the dynamics in S1 (Arnol′d tongue). This corresponds to the transition from
Hénon-like to quasi-periodic Hénon-like attractors.

2. Secondly, the transition between the strange attractors obtained in Theorem 3.1
for the map Tα,δ,a,ε (3.4), and the attractors for maps which are perturbations of
Tα,δ,a,ε where the skew-product structure is slightly perturbed, e.g., by adding
terms depending on (x, y) to the angular dynamics.

3. Finally, the transition from attractors of Tα,δ,a,ε (3.4), for which δ = 0 and
α irrational to attractors of maps which are perturbations of Tα,δ,a,ε as in the
previous item.

In all cases homoclinic bifurcations [95] are likely to play a fundamental role.
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Figure 3.5: (A) Attractor of map (3.10) in the quasi-periodic case. Parameter values
are fixed at a = 0.8, b = 0.4, δ = 0, α = (

√
5 − 1)/2, ε = 0.7, initial conditions

x0 = 1.5, y0 = 0, θ0 = 0. Projection on the (θ, y)-plane. (B) Same as (A), with
projection on the (x, y)-plane in the background (in grey) with ‘slices’ of the attractor
2πθ ∈ [0.1 × j, 0.1 × j + 0.001], for j = 0, 1, . . . , 62 (in black).




