
 

 

 University of Groningen

Fascinating vesicles?
Risselada, Herre Jelger

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2009

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Risselada, H. J. (2009). Fascinating vesicles?. s.n.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 03-06-2022

https://research.rug.nl/en/publications/6ee1da46-4a6d-42e9-b74a-c6c8f07a4e61


Chapter 2

The application of mean field boundary
potentials in simulations of lipid vesicles

H. Jelger Risselada, Alan E. Mark and Siewert J. Marrink

J. Chem. Phys. B 2008, 112, 7438–7447

This chapter presents a method to enhance the efficiency of simula-

tions of lipid vesicles. The method increases computational speed

by eliminating water molecules that either surround the vesicle or reside

in the interior of the vesicle, without altering the properties of the wa-

ter at the membrane interface. Specifically MFFA (Mean Field Force Ap-

proximation) boundary potentials are used to replace both the internal

and external excess bulk solvent. In addition to reducing the cost of sim-

ulating preformed vesicles, the molding effect of the boundary potentials

also enhances the formation and equilibration of vesicles from random

solutions of lipid in water. Vesicles in the range of 20 to 60 nm diameter

were obtained on a nanosecond timescale, without any noticeable effect

of the boundary potentials on their structure.

2.1 Introduction

Lipids are small amphiphatic molecules that can adopt a wide variety of

aggregation states including micelles, lamellae and vesicles. In the vesic-

ular state the lipids form a closed spherically bilayer. Such vesicles, or

liposomes, play an important biological role in processes such as endo-
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and exo-cytosis, intracellular transport as well as providing nanoscale re-

action vessels. Lipid vesicles are also used in drug delivery applications,

and serve as model systems for experimental studies of cell processes.

The length scales of vesicular systems in vivo ranges from nanometers to

micrometers (whole cells). In model systems, a similar range in size can

be achieved, depending on the type of experimental techniques used.

The smallest vesicles are referred to as SUVs (Small Unilamellar Vesi-

cles) whereas the largest, approaching the size of whole cells, are termed

GUVs (Giant Unilamellar Vesicles).

A wide variety of computational studies have been performed to un-

derstand the behavior of lipid vesicles at the molecular level.23, 25–35 These

studies have been typically based on simplified, coarse grained, lipid

models although processes such as spontaneous vesicle formation and

vesicle fusion have even been simulated in full atomistic detail.36, 37 How-

ever, due to the computational cost of such calculations the size of the

vesicles that can be considered using presentmethods is limited to around

20 nm in diameter, close to the minimum size of a vesicles that can be

formed experimentally by sonication.24 Such small vesicles are onlymargi-

nally stable due the large curvature stresses involved and simulation

studies of fusion between vesicles on this length scale indeed show ex-

tremely fast kinetics, with fusion completed on a nano- to microsecond

time scale.28–30, 34, 38 The effect of curvature is also evident in other mea-

sures, such as the melting temperature of the lipids. For pure DPPC vesi-

cles it is found experimentally that the phase transition temperature de-

creases with decreasing the diameter of the vesicle below a threshold of

≃ 70 nm.39, 40 Such behavior as a function of temperature is also observed

for small vesicles in simulations.13 Although increases in computational

power will make it possible to gradually increase the size of vesicles that

can be studied in molecular or atomic detail, in order to reach more re-

alistic sizes (exceeding 100 nm) alternative approaches to describe the
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system are required.

Several methods have been proposed to bridge the gap between de-

tailed atomistic MD simulations and the micrometer lipid vesicles of ex-

perimental interest. All methods rely on reducing the number of degrees

of freedom and replacing them with mean field descriptors. In the work

of Ayton et al. 41 the physical properties from an atomistic MD study of

a PC bilayer were used together with other microscopically determined

parameters, to obtain a continuum-level model operating in time- and

length-scales orders of magnitude beyond that which is accessible by

atomistic-level simulation. In the work of Sevink et al. 42 the full kinetic

pathways of self-assembly of polymeric amphiphiles into a rich variety of

complex vesicles was demonstrated by large-scale computer simulations

based on dynamic self-consistent-field theory. Although these methods

succeed in describing the system on a micrometer length scale the ap-

proximations made result in the loss of the nanoscopic details of interest.

Another solution is to resort to a complete solvent free model. Several

groups have successfully demonstrated the formation of vesicles using

this approach.26, 27, 31–33, 43 In principle such methods allow one to maintain

detailed models for the lipid molecules, however, the drawback is that

many processes depend directly or indirectly on the explicit present of

water, for example processes such as pore formation, vesicle deforma-

tions and osmotic swelling. In addition, hydrodynamic interactions are

absent in a solvent free approach.

The aim of the method presented in this chapter is to bridge toward

larger time- and length scales preserving the nanoscopic details, includ-

ing those of the solvent. We propose the use of a boundary potential

which includes explicitly a shell of water around the vesicles, but ex-

cludes the bulk water present in the vesicle interior or surrounding the

vesicle. As most of the computational time of a vesicular system is spent
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on simulating the surrounding and interior water, reducing the number

of mulecules in the system in this way achieves a significant increase in

computational efficiency, without losing bulk properties at themembrane

interface. The ratio of the accessible volume of the interior water Vint in-

side a vesicle versus the total volume of vesicle Vtot scales as,

Vint

Vtot
∝

(r − d)3

r3
(2.1)

where r is the radius of a vesicle and d the thickness of the membrane.

