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Stellingen
behorende bij het proefschrift

Quantifying mass substructure in early-type galaxies

1. Grid-based lens modelling techniques consistently embedded in the framework of Bayesian
statistics provide a powerful tool to detect and quantify mass substructure in lens galaxies
beyond the Local Universe.

2. A sample of 200 lenses observed with HST quality will allow to constrain the substructure
mass fraction and mass function down to a few tenths of a percent error.

3. The detection of a substructure in the SLACS lens J0946+1006 implies a projected mass
fraction in substructure of about 2 percent; this is high but consistent with the LCDM
paradigm within the measurement errors.

4. Laser Guide Star Adaptive Optics data can under specific conditions be considered as a valid
and complementary alternative to HST data in terms of sensitivity to mass substructure in
lens galaxies.

5. “The dark sector is pathetically simple.” - Jim Peebles.

6. Locally produced vegetables and fruits do not always have a lower carbon footprint than
non-locally produced ones.

7. The real solution to the environmental issue is a deep reorganisation of society where the
importance of sloth is strongly revalued.

8. Only thermoeconomics can be considered as a realistic economic theory.

9. “Forcing women to procreation every time they are pregnant means treating the woman’s
body as a means of production. This is in conflict with the Kantian but also Christian
imperative of treating humans as ends in themselves and not as means to an end.” - Umberto
Galimberti.

10. Part of modern western society’s perception of freedom is based on the false illusion of a
large choice between different products.
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ciček in the fridge. Kyle, you have such a contagious laugh! Manu, thank you for all the sticky
kisses!
Chris Fassnacht, you have been the highlight of my Dutch summers, it has been a pleasure cook-
ing for you while discussing science, politics and life. I have really enjoyed working with you.
Stefania Tutino, thanks for inventing the J.N. prize and for teaching me colourful expressions
involving Chinese teas and unlimited access to .... I have really enjoyed your sparkling company
during my visits to Santa Barbara. Mark and Janne Walker thank you for the warm hospitality
during the OzLens08 conference.
My stay at Kapteyn would have not been as pleasant without the round table, its habitués and
rituals. I would like to thank Professors Scott Trager, Robert Sanders, Stuart Pottasch, Marc
Verheijen, Saleem Zaroubi and Renzo Sancisi for all the interesting, instructive and engaging
discussions. Moreover, I owe a special thanks to Scott Trager for every time he guided me in
both scientific and personal matters. Marc Verheijen, sometimes I wonder whether you are just
an older version of me. Wim Zwitser, thank you for not getting upset when by mistake I printed
out 100 copies of my CV and for always trying to solve any problem I had with my computer, even
those that I had created myself. Hennie Zondervan, Jackie Zwegers and Gineke Alberts, in the
perfect communist world there would be three secretaries exactly like you for every astronomical
institute. I am very grateful to the Kapteyn Institute in general, for its welcoming and at the same
time scientifically stimulating atmosphere.
Edwin, thank you for keeping me literarily alive, knowing that you were at the other end of the
rope made climbing a particularly enjoyable experience. Thanks to Bjoeks whose colourful walls
never failed in cheering me up, to Minnaar for the friendly atmosphere and for being so generous
in pouring whisky and to the Hoge der A and the beauty of its canal, especially on foggy winter
nights.
Riccardo, Sarah, Diego, Fabiana, Rugiada, Livia, Alessandro and Beppe you have no idea



how much I have missed our life in Via Pietro Giuria 1, the interminable hours spent 3 floors
underground trying to measure the size of 100 nails or fighting with the Cavendish’s scale and
the number 16 tram; the early mornings in Aula Magna with Livia reading the horoscope, Mario
bitching about (almost) everybody and Alessandro mimicking Antonio Albanese; the exams at
Palazzo Campana when the weather was so warm that the sheets of paper would just stick to your
arms; Bressani’s courses and Zampieri fighting with Rosseti; Diego XXL-sized sandwiches, Ru-
giada elaborate meals and Fabiana trying to avoid Jesus.
I am indebted to Andrea for always being there in the moment of need and to Daniele, whose
friendship kept me warm on cold Swedish winter days.
Enrico, thank you for teaching me that there is no perfection, only life.
Silvana, Paolo, Orso e Luna, you all are the living proof that nothing in life matters more than
attitude, that a positive winning approach is The Way. Thank you all for showing me how to turn
the simplest things into something special and worthwile.
Some acknowledgments are just more difficult than others. Some people contribute so much to
our life and personality that they become an integrating part of ourselves; these are the most dif-
ficult to thank, it feel as awkward as standing in front of a mirror and say thank you to your own
reflection. Orso is one of those people and despite I have been staring at this page for hours I can-
not find the appropriate words. We have been sharing so much that I am having troubles telling
where my person stops and yours starts (like, is it me or you that carried that infamous luggage
down the stairs when leaving to Corsica?). Thank you for everything.
Finally a very special thanks goes to each member of my large extended family, aunts, uncles,
cousins, sisters, step sisters, step fathers and step mothers for all contributing in so many ways
to my human experience. In particular, I am grateful to my parents, for being the unconventional
peculiar people you are, to my mum for your unconditional and constant support and for not be-
ing the typical Italian mother, to my dad from whom I have inherited much more than we actually
rationally know and to my grandparents for all their love and cares.

Reading these pages again, I suddenly realise that food has been the constant theme of these
acknowledgments and therefore of my relationships, but as they say, ”Food to a large extent is
what holds a society together and eating is closely linked to deep spiritual experiences.”

Simona Vegetti
Groningen, March 2010



Chapter 1

Introduction

According to the Λ Cold Dark Matter (ΛCDM) cosmological paradigm, the matter content of the
Universe is mostly in the form of non-baryonic non-relativistic particles interacting predominantly
through gravity (Spergel et al., 2003; Komatsu et al., 2009). In this picture, dark matter structures
form hierarchically, bottom up from primordial density fluctuations via the clustering and merging
of smaller objects into progressively more massive ones (Toomre, 1977; Frenk et al., 1988; White
& Frenk, 1991; Barnes, 1992; Cole et al., 2000). In particular, it is believed that extended dark
matter haloes provide the gravitational potential wells within which the gas can cool, collapse,
form stars and give rise to the galaxies as we know them (White & Rees, 1978; White & Frenk,
1991; Kauffmann et al., 1993).
The ensemble of complex physical phenomena, that beyond gravity, regulate the baryonic prop-
erties within the dark matter haloes is colloquially known as gastrophysics. These include dissi-
pative and radiative processes, responsible for the concentration of gas at the centre of the dark
matter haloes, star formation, converting gas into stellar populations, and feedback processes
which redistribute and eject the heavy elements within and outside galaxies and regulate star for-
mation efficiency. On the one hand gravity determines the evolution of the dark matter haloes,
while gastrophysics is responsible in shaping the luminous content of galaxies and give them the
appearance we observe (e.g Binney, 1977; Rees & Ostriker, 1977; White, 1994).
However, little is known about the complex interplay between the baryons and radiation, of how
and why the interstellar medium cools, is processed, recycled and enriched in metals. It is often
hard, therefore, to link the seemingly well understood properties of the dark matter haloes, mostly
explored using N-body simulations, with the observed properties of their galaxies. Consequently,
several issues are encountered when trying to build up a picture of galaxy formation coherently
embedded in the CDM paradigm; two are of particular relevance: the presence of a high-density
cusp in the centre of dark matter haloes (Moore, 1994; Burkert, 1995; McGaugh & de Blok, 1998;
Binney & Evans, 2001; de Blok et al., 2001) and the predicted existence of a rich unseen popu-
lation of subhaloes within each halo (Kauffmann et al., 1993; Klypin et al., 1999; Moore et al.,
1999, 2001; Diemand et al., 2007a,b, 2008; Springel et al., 2008). The second is known as the
missing satellite problem and is the main focus of this Thesis. The presence of dark energy is also
a surprising outcome and although less relevant for substructure, all these issues might at a certain
level be related.
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2 Introduction

1.1 The missing satellite problem
In the CDM picture massive haloes are assembled together by clustering and merging. While
the small haloes fall into the larger ones, they are subjected to virialization processes, such as
tidal forces and dynamical friction, and are depleted of the less bound particles (Kravtsov et al.,
2004; Nagai & Kravtsov, 2005; Giocoli et al., 2008; Peñarrubia et al., 2008). As shown by high
resolution numerical simulations, a large number (∼ 105; Springel et al. 2008) of these smaller
haloes is able to survive to the present epoch in the form of subhaloes. If gas is able to cool
and form stars in every dark matter halo, we would expect the number of dark matter subhaloes
to match the number of observed dwarf galaxy satellites. However, the former has a few orders
of magnitude larger number density than the latter, at least in the Milky Way and Andromeda
galaxies (e.g. Diemand et al., 2008; Springel et al., 2008). This discrepancy is generally known
as the missing satellite problem. As pointed out by Kravtsov (2010), a better and well-posed
definition of the problem is not in terms of the total number of subhaloes, but rather in terms of
their mass or circular velocity distributions. In figure 1.1 the cumulative number of subhaloes and
Milky Way dwarf galaxies, as a function of their peak circular velocity Vmax and as a function
of the total gravitational bound mass within the innermost 0.6 kpc, m0.6, are shown. It is clear
from these figures, that the missing satellite problem can be stated as the discrepancy between the
predicted and the observed slopes of the mass and the circular velocity distributions. It should be
kept in mind, however, that these comparisons are not free from assumptions and uncertainties.
The peak circular velocity, related to the total mass m(< r) by the following relation,

Vmax = max
(
Gm(< r)

r

)1/2
, (1.1)

is a well defined quantity in numerical simulations. Conversely, it can typically be derived from
the observed line-of-sight velocity dispersion of the dwarf galaxies only through assumptions
about the anisotropy of their stellar orbits or on their mass distribution (Klypin et al., 1999; Moore
et al., 1999; Stoehr et al., 2002; Hayashi et al., 2003; Kazantzidis et al., 2004; Peñarrubia et al.,
2008). In figure 1.1, for example, the velocity function for the observed satellites was constructed
under the assumption of an isotropic distribution of the stellar orbits, that is, Vmax =

√
3 σr.

Moreover, m0.6 is a well measured quantity only for the more massive of the Milky Way satel-
lites, while for the ultra-faint satellites only masses inside smaller radii (e.g. within the inner most
0.3 kpc) can be measured. In numerical simulations, these small radii require a very high resolu-
tion which has been achieved only recently (Diemand et al., 2008; Springel et al., 2008). None
of these uncertainties, however, can as of yet explain the difference in the predicted and observed
mass and velocity function slopes.
On a more general level, three other aspects of the subhalo properties should be considered. First,
numerical simulations not only seem to fail to reproduce the observed slope of the mass and veloc-
ity functions, but also do not reproduce the radial distribution and the anisotropy of the observed
satellite. The Milky Way satellites seem to have a more concentrated and more anisotropic dis-
tribution than the dark matter subhaloes (Lynden-Bell, 1982; Majewski, 1994; Hartwick, 2000;
Kravtsov et al., 2004; Willman et al., 2004; Taylor et al., 2005; Kroupa et al., 2005; Metz et al.,
2009). Second, because the CDM paradigm is almost invariant when scaled from galaxies to
groups and clusters of galaxies, a similar missing satellite problem is expected in this class of
objects as well. Third, the same kind of discrepancy is observed not only in galaxy satellites, but
also in the field population. The classical missing satellite problem is probably just one aspect
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Figure 1.1: Left: cumulative circular velocity functions, of subhaloes and dwarf satellites of the Milky Way
from Peñarrubia et al. (2008). The subhalo velocity functions are plotted for the host haloes with max circular
velocities of 160 km s−1 and 208 km s−1 that should bracket the Vmax of the Milky Way halo. Right: the
mass function of dwarf satellites of the Milky Way and the subhaloes as a function of the total mass within
the inner 0.6 kpc Strigari et al. (2007).

of a more general problem where the faint-end of the luminosity function and the low mass-end
of the mass function need to be reconciled, while at the same time matching the satellite spatial
distribution.
The missing satellite problem is a long standing problem and understanding its origin is important
not only from an astrophysical point view, but also for a physics one. Constraining the subhalo
mass function can provide, in fact, unique constraints on the properties of the dark matter particles
(e.g. Hofmann et al., 2001; Berezinsky et al., 2003; Green et al., 2004).

1.2 Possible solutions to the missing satellite problem
Several solutions to the missing satellite problem have been suggested. These can be divided into
three general categories:

1. Cosmological solutions (i.e. the CDM paradigm is incorrect or incomplete): the formation
of low mass dark matter subhaloes is suppressed either by changing the properties of the
dark matter particles (e.g. warm, self-interacting, repulsive, decaying, annihilating dark
matter (Colin et al., 2000; Cen, 2001; Spergel & Steinhardt, 2000; Goodman, 2000; Riotto &
Tkachev, 2000)), or by introducing a break in the power-spectrum of the primordial density
fluctuations (Kamionkowski & Liddle, 2000; Zentner & Bullock, 2003). Although these
models can match the total number of observed dwarf satellites, it has not been shown yet
that they can match the slope of the mass and circular velocity functions, while saving the
great success of CDM models in reproducing the large scale Universe or other observational
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properties of galaxies.

2. Astrophysical solutions (i.e. observations are incomplete): the combination of several phys-
ical processes such as UV reionization, supernova feedback, longer time scale cooling rates,
galactic outflows and cosmic accretion, suppress gas accretion and star formation in low
mass subhaloes (e.g. Thoul & Weinberg, 1996; Mac Low & Ferrara, 1999; Gnedin, 2000;
Hoeft et al., 2006; Kaufmann et al., 2007; Mashchenko et al., 2008; Robertson & Kravtsov,
2008). In this scenario, the missing satellites are hiding in a high mass-to-light ratio pop-
ulation, where dark matter haloes with masses ≤ few × 109M� are essentially invisible
(Kravtsov, 2010). As shown by Kravtsov (2010), models in which the brightest satellites
are located into the most massive subhaloes before accretion and their luminosity is related
to the host virial mass by:

LV = 5 × 103L�

(
Mvir,acc

109M�

)2.5
, (1.2)

are able to alleviate the missing satellite problem, without imposing a strong cut-off in the
star formation rate with mass, and at the same time reproduce the observed mass-luminosity
(m0.3-L) relation, the luminosity function and the radial distribution.

3. A third scenario in which the Local Group happens to be a statistically peculiar realisation
is of course also possible (i.e. the CDM paradigm is correct and observations are complete).
This hypothesis needs to be tested by observations of satellites in galaxies beyond the Local
Group and by quantification of the scatter in the mass and circular velocity functions for
different simulated haloes. From a numerical point of view, attempts in this direction are
starting to be made only recently. Boylan-Kolchin et al. (2009) for example, have used the
Millennium II simulation to investigate the statistical properties of Milky-Way type haloes.
Their main result is that the subhalo cumulative mass function has an intrinsic scatter of
approximately 18 percent, independent of the host halo mass. Moreover, they find that the
chance of having a subhalo capable of hosting the Large Magellanic Cloud or two subhaloes
capable of hosting the Large Magellanic Cloud and the Small Magellanic Cloud are 3-8
percent for a Milky-Way halo mass of 1012M� and 20-27 percent for a Milky-Way halo
that has a mass of 2.5 × 1012M�.

Whereas almost all studies have so far concentrated on nearby galaxies, such as the Milky-Way
and Andromeda, one would like to extend these studies to more distant (even cosmologically)
galaxies, to improve their statistics, study their evolution and their properties as function of galaxy
mass and type. Because of their predicted low luminosity, galactic satellites in distant galaxies
can be, at the moment, observed only indirectly using gravitational lensing. The role played by
gravitational lensing in understanding the missing satellite problem is the main subject of this
Thesis and will be thoroughly discussed in the next sections and chapters.

1.3 Gravitational lensing
Gravitational lensing is essentially the gravitational deflection of light coming from a background
source by an intervening massive object, such as a star or a galaxy (Einstein, 1936; Schneider
et al., 1992). In figure 1.2 a schematic picture of the typical gravitational lensing scenario is
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Figure 1.2: Typical gravitational lensing configuration. βββ and θθθ are the angular separation from the optical
axis of the source S and the image I respectively. The distances DS, DLS, DL are respectively the luminosity
distance from the observer O to the source, from the lens L to the source and from the observer to the lens.

drawn. The light emitted by a source S at a distance DS from a generic observer O, is deflected
by an angle α̂αα (RRR) by a gravitational lens L, a massive object at a distance DL from the observer
and at a distance DLS from the source. Under the assumption of the thin lens approximation (i.e.
instantaneous deflection in the lens plane), and of small deflection angles, the deflection angle is
related to the surface mass density distribution of the lens by

α̂ (RRR) =
4G
c2

∫
dRRR′Σ(RRR′)

RRR −RRR′

|RRR −RRR′|2
. (1.3)

Each position βββ on the source plane corresponds to a position θθθ on the image plane via the follow-
ing lens equation

βββ = θθθ −
DLS
DS

α̂αα (DLθθθ) ≡ θθθ −ααα(θθθ) . (1.4)

The strength of the deflection depends on the gradient of the local lensing potential as

ααα (θθθ) = ∇θθθψ , (1.5)

The deflection angle is often expressed in terms of the convergence κ = Σ/Σcr, a dimensionless
measure of the mass surface density of the lens, so that

ααα(θθθ) =
1
π

∫
dθθθ′κ(θθθ)

θθθ − θθθ′

|θθθ − θθθ′|2
, (1.6)

where

Σcr =
c2 DS

4 π G DL DLS
. (1.7)

In the regime of strong gravitational lensing the lens is supercritical with κ > 1, the lens equation
becomes locally non linear and multiple images of the same source are created. The convergence
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and the lensing potential are related to each other by the following two-dimensional Poisson equa-
tion

∇2
θθθψ = 2 κ. (1.8)

Because the deflection of light rays coming from the source is differential, the images will be
distorted and have a different shape and size than the source. The distortion of an infinitesimally
small source can be described in terms of the Jacobian matrix below

A(θθθ) =
∂βββ

∂θθθ
=

(
δi j −

∂2ψ(θθθ)
∂θi∂θ j

)
=

(
1 − κ − γ1 −γ2
−γ2 1 − κ + γ1

)
, (1.9)

where γ1 and γ2 are the components of the shear γ = γ1 + iγ2 and κ is the convergence as defined
above. In particular, the convergence is responsible for an isotropic (de)magnification of the
image, while the shear produces a change in the shape and only has a second-order effect on the
magnification. According to the strength of the distortion three different classes of gravitational
lensing can be defined:

1. Strong lensing: the lens is responsible for strong distortions, producing multiple images,
arcs and Einstein rings. It is commonly used to constrain the potential of the lensing object
(e.g. Kochanek, 1991; Schneider et al., 1992; Rusin, 2000). In combination with other
measurements, such as weak lensing and kinematics, it can provide strong constraints on
the lens mass distribution (e.g. Koopmans & Treu, 2002; Gavazzi et al., 2007; Barnabè &
Koopmans, 2007; Koopmans et al., 2009).

2. Weak lensing: the distortions and the magnifications are very small and the lensing effect
appears, for true axisymmetric lenses, as a statistical preferred stretching of the background
source in the direction perpendicular to the centre of the lens. It is a rather common event
and it is generally used to constrain the mass profile of galaxy clusters, cosmological pa-
rameters and the properties of dark energy (Huterer, 2010, and references therein).

3. Micro lensing: is a form of strong lensing in which the lens mass is relatively small (star or
planet) and the created distortions or multiple images are not resolvable (image separation
of the order of few micro-arcseconds to milli-arcseconds). Because of the relative motion
between the source, the lens and the observer, microlensing is observable as a change of
brightness of the multiple images over a time scale of days to years. It is the perfect tool
to study faint objects, such as black holes and massive compact objects and to detect extra-
solar planets (Paczynski, 1986; Alcock et al., 1993; Bennett & Rhie, 1996)

Liouville’s theorem can be used to show that lensing conserves the surface brightness from the
source to the lens plane. However, the total flux received by the observer will change, caused by
a magnification or de-magnification of the solid angle of the source. The lensing magnification
tensor is given by the inverse of the Jacobian matrix. The sign of det A−1 determines the parity
(handedness) of an image. Images with a negative parity are mirror imaged relative to the source.
Curves on the lens plane along which the local magnification µ = det A−1 is infinite are called
critical curves and the corresponding curves on the source plane are called caustics. Smooth parts
of a caustic curve are called folds, while points where two folds meet are called cusps. When the
source crosses a caustic, a pair of images near to the corresponding critical curve is created or
destroyed depending on the direction of crossing. In the case of multiple images with a relative
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Figure 1.3: Fold and cusp configurations for a four-image lens from Zackrisson & Riehm (2010).

distance tending to zero (merging images), the following magnification relations are expected to
hold (Mao, 1992; Schneider & Weiss, 1992):

Rfold =
µA + µB
|µA| + |µB|

→ 0 , (1.10)

for a source asymptotically approaching a fold (fold system, fig. 1.3 left panel) from inside the
caustic curve, and

Rcusp =
µA + µB + µC
|µA| + |µB| + |µC |

→ 0 , (1.11)

for a source asymptotically approaching a cusp (cusp system, fig. 1.3 middle panel) from inside
the caustic curve. Sources not close to the caustic produce symmetric cross configurations (fig.
1.3 left panel).
In lensing it is often useful to think in terms of the so called (scaled) Fermat potential, a scalar

function defined as follows:
τ (θθθ,βββ) =

1
2

(θθθ − βββ)2 − ψ(θθθ) . (1.12)

The Fermat potential expresses the excess travel time relative to a light ray that travels directly
from the source to the observer without deflection. The first term on the r.h.s of this equation is
the geometrical delay due to the difference in path length between the two rays, while the sec-
ond term is the potential delay related to the relativistic Shapiro effect. According to Fermat’s
principle, images form at the stationary points of the Fermat potential, where ∇τ (θθθ,βββ) = 0. This
principle expresses the maximization of the quantum mechanical probability function of the pho-
tons when all possible paths are summed coherently, and the peaks of the probability function
coincide with the extrema of the Fermat potential. In the strong gravitational lensing regime what
is observed is the relative time delay between two images. Time delay measurements have been
mostly used to measure the Hubble constant H0 (e.g. Refsdal, 1964; Biggs et al., 1999; Koopmans
& Fassnacht, 1999; Suyu et al., 2010), but, as we will show in the next section, they can also be
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used to detect mass structure in the potential of the lens galaxies (Keeton & Moustakas, 2009).

1.4 Probing mass substructure with gravitational lensing
In this section we discuss how galaxy-galaxy strong lensing can be used to constrain the lens-
ing potential and address the missing satellite problem. Several aspects of galaxy-galaxy strong
gravitational lensing can be used to detect mass substructure of a lens galaxy located at any given
cosmological distance: flux ratio anomalies, astrometric perturbations, time delay millilensing
and perturbations in highly magnified Einstein rings and arcs. In this section we review the main
ideas and the major results of these techniques.

1.4.1 Flux ratio anomalies

Simple lens models for the lens galaxy are generally sufficient to reproduce the positions of
quadruply imaged quasars with extremely high precision; however, these models fail in repro-
ducing the relative fluxes of the multiple images (see figures 1.3 and 1.5). In particular, most
of the observed cusp and fold systems appear to violate the magnification relations of equations
1.10 and 1.11 to a degree that is significantly higher than what expected for real lensing potentials
with realistic angular structures (Keeton et al., 2003). Mao & Schneider (1998) were the first to
suggest that flux ratio anomalies could be related with the presence of small scale (comparable or
smaller than the image separation) mass structure in the lens galaxy, that are locally perturbing
the magnification of single images. The effect of CDM substructure on the cusp relation is very
well pictured in figure 1.4; the cusp relation is shown as a function of the source position, inside
the diamond caustic, for a simulated elliptical galaxy with increasing level of smoothing. For a
large smoothing scale the substructure is completely filtered and the predicted Rcusp is obtained,
while for smaller smoothing scales, the effects of substructure become more and more visible and
the cusp relation is violated over much larger areas and well into the cusp.

Flux radio anomalies in observed quads

Indeed Chiba (2002), Dalal & Kochanek (2002), Metcalf & Zhao (2002), Keeton et al. (2003) and
Kochanek & Dalal (2004) showed that in many observed lens systems with four images, CDM
substructure can be responsible for a violation of the magnification relations. Dalal & Kochanek
(2002), for example, analysing a sample of seven radio-loud lenses (not affected by dust extinc-
tion and stellar microlensing) from the Cosmic Lens All-Sky Survey (CLASS) concluded that, at
a 90 percent confidence level, the observed flux ratio anomalies can be explained with a projected
mass fraction in substructure between 0.6 and 7 percent within the Einstein radius.
Luminous satellites able to account for the observed flux ratio anomalies, have been then found in
about 50 percent (three out of seven) (see Schechter & Moore, 1993; McKean et al., 2007; More
et al., 2009) of the same sample of lenses. It is, therefore, not clear whether flux ratio anomalies
can be related to CDM substructure or rather to more massive companions.
The major problem with a scenario that tries to explain flux ratio anomalies in terms of mass
substructure is that the inferred mass fraction in either CMD substructures or luminous satellites
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Figure 1.4: The cusp relation Rcusp for an N-body simulated elliptical galaxy at a redshift of zl = 0.81 from
Bradač et al. (2004). The deviations are due to the substructure. Panel (a) shows Rcusp for the original mass
distribution, whereas panels (b)–(d) show the cusp relation for the models where the substructure have been
smoothed with a Gaussian kernel of standard deviation σG ∼ 1 kpc (b), σG ∼ 2 kpc (c) and σG ∼ 5 kpc (d).
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is larger than what is found in numerical simulations. In B2045+265 and MG2016+112, for ex-
ample, the luminous satellites contain about 1 percent (McKean et al., 2007; More et al., 2009)
of the total halo mass, and in MG0414+053 about 0.3 percent (Schechter & Moore, 1993), while
Diemand et al. (2008) and Springel et al. (2008) report a predicted mass fraction in satellites of
about 0.5 and 0.3 percent respectively. On the other hand, these comparisons are not free from
biases: the quoted results from both the Aquarius and the Via Lactea simulations are relative to
Milky-Way haloes at redshift zero, while the lens galaxies are massive ellipticals with redshifts in
the range of 0.2 to 1.0. We shall further discuss flux ratio anomalies by simulated CDM subhaloes
and luminous satellites in the next section.
In general, out of the 22 CLASS lenses 5 show the presence of a luminous satellite within
5 h−1

70 kpc. In a recent comparison between the CLASS lenses, the SLoan ACS Lens Survey
(SLACS) lenses, the Cosmological Evolution Survey (COSMOS) and the Sloan Digital Sky Sur-
vey (SDSS), Jackson et al. (2009) concluded that, while the incidence of luminous satellites
around the SLACS lenses is in agreement with non-lens early-type galaxies in COSMOS, the
CLASS lenses contain a significantly higher rate of luminous substructure than either simulations
or field galaxies in SDSS and COSMOS. This remains unexplained, but could explain the large
inferred substructure fraction found by Dalal & Kochanek (2002) from the CLASS sample.
It should be remembered that several alternatives to substructure, such as absorption, scattering or
scintillation by the interstellar medium of the lens galaxy (propagation effects), higher order har-
monics in the lensing potential and stellar microlensing have also been suggested. (e.g. Kochanek
& Dalal, 2004; Mao et al., 2004; Mittal et al., 2007; Schechter & Wambsganss, 2002).

Flux radio anomalies in numerical simulations

Recently, Xu et al. (2009) showed that in the Aquarius simulation the projected mass fraction in
subhaloes within the Einstein radius is always below 1 percent: the number density of CDM sub-
haloes in this simulation is insufficient to explain the observed flux ratio anomalies. This result is
consistent with previous similar analyses by e.g. Mao et al. (2004) and Macciò & Miranda (2006).
In particular, the probability for the Aquarius simulation to reproduce the observed flux-anomaly
rate is 2.5 percent (Xu et al., 2009). This estimate takes into account the fact that the Aquarius
simulation describes a Milky-Way type of halo and the lack of a central cusp in the subhaloes be-
cause of numerical resolution issues. Because the Aquarius subhaloes have lensing cross sections
which are biased toward relatively massive subhaloes σ ∝ m0.1

sub (Xu et al., 2009), the discrepancy
cannot be attributed to a lack of resolution in the simulation. An increase of resolution would in
fact significantly increase the number of small mass subhaloes, while leaving substantially unaf-
fected the more massive ones. However, the solution could also lie in the presence of baryons;
currently excluded from simulations, not only can they increase the number of surviving sub-
haloes, they can also increase their lensing efficiency (Shin & Evans, 2008). Bryan et al. (2008)
used the Millennium simulation combined with semi-analytical models to quantify the predicted
frequency of luminous satellites within the inner region of simulated galaxies as a function of
halo-type (galaxy-sized and group-sized), redshift (from zero to one) and galaxy-type (red and
blue). They concluded that the fraction of galaxy-sized haloes containing a luminous satellite
within the projected 5 h−1

70 kpc is about 3 percent at redshift zero and 10 percent at redshift one.
In another study Shin & Evans (2008) found that the total mass fraction in luminous satellites in
galaxy-sized haloes is not enough to explain the flux ratio anomalies. Possible solutions could
be that either the luminous satellites observed in lenses are in reality line-of-sight objects, misat-
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ages (A, B and C) of B2045+265 at 5 GHz. Therefore, with the

aims of detecting the weakest lensed image (D) at mas-scales, in-

vestigating the nature of the fifth radio component (E), and search-

ing for extended structure in all of the lensed images, we undertook

a deep observation of B2045+265 with the VLBA at 5 GHz. The

observation was phase referenced and carried out over 10.7 h on

1997 October 17, with∼6.5 h spent on B2045+265. The data were
recorded in the left circular polarisation through 4 IFs, each with a

bandwidth of 8-MHz. A bit rate of 128 Mb s−1 with 2-bit sampling

was employed. Phase referencing and fringe finding were carried

out with JVAS B2048+312 (Wilkinson et al. 1998) and 3C 454.3,

respectively. The data were correlated at Socorro, where the indi-

vidual IFs were divided into 16×0.5 MHz channels and the visibil-
ities were averaged over 1-s time intervals.

The data editing and calibration was performed within AIPS

(Astronomical Image Processing Software) using the VLBAPIPE

pipeline script. No further frequency or time averaging was under-

taken during this process. This produced an effective field of view

for the resulting maps of∼5 arcsec from the phase tracking centre,
easily large enough to contain the full extent of the lens system,

which has a maximum lensed image separation of 1.91 arcsec. The

image deconvolution was carried out using imagr. We first created

a shallow wide-field map and identified the locations of the five

radio components of B2045+265. A small 80×80 mas2 field was
then placed around each component. A process of cleaning with

two cycles of phase-only self calibration, using a solution interval

of 10 min, was carried out. Natural weighting was used through-

out. The resulting restoring beam size was 3.4×1.9 mas2 at a PA
of −5.5◦. The image rms in each field was ∼55 µJy beam−1. Fi-

nally, elliptical Gaussian model components were fitted to the radio

components using jmfit.

3.2 Results

The deconvolved naturally-weighted maps of the four lensed im-

ages are presented in Fig. 1 and show a mixture of compact and ex-

tended emission consistent with gravitational lensing. Image A has

been resolved into two subcomponents, forming a core-jet struc-

ture. Subcomponent A1, the core, is compact and is the dominant

source of the 5 GHz emission from image A. The faint extended

nature of subcomponent A2 is consistent with a radio jet. Further-

more, A2 is extended toward the south west, which is perpendicular

to the axis connecting image A to the lensing galaxy. In contrast,

image B is unresolved in our deep VLBA map. This is not surpris-

ing since the surface brightness of the lensed images is conserved

by gravitational lensing and image B is fainter than image A (the

SB/SA flux density ratio is 0.61). The emission from image C is

well represented by a single compact elliptical Gaussian. However,

it is evident from Fig. 1 that there is a slight extension towards the

south in image C, which is presumably due to faint extended emis-

sion from the lensed jet. We have successfully detected the fourth

lensed image of B2045+265 for the first time at mas-scales. Image

D is the weakest lensed image and has a compact structure. The

results of fitting Gaussian model components to the B2045+265

lensed images are presented in Table 1.

We have also detected the fifth radio component of

B2045+265 with the VLBA. The naturally weighted map is also

shown in Fig. 1. We find the component E radio emission to be both

weak and unresolved. Fassnacht et al. (1999) argue that component

E is most probably emission from the lensing galaxy because the

B

C

D

A

G1
G2

Figure 2. Adaptive optics imaging at 2.2 µm with NIRC2 on the W. M.

Keck-II Telescope. These new high resolution data have detected for the

first time a faint galaxy (G2) which may be responsible for the flux ratio

anomaly observed in B2045+265. North is up and east is left.

flux density is too high to be a core lensed image.1 We again find

this to be the case, with component E having a higher flux density

than image D. Assuming that component E is associated with the

lensing galaxy, we calculate the rest-frame 1.4 GHz luminosity of

the component E radio emission to be 2.9 × 1023 h−2 W Hz−1,

which is consistent with a weak AGN. The flat radio spectrum

(α15
5 ∼ −0.4 between 5 and 15 GHz, where Sν ∝ να) and com-

pact nature of component E at mas-scales are both in agreement

with the classification as a radio-loud AGN. The properties of the

elliptical Gaussian fitted to component E are also presented in Ta-

ble 1.

4 OPTICAL AND INFRARED OBSERVATIONS

In this section, we present new adaptive optics imaging acquired

with the W. M. Keck Telescope, and archival data taken with the

Hubble Space Telescope.