Equation 2.1 shows that if the vesicle size is increased, r >> d, the in-

terior water dominates the volume fraction inside the system. As one is

interested in processes that occur primarily at or near the vesicular mem-

brane, simulating the bulk water in the interior of the vesicle is unneces-

sary as is simulating the excess solvent outside of the vesicle. Given that

vesicles are spherical objects, the use of periodic boundary conditions is

inefficient as it requires a simulation box with a space filling geometry.

Even in the most efficient unit cell for such a system, the dodecahedron,

the solvent is not distributed evenly around the vesicle.44 Ideally, from

a computational point of view a vesicle could be surrounded by a small

water shell on both the inside and the outside of the vesicle, just sufficient

to maintain its bulk properties close to the membrane interface.

One method to obtain this is by introducing a solvent boundary po-

tential, which gives a finite representation of an infinite bulk system.45–47

In the work of Brooks and Karplus 46 a soft MFFA (Mean Field Force Ap-

proximation) potential was introduced to represent the interactions of a

solvent in the reservoir region on the reaction region. This method did

not include the long range electrostatic corrections due to the polar na-

ture of the surrounding bulk water. Later methods included these elec-

trostatic effects by various approaches.48–51 However, in all studies cited,

it has proved difficult to obtain the isotropic behavior of a solvent near

the boundary interface. Especially when electrostatic interactions were
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involved, like in water, a more anisotropic behavior in both angular- and

radial distribution functions was observed.

A concern of simulating vesicles within a (spherical) constrained sol-

vent shell is the bias in possible shape undulations c.q. deformations of

the vesicle. However, these artifacts are similar to the bias which is intro-

duced by simulating vesicles in a periodic system of similar length scale,

where the vesicle feels, either directly or through the solvent, its peri-

odic image. Boundary methods dealing with flexible boundaries have

also been introduced. Li et al. 52 presented a fluctuating elastic boundary

model which encloses the simulated system in an elastic bag that mim-

ics the effects of the bulk solvent. This boundary bag was modeled as

a mesh of quasi-particles connected by elastic bonds, its motions gov-

erned by a diffusion equation. Although all shape deformations of the

vesicles are possible with such an approach, they are highly affected by

the choice of the elastic bond constants and the diffusion equation which

are a priori not known. In practice, the computational expenses of solv-

ing the equations of motion of these quasi-particle approaches as well as

thememory needed for storing themesh connections scales quadratically

with the system size, whereas the computational effort to apply a mean

field potential representing the boundary of the system is cheap and in-

dependent of the system size.

In this chapter, we apply the MFFA-approach of Brooks et al. 46 to min-

imize the amount of water in both the interior and exterior of the vesicle.

This approach has already been successfully used by others in the sim-

ulation of small membrane patches.53, 54 The application of this approach

in vesicle simulations has never been studied. Our approach has espe-

cially been developed for use in conjunction with the coarse grained lipid

model of Marrink et al.55, 56 The water in this model is represented sim-

ply by Lennard-Jones interactions, lacking any electrostatic interactions
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or rotational axis. In this case the boundary potential only represent the

mean effect of a pure Lennard-Jones fluid. Complications arising from

the integration of long range electrostatic forces, as with all-atom force

fields using Ewald-based summation methods in conjunction with the

boundary method, are therefore not present in our model. Likewise, ar-

tifacts in the isotropic behavior of the solvent (e.g. rotational ordering at

the boundary interface resulting in a net dipole moment 48–51) do not play

a role in the current application.

The aim of the this current work is to demonstrate that lipid vesicles

can be efficiently simulated using the MFFA boundary approach. The

largest vesicle studied here is 60 nm in diameter, triple the size simu-

lated previously in near atomic detail.23 Moreover, we show that due to

the molding effect of the boundary potentials the process of formation

of equilibrated vesicles from initially random lipid solutions is extremely

fast (nanosecond time scale). The remainder of the chapter is organized

as follows. In the next section, the implementation of the boundary po-

tential for vesicular systems is explained along with measures taken to

control the temperature and pressure of the system. The methodology is

then tested on two systems, namely a shell of bulk water and a planar

lipid membrane. We finally show that the methodology can be applied

very efficiently to simulate the formation and subsequent equilibration

of a range of vesicles of increasing size.

2.2 Methods

2.2.1 The spherical MFFA boundary potential

The approach that is used in this work is analogous to that of Brooks

et al.46 The coordinate system chosen in the original integration scheme

presented by Brooks et al. is, however, suffering in numerical precision
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when the ratio between the radius of the boundary cutoff Rcut and the

radius of the spherical boundary R becomes large, which is the case for

the systems of interest in this study. Moreover, it should be noted that in

the original integration scheme an additional factor of two was errane-

ously introduced, leading to an overestimation of the magnitude of the

MFFA potential also by a factor of two. Here we present a more robust,

alternative way of solving the MFFA potential for any particular water

shell of interest.

Consider a spherical system of radius R embedded in an implicit sol-

vent continuum (see figure 2.1). The total force on a particle at a distance

r0 from the center of the sphere is due to interactions with all particles

within the cutoff sphere Rcut. When r0 + Rcut > R, part of the volume

fraction of the cutoff sphere Rcut will be located within the continuum.

In this case the total force on the particle at r0 is due to the interactions

with the explicit particles as well as the interactions with the continuum.

The contribution to the total force from the explicit particles within the

solvent shell is just the normal sum over pair interactions employed in

molecular dynamics. The contribution of the continuum to the total force

on the particle at r0, is given by summing all interactions from all possi-

ble positions within the continuum weighted by the probability ρg(r) of

finding an implicit particle at distance r from r0. Here ρ is the mean den-

sity and g(r) the normalized radial distribution function of the reference

solvent. The mean field boundary force from the implicit solvent acting

on a particle at r0 is given by (see figure 2.1, A):

Fw(r0) = 2π

∫ θmax

0

sin(θ)dθ

∫ lcut(θ)

R

r2ρg(r)F (r)dr (2.2)

By applying the cosine theorem on the projections in figure 2.1 the
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Figure 2.1: Conceptual picture of the MFFA boundary potential. Shown in cartoon A is the

integration scheme for the case where the virtual region is outside the spherical simulation zone.

Shown in B is the case were an internal cavity is present inside the simulation zone. A particle

lies within position r0 from the center of the simulation zone. The particle interacts with a virtual

particle outside the simulation at distance r. lcut is the distance between the particle at position

r0 and the point where r intersects with the simulation sphere R. The grey sphere depicts the

interaction cutoff Rcut.

boundary condition of this convolution integral is solved. The angle θmax

is determined from r0, R and Rcut and gives:

θmax = arccos(
R2 − r2

0 − R2
cut

2r0Rcut
) (2.3)

The distance lcut is given by:

lcut(θ) = −r0cos(θ) +
√

r2
0cos

2(θ) − r2
0 + R2 (2.4)

The quantity F (r) is the radial component of the force along the direc-
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tion r0, where r0 = (ix0, iz0, iy0) is the vector connecting the particle at r0

and the center of the reaction zone.

F (r) = rcos(θ)
(dV

dr

)
(2.5)

with dV
dr denoting the derivative of the pairwise potential interaction

function with respect to r. Hence, only its radial component is required

due to the azimuthal symmetry around r0. The overall boundary force

Fw(r0) can be decomposed into its x,y,z component in the reference frame

by:

FB(r̂0) = r̂0Fw(r0) (2.6)

Where r̂0 = r0/r0, represents the unit normal vector along r0. Accord-

ing to the same procedure, the boundary force from the inverted case,

where a cavity is surrounded by the simulation zone can also be obtained

(see figure 2.1, B). In this case θmax in equation 2.3 is given by:

θmax = arccos(
R2

cut + r2
0 − R2

2r0Rcut
) (2.7)

and lcut(θ) in equation 2.4 as:

lcut(θ) = r0cos(θ) −
√

r2
0cos

2(θ) − r2
0 + R2 (2.8)

A schematic picture of the MFFA boundary potential is given in figure

2.2. Particles moving toward the boundary first experience a net attrac-
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tive force. When particles approach the boundary more closely they will

experience a repulsive force. The strength of this repulsive force is soft in

comparison to the normal Lenard Jones interactions of the solvent. The

nature of the mean field force potential is to compensate the surface ten-

sion at the boundaries which would otherwise occur in a system having

a finite size.

By combining both approaches any solvent shell of interest, with inner

radiusRin and outer radiusRout, can be obtained. As theMFFA boundary

potential is numerically solved and therefore in practice a tabulated force

potential, it has a finite range. To prevent particles overcoming the repul-

sive barrier of the boundary an additional repulsive harmonic potential

is applied to the particle in the region r0 ≦ Rin and r0 ≧ Rout. The force

constant of this harmonic potential is obtained from a linear fit of the

repulsive tail region of the tabulated force potential. The MFFA bound-

ary potential method was implemented in the GROMACS-3.3 simulation

package.57

Figure 2.2: Cartoon depicting the overall simulation setup. The left cartoon shows the cross

section of a detailed fragment of the system. The picture right shows a overview of the cross

section of the entire system, a vesicle under spherical MFFA boundary conditions. The reaction

zone contains the membrane and CG water under conventional Newtonian dynamics. In the

light grey region the CG water is subjected to theMFFA boundary potential. The plotted curved

line depicts the MFFA boundary potential. The dashed extension of this line represents the addi-

tional harmonic potential which compensates the finite nature of the tabulated MFFA boundary

potential beyond the boundaries.
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2.2.2 Temperature control

Commonly when using a MFFA like boundary stochastic coupling of

the boundaries is used as an external heat bath to maintain constant

temperature, e.g. in the EGO simulation software package.58 However,

for the large systems considered in this study the ratio of surface area

to volume meant that the implementation of a stable algorithm for a

stochastic boundary zone required either a strong reduction of the in-

tegration time step or a much more frequent update of the neighbor pair

list to improve energy conservation, compared to the values achievable

in standard membrane simulations using the CG model.55 Both of these

requirements would render the overall aim of the boundary potential ap-

proach, i.e. to improve the computational efficiency of the simulations,

ineffective. For this reason in the applications described in this chap-

ter, we use the Berendsen thermostat method 59, although it should be

noted that, strictly speaking, the Berendsen thermostat does not generate

a proper NVT/NPT ensemble. In contrast with the Berendsen thermo-

stat, stochastic boundaries include both thermal and density relaxations

simultaneously, compensating the sparse nature at the boundaries. As

this stochastic effect ismissing in the Berendsen thermostatmethod, there

is increased local order near the boundaries, effectively lowering the ki-

netic barrier of freezing for the solvent near the boundaries.