4.1 W. M. Keck Telescope adaptive-optics imaging

High resolution ground based imaging of B2045+265 at 2.2µm (K-
band) was obtained on 2005 July 31 with the Near InfraRed Cam-

era 2 (NIRC2; Matthews et al. in preparation) behind the adaptive-

optics bench on the W. M. Keck-II Telescope. The NIRC2 narrow

camera was used throughout, which provides a field of view of

10 × 10 arcsec2 and a pixel-scale of 9.94 mas pixel−1. The data

were taken in twenty three 180-s exposures with a small dither be-

tween each to facilitate good sky background subtraction during

the reduction stage. A sodium laser guide star was used to correct

for the atmospheric turbulence, and a V = 14.1-mag natural guide

star, 33 arcsec from B2045+265, was used for fast guiding.

The data were reduced within IRAF2 using a double-pass re-

duction algorithm. The first pass is used to map the positions of

1 Recall that component E also has a flatter radio spectrum than the lensed

images.
2 IRAF (Image Reduction and Analysis Facility) is distributed by the Na-

tional Optical Astronomy Observatories, which are operated by AURA,

Inc., under cooperative agreement with the National Science Foundation.

c© 2005 RAS, MNRAS 000, 1–10

Figure 1.5: Adaptive optics imaging of B2045+265 (McKean et al., 2007) at 2.2 µm with NIRC2 on the
Keck II Telescope. The galaxy G2, detected for the first time in theses images, may be the explanation for
the flux ratio anomaly of this system.

tributed to the lens galaxy, or that luminous satellites, because of their higher concentration, have
higher lensing cross-sections (Shin & Evans, 2008).
As a final remark, it should be noticed that flux ratio anomalies as tracers of mass substructure in
lens galaxies are degenerate in mass; unless they are combined with other measurements, such as
astrometric perturbations and time delay millilensing, they do not give strong constraints on the
subhaloes mass function but only on their total projected mass fraction.

1.4.2 Astrometric perturbation
Mass substructure in lens galaxies can be responsible for a local change of the lensing deflection
angle (equation 1.5) and therefore can be responsible for a change in the positions of the lensed
images at an observable level. The advantage of astrometric perturbations as a tracer of CDM
substructure is the insensitivity to stellar microlensing and propagation effects. Metcalf & Madau
(2001) used lensing simulations to study the effect of a single substructure located near the lensed
images. They reported that in order for a subhalo to change the image positions by few tens of
milliarcseconds it has to be as massive as 108M� and located at a position which is very well
aligned with the image to be perturbed. Such an alignment is rather rare in CDM models. Chen
et al. (2007) have estimated the amplitude of astrometric perturbations using realistic simulations
of subhaloes. They concluded that typical astrometric perturbations are of the order of 10 mas,
even if there is no substructure projected near the centre of the lens, but that these perturbations
are degenerate with the smooth lens model and thus hard to interpret.

1.4.3 Time delay millilensing
Keeton & Moustakas (2009) have recently shown that the presence of substructure in lens galax-
ies can affect the time delays of multiply-imaged gravitational lens systems. The importance of
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the effect depends on the total mass fraction of substructure, their mass function and their in-
ternal structure. Unlike flux ratio anomalies, time delay millilensing is not affected by stellar
microlensing or extinction in the lens galaxy. Moreover they are sensitive to a different moment
of the subhalo mass function than astrometric perturbations and flux ratio anomalies. The three
diagnostics could then be combined in a joint analysis allowing to constrain both the fraction of
substructure and the substructure mass function. The time delay perturbations due to substructure
are of the order of a fraction of a day while, at present, time delay uncertainties are typically ≥ 1
day. Small deviations from simple models could easily mimic delay changes of� 1 day, making
the application of this technique strongly dependent on the quality of the measured delays and
inferred mass models.

1.4.4 Perturbations in highly magnified Einstein rings and arcs

Koopmans (2005) was the first to suggest to look at lens systems with extended sources and
Einstein rings or arcs to detect subhaloes in the lens galaxy. The method uses non-parametric
modelling to reconstruct the source and potential structure strongly entangled in the structure
of the lensed images. This method is not degenerate in the mass model and allows by itself to
constrain both the mass fraction in substructure and the substructure mass function. It is not
affected by microlensing and propagation effects, although it could be affected by dust extinction
in the lens galaxy, which modifies the image surface brightness. In this Thesis we present an
improved and extended version of the method originally introduced by Koopmans (2005).
Thanks to their highly magnified Einstein rings and arcs the SLACS lenses are the perfect sample
to apply these techniques for the detection of mass substructure in galaxies beyond the Local
Universe.

1.5 The SLACS survey
In this section, we present a short overview of the SLACS survey and a summary of its main
results. We refer to the following papers for a more detailed and extended description: Bolton
et al. (2006), Treu et al. (2006), Koopmans et al. (2006), Gavazzi et al. (2007), Bolton et al.
(2008), Gavazzi et al. (2008), Treu et al. (2009), Auger et al. (2009) and Koopmans et al. (2009).

1.5.1 Motivation

The SLACS survey is born from the idea of providing a uniform and large sample of early-type
lens galaxies. Several properties of early-type galaxies are still looking for consistent explanation
within the general picture of galaxy formation. The following questions in particular remain
unanswered: is the structure of massive early-types compatible with the picture of a late-type
merging scenario? What is the role played by baryons in shaping the structure of these galaxies?
What is the origin of the scaling relations between their photometric, spectroscopic and kinematic
properties? From an observational point of view, much progress has been made in this direction
using several probes such as stellar dynamics, statistics of early-type gravitational lenses and joint
lensing and dynamics measurements. However, most of these results remain uncertain because
of the lack of a statistically uniform sample of galaxies and the lack of constraints on their dark
matter holes and on the role these play in their formation. Strong gravitational lensing, when
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combined with spatially resolved kinematic measurements, is probably one of the most powerful
tools to study the structure of galaxies and to disentangle their dark-matter and luminous content.

1.5.2 Selection criteria
SLACS is a lens-based survey, which involves both spectroscopic and imaging measurements.
Target lens candidates were spectroscopically selected from the SDSS database under the follow-
ing conditions:

1. the spectrum has to be a well behaved absorption-dominated spectrum, with the signature
of at least 3 nebular emission lines at a higher redshift;

2. the lens galaxy has to be quiescent and bright;

3. the background source has to be relatively faint.

Lens candidates were then ranked in terms of their lensing cross section and those with the highest
cross section were targeted with ACS and later with WFPC 2 aboard the HST. The presence or
lack of significant lensed features such as Einstein rings or arcs will at this point be used to prove
or disprove their lensing nature. This procedure has led to the discovery of almost 100 new lens
systems (Bolton et al., 2006, 2008).

1.5.3 Major scientific results
The main scientific results from the analysis of the SLACS lenses can be summarised as follows
(Bolton et al., 2006; Treu et al., 2006; Koopmans et al., 2006; Gavazzi et al., 2007; Bolton et al.,
2008; Gavazzi et al., 2008; Treu et al., 2009; Auger et al., 2009; Koopmans et al., 2009):

1. SLACS lenses can be considered as a representative sample of massive early-type galaxies,
namely of early-type galaxies with a velocity dispersion σap ≥ 240 km s−1, both in terms
of internal properties and their environment. Results of the SLACS survey can therefore be
confidently generalised to non-lens galaxies of comparable mass;

2. massive early-type galaxies are almost homologous with nearly isothermal total density
profiles (≤ 10 percent intrinsic scatter) and have at most some mild radial anisotropy; joint
weak and strong lensing analyses show that the average slope is also close to isothermal on
scales that range from a few kiloparsecs out to a few hundred kiloparsecs. The radial mass
density profile does not seem to evolve significantly since redshift one;

3. the SLACS lenses define a mass fundamental plane relating the effective radius, the central
velocity dispersion and the surface mass density within half the effective radius. The mass
fundamental plane is tighter than the fundamental plane, it has smaller residual scatter and
does not have a tilt.

4. the fundamental plane of the SLACS lenses is consistent with that of nearby galaxies, once
passive evolution effects are corrected for; moreover these lenses tend to cluster at the edge
of the zone of avoidance of the fundamental plane. This may indicate that the zone of
avoidance can be explained as a cut-off in the velocity dispersion for early-type galaxies;
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the ”tilt” of the SLACS fundamental plane can be attributed to a variation in the total mass-
to-light ratio with mass, due to an increase in the dark matter fraction inside the effective
radius towards more massive galaxies.

In the near future we plan to apply our technique to a large sample of lens galaxies from the
SLACS survey with the aim of constraining the properties of mass substructure in early-type
galaxies.

1.6 This thesis
Quantifying mass substructure in galaxies is a key test for CDM models and gravitational lensing
is currently the only available tool to look at the structure of galaxies located at cosmological
distances.
In this Thesis, we present a Bayesian adaptive grid-based lens modelling technique which rep-
resents a major improvement of the method by Koopmans (2005). In this approach, substruc-
tures are defined as localised positive corrections to an overall smooth mass model. While the
smooth component of the lensing potential is described by an analytic model, generally an ellip-
tical power-law, the potential corrections are defined on a regular Cartesian grid. The extended
source surface brightness distribution is also pixelised on an adaptive mesh. The source grid, in
particular, is a Delaunay triangulation build directly from pixels on the image grid. Building a
source grid in this way not only helps in reducing the computational load by concentrating the
effort in highly magnified regions, but also keeps the number of degrees of freedom constant, al-
lowing for a meaningful statistical analysis. The method is sensitive to individual substructures
and is able to correctly measure their relative masses and positions. The full procedure is em-
bedded in the framework of Bayesian statistics and, as already mentioned, it allows by itself to
constrain both the mass fraction in substructure and the substructure mass function. It is not af-
fected by microlensing and propagation effects, except possibly dust extinction by the lens galaxy.
Compared to flux ratio anomalies it is sensitive to more massive subhaloes with masses & 108M�.

1.6.1 Outline of this Thesis
The outline of this Thesis is as follows: in Chapter 2 we present a novel lens modelling technique
for the detection of mass substructure in lens galaxies using highly magnified Einstein rings and
arcs. In Chapter 3 we develop a Bayesian formalism that, given a certain number of detected
substructures and their relative masses, turns these observables into statistical constraints on the
projected mass fraction of the substructures and their mass function. This allows for a direct
comparison with numerical simulations. In Chapter 4 we apply this novel and powerful technique
to the lens system SDSS J0946+1006 and we find a previously undetected large mass-to-light
ratio ((M/L)V,� & 218 M�/LV,�) substructure at redshift 0.2. In Chapter 5 we analyse SDSS
J120602.09+514229.5, which has a luminous satellite on the lensed arc. We model it with the
double goal of providing tangible evidence that our method works and of measuring the main
properties of the observed satellite, such as its mass, tidal radius and total mass-to-light ratio.
Finally, in Chapter 6 we use optical HST and infrared observations of SDSS J0737+3216 to show
that high quality ground based observations could be attractive an alternative to HST observations
for constraining lens galaxy properties and to detect mass substructure. In Chapter 7 we conclude.
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Bayesian strong gravitational-lens
modelling on adaptive grids

Published as: S. Vegetti& L.V.E. Koopmans. – “Bayesian strong gravitational-lens modelling on adaptive grids: objective

detection of mass substructure in galaxies”, 2009, MNRAS, 392,945.

ABSTRACT

We introduce a new adaptive and fully Bayesian grid-based method to model strong gravita-
tional lenses with extended images. The primary goal of this method is to quantify the level
of luminous and dark-mass substructure in massive galaxies, through their effect on highly-
magnified arcs and Einstein rings. The method is adaptive on the source plane, where a De-
launay tessellation is defined according to the lens mapping of a regular grid onto the source
plane. The Bayesian penalty function allows us to recover the best non-linear potential-model
parameters and/or a grid-based potential correction and to objectively quantify the level of reg-
ularization for both the source and the potential. In addition, we implement a Nested-Sampling
technique to quantify the errors on all non-linear mass model parameters – marginalized over
all source and regularization parameters – and allow an objective ranking of different potential
models in terms of the marginalized evidence. In particular, we are interested in comparing
very smooth lens mass models with ones that contain mass-substructures. The algorithm has
been tested on a range of simulated data sets, created from a model of a realistic lens system.
One of the lens systems is characterised by a smooth potential with a power-law density profile,
twelve include a Navarro, Frenk and White (NFW) dark-matter substructure of different masses
and at different positions and one contains two NFW dark substructures with the same mass but
with different positions. Reconstruction of the source and of the lens potential for all of these
systems shows the method is able, in a realistic scenario, to identify perturbations with masses
≥ 107M� when located on the Einstein ring. For positions both inside and outside of the ring,
masses of at least 109M� are required (i.e. roughly the Einstein ring of the perturber needs to
overlap with that of the main lens). Our method provides a fully novel and objective test of
mass substructure in massive galaxies.

15
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2.1 Introduction

At the present time, the most popular cosmological model for structure formation is the ΛCDM
paradigm. While this model has been very successful in describing the Universe on large scales
and in reproducing numerous observational results (e.g., Riess et al., 1998; Efstathiou et al., 2002;
Burles et al., 2001; Phillips et al., 2001; Jaffe et al., 2001; Percival et al., 2001; de Bernardis et al.,
2002; Hamilton & Tegmark, 2002; Croft et al., 2002; Tonry et al., 2003; Spergel et al., 2003;
Komatsu et al., 2009), important discrepancies still persist on small scales. In particular, some
of these involve the dark matter distribution within galactic haloes (e.g., Moore, 1994; Burkert,
1995; McGaugh & de Blok, 1998; Binney & Evans, 2001; de Blok et al., 2001; de Blok & Bosma,
2002; McGaugh et al., 2003; Simon et al., 2004; Rhee et al., 2004; Kuzio de Naray et al., 2006)
and the number of galaxy satellites, i.e the Missing Satellite Problem.
According to the standard scenario, structures form in a hierarchical fashion via merging and ac-
cretion of smaller objects (Toomre, 1977; Frenk et al., 1988; White & Frenk, 1991; Barnes, 1992;
Cole et al., 2000). As shown by the latest numerical simulations, in which high mass and force
resolution is achieved, the progenitor population is only weakly affected by virialization processes
and a large number of sub-haloes is able to survive after merging. The number of substructures
within the Local Group, however, is predicted to be 1-2 orders of magnitude higher than what is
effectively observed (e.g., Kauffmann et al., 1993; Moore et al., 1999; Klypin et al., 1999; Moore
et al., 2001; Diemand et al., 2007b,a).
Two different classes of solutions have been suggested to alleviate this problem, cosmological and
astrophysical. Cosmological solutions address the basis of the ΛCDM paradigm itself and mostly
concentrate on the properties of the dark matter, allowing for example, for a warm (Colin et al.,
2000), decaying (Cen, 2001), self-interacting (Spergel & Steinhardt, 2000), repulsive (Good-
man, 2000), or annihilating nature (Riotto & Tkachev, 2000). Alternatively the ΛCDM picture
can be modified by the introduction of a break of the power-spectrum at the small scales (e.g.,
Kamionkowski & Liddle, 2000; Zentner & Bullock, 2003).
From an astrophysical point of view, the number of visible satellites can be reduced by suppress-
ing the gas collapse/cooling (e.g., Bullock et al., 2000; Kravtsov et al., 2004; Moore et al., 2006)
via supernova feedback, photoionization or reionization. This would result in a high mass-to-light
ratio (M/L) in the substructures. If these high-M/L substructures indeed exist, different methods
for indirect detection are possible. The dark substructure may be detectable for example through
its effects on stellar streams (e.g., Ibata et al., 2002; Mayer et al., 2002), via γ-rays from dark
matter annihilation (Bergström et al., 1999; Calcáneo-Roldán & Moore, 2000; Stoehr et al., 2003;
Colafrancesco et al., 2006) or through gravitational lensing (e.g., Dalal & Kochanek, 2002; Koop-
mans, 2005).
While the first two approaches are limited to the local Universe, gravitational lensing allows one to
explore the mass distribution of galaxies outside the Local Group and at a relatively high redshift.
Moreover, gravitational lensing is independent of the baryonic content, of the dynamical state of
the system and of the nature of dark matter. For example, when in a lens system a point source is
close to the caustic fold or cusp, the sum of the image fluxes should add to zero if the sign of the
image parities is taken into account (Blandford & Narayan, 1986; Zakharov, 1995). This relation
is, however, violated by many observed lensed quasars with cusp and fold images. As first sug-
gested by Mao & Schneider (1998), these flux ratio anomalies can be related to the presence of
(dark matter) substructure around the lensing galaxy on scales smaller than the image separation
(Bradač et al., 2002; Chiba, 2002; Dalal & Kochanek, 2002; Metcalf & Zhao, 2002; Keeton et al.,
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2003; Kochanek & Dalal, 2004; Bradač et al., 2004; Keeton et al., 2005). Nevertheless subse-
quent studies of similar gravitationally lensed systems have shown that the required mass fraction
in substructure is higher than what is obtained in numerical simulations (Mao et al., 2004; Macciò
& Miranda, 2006; Diemand et al., 2007b). In addition, for a significant number of cases the ob-
served flux ratio anomalies can be explained by taking into account the luminous dwarf satellite
population (Trotter et al., 2000; Ros et al., 2000; Koopmans & Treu, 2002; Kochanek & Dalal,
2004; Chen et al., 2007; McKean et al., 2007; More et al., 2009). Whether the mass fraction of
CDM substructures is quantifiable via flux ratio anomalies is therefore a question still open for
debate. Alternatively, Koopmans (2005) showed that dark matter substructure in lensing galaxies
can be detected by modelling of multiple images or Einstein rings from extended sources.
In this chapter, we developed an adaptive grid-based modelling code for extended lensed sources
and grid-based potentials, to fully quantify this procedure. The method presented here is a signif-
icant improvement of the techniques introduced by Warren & Dye (2003), Dye & Warren (2005),
Koopmans (2005), Suyu & Blandford (2006), Suyu et al. (2006) and Brewer & Lewis (2006). In
order to detect mass substructure in lens galaxies one needs to solve simultaneously for the source
surface brightness distribution and the lens potential. A semilinear technique for the reconstruc-
tion of grid-based sources, given a parametric lens potential, was first introduced by Warren &
Dye (2003). The method was subsequently extended by Koopmans (2005) and Suyu & Blandford
(2006) in order to include a grid-based potential for the lens and by Barnabè & Koopmans (2007)
to include galaxy dynamics. Dye & Warren (2005) introduced an adaptive gridding on the source
plane; this would minimize the covariance between pixels and decrease the computational effort.
However the method is still lacking an objective procedure to quantify the level of regularization.
Suyu et al. (2006) and Brewer & Lewis (2006) encoded the semi-linear method within the frame-
work of Bayesian statistics (MacKay, 1992, 2003). Although a vast improvement, the fixed grids
do not allow to take into account the correct number of degrees of freedom and proper evidence
comparison is difficult. In the implementation here described, these issues have been solved:

1. the procedure is fully Bayesian; this allows us to determine the best set of non-linear pa-
rameters for a given potential and the linear parameters of the source, to objectively set the
level of regularization and to compare/rank different potential families;

2. using a Delaunay tessellation, the source grid automatically adaptives in such a way that the
computational effort is mostly concentrated in high magnification regions;

3. the source-grid triangles are re-computed at every step of the modelling so that the source
and the image plane always perfectly map onto each other and the number of degrees of
freedom remains constant during Bayesian evidence maximisation.

For the first time in the framework of grid-based lensing modelling, we use the Nested-Sampling
technique by Skilling (2004) to compute the full marginalized Bayesian evidence of the data
(MacKay, 1992, 2003). This approach not only provides statistical errors on the lens parameters,
but also consistently quantifies the relative evidence of a smooth potential against one containing
substructures. As such, our method provides a fully objective way to rank these two hypotheses
given the data, which is the goal set out in this chapter.
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2.2 Construction of the lensing operators
In this section, we describe the data model which relates the unknown source brightness distribu-
tion and lens potential to the known data of the lensed images. The aim is to put this procedure in
a fully self-consistent mathematical framework, excluding as much as possible any subjective in-
tervention into the modelling. The core of the method presented here is based on a Occam’s razor
argument. From a Bayesian evidence point of view, correlated features in the lensed images are
most likely due to structure in the source, rather than being the result of small-scale perturbations
of the lens potential in front of all the lensed images. On the other hand, uncorrelated structure in
the lensed images is most likely due to small-scale perturbations of the lens potential.

2.2.1 The data, source and potential grids
The main idea of grid-based lensing techniques is to use a grid-based reconstruction of the source
and of the lens potential. Here we introduce the general geometry of the problem, explicitly shown
in Fig. 2.1. Consider a lensed image ddd of an unknown extended source sss. Both ddd and sss are vectors
that describe the surface brightness distributions on a set of spatial points xxxd

i and yyys
j in the lens

and source plane, respectively (e.g., Warren & Dye, 2003; Koopmans, 2005; Suyu et al., 2006).
In general, these are related through the lens equation yyyd

i = xxxd
i −∇∇∇ψ(xxxd

i ), where xxxd
i corresponds to

the spatial position of the surface brightness in the ith element of the vector ddd, i.e. di and ψ(xxxd
i )

is the lensing potential, which is described in more detail in a moment. We note that yyyd
i does not

necessarily directly correspond to the elements yyys
j, jth brightness value of the vector sss. In our

implementation, the grid on the source plane is fully adaptive and is directly constructed from a
subset of the Nd pixels in the image plane, with spatial boundaries of the image grid included.
In particular, as shown schematically in Fig. 2.1, Ns pixels, located each at a position xxxs

i on the
image grid, are cast back to the source plane giving the positions yyys

j. The set of positions {yyys
i }

constitute the vertices of a Delaunay triangulation. In this way, we define an irregular adaptive
grid, where vertex positions in the source plane are related to positions on the image plane via the
lens equation and every vertex value represents an unknown source surface brightness level.
We assume the lens potential to be the superposition of a parametric smooth component with
linear local perturbations related to the presence of e.g. CDM substructures or dwarf galaxies:

ψ(xxx, ηηη) = ψs(xxx, ηηη) + δψ(xxx). (2.1)

While ψs(xxx, ηηη) assumes a parametric form, with parameters ηηη, δψ(xxx) is a function that is pixelized
on a regular Cartesian grid of points xxxδψk with values δψk. The set {δψk} is written as a vector δψψψ.
Given the observational set of data ddd, we now wish to recover the source distribution sss and the
lens potential ψ(xxx, ηηη) simultaneously. To do this we need to mathematically relate the brightness
values ddd to the unknown brightness values sss. As described in the next subsection, this can be done
through a linear operation on sss and δψψψ, where the operator itself is a function of an initial guess
of the lens potential.

2.2.2 The source and potential operator
We now derive the explicit relation between the unknown source distribution sss, the potential cor-
rection δψψψ, the smooth potential ψs(xxx, ηηη) and the image brightness ddd.
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Figure 2.1: A schematic overview of the non-linear source and potential reconstruction method, as imple-
mented in this chapter. On the left hand-side, on the image plane, two grids are defined: one for the potential
corrections and one for the lensed image. A subset of Ns of the Nd image pixels located at the positions xxxs

i on
the image plane (filled circles) is cast back to the source plane (on the right) on yyys

i through the lens equation.
These form the vertices of an adaptive grid on the source plane. The remaining image pixels (open circles)
are also cast to the source plane to the positions yyyd

i (we note that this set of points includes yyys
i ). Because the

source brightness distribution is conserved, i.e S (xxxd
i ) = S (yyyd

i ), the surface brightness at the empty circles is
represented by a linear superposition of the surface brightness at the three triangle vertices that enclose it.
Similarly the potential correction at a point xxxδψi is given by linear interpolation of the potential corrections at
the surrounding pixels (large rectangular pixels on the image plane).

Consider a generic triangle ÂBC on the source plane (Fig. 2.2(a)), then the source surface bright-
ness sP on a point P, located inside the triangle at the position yyyd

P, can be related to the surface
brightness on the vertices A, B and C through a simple linear relation

sP = wAsA + wBsB + wCsC . (2.2)

An explicit expression for the bilinear interpolation weights wA, wB and wC can be obtained by
considering the point P1, at the intersection of the line AP with the line CB. The source intensities
at P and P1 are also related to each other through a linear interpolation. On the other hand, the
surface brightness in P1 is directly related to the values on the triangle vertices B and C sP =

dPA
dP1A

(sP1 − sA) + sA

sP1 =
dP1B
dCB

(sC − sB) + sB

(2.3)

where dPA and dP1A are the absolute distances between the points P and A and the points P1 and
A respectively; dP1B and dCB are the distances between the points P1 and B and the points C and
B respectively. Solving (2.3), we obtain the weights

wA = 1 − dPA
dP1A

wB =
dPA

dP1A

(
1 −

dP1B
dCB

)
wC =

dPAdP1B
dP1AdCB

(2.4)

with
∑

i=A,B,C wi = 1. Because gravitational lensing conserves the surface brightness, i.e. S (xxxd
i ) =

S (yyyd
i ), the mapping between the two planes (when δψψψ = 0) can be expressed as a system of Ns
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coupled linear equations

B L(ηηη)sss = ddd + nnn , (2.5)

where L(ηηη) and B are the lensing and the blurring operators respectively (see e.g. Warren &
Dye, 2003; Treu & Koopmans, 2004; Koopmans, 2005; Suyu & Blandford, 2006). The blurring
operator is a square sparse matrix which accounts for the effects of the PSF. Each row of the
lensing operator (a sparse matrix) contains at most the three bilinear interpolation weights, wA,B,C,
placed at the columns that correspond to the three source vertices that enclose the associated
source position. For a vertex point, there is only one weight equal to unity. In case Ns = Nd (i.e.
all image positions are used to create the source grid), all weights are equal to unity. In this case,
the systems of equations is under-constrained and strong regularization is required.
By pixelating δψ(xxx) on a regular Cartesian grid, a similar argument as for the source can be applied
to the potential correction; all potential values, {δψk}, and their derivatives on the image plane can
be related to this limited set of points through bilinear interpolation (see Koopmans, 2005; Suyu
et al., 2009). It is then possible to derive from equation (2.5) a new set of linear equations,

Mc (ηηη,ψψψ) rrr = ddd + nnn, (2.6)

where

rrr ≡
(

sss
δψψψ

)
. (2.7)

More specifically, ψψψ is the sum of all the previous corrections δψψψ and the operator Mc is a block
matrix reading

Mc ≡ B
[
L(ηηη,ψψψ) | − Ds(sssMP)Dψ

]
. (2.8)

L(ηηη,ψψψ) is the lensing operator introduced above, Ds(sssMP) is a sparse matrix whose entries depend
on the surface brightness gradient of the previously-best source model at yyyd

i and Dψ is a matrix that
determines the gradient of δψψψ at all corresponding points xxxd

i (see Koopmans, 2005, for details).
The generic structure of these matrices is given by

Ds =



...

∂S (yyyd
i )

∂y1

∂S (yyyd
i )

∂y2

∂S (yyyd
i+1)

∂y1

∂S (yyyd
i+1)

∂y2

...


(2.9)
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and

Dδψ =



...

∂δψ(xxxd
i )

∂x1
∂δψ(xxxd

i )
∂x2

∂δψ(xxxd
i+1)

∂x1
∂δψ(xxxd

i+1)
∂x2

...



(2.10)

where the index i runs along all the xxxd
i and yyyd

i , i.e. triangle vertices included. The “functions”
S and δψ and their derivative can be derived through bilinear interpolation and finite differencing
from sss and δψψψ, respectively.
It is clear from the structure of these matrices that the first-order correction to the model, as a
result of δψ, is equal to δdi = −∇∇∇S (yyyd

i ) · ∇∇∇δψ(xxxd
i ) at every point xxxd

i (see e.g. Koopmans, 2005, for
a derivation).
As for the surface brightness itself, also the first derivatives for a generic point P on the source
plane can be expressed as functions of the relative values on the triangle vertices A, B, C, yielding

∂sP
∂y1

= wA
∂sA
∂y1

+ wB
∂sB
∂y1

+ wC
∂sC
∂y1

∂sP
∂y2

= wA
∂sA
∂y2

+ wB
∂sB
∂y2

+ wC
∂sC
∂y2

(2.11)

For the generic vertex j = A,B,C these are given by
∂sss j
∂y1

= −
n0
n2

and
∂sss j
∂y2

= −
n1
n2

, where NNN ≡
(n0, n1, n2) is the unit-length surface normal vector at the vertex j and is defined as the average
of the adjacent per-face normal vectors. For δψψψ and its gradients, on a rectangular grid with
rectangular pixels, we follow Koopmans (2005).

2.3 Inverting the data model
As shown above, in both cases of solving for the source alone, or solving for the source plus
a potential correction, a linear data model can be constructed. In this section, we give a general
overview of how this set of linear equations can be (iteratively) solved. A more thorough Bayesian
description and motivation can be found in Section 2.4.

2.3.1 The penalty function
Before we go into the details of the method, we first restate that for a given lens potential ψ(xxx, ηηη)
and potential correction ψψψn =

∑n
i=1 δψψψi, on a grid, the source surface brightness vector sss and the

data vector ddd can be related through a linear (matrix) operator

Mc(ηηη,ψψψn−1, sssn−1)rrrn = ddd + nnn, (2.12)
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(a)

(b) (c)

Figure 2.2: Generic triangles from the source grid. Both the source surface brightness and its derivatives
at the points P, P1 and P2 are given by linear superposition of the values at the edges of the surrounding
triangles.

now explicitly written with their dependencies on the source and potential and with

rrrn =

(
sssn
δψψψn

)
. (2.13)

In this equation sssn is a model of the source brightness distribution at a given iteration n (we
describe the iterative scheme momentarily). We assume the noise nnn to be Gaussian which is a
good approximation for the HST images the method will be applied to. Even in case of deviations
from Gaussianity, the central limit theorem, for many data points, ensures that the probability
density distribution is often well approximated by a Normal distribution.
Because of the ill-posed nature of this relation, equation (2.12) cannot simply be inverted. Instead
a penalty function which expresses the mismatch between the data and the model has to be defined
by

P(sss, δψψψ |ηηη,λλλ, sssn−1,ψψψn−1) = χ2 + λ2
s‖Hssss‖22 + λ2

δψ‖Hδψδψψψ‖
2
2 , (2.14)

with

χ2 = [Mc(ηηη,ψψψn−1, sssn−1) rrr − ddd]T C−1
d [Mc(ηηη,ψψψn−1, sssn−1) rrr − ddd]. (2.15)

The second and third term in the penalty function contain prior information, or beliefs about the
smoothness of the source and of the potential respectively and Cd is the diagonal covariance
matrix of the data. The level of regularization is set by the regularization parameters λλλ, one for
the source and one for the potential (see Koopmans, 2005; Suyu et al., 2006, for a more general
discussion). In a Bayesian framework, this penalty function is related to the posterior probability
of the model given the data (see Section 2.4). In the following two sections we describe how
to solve for the linear and non-linear parameters of the penalty function (except for λλλ, which is
described in Section 2.4).
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Solving for the linear parameters

The most probable solution, rrrMP, minimizing the penalty function is obtained by solving the set
of linear equations

(MT
c C−1

d Mc + RTR) rrr = MT
c C−1

d ddd. (2.16)

The regularization matrix is given by

RTR =

 λ2
sHT

s Hs
λ2
δψHT

δψHδψ

 . (2.17)

The solution of this symmetric positive definite set of equations can be found using e.g. a Cholesky
decomposition technique. By solving equation (2.16), adding the correction δψψψn to the previously-
best potential ψψψn−1 and iterating this procedure, both the source and the potential should converge
to the minimum of the penalty function P(sssn, δψψψn |ηηη,λλλ, sssn−1,ψψψn−1). At every step of this iterative
procedure the matrices Mc and R have to be recalculated for the new updated potential ψψψn and
source sssn. While the potential grid points are kept spatially fixed in the image plane, the Delaunay
tessellation grid of the source is re-built at every iteration to ensure that the number of degrees of
freedom is kept constant during the entire optimization process.
Note that because the source and the potential corrections are independent, they require their own
form (H) and level (λ) of regularization. The most common forms of regularization are the zeroth-
order, the gradient and the curvature. As shown by Suyu et al. (2006) the best form depends on the
nature of the source distribution and can be assessed via Bayesian evidence maximisation. For the
source, we chose the curvature regularization defined for the Delaunay tessellation of the source
plane.
Specifically one can combine the gradient and curvature matrices in the x and y directions:
HT

s Hs = HT
s,y1Hs,y1 + HT

s,y2Hs,y2 . Both Hs,y1 and Hs,y2 can be obtained by analogy by con-
sidering the pair of triangles in Fig. 2.2(b) and Fig. 2.2(c) respectively. For every generic point C
on the source plane we consider the pair of triangles ÂBC and D̂CE and define the curvature in C
in the y1 direction as:

s′′C,y1
≡

1
dCP

(sP − sC) −
1

dCQ
(sC − sQ) . (2.18)

This is not the second derivative, but we find that this alternative curvature definition gives much
better results than using the second derivative directly. The reason is that it gives equal weight
to all triangles, independently of their relative sizes (for identical rectangular pixels this problem
does not arise since the above definition is equal to the second derivative up to a proportionality
constant). A much smoother solution in that case is obtained.
P and Q are given by intersecting the line CP1 with the line ED and the line CP2 with the line AB
respectively. Specifically, P1 and P2 are defined as very small displacements from the point C in
the y1 direction

y
P1
2 = y

P2
2 = yC

2

y
P1,2
1 = yC

1 ± δy1. (2.19)



24 Bayesian strong gravitational-lens modelling on adaptive grids

The source surface brightness in P and Q can be obtained by linear interpolation between the
source values in D with the value in E and the value in A with the value in B respectively

sP =
dPD
dED

(sE − sD) + sD

sQ =
dQA

dAB
(sB − sA) + sA , (2.20)

Substituting (2.20) in (2.18) gives

s′′C,y1
= −

(
1

dCP
+

1
dCQ

)
sC +

dPD
dCPdDE

sE +
dQA

dCQdAB
sB +

dPE
dCPdDE

sD +
dQB

dCQdAB
sA . (2.21)

Each row of the regularization matrix Hs,y1 , corresponding to every point C, contains the five
interpolation weights, placed at the columns that correspond to the five vertices A, B, C, D and E.
The curvature in the y2 direction is derived in an analogous way using the pair of triangles in Fig.
2.2(c). We refer again to Koopmans (2005) for details on the potential regularization matrix Hδψ

Solving for the non-linear parameters

In order to recover the non-linear parametersηηη, we need to minimize the penalty function P(sss, ηηη |λλλ,ψψψ).
We allow for a correction, ψψψ, to the parametric potential ψ(ηηη, xxx) (not necessarily zero), but do not
allow it to be changed while optimising for sss and ηηη. In all cases, we keep λλλ fixed during the op-
timization. Given an initial guess for the non-linear parameters ηηη0, we then minimize the penalty
function defined in Section 2.3.1, under the conditions outlined above (ψψψ is constant and δψψψ ≡ 000).
We use a non-linear optimizer (in our case Downhill-Simplex with Simulated Annealing; Press
et al., 1992), to change ηηη at every step and to minimize the joint penalty function P(sss, ηηη |λλλ,ψψψ). The
optimization of sss is implicitly embedded in the optimization of ηηη by solving equation (2.16) only
for sss, every time ηηη is modified.