In order to prevent freezing of the CG water near the boundaries in

studies where the temperature is close or even lower than the melting

temperature of the solvent, a simple solution was adopted. To prevent

the development of long range order and the appearance of a crystal lat-

tice at the boundary interface, so called antifreeze (AF) particles were

introduced.56 These AF particles interact differently with different parti-

cles. For all particles other than the CGwater their interaction is the same

as for CG water. For the interaction between the AF and the CG water

the LJ parameter σ is changed from 0.47 nm to 0.57 nm, making the AF
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particles effectively larger. The optimal packing of the CG water at the

boundaries is thus disrupted. A concentration of ≈ 5% of AF particles in

the shell is sufficient to prevent the freezing near the boundaries down to

temperatures tens of degrees below the freezing point of pure CG water

(around 290 K 56). In section 2.3.2 we describe results from test runs on

bilayers, showing that the properties of the bilayer were unaffected by

the introduction of AF particles.

2.2.3 Pressure control

The MFFA boundary potential method provides a system in the NVT-

ensemble, although the nature of the potential is soft and the effective

volume might show small fluctuations. If the method is to be applied

to study processes such as vesicle formation or phase transitions where

changes in density can occur the NPT-ensemble is more appropriate. In

addition the NPT-ensemble allows a better comparisonwith experiments

often performed under atmospheric pressure. There are two basic ways

to define pressure in a non-periodic MFFA boundary system: The most

straightforward way to define pressure in a non-periodic system is by

summing the external boundary contributions Fb over all particles N and

dividing it by the total boundary surface A. The external pressure Pext is

thus given by:

Pext =
1

A

N∑

i=1

Fb,i (2.9)

Assuming that the internal mean pressure Pint is uniformly distributed

throughout the system, Pint = Pext, and the internal pressure can be ob-

tained using formula 2.9. However when there is a net surface tension at

the boundary, Pint 6= Pext, due to the induced Laplace pressure contribu-

tion. As the coupling to an external pressure bath will give rise to volume

fluctuations, the boundary curvature will also show fluctuations as Fb(r0)
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in equation 2.2 is dependent on the boundary curvature. Therefore, al-

though the mean field force potential is designed to minimize the net

mean surface tension, due to fluctuations in curvature and the (numeri-

cal) precision of the MFFA-potential fit itself a small net surface tension

might still occur. For this reason a more robust way to define the internal

pressure based on the work of Schofield and Henderson 60 was used:

[p]Ω,int =
2([K]Ω − [Θ]Ω,int)

3VΩ
(2.10)

In this approach the internal pressure is given by:

Pint = [p]Tr
Ω,int (2.11)

Formula 2.10 gives the pressure tensor within every macroscopic sub-

region Ω. Here [K]Ω is the kinetic energy tensor of the atomswithinΩ and

[Θ]Ω,int is the internal virial tensor. The quantity VΩ denotes the volume

of Ω. For the entire system,

V =
4

3
π(R3

out − R3
in) (2.12)

withRout the radius of the outer boundary potential and Rin the radius

of the inner boundary potential. Due to the particle interactions with

the boundary the internal virial tensor [Θ]Ω,int can be decomposed in two

parts:

[Θ]Ω,int = [Θ]Ω,int,pairs + [Θ]Ω,int,wall (2.13)

The first part, [Θ]Ω,int,pairs, results from the direct pair interactions be-

tween all particles in the system. The second part , [Θ]Ω,int,wall, results

from the interactions of particles with the boundary.

To obtain the virial contribution coming from the direct pair interac-

tions, [Θ]Ω,int,pairs, all boundary force contributions acting on atom i are

neglected. Therefore the single sum internal virial tensor [Θ]Ω,int,pairs in

this non periodic system is given by:
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[Θ]Ω,int,pairs = −
1

2

N∑

i=1

(F̂i − F̂b,i) ⊗ r̂i (2.14)

where Fi is the total force and Fb,i the boundary force acting on atom i.

The virial contribution coming from the interactions of particles with

the boundary [Θ]Ω,int,wall is given by:

[Θ]Ω,int,wall = k

N∑

i=1

Fb,i ⊗ r̂center,i d(i) (2.15)

where r̂center,i is the unit normal factor connecting the center of the

spherical system with the particle i and d(i) being the distance to the

boundary along r̂center,i. It should be noted that d(i) > 0 when the parti-

cle is located in the region within the boundaries and d(i) < 0 when the

particle resides outside of the boundaries. The latter is possible due to the

soft nature of the boundary potential. The prefactor k has a value of −1

when summing the contributions coming from the outer boundary and

1 when summing the contributions coming from the inner boundary. In

practice, the calculation of the boundary virial contribution [Θ]Ω,int,wall is

done within the same single loop as the calculation of the boundary force

on each particle.

A convenient and simple way to control the pressure in the system is

by coupling to a Berendsen barostat.59 To maintain the systems unifor-

mity and to prevent the build up of additional pressure inside for ex-

ample, a vesicle, the whole system is subjected to isotropic scaling i.e.

scaling both inner and outer radius as well as all atomic coordinates with

the same scaling matrix µ. The form of the boundary potentials remains

fixed however. The effect of scaling R on theMFFA-potential is negligible

for the size of system of interest in this work. For instance, the standard

deviation in the effective radius of a pure water system at T = 323 K is

only about 2% for R = 10 nm.
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2.2.4 Simulation setup

CG-model: All simulations were performed using the MARTINI coarse

grained (CG) model (cf. chapter 6), version 1.4, using an integration time

step of 40 fs. The simulation times reported in this chapter represent the

corresponding real times.

Pure water: To test themethod and its implementation a system of pure

CG water in a spherical shell with Rin = 10 nm and Rout = 22 nm was

simulated at a temperature of 323 K and a pressure of 1 bar using the

MFFA boundary conditions. The MFFA-potentials were calculated using

equation 2.2. The radial distribution function in equation 2.2 was ob-

tained from a NPT-simulation of 1500 CG water beads under periodic

boundary conditions at 323K and 1 bar. For the cutoff of the MFFA-

potential the same values were chosen as for the normal cutoff of the

pairwise interactions, 1.2 nm. Pressure and temperature were coupled to

an external bath using the Berendsen coupling method (τP=τT = 1.0 ps−1,

β = 5*10−5 bar−1).59 Both rigid body linear- and angular momentum were

removed every time step.