2.3.2 The optimization strategy
We have implemented a multi-fold optimization scheme for solving the linear equation (2.12).
This scheme is not unique, but stabilises the numerical optimization of this rather complex set
of equations. Solving all parameters simultaneously would be computationally prohibitive and
usually shows poor convergence properties.

Optimization steps

Our optimization scheme is similar to a line-search optimization, where consecutively different
sets of unknown parameters are being kept fixed, while the others are optimized for. The sets
{δψψψ, sss}, {ηηη, sss} and {λλλ, sss} define the three different groups of parameters, of which only one is solved
for at once. The individual steps, in no particular order, are then:

1. We assume ηηη and λλλ to be constant vectors and iteratively solve for δψψψ and the source sss. In
this case, at every iteration we solve for rrr and adjust ψψψ, using the linear correction to the
potential δψψψ. This was described in Section 2.3.1.
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2. We assume ψψψ and λλλ to be constant vectors and δψψψi = 000 at every iteration and only solve for
the non-linear potential parameters ηηη and the source sss. This was described in Section 2.3.1.
We note that part of step (1) is also implicitly carried out in step (2) (i.e. solving for sss).

3. We assume both (1) and (2), above, and solve for the regularization parameters λs of the
source and the source itself sss. This requires a Bayesian approach and will be described in
more detail in Section 2.4. We have not attempted to optimize for λδψ, but will study this in
future publications.

4. The overall goal, however, remains to solve for the full set of unknown parameters {ηηη,ψψψn, sssn}

for n→ ∞ (or some large number). In particular if an overall smooth (on scales of the image
separations) potential model ψ(ηηη) does not allow a proper reconstruction of the lens system,
we add an additional and more flexible potential correction δψψψ, which can describe a more
complex mass structure.

Line-search optimization scheme

In practice, we find that the optimal strategy to minimize the penalty function is the following, in
order:

1. We set λs to a large constant value such that the source model remains relatively smooth
throughout the optimization (i.e. the peak brightness of the model is a factor of a few below
that of the data) and keepψψψn = 000 (see also Suyu et al., 2006, 2009). We then solve for ηηη and
sss that minimize the penalty function.

2. Once the best ηηη and sss are found, a Bayesian approach is used to find the best value of λs for
the source only. At this point ψψψ is still kept equal to zero.

3. Given the new value of λs, step (1) is repeated to find improved values of ηηη and sss. Since
the sensitivity of λs to changes in ηηη is rather weak, at this point the best values of ηηη, sss and λλλ
have been found.

4. Next, all the above parameters are kept fixed and we solve for rrr, this time assuming a very
large value for λδψ to keep the potential correction (and convergence) smooth. We adjust ψψψ
at every iteration until convergence is reached (e.g. Suyu et al., 2009). At this point we stop
the optimization procedure.

5. The smooth model with ψψψ = 000 and the same model with ψψψ , 000 are then compared through
their Bayesian evidence values and errors on the parameters are estimated through the
Nested Sampling of Skilling (2004)(Section 2.4).

Fig. 2.3 shows a complete flow diagram of our optimization scheme. In the next section we place
equation (2.14) and model ranking on a formal Bayesian footing. Those readers mostly interested
in the application and tests of the method could continue reading in Section 2.5.

2.4 A Bayesian approach to data fitting and model selection
When trying to constrain the physical properties of the lens galaxy, within the grid-based ap-
proach, three different problems are faced. Given the linear relation in equation (2.6) we need to
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determine the linear parameters rrr for a certain set of data ddd and a form for the smooth potential
ψs(xxx, ηηη). We then aim to find the best values for the parameters ηηη and λλλ and finally, on a more
general level, we wish to infer the best model for the overall potential and quantitatively rank
different potential families. In particular, we want to compare smooth models with models that
also include a potential grid for substructure (with more free parameters). These issues can all
be quantitatively and objectively addressed within the framework of Bayesian statistics. In the
context of data modelling three levels of inference can be distinguished (MacKay, 1992; Suyu
et al., 2006):

1. First level of inference: linear optimization. We assume the model Mc, which depends
on a given potential and source model, to be true and for a fixed form R and level (λλλ) of
regularization, we derive from Bayes’ theorem the following expression:

P (rrr |ddd, λλλ,ηηη,Mc,R) =
P(ddd | rrr, ηηη,Mc) P(rrr |λλλ,R)

P(ddd |λλλ,ηηη,Mc,R)
. (2.22)

The likelihood term, in case of Gaussian noise, for a covariance matrix Cd, is given by

P(ddd | rrr, ηηη,Mc) =
1

Zd
exp [−Ed(ddd | rrr, ηηη,Mc)] (2.23)

where
Zd = (2π)Nd/2(det Cd)1/2 (2.24)

and (see equation 2.15)

Ed(ddd | rrr, ηηη,Mc] =
1
2
χ2 =

1
2

(Mcrrr − ddd)T C−1
D (Mcrrr − ddd) . (2.25)

Because of the presence of noise and often the singularity of det (MT
c Mc), it is not possible

to simply invert the linear relation in equation (2.6) but an additional penalty function must
be defined through the introduction of a prior probability P(rrr |λλλ,R) on sss and on δψψψ. In our
implementation of the method, the prior assumes a quadratic form, with minimum in rrr = 000
and sets the level of smoothness (specified in H and λλλ) for the solution

P(rrr |λλλ,R) =
1
Zr

exp [−λλλEr(rrr |R)] , (2.26)

with

Zr(λλλ) =

∫
drrre−λλλEr = e−λλλEs(0)

(
2π
λλλ

)Nr/2
(det C)−1/2 , (2.27)

Er =
1
2
‖Rrrr‖22 (2.28)

and
C = ∇∇Er = R RT . (2.29)

The normalization constant P(ddd |λλλ,ηηη,Mc,R) is called the evidence and plays an important
role at higher levels of inference. In this specific case it reads

P(ddd |λλλ,ηηη,Mc,R) =

∫
drrr exp (−M(rrr))

ZdZr
, (2.30)
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where
M(rrr) = Ed + Er . (2.31)

The most probable solution for the linear parameters, is found by maximizing the posterior
probability

P(rrr |ddd, λλλ,ηηη,Mc,R) =
exp(−M(rrr))∫
drrr exp(−M(rrr))

. (2.32)

The condition ∂(Ed + Er)/∂rrr = 0 now yields the set of linear equations already introduced
in Section 2.3.1: (

MT
c Cd

−1Mc + RTR
)
rrr = MT

c Cd
−1ddd . (2.33)

Equation (2.33) is solved iteratively using a Cholesky decomposition technique.

2. Second level of inference: non-linear optimization. At this level we want to infer the non-
linear parameters ηηη and the hyper-parameter λs for the source. Since at this point we are
interested only in the smooth component of the lens potential, we set δψψψ = 0 and for a
fixed family ψs(ηηη), form of the regularization R and model Mc, we maximize the posterior
probability

P(λλλ,ηηη |ddd,Mc,R) =
P(ddd |λλλ,ηηη,Mc,R)P(λλλ,ηηη)

P(ddd |Mc,R)
. (2.34)

Assuming a prior P(λλλ,ηηη), which is flat in log(λs) and ηηη, reduces to maximizing the evidence
P(ddd |λλλ,ηηη,Mc,R) (which here plays the role of the likelihood) for ηηη and λλλ. The evidence can
be computed by integrating over the posterior (2.34)

P(ddd |λλλ,ηηη,Mc,R) =

∫
drrr P(ddd | rrr, ηηη,Mc)P(rrr |λλλ,R) . (2.35)

Because of the assumptions we made (Gaussian noise and quadratic form of regularization),
this integral can be solved analytically and yields

P(ddd |λλλ,ηηη,Mc,R) =
ZM(λλλ,ηηη)
ZdZr(λλλ)

, (2.36)

where
ZM(λλλ,ηηη) = exp (−M(rrrMP)) (2π)Nr/2 (det A)−1/2 , (2.37)

with A = ∇∇M(rrr). Again we proceed in an iterative fashion: using a simulated annealing
technique we maximize the evidence (2.35) for the parameters ηηη. Every step of the max-
imization generates a new model Mc(ψ(ηηηi)), for which the most probable source sssMP is
reconstructed as described in Section 2.3. At this starting step the level of the source regu-
larization is set to a relatively large initial value λs,0; in this way we ensure the solution to
be smooth (at least at this first level) and the exploration of the ηηη space to be faster. Sub-
sequently we fix the best model Mc(ηηη0) found at the previous iteration and, using the same
technique, we maximize the evidence for the source regularization level λs. The procedure
is repeated until the total evidence has reached its maximum. In principle we should have
built a nested loop for λs at every step of the ηηη exploration, but in practice the regularization
constant only changes slightly with ηηη and the alternate loop described above gives a faster
way to reach the maximum (line-search method).
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3. At the third level of inference Bayesian statistics provides an objective and quantitative
procedure for model comparison and ranking on the basis of the evidence,

P(Mc,R |ddd) ∝ P(ddd |Mc,R)P(Mc,R) . (2.38)

For a flat prior P(Mc,R) (at this level of inference we can make little to no assumptions)
different models can be compared according to their value of P(ddd |Mc,R), which is related
to the evidence of the previous level by the following relation

P(ddd |Mc,R) =

∫
dλλλ dηηη P(ddd |λλλ,ηηη,Mc,R)P(λλλ,ηηη) . (2.39)

Being multidimensional and highly non-linear, the integral (2.39) is carried out numerically
through a Nested-Sampling technique (Skilling, 2004), which is described in more detail in
the next section. A by-product of this method is an exploration of the posterior probability
(2.34), allowing for error analysis of the non-linear parameters and of the evidence itself.

2.4.1 Model selection: smooth versus clumpy models
In the previous section we introduced the main structure of the Bayesian inference for model fit-
ting and model selection. While parameter fitting simply determines how well a model matches
the data and can be easily attained with the relatively simple analytic integrations of the first and
second level of inference, model selection itself requires the highly non-linear and multidimen-
sional integral (2.39) to be solved. This marginalized evidence can be used to assign probabilities
to models and to reasonably establish whether the data require or allows additional parameters or
not. Given two competing models M0 and M1 with relative marginalized evidence E0 and E1, the
Bayes factor, ∆E ≡ logE0 − logE1, quantifies how well M0 is supported by the data when com-
pared with M1 and it automatically includes the Occam’s razor. Typically the literature suggests
to weigh the Bayes factor using Jeffreys’ scale (Jeffreys, 1961), which however provides only a
qualitative indication: ∆E < 1 is not significant, 1 < ∆E < 2.5 is significant, 2.5 < ∆E < 5 is
strong and ∆E > 5 is decisive.
In order to evaluate this marginalized evidence with a high enough accuracy we implemented the
new evidence algorithm known as Nested Sampling, proposed by Skilling (2004). Specifically,
we would like to compare two different models: one in which the lens potential is smooth and
one in which substructures are present, with e.g. a NFW profile. While the first is defined by the
non-linear parameters of the lens potential and of the source regularization only, the second also
allows for three extra parameters: the mass of the substructure and its position on the lens plane
(see Section 2.5)

2.4.2 Model ranking: nested sampling
Here, we provide a short description of how the Nested Sampling can be used to compute the
marginalized evidence and errors on the model parameters; a more detailed one can be found in
Skilling (2004). The Nested-Sampling algorithm integrates the likelihood over the prior volume
by moving through thin nested likelihood surfaces. Introducing the fraction of total prior mass X,
within which the likelihood exceeds L∗, hence

X =

∫
L>L∗

dX , (2.40)
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with
dX = P (λλλ,ηηη) dλλλ dηηη , (2.41)

the multi-dimensional integral (2.39) relating the likelihood L and the marginalized evidence E
can be reduced to a one-dimensional integral with positive and decreasing integrand

E =

∫ 1

0
dXL(X) . (2.42)

Where L(X) is the likelihood of the (possibly disjoint) iso-likelihood surface in parameter space
which encloses a total prior mass of X. If the likelihood L j = L(X j) can be evaluated for each
of a given set of decreasing points, 0 < X j < X j−1 < .... < 1, then the total evidence E can be

obtained, for example, with the trapezoid rule, E =
∑m

j=1 E j =
∑m

j=1
L j
2

(
X j−1 − X j+1

)
.

The power of the method is that the values of X j do not have to be explicitly calculated, but
can be statistically estimated. Specifically, the marginalized evidence is obtained through the
following iterative scheme:

1. the likelihoodL is computed for N different points, called active points, which are randomly
drawn from the prior volume.

2. the point X j with the lowest likelihood is found and the corresponding prior volume is
estimated statistically: after j iterations the average volume decreases as X j/X j−1 = t,
where t is the expectation value of the largest of N numbers uniformly distributed between
(0, 1).

3. the term E j =
L j
2

(
X j−1 − X j+1

)
is added to the current value of the total evidence;

4. X j is replaced by a new point randomly distributed within the remaining prior volume and
satisfying the condition L > L∗ ≡ L j;

5. the above steps are repeated until a stopping criterion is satisfied.

By climbing up the iso-likelihood surfaces, the method, in general, find and quantifies the small
region in which the bulk of the evidence is located.
Different stopping criteria can be chosen. Following Skilling (2004), we stop the iteration when
j � NH, where H is minus the logarithm of that fraction of prior mass which contains the bulk
of the posterior mass. In practical terms this means that the procedure should be stopped only
when most of the evidence has been included. Given the areas E j, in fact, the likelihood initially
increases faster than the widths decrease, until its maximum is reached; across this maximum,
located in the region E ≈ e−H , the likelihood flatten off and the decreasing widths dominate the
increasing L j. Since E j ≈ e− j/N, it takes NH iterations to reach the dominating areas. These NH
iterations are random and are subjected to a standard deviation uncertainty

√
NH, corresponding

to a deviation standard on the logarithmic evidence of
√

NH/N

logE = log

∑
j

E j

 with σlogE =

√
H
N
. (2.43)
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Posterior probability distributions

For the lens parameters, the substructure position and the logarithm of the source regularization,
priors are chosen to be uniform on a symmetric interval around the best values which we have
determined at the second level of the Bayesian inference. The size of the interval being at least
one order of magnitude larger than the errors on the parameters. In practice, we first carry out
a fast run of the Nested Sampling with few active points N, this gives us an estimate for the
non-linear parameter errors. Using the product 2 × Ndim × ση, where Ndim is the total number
of parameters and ση the corresponding standard deviation, we can then roughly enclose the
bulk of the likelihood (note that this can be double-checked and corrected in hindsight, if the
posterior probability functions are truncated at the prior boundaries). Priors on the parameters are
taken in such a way that this maximum is fully included in the total integral of the marginalized
evidence. For the main lens parameters and for the regularization constant the same priors are
used for model with and without substructure. For the substructure mass a flat prior between
Mmin = 4.0 × 106M� and Mmax = 4.0 × 109M� is adopted, with the two limits given by N-body
simulations (e.g. Diemand et al., 2007b,a). In reality, the method does not require the parameters
to be well known a priori, but limiting the exploration to the best fit region sensibly reduces the
computational effort without significantly altering the evidence estimation. From Bayes theorem
we have that the posterior probability density p j is given by

p j(t) =
L j

2

(
X j−1 − X j+1

)
/E(t) = w j/E(t) . (2.44)

The existing set of points (ηηη,λλλ)1,..., (ηηη,λλλ)N then gives us a set of posterior values that can be then
used to obtain mean values and standard deviations on the non-linear parameters

〈ηηη〉 =
∑

j

w jηηη j/
∑

j

w j , (2.45)

and similarly for λλλ. These samples also provide a sampling of the full joint probability density
function. Marginalising over this function, the full marginalized probability density distribution
of each parameters can be determined (see Section 2.5.5).