Lipid bilayer: To test any possible effect of the MFFA boundary ap-

proach on the bilayer structure, the periodicity along the Z-axis of a pe-

riodic bilayer system was removed and replaced by two MFFA bound-

ary potentials. The MFFA boundary potentials were derived for a planar

system in a similar way as in equations 2.2 - 2.6. An equilibrated DPPC

bilayer patch consisting of 128 lipids, taken from a conventional simula-

tion under periodic boundary conditions, was placed within the reaction

zone of the MFFA boundary system. A CG solvent layer of 2.5 nm thick-

ness was placed between themembrane patch and theMFFA boundaries.

Additionally, to test any possible effects on the membrane properties of

the MARTINI antifreeze particles in conjunction with the MFFA method,

a solvent consisting of 5% antifreeze particles was used.
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Vesicles: In order to study the formation of vesicles of increasing size,

five different systems corresponding to vesicles with diameters of 20, 30,

40, 50 and 60 nm were prepared. The number of lipids required to form

the desired vesicle size was estimated from the area per lipid of a CG sim-

ulation of a DPPC membrane at 323K. From the area per lipid (0.64 nm2)

and the lateral phosphate-phosphate distance (4 nm) the required num-

bers were calculated assuming that the total average area per lipid of both

the monolayers of the vesicle is close to this value, see table 2.1. Control

simulations in which a greater or lesser number of lipids were used were

also performed. The starting configurations were obtained by copying

a small cubic periodic box, containing a randomly mixed DPPC:water

system, multiple times into a simulation box which embeds the spheri-

cal shell of interest. The spherical shell was then cut from the simulation

box. To obtain a smooth starting configuration, a maximum of 1 DPPC

tail bead per lipid was allowed to be out of the spherical shell. If this

criterion was not fulfilled, then the excess DPPC-beads were removed

and the remaining beads were converted into CG-water beads. Alterna-

tive starting configurations were prepared by removing all lipids within

a distance of 2-2.5 nm from the boundary so that a layer of pure solvent

surrounded the lipid solution. During the simulations, the lipids were

subjected to either the same MFFA boundary potential as the water (non

selective) or to a purely repulsive potential (selective). This repulsive po-

tential was harmonic in nature and was intended to bias the diffusion of

the lipids toward the central zone, thus enhancing the rate of vesicle for-

mation.

Spontaneous aggregation: As a control, the structural properties of the

vesicles formed using the MFFA boundary approach were compared to

the structure of vesicles formed by using the spontaneous aggregation of

lipids in a fully periodic system. To gain insight into the rate of vesicle
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formation under different boundary conditions the simulation of the 20

nm vesicle (table 2.1) was also performed in a 28 nm cubic periodic box

at the same state point, but with 2528 DPPC lipids randomly distributed

within a sphere of radius 13 nm. The remaining volume in the box was

filled with CG-water. This simulation was performed in duplicate start-

ing from different lipid distributions.

Artificial pores: In a similar fashion to the spherical MFFA approach,

cylindrical shaped boundaries were also implemented. By restraining

the carbon tails in the lipids, these boundaries were used to induce pores

inside the membrane of any chosen size.61 When the restraining force has

both repulsive and attractive contributions, a pore is formed in which

the carbon tails are forced to form the interface of the pore (hydropho-

bic pore). Due to its hydrophobic nature such a pore is energetically

unfavorable, however the edge tension induced at the pore interface is

compensated by the attractive contribution from the potential. When

only repulsive contributions are present the membrane is free to chose

its most favorable pore structure. In the case of DPPC (CG-model), when

the restraining radius on the tails is greater than 1.2 nm, the interface of

a pore is completely formed by the lipid head groups (hydrophilic pore).

In such a pore the lipids can freely exchange (flip-flop) between the two

monolayers allowing the membrane to equilibrate. Using this approach

several pores can be induced in the liposome while still conserving its

curvature and shape. In this way, a metastable liposome is able to relax

to its lowest thermodynamical state. Moreover, the ratio in flip-flops be-

tween the two monolayers provides a useful criterion to determine the

state of equilibrium of a given vesicle.
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Table 2.1: System setup for vesicle simulations.

Vesicle Rin Rout # DPPC # W (GC)

diameter (nm) (nm) (nm)

20 2.5 12.5 2528 43303

30 6.0 18.0 5915 140811

40 10.0 22.0 10529 242720
1 5915 298088
2 11354 232820

50 15.5 27.5 18271 374408

60 20.0 32.5 27384 639722

1 System containing an insufficient number of lipids to form a vesicle.
2 System containing a number of lipids in excess of that required to form a vesicle.

2.3 Results

2.3.1 Test case : Pure water
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Figure 2.3: A plot of the temperature and density distribution throughout the simulation shell

for a pure CGwater system at 323 K in the NPT-ensemble. Relative values are given with respect

to the reference values of conventional MD in the same ensemble.

Figure 2.3, shows the density and temperature profile for a 40 ns simu-

lation of pure CGwater at 323K in theNPT-ensemble usingMFFA bound-

ary potentials at Rin = 10 and Rout = 22 nm. While some ordering in the
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density profile is evident near the boundary, this fades within 2 nm of

the boundary giving the normal isotropic bulk properties. Therefore, to

diminish artifacts at the edges of the reaction zone of interest the width of

buffer zone is ideally >2 nm. The density in the reaction zone is in good

agreement with conventional MD simulation of CG-water.