2.5 Testing and calibrating the method
In this section we describe the procedure to test the method introduced above and to assess its
ability to detect dark matter substructures in realistic data sets (e.g. from HST). A set of mock
data, mimicking a typical Einstein ring, is created. We generate fourteen different lens models, of
which L0 is purely smooth, L1≤i<13 are given by the superposition of the same smooth potential
with a single NFW dark matter substructure of varying mass and position and L13 contains two
NFW dark matter substructures with the same mass but with different positions (See Table 2.1). A
first approximate reconstruction of the source and of the lens potential is performed by recovering
the best non-linear lens parameters ηηη and the level of source regularization λs. These values are
then used for the linear grid-based optimization, which provides initial values of the substructure
position and mass. Three extra runs of the non-linear optimization are then performed to recover
the best set

(
ηηηb, λs,b

)
for the main lens and the best mass and position of the substructure (solely

modelled with a NFW density profile). Finally by means of the Nested-Sampling technique de-
scribed in Section 2.4.1 we compute the marginalized evidence, equation (2.39), for every model
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twice, once under the hypothesis of a smooth lens and once allowing for the presence of one or
two extra mass substructures. Comparison between these two models allows us to assess whether
the presence of substructure in the model improves the evidence despite the larger number of free
parameters.

2.5.1 Mock data realisations
A set of simulated data with realistic noise is generated from a model based on the real lens
SLACS J1627−0055 (Koopmans et al., 2006; Bolton et al., 2006; Treu et al., 2006). We assume
the lens to be well described by a power-law (PL) profile (Barkana, 1998). Using the optimization
technique described in Section (2.4) we find the best set of non-linear parameters

(
ηηηb, λs,b

)
. In

particular ηηη contains the lens strength b, and some of the lens-geometry parameters: the position
angle θ, the axis ratio f , the centre coordinates xxx0 and the density profile slope q,

(
ρ ∝ r−(2q+1)

)
.

If necessary, information about external shear can be included. The best parameters are used to
create fourteen different lenses and their corresponding lensed images. One of the systems is
given by a smooth PL model while twelve include a dark matter substructure with virial mass
Mvir = 107M�, 108M�, 109M� located either on the lowest surface brightness point of the ring
P0, on a high surface brightness point of the ring P1, inside the ring P2 and outside the ring P3 (see
Table 2.1). The fourteenth lens contains two substructures each with a mass of Mvir = 108M�,
located respectively in P0 and P1. The substructures are assumed to have a NFW profile

ρ (r) = ρs(rs/r) [1 + (r/rs)]−2 , (2.46)

where the concentration c = rvir/rs and the scaling radius rs are obtained from the virial mass
using the empirical scaling laws provided by Diemand et al. (2007b,a). The source has an elliptical
Gaussian surface brightness profile centred in zero

s (yyy) = s0 exp
[
−(y1/δy1)2 − (y2/δy2)2

]
. (2.47)

We assume s0 = 0.25, δy1 = 0.01 and δy2 = 0.04.

2.5.2 Non-linear reconstruction of the main lens
We start by choosing an initial parameter set ηηη0 for the main lens, which is offset from ηηηtrue that
we used to create the simulated data. Assuming the lens does not contain any substructure we run
the non-linear procedure described in Section (2.4) and optimize {ηηη, λs} for each of the considered
systems. At every step of the optimization a new set {ηηηi, λs,i} is obtained and the corresponding
lensing operator Mc(ηηηi, λs,i) has to be re-computed. The images are defined on a 81 by 81 pixels
(Nd = 6561) regular Cartesian grid while the sources are reconstructed on a Delaunay tessellation
grid of Ns = 441 vertices. The number of image points, used for the source grid construction, is
effectively a form of a prior and the marginalized evidence (equation 2.39) can be used to test this
choice. To check whether the number of image pixels used can affect the result of our modelling,
we consider the smooth lens L0 and perform the non-linear reconstruction using one pixel every
sixteen, nine, four and one. In each of the considered cases we find that the lens parameters
are within the relative errors (see Tables 2.3, 2.4 and 2.5). This suggests that, for this particular
case, the choice of number of pixels is not influencing the quality of the reconstruction. In real
systems, the dynamic range of the lensed images could be much higher and a case by case choice
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Lens xxxsub (arcsec) msub (M�)
L1 P0 = (+0.90; +1.19) 107

L2 108

L3 109

L4 P1 = (−0.50;−1.00) 107

L5 108

L6 109

L7 P2 = (−0.10;−0.60) 107

L8 108

L9 109

L10 P3 = (−0.90;−1.40) 107

L11 108

L12 109

L13 P0 and P1 108

Table 2.1: Non-smooth (PL+NFW) lens models. At each of the Pi positions a NFW perturbation of virial
mass msub is superimposed on a smooth PL mass model distribution.

based on the marginalized evidence has to be considered. In Fig. 2.5, the residuals relative to the
system L1 are shown; the noise level is in general reached and only small residuals are observed
at the position of the substructure. Whether the level of such residuals and therefore the relative
detection of the substructure are significant is an issue we will address later on in terms of the total
marginalized evidence.

2.5.3 Linear reconstruction: substructure detection

The non-linear optimization provides us with a first good approximate solution for the source and
for the smooth component of the lens potential. While this is a good description for the smooth
model L0 (see Fig. 4.2), the residuals (e.g. Fig. 2.7) for the perturbed model Li≥1 indicate that
the no-substructure hypothesis is improbable and that perturbations to the main potential have to
be considered. If the perturbation is small, this can be done by temporarily assuming that ηηηi=1
reflects the true mass model distribution for the main lens and reconstruct the source and the
potential correction by means of equation (2.33). In order to keep the potential corrections in the
linear regime, where the approximation (2.33) is valid, both the source and the potential need to
be initially over-regularised: λs = 10 λs,1 and λδψ = 3.0 × 105 (Koopmans, 2005; Suyu et al.,
2006). For each of the possible substructure positions we identify the lowest-mass-substructure
we are able to recover. In the two most favourable cases, L1 and L4, in which the substructure
sits on the Einstein ring a perturbation of 107M� is readily reconstructed. For these two positions
higher mass models, with the exception of L2, will not be further analysed. The systems L7,8,9 and
L10,11,12, in which the substructure is located, respectively, inside and outside the ring, represent
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more difficult scenarios. In the first case all perturbations below 109M� can be mimicked by
an increase of the mass of the main lens within the ring, while in the second case these cannot
be easily distinguished from an external shear effect. For the models L1,2,4,9,12 convergence is
reached after 150 iterations and the perturbations are recovered near their known position (Figs.
2.8 and 2.9s). The grid based potential reconstruction indeed leads to a good first estimation for
the substructure position.

2.5.4 Non-linear reconstruction: main lens and substructure
In order to compare with numerical simulations, the mass of the substructure is required. Per-
forming this evaluation with a grid based reconstruction is more complicated and requires some
assumptions (e.g. aperture). To alleviate this problem we assume a parametric model, in which
the substructures are described by a NFW density profile, and we recover the corresponding non-
linear parameters, mass and position, using the non-linear Bayesian optimization previously de-
scribed.
To quantify the mass and position of the substructure and to update the non-linear parameters when
a substructure is added, we adopt a multi-step non-linear procedure that relatively fast converges
to a best PL+NFW mass model. At this level, we neglect the smooth lens L0, for which a satis-
factory model already has been obtained after the first non-linear optimization, and the perturbed
models L7,8,10,11 for which the substructure could not be recovered. We proceed as follows:

1. we fix the main lens parameters to the best values found in Section (2.5.3), {ηηη1, λs,1}. We
set the substructure mass to some guess value. We optimize for the substructure position
xxxsub,1.

2. we fix {ηηη1, λs,1} and the source position xxxsub,1. We optimize for the substructure mass
msub,1.

3. we run the non-linear procedure described in Section (2.4) by alternatively optimising for
the main lens, source, and substructure parameters and for the level of source regularization.

This leads to a new set of parameters, {ηηηb, λs,b,msub,b, xxxsub,b}. Final results for the considered
models are listed in Tables 2.3, 2.4 and 2.5 and the relative residuals are shown in the Figs. 2.5-
2.7, respectively. For all the considered lenses the final reconstruction converges to the noise
level.

2.5.5 Multiple substructures
The lens system L13 represents a more complex case in which two substructures are included. In
particular we are interested in testing whether both substructures are detectable and whether their
effect may be hidden by the presence of external shear. As for the previously considered cases, we
first perform a non-linear reconstruction of the main lens parameters assuming a single PL mass
model. For this particular system we also include the strength γsh and the position angle θsh of
the external shear as free parameters. Results for this first step of the reconstruction are shown
in Fig. 2.10(a). We then run the linear potential reconstruction. One of the two substructures
is detected although a significant level of image residuals is left (Fig. 2.11). The combined
effect of external shears (γsh = −0.031) and the substructure in P1 is not sufficient to explain
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the perturbation generated by the second substructure at the lowest surface brightness point of
the Einstein ring. We therefore include a NFW substructure in the recovered position and run a
non-linear reconstruction for the new PL+NFW model, Fig. 2.10(b). We are then able to detect
also the second substructure, Fig. 2.12. Finally we run a global non-linear reconstruction for the
PL+2NFW model (Fig. 2.10(c)), the noise level is reached and the strength of the external shear
is consistent with zero (γsh = 0.0001).

2.5.6 Nested sampling: the evidence for substructure
When modelling systems as L0 or Li≥1 we assume that the best recovered values, under the hy-
pothesis of a single power-law, provide a good description of the true mass distribution and that
any eventually observed residual could be an indication for the presence of mass substructure.
Model comparison within the framework of Bayesian statistics gives us the possibility to test this
assumption.

Marginalized Bayesian evidence

In order to statistically compare two models the marginalized evidence (2.39) has to be computed.
As described in Section (2.4.1) this multi-dimensional and non-linear integral can be evaluated
using the Nested-Sampling technique by Skilling (2004). Specifically the two mass models we
wish to compare are a single PL, M0, versus a PL+NWF substructure, M1. The first one is com-
pletely defined by the non-linear parameters (ηηη, λs), while the second needs three extra parameters,
namely the substructure mass and position. For all these parameters prior probabilities have to be
defined:

P (ηi) =


constant for |ηb,i − ηi| ≤ δηi

0 for |ηb,i − ηi| > δηi

(2.48)

and

P
(
xsub,i

)
=


constant for |xsub,b,i − xsub,i| ≤ δxsub,i

0 for |xsub,b,i − xsub,i| > δxsub,i

(2.49)

where the elements of δηi and δxsub,i are empirically assessed such that the bulk of the evidence
likelihood is included (see Skilling, 2004). The prior on the substructure mass is flat between the
lower and upper mass limits given by numerical simulations (e.g. Diemand et al., 2007b,a). Given
the lenses L0,1,2,4,9,12,13 we run the Nested Sampling twice, once for the single PL model and once
for the PL+NFW (+NFW) one. The two marginalized evidences with corresponding numerical
errors can be compared from Table 2.2. Despite a certain number of authors suggest the use of
Jeffreys’ scale (Jeffreys, 1961) for model comparison, we adopt here a more conservative criterion.
In particular, we note that the perturbed model M1 for the lens system L0 is basically consistent
with a single smooth PL model M0, with ∆E ∼ 7.85. The Bayesian factor for the system L4
is of the order of ∆E ∼ 21.5 in favour of the smooth model M0, indicating that the detection
of such a low-mass substructure can formally not be claimed at a significant level. The reason
why we think this substructure is clearly visible in the grid-based results, is that this particular
solution is the maximum-posterior (MP) solution, whereas the evidence gives the integral over
the entire parameter space. This implies that there must be many solutions near the MP solution
that do not show the substructure. This indicates that our approach of quantifying the evidence
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Figure 2.4: Results of the non-linear optimization for the smooth lens L0. The top-right panel shows the
original mock data, while the top-left one shows the final reconstruction. On the second row the source
reconstruction (left) and the image residuals (right) are shown.

for substructure is very conservative. On the other hand the Bayes factor for the lens L1, ∆E =

−17.1, clearly shows that the detection of a 107M� substructure can be significant when the latter
is located at a different position on the ring. Finally all higher mass perturbations are easily
detectable independently of their position relative to the image ring; Bayes factor for L2, L9, L12
and L13 are, in fact, respectively ∆E = −213.0, ∆E = −2609.7, ∆E = −4603.4 and ∆E = −1835.7.
Substructure properties for these systems are also confidently recovered. The main difference
between Jeffreys’ scale and our criterion for quantifying the significance level of the substructure
detection is observed for the system L1. If we had to adopt Jeffreys’ scale in fact, such detection
would have to be claimed decisive while we think it is only significant.

2.5.7 Posterior probabilities

As discussed in Section (2.4.1) an interesting by-product of the Nested-Sampling procedure is
an exploration of the posterior probability (2.34) which provides us with statistical errors on the
model parameters, see Tables 2.3, 2.4, 2.5, 2.6 and 2.7. The relative posterior probabilities for L0,
L1 and L2 are plotted in Fig. 2.13, Fig. 2.14 and Fig. 2.15 respectively. Lets start by considering
the lens system L0 and the relative probability distribution for the substructure mass. Although the
model M1, in terms of marginalized evidence, is consistent with the single smooth PL model M0,
there is a small probability for the presence of a substructure with mass up to few 108M� located
as far as possible from the ring. The effect of such objects on the lensed image would be very small
and could be easily hidden by introducing artificial features in the source structure, as suggested
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Lens Model logE σlogE
L0 PL 26332.70 0.33

PL+NFW 26324.85 0.30

L1 PL 20366.86 0.34
PL+NFW 20383.95 0.30

L4 PL 20292.40 0.33
PL+NFW 20270.87 0.29

L9 PL 17669.41 0.45
PL+NFW 20279.13 0.36

L12 PL 15786.91 0.33
PL+NFW 20390.35 0.37

L13 PL 18509.76 0.24
PL+2 NFW 20346.48 0.49

Table 2.2: marginalized evidence and corresponding standard deviation as obtained via the Nested-Sampling
integration. Results are shown for the hypothesis of a smooth lens (PL) and the hypothesis of a clumpy lens
potential (PL+NFW).

by the posterior distributions for the source regularization constant. This means, that from the
image point of view, a smooth single PL model and a perturbed PL+NWF with a substructure
of 108M�, located far from ring, are not distinguishable from each other as long as the effect of
the perburber can be hidden in the structure of the source. From a probabilistic point of view,
however, the second scenario is more unlikely to happen. A similar argument can be applied to
the lens L1 for which a strong degeneracy between the mass and the position of the substructure is
observed. We conclude therefore that, although this substructure can be detected at a statistically
significant level, its mass and position cannot be confidently assessed yet. In contrast, for systems
such as L2,9,12, the effect of the substructure is so strong that it can not be mimicked by the source
structure or by a different combination of the substructure parameters. For these cases not only the
detection is highly significant, but the properties of the perturber can be confidently constrained
with minimal biases.

2.6 Conclusions and Future work
We have introduced a fully Bayesian adaptive method for objectively detecting mass substructure
in gravitational lens galaxies. The implemented method has the following specific features:

• Arbitrary imaging data-set defined on a regular grid can be modelled, as long as only lensed
structure is included. The code is specifically tailored to high-resolution HST data-sets with
a compact PSF that can be sampled by a small number of pixels.
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Figure 2.5: Left panel: Results of the first non-linear reconstruction for the smooth component of the
perturbed lens L1. The top-right panel shows the original mock data, while the top-left one shows the final
reconstruction. On the second row the source reconstruction (left) and the image residuals (right) are shown.
Right panel: Final results of the non-linear reconstruction for the perturbed lens L1. The top-right panel
shows the original mock data, while the top-left one shows the final model reconstruction obtained after a
non-linear optimization involving the lens parameters and the substructure position and mass. The recovered
source is plotted in the low-left panel. Image residuals (right) are shown.

Figure 2.6: Similar as Figure 2.5 for L2.
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• Different parametric two-dimensional mass-models can be used, with a set of free parameter
ηηη. Currently, we have implemented the elliptical power-law density models from Barkana
(1998), but other models can easily be included. Multiple parametric mass models can be
simultaneously optimized.

• A grid-based correction to the parametric potential can iteratively be determined for any
perturbation that can not easily be modelled within the chosen family of potential models
(e.g. warps, twists, mass-substructures, etc.).

• The source surface-brightness structure is determined on a fully adaptive Delaunay tessel-
lation grid, which is updated with every change of the lens potential.

• Both model-parameter optimization and model ranking are fully embedded in a Bayesian
framework. The method takes special care not to change the number of degrees of freedom
during the optimization, which is ensured by the adaptive source grid. Methods with a fixed
source surface-brightness grid can not do this.

• Both source and potential solutions are regularised, based on a smoothness criterion. The
choice of regularization can be modified and the level of regularization is set by Bayesian
optimization of the evidence. The data itself determine what level of regularization is
needed. Hence overly smooth or overly irregular structure is automatically penalised.

• The maximum-posterior and the full marginalized probability distribution function of all
linear and non-linear parameters can be determined, marginalized over all other parameters
(including regularization). Hence a full exploration of all uncertainties of the model is
undertaken.

• The full marginalized evidence (i.e. the probability of the model given the data) is calcu-
lated, which can be used to rank any set of model assumptions (e.g. pixel size, PSF) or
model families. In our case, we intend to compare smooth models with models that include
mass substructure. The marginalized evidence implicitly includes Occam’s razor and can
be used to assess whether substructure or any other assumption is justified, compared to a
null-hypothesis.