2.3.2 Test case : Lipid bilayer

Figure 2.4 shows the comparison of the lateral density and pressure pro-

file for a 128 lipids DPPC bilayer under periodic boundary conditions

with ’pure’ CG-water (conventional setup) or underMFFA-boundary con-

ditions with the addition of 5% antifreeze particles (boundary setup).

Figure 2.4 demonstrates that apart from some minor differences, both

the pressure and density profile obtained with the boundary setup are in

good agreement with the results obtained with the conventional setup.

The minor differences are related to the presence of the antifreeze parti-

cles rather than the presence of the MFFA boundaries. The bilayer pro-

files obtained without the antifreeze particles are almost indistinguish-

able between the boundary and conventional setup (data not shown).

Comparison of the distribution of the relative densities for normal and

antifreeze water reveals that the antifreeze particles are somewhat re-

pelled from the interface. Although one could, in principle, further fine-

tune the interactions between antifreeze particles and the particle types

constituting the bilayer in order to obtain a more homogeneous distribu-

tion, this is not desirable. The main purpose of the antifreeze particles

is to prevent freezing of the water phase which is nucleated by the or-

dering effect of the boundary (compare figure 2.3). The increased rela-

tive density of the antifreeze particles in the bulk water slab is therefore

only advantageous. The pressure profile shows a remarkable feature,

namely the appearance of two small shoulders (z = ± 1 nm) to the big

positive peak arising from the carbon tails. Interestingly, similar shoul-

der peaks are also more pronounced in the pressure profiles of atomistic
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Figure 2.4: Plot of the lateral density- and pressure profile in the bilayer simulated under peri-

odic boundary conditions (conventional setup) or MFFA boundary potentials in addition with

antifreeze particles (boundary setup). Thick lines represent the boundary setup, thin lines the

conventional setup. The peaks of water (W) and antifreeze particles (AF) in the boundary setup

are scaled with respect to their relative density.

DPPC bilayers.62 Although we do not understand the origin of this effect,

the addition of antifreeze particles appears to result in a more realistic

stress distribution across the bilayer. We also evaluated the effect of the
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system setup on the lateral diffusion rates of the lipids, and found it to

be very small. In the boundary setup, the lateral diffusion constant in-

creases with 3 ± 1% compared to the conventional simulation setup. In

conclusion, within the resolution obtained by our coarse grained model

these small changes in structural and dynamic properties when using the

boundary setup are neglegible.

2.3.3 Application : Vesicle formation

The ability to form vesicles using the MFFA boundary approach was

tested using different approaches to generate the starting structure and

to accelerate the demixing of lipids and water. In the simulations where

only the MFFA boundary potential of the CG-water was used the lipids

condensed into patches on the boundary surface within a few nanosec-

onds. Depending on the concentration, the lipids formed either inter-

penetrating networks between the boundaries (high or desired concen-

tration regime (table 2.1)) or condensed as a monolayer on one of the

boundaries in the lower concentration regime. None of the attempts re-

sulted in the formation of a complete vesicle within 200 ns (figure 2.5).

The failure of vesicles to form could be due to a number of reasons. One

possibility is that the width of the region in which lipids and water were

randomly mixed initially was too wide. This, especially in the case of

larger systems, could lead the lipids to become trapped in kinetic inter-

mediates such as shown in figure 2.5. In this case the ’molding’ effect

of the repulsive potential was insufficient, resulting in wide spread lipid

patch formation and double lamellar vesicles full of pores and interlamel-

lar stalks. An excessive or insufficient number of lipids also resulted

in the formation of irregularly shaped aggregates (figure 2.5). In cases

where there were an excessive number of lipids, very floppy, irregular

shaped vesicles were formed. Where the amount of lipid was insufficient

nearly perfect spherical vesicles containing one or more pores were ob-
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Table 2.2: Comparison of boundary approach with conventional spontaneous aggregation.

Shown is the number of DPPC molecules in the inner and outer leaflet of the membrane.

#DPPCin #DPPCout

Marrink et al.23 : 940 1588

Conventional aggregation I : 940 1588

Conventional aggregation II : 912 1616

MFFA-boundary I : 921 1607

MFFA-boundary II : 923 1605

tained. In this case pore closure was not possible as the inner boundary

potential prevented further shrinkage.

Spherical and sealed vesicles could however be formed by either ex-

cluding lipids in the starting structure from a solvent shell of 2-2.5 nm

thick, or by applying a repulsive boundary potential to the lipids with a

force constant exceeding 10 kJ mol−1 nm−2 and a width of 1.5 - 2.0 nm.

Using this approach, vesicles form quickly (figure 2.6). The time scales

required ranged from 24 ns for a 20 nm vesicle, to 40-80 ns for the largest

vesicles of 60 nm diameter. Figure 2.7, shows the 5 DPPC vesicles formed

using this method. The largest of these vesicles was 60 nm in diameter

and was composed of 27384 lipids, approximately three times the small-

est size observed experimentally.

2.3.4 Application: Vesicle equilibration

In order to compare the structure of the vesicles formed under MFFA

boundary conditions to a vesicle formed under standard periodic bound-

ary conditions (Marrink et al. 23) the lateral density profiles with re-

spect to the center of the vesicle were compared (see figure 2.8). The

lateral density profiles seem similar for the vesicles obtained using the

two methods. The maximum deviation between the profiles is in the or-

der of 0.3 nm. Such deviations can both be due to shape fluctuations
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Figure 2.5: Examples of cases in which DPPC vesicles failed to form under various conditions.

The head groups are colored cyan, the tail groups grey and water in blue. Upper left, top view of

a 40 nm system simulated under MFFA boundary conditions without either a selective repellent

potential or an additional water layer. Clear patch formation is observed at the surface of the

boundaries and the configuration becomes kinetically trapped. Upper right, cross section of

the formation of a 40 nm diameter vesicle. An additional harmonic potential of 0.3 nm width

and a force constant of 50 kJ mol−1 nm−2 was used to enhance demixing of the lipids at the

boundary interface. The width of the repellent potential was insufficient to cause a ’molding’

effect. The snapshot reveals wide spread lipid patch formation through the system after 200

ns of simulated time. Lower left, a cross section of a 40 nm diameter vesicle formed from an

excessive lipid amount. The simulation was started with an additional CG water layer at the

boundary of thickness 2.0 nm to prevent condensation of lipids at the boundaries. The snapshot

shows a floppy irregular shaped vesicle sealed after 32 ns of simulated time. Lower right, a cross

section of a 30 nm diameter vesicle formed from a insufficient amount of lipids. A snapshot after

64 ns of simulation reveals the presence of a large pore (around 6 nm in diameter).
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Figure 2.6: Vesicle formation of a 20 nm diameter pure DPPC vesicle. An additional repulsive

harmonic potential of 0.3 nm width and a force constant of 50 kJ mol−1 nm−2 was used to

enhance demixing of the lipids at the boundary interface. Snapshots are shown at t = 0, 4, 20

and 32 ns. The head groups are colored cyan, and the tail groups grey. A contour of the 2.5 nm

radius internal cavity is visible.

Figure 2.7: Overview of the 5 different vesicles formed by the presented MFFA boundary

method. Shown from front to back a 20 nm, 30 nm, 40 nm, 50 nm and 60 nm diameter pure

DPPC vesicle.

and to variations within the spontaneously formed vesicles arising from

a difference in the distribution of lipids between the two leaflets. Al-
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Figure 2.8: The radial number density in the membrane with respect to the center of the vesicle.

The black line represents the vesicle obtained by Marrink et al.23 The grey lines represent two

vesicles formed under MFFA-boundary conditions. Solid lines represent the headgroup region.

The dotted lines represent the tail regions of the inner monolayer and the dashed lines the tail

region of the outer monolayer.
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Figure 2.9: A; The number of lipid molecules in the inner monolayer as a function of time in a

DPPC vesicle (2528 lipids, 323K). B; The distribution of lipids in the inner monolayer averaged

over time (480 ns).

though the comparison is not statistically rigorous, table 2.2 suggest that

the variation in the lipid distribution over the membrane leaflets from

the vesicles obtained with the MFFA boundary approach is similar to the

distribution within vesicles formed under periodic boundary conditions.

However, based on these results it is not possible to say what would be

the true equilibrium distribution. Once sealed, lipid flip-flops are not
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observed even on a microsecond time scale, preventing further equili-

bration of the vesicles. In order to resolve this issue, artificial pores were

introduced into the vesicle. To achieve this, a purely repellent cylindrical

potential with a force constant of 50 kJ mol−1 nm−2 and a radius R=1.8

nm diameter was used. This potential was only felt by the carbon tails

of the lipids and was present from the start of the simulation. A vesicle

formed within 40 ns, similar to the previous results, but which contained

two hydrophilic pores. This simulation was continued for 480 ns to al-

low for the equilibration between the two leaflets. The results are shown

in figure 2.9. Figure 2.9 A shows the fluctuation in the number of lipids

in the inner monolayer resulting from flip-flops between the inner and

outer monolayer. Figure 2.9 B reveals the time averaged distribution in

the monolayer population. Based on this distribution we estimated that

there would be around 935 lipids in the inner- and 1593 lipids in the outer

monolayer at equilibrium. These results suggest that the values obtained

with the ’stand-alone’ MFFA-boundary method presented in table 2.2 are

within the tails of the expected distribution. From figure 2.9 A it appears

that the number of flip-flop events between the two monolayers stabilize

after approximately 120 ns. Therefore the mismatch between the values

obtained by the ’stand-alone’ MFFA-boundary method is most likely re-

lated to an insufficient relaxation time during the formation of the vesi-

cle. The introduction of artificial pores is a simple and powerful method

to obtain equilibrated vesicles.

2.4 Discussion

Our aim was to develop an approach that allows large scale simulations

of vesicular systems, without compromising on the relevant near-atomic

details of the underlying coarse grained model. The results show that the

use of a boundary potential to replace bulk solvent, both inside and out-

side the vesicle, is reasonable. Comparison of the structure of both lamel-
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lar bilayers and of vesicles obtained with the boundary method to those

obtained using full solvation revealed no significant artifacts so long as

the solvent shell was sufficiently large. A solvent shell of 2.5 nm was

found to be sufficient for the effect of the boundary potential to be negli-

gible.