The method has been tested and calibrated on a set of artificial but realistic lens systems, based on
the lens system SLACS J1627−0055.
The ensemble of mock data consists of a smooth PL lens and thirteen clumpy models including
one or two NFW substructures. Different values for the mass and the substructure position have
been considered. Using the Bayesian optimization strategy developed in this chapter we are able
to recover the smooth PL system and all perturbed models with a substructure mass ≥ 107M�
when located at the lowest surface brightness point on the Einstein ring and with a mass ≥ 109M�
when located just inside or outside the ring (i.e. their Einstein rings need to overlap roughly). For
all these models we have convincingly recovered the best set of non-linear parameters describing
the lens potential and objectively set the level of regularization.
Furthermore, our implementation of the Nested-Sampling technique provides statistical errors for
all model parameters and allows us to objectively rank and compare different potential models in
terms of Bayesian evidence, removing as much as possible any subjective choices. Any choice
can quantitatively be ranked. For each of the lens systems we compare a complete smooth PL
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Figure 2.7: Similar as Figure 2.5 for L12.

mass model with a perturbed PL+NFW (+NFW) one. The method here developed allows us to
solve simultaneously for the lens potential and the lensed source. The latter, in particular, is re-
constructed on an adaptive grid which is re-computed at every step of the optimization, allowing
to take into account the correct number of degrees of freedom.
In this chapter we have considered systems which contains at most two CDM substructures. Al-
though it may appear as a very small number when compared with predictions from N-body simu-
lations within the virial radius, this represents a realistic scenario. As we have shown, our method,
with current HST data, is mostly sensitive to perturbations with mass ≥ 107M� and located on
the Einstein ring (∆θ ∼ µθER). The projected volume that we are able to probe is therefore small
compared to the projected volume within the virial radius. The probability that more than two
substructures have this right combination of mass and position is relatively low and we expect
most of the real systems to be dominated by one or at most two perturbers. Despite these new re-
sults, further improvements can still be made. We think, for example, that an adaptive source grid
based on surface brightness, rather than magnification, or a combination, could be more suitable
for the scientific problem considered here.
The method will soon be applied to real systems, as for example from the Sloan Lens ACS Survey
sample of massive early-type galaxies (Koopmans et al., 2006; Bolton et al., 2006; Treu et al.,
2006). This will lead to powerful new constraints or limits on the fraction and mass distribution
of substructure. Results will be compared with CDM simulations.
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Figure 2.8: Results of the linear source and potential reconstruction for the lens L1. The first row shows the
original model (left), the reconstructed model (middle) and the current-best source, as well as the correspond-
ing adaptive grid. On the second row the image residuals (left), the total potential convergence (middle) and
the substructure convergence (right) are shown. Note that the substructure, although weak, is reconstructed
at the correct position.
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Figure 2.9: Similar as Figure 2.8 for L2. We note that the substructure is extremely well reconstructed, both
at the correct position and in mass.
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(a) (b)

(c)

Figure 2.10: Non linear reconstruction of the lens L13 for a single PL model, a PL+NFW and a PL+2NFW
one.
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Figure 2.11: Results of the first linear source and potential reconstruction for the lens L13. The first row
shows the original model (left), the reconstructed model (middle) and the image residuals. On the second
row the current-best source (left), the total potential convergence (middle) and the substructure convergence
(right) are shown. Note that the substructure, although weak, is reconstructed at the correct position.



2.6. Conclusions and Future work 45

Figure 2.12: Results of the second linear source and potential reconstruction for the lens L13.
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Figure 2.13: Posterior probability distributions for the non linear parameters of the smooth lens model L0 as
obtained from the Nested-Sampling evidence exploration. In particular results for two different models are
shown, a smooth PL potential (blue histograms) and a perturbed PL+NFW lens (black histograms). From up
left, the lens strength, the position angle, the axis ratio, the slope, the logarithm of the source regularization
constant, the substructure mass and position are plotted.

Figure 2.14: Similar as Figure 2.13 for L1.
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Figure 2.15: Similar as Figure 2.13 for L2.



Chapter 3

Statistics of mass substructure from
strong gravitational lensing

Published as: S. Vegetti & L.V.E. Koopmans. – “Statistics of mass substructure from strong gravitational lensing: quan-

tifying the mass fraction and mass function”, 2009, MNRAS, 400, 1583.

ABSTRACT
A Bayesian statistical formalism is developed to quantify the level at which the mass-function
(dN/dm ∝ m−α) and the projected cumulative mass fraction ( f ) of (CDM) substructure in strong
gravitational-lens galaxies, with arcs or Einstein rings, can be recovered as function of the lens-
survey parameters and the detection threshold of the substructure mass. The method is applied
to different sets of mock data to explore a range of observational limits: (i) the number of
lens galaxies in the survey, (ii) the mass threshold, Mlow, for the detection of substructures and
(iii) the uncertainty of the measured substructure masses. We explore two different priors on
the mass function slope: a uniform prior and a Gaussian prior with α = 1.90 ± 0.1. With
a substructure detection threshold Mlow = 3 × 108 M�, the number of lenses available now
(nl = 30), a true dark-matter mass fraction in (CDM) substructure ≤ 1.0% and a prior of
α = 1.90 ± 0.1, we find that the upper limit of f can be constrained down to a level ≤ 1.0%
(95% CL). In the case of a uniform prior the complete substructure mass distribution (i.e. mass
fraction and slope) can only be characterized in a number of favourable cases with a large
number of detected substructures. This can be achieved by an increase of the resolution and the
signal-to-noise ratio of the lensed images. In the case of a Gaussian prior on α, instead, it is
always possible to set stringent constraints on both parameters. We also find that lowering the
detection threshold has the largest impact on the ability to recover α, because of the (expected)
steep mass-function slope. In the future, thanks to new surveys with telescopes, such as SKA,
LSST and JDEM and follow-up telescopes with high-fidelity data, a significant increase in the
number of known lenses (i.e. �104) will allow us to recover the satellite population in its
completeness. For example, a sample of 200 lenses, equivalent in data-quality to the Sloan
Lens ACS Survey and a detection threshold of 108 M�, allows one to determine f = 0.5 ± 0.1%
(68% CL) and α = 1.90 ± 0.2 (68% CL).
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3.1 Introduction

In the context of the cold-dark-matter paradigm, a significant number of substructures, with a
steep mass function, is expected to populate the dark halo of galaxies. In galaxies as massive as
the Milky Way, for example, of the order of 104 substructures are predicted inside the virial radius
(Diemand et al., 2008; Springel et al., 2008), although only about 20 have been so far observed
(Zucker et al., 2004; Willman et al., 2005; Belokurov et al., 2006; Grillmair, 2006; Martin et al.,
2006; Sakamoto & Hasegawa, 2006; Zucker et al., 2006a,b; Belokurov et al., 2007; Ibata et al.,
2007; Irwin et al., 2007; Majewski et al., 2007; Walsh et al., 2007; Zucker et al., 2007; Belokurov
et al., 2008). A clear comparison between the simulated and the physical reality, however, is
strongly hampered by the difficulty of directly observing substructures in distant galaxies, as well
as in the Local Group.
While major improvements in the observations and numerical simulations have not yet signifi-
cantly alleviated the satellite crisis, new techniques have been proposed for the indirect and direct
detection of subhaloes that may have a high mass-to-light ratio. In our own Galaxy, CDM sub-
structures can be, in principle, identified via their effect on stellar streams (Ibata et al., 2002; Mayer
et al., 2002) or via the dark matter annihilation signal from their high-density centres (Bergström
et al., 1999; Calcáneo-Roldán & Moore, 2000; Stoehr et al., 2003; Colafrancesco et al., 2006);
gravitational lensing, on the other hand, allows for direct detection (measurement of the substruc-
ture gravitational signature) in the central regions of galaxies through flux-ratio anomalies and
distortions of extended Einstein rings and arcs. (e.g. Mao & Schneider, 1998; Metcalf & Madau,
2001; Dalal & Kochanek, 2002; Koopmans, 2005). Interestingly enough, results based on flux-
ratio anomalies reverse the satellite crisis with a recovered mass fraction in substructure which
seems to be larger than predicted by numerical simulations (e.g. Mao et al., 2004; Macciò & Mi-
randa, 2006). While this discrepancy might not be easily accommodated by an increase in the
resolution of simulations, the correct interpretation of the flux-ratio anomalies is still subject of
discussion.
In Vegetti & Koopmans (2009a), we introduced a new adaptive-grid method, based on a Bayesian
analysis of the surface brightness distribution of highly magnified Einstein rings and arcs, that
allows the identification and precise quantification of substructure in single lens galaxies. This
technique does not depend on the nature of dark matter, on the shape of the main galaxy halo,
strongly on the density profile of the substructure, nor on the dynamical state of the system. It can
be applied to local galaxies as well as to high redshift ones, as long as the lensed images are highly
magnified, extended and have a high signal-to-noise ratio. Unlike flux ratio anomalies, extended
optical images are little affected by differential scattering in the radio or microlensing in the op-
tical and X-ray. If substructures are located close to the lensed images, the method allows the
determination of both their mass and position, although as the distance between the substructure
and the Einstein ring increases, the mass model becomes more degenerate. Finally, thanks to its
Bayesian framework, the method of Vegetti & Koopmans (2009a) requires hardly any subjective
intervention into the modelling and any assumption can be objectively tested through the Bayesian
Evidence (MacKay, 1992).
In this chapter, we show how results from data sets with more than one lens system (i.e. the num-
ber of detections and their masses) can be combined to statistically constrain the fraction of dark
matter in substructure and their mass function, as function of the survey parameters and limits.
The combination of multiple data sets becomes important when trying to constrain the slope of the
substructure mass function. In a single lens potential, in fact, the number of detectable substruc-
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tures can, in certain cases, be as small as zero or one. More than one lens is, therefore, required in
order to improve statistics and properly sample the mass function. On the contrary an upper limit
to the mass fraction in substructure can always be set.

3.2 Bayesian interpretation of substructure detections
In this section, we outline a Bayesian formalism that allows us to give a statistical interpretation
to the detection of dark substructure in gravitational lens galaxies and to recover the properties
of the substructure population. Thanks to Bayes’ theorem, the likelihood of measuring a mass
substructure, can be translated into probability density distributions for the substructure mass
fraction f and their mass function dN/dm ∝ m−α (when dN/dm is normalised to unity, we refer
to it as dP/dm), as function of the mass measurement errors and the model parameters. The latter
include the minimum and maximum mass of dark matter substructure, Mmin and Mmax, between
which the mass fraction is defined, and the lowest and highest mass we can detect, Mlow and
Mhigh. More precisely, Mlow should not be interpreted as a hard detection threshold, but as a
statistical limit above which we believe a detection to be significant, at the level set by the mass
measurement error σm (i.e. with a signal-to-noise ratio of Mlow/σm).

3.2.1 Likelihood of the substructure measurements
We derive an expression for the Likelihood of observing ns substructures for a given sample of nl
lenses. We assume the cumulative dark-matter mass fraction of substructure f (< R/Rvir), within
a cylinder of projected radius R of the lens, to be the same for all lens galaxies and the detections
of multiple substructures in one galaxy to be independent from one another. We also assume that
the number of substructures populating a given galactic halo fluctuates with a distribution which
is Poissonian. We know that not all these substructures are observable, but only those with the
right combination of mass and position.
The Likelihood of measuring ns substructures, each of mass mi, in a single galaxy, in general can
be expressed as the probability density of having ns substructures in the considered lens, times
the normalised probability density P (mi,R | ppp, α) of actually observing the mass mi within the
projected radius R, where ppp =

{
Mmin,Mmax,Mlow,Mhigh

}
is a vector containing all the fixed

model parameters introduced above, so that

L (ns,mmm | α, f , ppp) =
e−µ(α, f ,<R) µ(α, f , < R)ns

ns!

ns∏
i=1

P (mi,R | ppp, α) , (3.1)

where mmm contains all the substructure masses mi and µ(α, f , < R) is the expectation value of the
number of substructures in a generic aperture with dark matter mass MDM(< R), which will be
discussed in more details in the following section. The second factor in equation (3.1) describes
the likelihood with which a substructure can be identified as a function of its mass mi and position
R. Although the specific shape of P (mi,R | ppp, α) might change from one system to another, its
overall trend is essentially the same for all lenses: high mass perturbations, on or close to the
lensed images are the most likely to be confidently observed. For each considered lens system,
P (mi,R | ppp, α) can be reconstructed by Monte Carlo explorations of the model parameter space
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(Vegetti & Koopmans, 2009a).
Here, for the sake of simplicity, we assume that the probability of measuring a mass mi for a single
substructure is a Gaussian function independent of position. This is indeed true for small regions
around the Einstein ring of the lensed images, so that P (mi,R | ppp, α) reduces to

P (mi | ppp, α) =

∫ Mmax
Mmin

dP
dm

∣∣∣
true

e−(m−mi)2/2σm2
√

2πσm
dm∫ Mhigh

Mlow

∫ Mmax
Mmin

dP
dm

∣∣∣
true

e−(m−m′)2/2σm2
√

2πσm
dm dm′

, (3.2)

where the Gaussian convolution expresses the scatter in the substructure mass due to a measure-
ment uncertainty and dP/dm|true is the true substructure mass function as defined in equation (6).
The assumption of Gaussian errors on the substructure mass is motivated by results from Vegetti
& Koopmans (2009a).
Equation (3.1) can be easily extended to the case in which more than one lens is considered.
Because the identification of a substructure in one system does not influence what we infer about
another satellite in another lens, the Likelihood function for a set of nl lenses is simply the product
of the independent likelihoods of individual detections,

L ({ns,mmm} | α, f , ppp) =

nl∏
k=1

L
(
ns,k,mmmk | α, f , ppp

)
. (3.3)

We now go through the details of the expectation value µ(α, f , < R), characterising the Poisson
distribution of the number of substructures in the potential of a generic lens galaxy.

3.2.2 Substructure expectation value
In the ideal case of infinite sensitivity to a mass perturbation, one would be able to recover the full
mass function between Mmin and Mmax. In practice, only substructures with mass between Mlow
and Mhigh are observable, hence the expectation value for observable substructures is

µ(α, f , < R) = µ0(α, f , < R, ppp)
∫ Mhigh

Mlow

dP
dm

∣∣∣∣∣
true

dm (3.4)

with the expectation from the full mass function given by

µ0(α, f , < R, ppp) =
f (< R) MDM(< R)∫ Mmax

Mmin
m dP

dm

∣∣∣
true dm

=

= f (< R) MDM(< R)



(2−α)
(
M1−α

max − M1−α
min

)
(1−α)

(
M2−α

max − M2−α
min

) α , 2 , α , 1

−

(
M−1

max − M−1
min

)
log(Mmax / Mmin) α = 2

log (Mmax/Mmin)
(Mmax − Mmin) α = 1

(3.5)
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Hence, we assume the normalised true mass function to be given by a power-law

dP
dm

∣∣∣∣∣
true

=


(1−α) m−α(

M1−α
max − M1−α

min

) α , 1

m−α
log (Mmax/Mmin) α = 1

(3.6)

MDM(< R) and f (< R) are the cumulative mass in dark matter and the cumulative fraction of dark
matter in subhaloes within the considered radius, respectively. However, the presence of noise on
the data and the statistical uncertainty with which masses are measured introduce a scatter in the
observed mass function, so that detections can be spread inside or outside our observational limits.
The significance of this effect depends on the substructure mass, with lower masses being affected
by a larger relative uncertainty. The observed mass function dP/dm|conv can then be written as a
convolution of the true mass function with the error distribution, which we assume to be Gaussian,
hence

µ(α, f , < R, ppp) = µ0(α, f , < R, ppp)
∫ Mhigh

Mlow

dP
dm

∣∣∣∣∣
conv

dm =

µ0(α, f , < R, ppp)
∫ Mhigh

Mlow

∫ Mmax

Mmin

dP
dm

∣∣∣∣∣
true

e−(m−m′)2/2σ2
m

√
2πσm

dm dm′ . (3.7)

A mathematical proof for this procedure can be found in the Appendix.

3.2.3 Posterior probability function of α and f

Given a set of observations, in which a certain number of substructures are identified and their
masses are quantified for one or more lenses, equations (3.1) and (3.3) can be used to infer the
mass fraction and the mass function of the underlying subhalo population. Bayes’ theorem relates
the Likelihood function of the observations to the joint posterior probability of α and f in the
following way

P (α, f | {ns,mmm}, ppp) =
L ({ns,mmm} | α, f , ppp) P (α, f | ppp)

P ({ns,mmm} | ppp)
, (3.8)

where P (α, f | ppp) is the prior probability density distribution function of α and f . For the mass
fraction we assume a non-informative uniform prior between the limits fmin = 0 and fmax = 1;
while we test two different priors for α. We assume in one case a uniform distribution between
αmin = 1.0 and αmax = 3.0 and in the other case a Gaussian function with centre on 1.90 and
a standard deviation of 0.1, as found in almost all numerical simulations. We refer to the next
section for a more detailed description of the prior probability density distributions.