As expected from a model based on a cutoff scheme to evaluate the

pair interactions, the gain in computational efficiency is found to be ap-

proximately linear with respect to the relative decrease in solvent parti-

cles. This in turn depended on vesicle size, equation 2.1. For the vesicle

of 60 nm in diameter, the gain in computational efficiency was consider-

able, around 60 % in comparison with the same vesicles under normal

cubic periodic boundary conditions. For more complex periodic boxes

such as the rhombic dodecahedron the gain in efficiency was approxi-

mately 45%. The boundary method will become progressively more ef-

fective for larger vesicles. Considering, for instance, a vesicle of 100 nm,

the gain in computational efficiency is estimated as 72 % compared to

a cubic box and 60% for a rhombic dodecahedron. In practice, the es-

timated efficiency gain will be even higher as perfect linear scaling of

computational speed with the number of solvent particles was assumed,

which is never achieved in practice. The additional computational costs

due to the implementation of the MFFA boundary are small. This is be-

cause the boundary force can be tabulated as a set of cubic splines which

are only dependent on the position of the particles within the system.

In GROMACS-3.3 the additional costs due to the implementation of the

MFFA boundary method were less than 1% of the total computational

cost.

Further speed-up is obtained for the formation of the vesicles, due

to the molding effect of the boundary potentials. While one could start

from pre-assembled vesicles, it should be noted that for a vesicle of a
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given radius neither the total number of lipids nor the ratio between the

lipids in the inner and outer monolayer are known precisely. As a result,

pre-assembled vesicles are likely to be in a state of stress. Using the self-

assembly approach, stress can be released through the optimization of

the vesicle size and the exchange of lipids between the monolayers dur-

ing the process of vesicle formation. Moreover, we have demonstrated

that artificial pores can be used to allow further equilibration even after

the vesicles have sealed. This method seems essential to obtain and to

ensure fully equilibrated vesicles.

Our results indicate that the best method for vesicle formation is ob-

tained if a layer of water surrounds the lipid solution in the starting con-

figuration. This approach appears preferable to the method were a se-

lective repulsive potential is used for the lipids. First, the solvent shell is

easier to implement, second, the formation of vesicles is faster, especially

for larger vesicles (> 30 nm diameter). The reason for this is that, in case

of the selective repulsive potential method, the diffusion towards the re-

action zone becomes the rate determining step in the vesicle formation.

A prerequisite of the method presented is that the total number of lipids

required is approximately known. An over or under estimation of the

number of lipids required may lead to the formation of stressed vesicles

as shown in figure 2.5. The appropiate number of lipids can be estimated

from the following equation:

f(r) =
4π

A
((r − d)2 + r2) (2.16)

Here f(r) is the total amount of lipids in the vesicle as function of its

radius r, A is the area per lipid and d the characteristic thickness of the

bilayer. A fit of our results to equation 2.16 is given in figure 2.10. From

figure 2.10 it should be noted that a simple prediction based on a fixed

average area per lipid (A = 0.654 nm2) and thickness (d = 4.06 nm) from

a bilayer patch closely reproduces the data obtained for vesicles over the
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whole size range. This result might be surprising given that the differ-

ence in area per lipid between the two monolayers is relatively large (

±30%) in the lower regions of the fitted curve.
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Figure 2.10: The total number of DPPC lipids versus vesicle radius for vesicles obtained from

the simulations (black squares). The radius was calculated from the average distance of the

phosphate groups in the outer monolayer to the center of the vesicle. The dashed line is a fit of

equation 2.16. Here A = 0.654 nm and d = 4.061 nm.

Potential applications of the boundary potential method are diverse.

We have shown that the method is a fast way to efficiently generate equi-

librated vesicles. In addition, for a given minimum width of the solvent

layer, the use of a spherical boundary is recommended to avoid artifacts

caused by an otherwise inhomogeneous solvent distribution around the

vesicle when simulated under periodic boundary conditions. Due to the

reduction in solvent degrees of freedom, the boundary approach in gen-

eral allows the study of extended length- and time scales for vesicular

membranes. Especially for large vesicles the gain in computational speed

is very substantial. Formation of nanodomains, for instance, is currently

being simulated in our group for systems of comparable size to those

used in experimental studies. The MFFA approach is also flexible; in-

creasing the volume enclosed by the boundary potentials allows one to
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include peptides or proteins. Membrane poration by antimicrobial pep-

tides is an example of a process which would highly benefit from using

our spherical boundary method, taking place in a small solvent shell sur-

rounding the bilayer. For the size of the vesicles formed in this study

thermal deformations are expected to be very small.63 For larger or softer

vesicles these modes will become more important. In such case an in-

crease in the width of the solvent shell may be required to prevent sup-

pression of such undulations. In the case of mixed systems, where the

effective area per molecule is not known, an increase in the width of the

solvent layers might also be required to guarantee a greater flexibility

for the preferred size of self-assembling vesicles. Furthermore, one could

study fusion of two vesicles by removing the outer boundary potential

(although for the complete fusion pathway also the inner boundary po-

tentials would have to be removed). Another advantage of the method

is its possibility to increase the internal pressure inside the vesicle, by

separate scaling of the inner and outer boundaries. Osmotic shock exper-

iments could thus be simulated. Finally, spherical boundary potentials

could be applied to reduce the solvent layer around other molecules or

molecular assemblies with (quasi-)spherical geometry, such as proteins,

polymer chains, and micelles.

2.5 Conclusions

Amethod has been presented to efficiently simulate the properties of self-

assembled vesicles up to a diameter of 60 nm at near atomic detail. The

method involves the application of boundary potentials to replace both

the internal and external excess bulk solvent. Vesicles in the range of 20 to

60 nm diameter were obtained on a nanosecond timescale, without any

noticeable effect of the boundary potentials on their structure. Moreover,

a powerful method for equilibration of vesicles by introducing artificial

pores was demonstrated. These detailed vesicles may be subjected for
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further studies including phase separations and osmotic shock simula-

tions.