3.2.4 Dark matter mass
As shown in equation (3.5), the number of substructures expected in a given potential is a function
of the dark mass MDM(< R). In this section we show how this mass can be empirically estimated.
Specifically, we are interested in the cumulative mass within a narrow annulus ∆R = 2 δR = 0.6′′

centred around the Einstein radius RE, where the formalism introduced can be considered valid.
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In the approximation of a small annulus, the dark matter mass contained in it can be approximated
as

MDM ≈ 4π RE ΣDM(RE) δR = 4π RE

[
1 −

Σ∗

Σtot

]
Σtot δR . (3.9)

Σtot and Σ∗ are the total and the stellar projected mass density, respectively. It has been found by
many authors, that the total mass density has a profile which is close to isothermal (e.g Gerhard
et al., 2001; Koopmans & Treu, 2002; Koopmans et al., 2006; Czoske et al., 2008; Koopmans
et al., 2009). Similarly, a Jaffe (1983) profile approximates the stellar mass distribution well, i.e.,

Σtot(R) =
Σc RE

2R
(3.10)

and

Σ∗(R) = C
{

1
4 r̃

+
1

2π

[(
1 − r̃2

)−1
−

(
1 − r̃2

)−3/2 (
2 − r̃2

)
cosh−1( r̃−1)

]}
(3.11)

with r̃ = R/rs.
Σc is the critical surface density for lensing and rs is the scaling radius of the Jaffe profile, which
relates to the effective radius of the lens galaxy as rs = Re/0.74. We have assumed in the above
equations that the Einstein radius and the effective radius are related to each other by Re = 2RE,
which is approximately the case for the average SLACS lens (Bolton et al., 2008). Obviously, this
is not exactly true for any of these lenses, but we are not interested in analysing an exact repro-
duction of the SLACS sample but just an average realisation of it. This can also be considered as
a fair realisation of a typical massive early-type galaxy, given that both the internal and environ-
mental properties of the SLACS lenses do not significantly depart from those of other early-type
galaxies with comparable velocity dispersion and baryonic properties (Bolton et al., 2006; Treu
et al., 2009). This assumption is in any case justified and does not influence our results; in fact,
only the cumulative dark matter mass that is probed by all lenses is of relevance and its average
value is not altered by the assumption of Re = 2RE.
The normalization constant C = 0.74Σc can be derived by imposing Σtot → Σ∗ ≈

Crs
4R for R → 0,

that is by imposing that asymptotically for R→ 0 the mass density becomes that of stars only, i.e.
the maximum bulge assumption.
Because we assume that Re/rs is a constant and Re/RE is also a constant, on average the projected
DM mass fraction within an annulus of 2δR around the Einstein radius is a constant with a value
of about 63%. Hence we find that on average ΣDM ≈ 0.5 × 0.63 Σc at the Einstein radius for all
lenses. This fraction is consistent with other observations (e.g. Gavazzi et al., 2008; Schechter &
Wambsganss, 2002). The number of substructures thus becomes only a function of the size of the
aperture and the critical density, which itself only weakly depends on the source and lens redshifts.

3.3 Data realisation and analysis
In this section, we use a series of mock data sets to show that the formalism presented here allows
us to constrain, in different situations, the properties of the substructure population. Different data
sets of lens galaxies with nl = 10, 30 or 200 are analysed. A sample based on the masses and radii
of the SLACS lenses, ranked from the highest to the lowest mass enclosed within RE, is used to
construct the dark matter mass function, while results from the method in Vegetti & Koopmans
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(2009a) are used to set the observational limits and the substructure mass uncertainty. In each lens,
the substructures are distributed in mass according to dP/dm|true with Mmin = 4.0 × 106M� and
Mmax = 4.0×109M� (Diemand et al., 2007b,a) and fluctuate in number with a Poisson probability
distribution of expectation value µ(α, f , < R), given by equation (3.4).
Although it was shown by Vegetti & Koopmans (2009a) that the detection probability is a joint
function of the substructure mass and position, this probability can be assumed to be independent
of the perturber’s position if a sufficiently small annulus around the Einstein ring is considered,
in which case the equations presented in the previous sections hold. We consider a region of
±0.3 arcsec around RE, over which a typical SLACS lens shows a reasonable surface brightness
of its images and within which we might expect to detect CDM substructures using the method
of Vegetti & Koopmans (2009a). The extent of this area is, also, such that the mass fraction of
substructures can be considered constant in radius, hence f (R) = const. over ∆R.
Each mock data set is characterized by a different fraction ftrue of substructures, while the true
slope of the mass function is kept fixed at αtrue = 1.90, as suggested by numerical simulations.
Results from the latest high-resolution numerical simulations seem to indicate a dark matter mass
fraction in substructures within a cylinder of projected 10 kpc which is between 0.3%1 (Mark
Vogelsberger, private communication) and 0.5% (Diemand et al., 2008). We therefore discuss
three different cases ftrue = 0.1, 0.5, 2.5%. The latter high fraction is included because it is close
to that suggested by the median value inferred from flux-ratio anomaly studies (Dalal & Kochanek,
2002).

3.3.1 Observational limits on the substructure mass
We explore the effect of different values of the lowest detectable mass Mlow, which is set at the
statistical threshold above which we are confident that other effects do not create too many false
events. We have shown in Vegetti & Koopmans (2009a) that, given the current HST data quality
of the SLACS lenses, a lower mass limit for a significant detection can be set around 108M�,
depending on how close the perturbers are located with respect to the lensed images and the
structure of the lensed images. However, these limits have been determined for cases not affected
by systematic errors; we adopt Mlow = 0.3, 1.0, 3.0 × 108M�. We set a finite upper mass limit
Mhigh = Mmax.

3.3.2 Priors on α and f

While the mass fraction of satellites is the most uncertain parameter, most studies seem to agree
on the mass function, with values of the slope α ranging from 1.8 to 2.0 (e.g. Helmi et al., 2002;
Gao et al., 2004; Diemand et al., 2008; Springel et al., 2008). This is a direct consequence of the
assumed cold nature of the dark matter particles. We analyse two scenarios: the first, relying on
results from numerical simulations, assumes for α a Gaussian prior centred at αtrue with standard
deviation σα = 0.1; the second scenario, allowing for more freedom, has a uniform prior between
1.0 and 3.0. In general, the first case can be seen as a test of N-body simulations and the second
as a test of nature itself, although in the specific case of this chapter the data have been created
with a combination of fraction and slope typical of a standard cosmology. The former prior,

1This value has been obtained by including only particles within R200crit , adding masses of all those particles that are
in subhaloes within the considered cylinder and considering the median over 100 projected directions. No extrapolation
beyond the resolution limit or cut on the subhalo mass is involved.
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obviously, provides a well-defined mass-function slope, but it also reduces the uncertainty in
the mass fraction, which is less well-defined than α and can vary considerably between similar
simulations. Different phenomena can affect the mass fraction, as for example the resolution of
the simulations, or the lack, in high resolution simulations, of gas physics, that could sensibly
influence the substructure survival (i.e. f could be even higher than what the simulations suggest
in the inner regions of the galactic haloes). We assume, conservatively, for f a uniform prior
ranging between 0% and 100%.

3.3.3 Results in the limit of no mass measurement errors

We present results for cases in which the errors on the mass measurements can be neglected.
Specifically, this translates into convolving the mass distribution not with a Gaussian but with a
delta function around mi in the equations of Section 3.2.
In Fig. 3.1 we show the joint probability contours P (α, f | {ns,mmm}, ppp) and the marginalized proba-
bilities P ( f | {ns,mmm}, ppp) and P (α | {ns,mmm}, ppp), for systems containing 10 randomly realised lenses.
Specifically the plotted contours contain, in the limit of a Gaussian distribution, respectively, 68%,
95% and 97.2% of the marginalized probability function.
In the case of a uniform prior, while a good upper limit to f can always be set, little can be said
about the slope, which can only be constrained for a limited number of favourable physical and ob-
servational conditions, such as ( f = 0.5%,Mlow = 0.3×108M�), ( f = 2.5%,Mlow = 0.3×108M�)
and ( f = 2.5%,Mlow = 1.0× 108M�). In Fig. 3.2 an equivalent plot is presented for systems with
nl = 30; although even more stringent limits can be given for f , we are still unable to recover the
underlying mass function for most of the possible scenarios.
The situation can be substantially improved by increasing the number of detectable substructures
with a larger number of lenses. To provide insight into future capabilities, results from three sam-
ples of 200 lenses with f = 0.5% and respectively Mlow = 0.3 × 108M�, Mlow = 1.0 × 108M�,
and Mlow = 3.0 × 108M� are given in Fig. 3.3. Currently, no uniform sample with 200 lenses
with high signal-to-noise ratio and high resolution (equivalent to that of HST) is available. How-
ever, forthcoming ground and space-based instruments (e.g LSST/JDEM, EVLA, e-Merlin, LO-
FAR and SKA) can provide these numbers (in fact beyond these) in the coming 5–10 years and
the required data quality by dedicated follow-up. A detailed characterisation of the CDM mass-
function, through the technique of Vegetti & Koopmans (2009a), could therefore be realisable in
the coming years if investments are made in large high-resolution and high-sensitivity lens surveys
with these instruments (see Koopmans et al., 2009). As can be seen from both Figs. 3.1 and 3.2,
in the case of a Gaussian prior on α, tight limits can be set on the mass fraction for all possible
combinations of the considered parameters.
The results from this section are summarised in Tables 3.1, 3.2 and 3.3, where we report the
input values for each parameter, the recovered maximum-posterior values ( fMP;αMP) at which
P (α, f | {ns,mmm}, ppp) reaches its maximum, the median, the 68% and 95% (σ68 and σ95), confi-
dence levels of the marginalized probabilities P ( f | {ns,mmm}, ppp) and P (α | {ns,mmm}, ppp) for both the
cases of a uniform and a Gaussian prior on α. σ68, and σ95, in the particular case of a Gaussian
distribution, respectively represent the 1σ and 2σ error.
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Figure 3.1: Results for systems with 10 randomly realised lenses. In each panel, the joint probability
P (α, f | {ns,mmm}, ppp) contours and marginalized probabilities P ( f | {ns,mmm}, ppp) and P (α | {ns,mmm}, ppp) are given
for a uniform prior (solid lines) and for a Gaussian prior on α (dashed lines). Moving from one panel to
next the substructure fraction f increases from left to right and the detection limit Mlow increases from top to
bottom.
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Figure 3.2: Similar to Fig. 3.1 for systems with 30 lenses.
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Figure 3.3: Results for three samples with 200 randomly realised lenses with f = 0.5% and respectively
Mlow = 0.3 × 108 M� (left panel), Mlow = 1.0 × 108 M� (middle panel) and Mlow = 3.0 × 108 M� (right
panel). The joint probability P (α, f | {ns,mmm}, ppp) contours and marginalized probabilities P ( f | {ns,mmm}, ppp) and
P (α | {ns,mmm}, ppp) for a uniform prior (solid lines) and for a Gaussian prior in α (dashed lines) are shown.

3.3.4 The effect of mass measurement errors
We explore now how the presence of uncertainty in the mass measurements affects our analy-
sis. In particular, we consider three cases: σm = 0.1 × 108M� with Mlow = 0.3 × 108M�,
σm = 1/3 × 108M� with Mlow = 108M�, and σm = 1.0 × 108M� with Mlow = 3.0 × 108M�
i.e. a limiting signal-to-noise ratio of Mlow/σm = 3. The lens systems analysed here have
nl = 10, 30, 200 lenses and a mass fraction in substructures ftrue = 0.5%. Relative likelihood
contours are plotted in the three panels of Fig. 3.4. These have to be compared with the equivalent
no-error results in Figs. 3.1, 3.2 and 3.3. Results are reported in Table 3.4.
The effect of measurement errors on the substructure mass depends on the form of prior adopted
for α, with uniform priors being more strongly affected than Gaussian ones. Errors as large as
σm = 1/3 × 108M� combined with mass threshold of Mlow = 108M�, can significantly influence
even systems with 200 lenses . Specifically, these systems were created by drawing masses be-
tween Mmin and Mmax, then scattering each mass with a Gaussian distribution (i.e. mimicking the
measurement uncertainty) and then using only those objects that fall within the detection range[
Mlow,Mhigh

]
to constrain the fraction and the mass distribution. We refer to the Appendix for a

mathematical proof that this way of proceeding is equivalent to drawing between Mlow and Mhigh
with a Poisson probability density distribution of expectation values given by equation (3.4).

3.4 Conclusions
We have introduced a statistical formalism for the interpretation and the generalisation of subhalo
detection in gravitational lens galaxies, that allows us to quantify the mass fraction and the mass
function of CDM substructures. Given mock sets of lenses, with properties typical of a CDM
cosmology, we have analysed how well the true parameters can be recovered. The formalism
depends on several parameters, such as e.g. the number of lenses, the mass detection threshold
and the measurement errors. It has a very general nature and, in principle, it could be used
to statistically analyse substructure detection by flux ratio anomalies or timedelay/astrometric
perturbations as well. In practice, these methods would first need to show that their mass estimates
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Figure 3.4: Effect of different measurement error levels on the substructure mass. Similar as Fig. 3.1 for
systems with f = 0.5%, Mlow = 0.3 × 108 M� and σm = 0.1 × 108 M� (upper panels), with Mlow = 108 M�
and σm = 1/3 × 108 M� (middle panels) and with Mlow = 3 × 108 M� and σm = 1.0 × 108 M� (lower panels).
Results for 10, 30 and 200 lenses are plotted in the left, middle and right panels, respectively.
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are meaningful and second they would have to determine the probability distribution of flux-ratio
anomalies or perturbations, either as function of the lens geometry or marginalized over all model
parameters, which could be rather computationally expensive. The method has been tested on
several mock data sets, with parameter settings based on our knowledge of the SLACS lenses.
Several physical and observational scenarios have been considered. We list here the main results:

• If the number of arc/ring lens systems is � 100, as is the case for current surveys (e.g.
SLACS), the ability to constrain the mass fraction and the mass function of satellites still
depends on the form of prior which is assumed for α. In particular, if results from numerical
simulations are assumed to hold and a Gaussian prior with αtrue = 1.9 ± 0.1 is adopted, we
are able to constrain both α and f for any data sets containing a number of lenses nl ≥ 10,
with improved limits for either increasing mass fractions, decreasing detection threshold
or increasing number of lenses. If instead a wider range of possibilities is explored by
assuming a uniform prior, one can still set strong limits on f , even for values as low as
f = 0.1% and a detection threshold Mlow = 0.3 × 108M�, but the mass function slope
can be recovered only in a limited number of favourable cases, characterised by high mass
fraction and low detection threshold.

• Our ability to constrain α could be considerably improved either by increasing our sensitiv-
ity to substructures, i.e. by increasing the quality of the data, or by increasing the number
of analysed objects. Although competing with the quality of HST seems at the moment dif-
ficult, future surveys such as LSST/JDEM in the optical and EVLA, e-MERLIN, LOFAR
and SKA in the radio, will surely lead to an increase in the number of known lenses by sev-
eral orders of magnitude (see Koopmans et al., 2009; Marshall et al., 2009) and dedicated
optical and/or radio follow-up could provide equivalent or better data quality than HST. We
expect therefore, in the foreseeable future to be able to characterise the galactic subhalo
population with stringent constraint, both on the mass fraction and slope.

• Although we have not explicitly performed a model comparison between different cos-
mologies, as for example CDM versus Warm Dark Matter (this would require an extra
marginalization of the parameter space), the formalism introduced here, combined with the
sensitivity of our method to CDM substructures, will allows us, in the future, to discriminate
among these two scenarios and thus test the physics of dark matter.

Appendix

We show here that the procedure of first drawing objects between Mmin and Mmax from dP/dm|true,
then scattering with a Gaussian and finally restricting to those masses between Mlow and Mhigh
gives a probability P(Nobs) of observing Nobs objects that is equivalent to the Poisson probability
density distribution, with expectation value µs, of Nobs objects between Mlow and Mhigh expressed
by the convolution in equation (3.7).
Let us divide the mass ranges [Mmin,Mmax] and

[
Mlow,Mhigh

]
respectively in n and n′ sub-

intervals of infinitesimally small widths dm and dm′. Lets call ps, j the probability that an object
is scattered from the j-th mass bin dm j to the k-th one dm′k. In the particular case of Gaussian
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errors, ps, j,k reads as follows

ps, j,k =
e−(m−m′)2/2σ2

√
2πσ

dm′k , (3.12)

with m ∈ dm j and m′ ∈ dm′k.
First we show that, if substructures are Poisson distributed in each mass bin with expectation
value dµ j, then the probability of having Ns objects scattered from dm j into dm′k is also a Poisson
distribution with expectation value dµs, j,k = ps, j,k dµ j

Ps, j(Ns, dµs, j,k) =

∞∑
i=Ns

P(i, dµ j)
(

i
Ns

)
pNs

s, j,k

(
1 − ps, j,k

)i−Ns
=

∞∑
i=Ns

e−dµ j dµi
j

i!

(
i

Ns

)
pNs

s, j,k

(
1 − ps, j,k

)i−Ns
=

pNs
s, j,k

Ns!
lim

n→∞

n∑
i=Ns

e−dµ j dµi
j

(i − Ns)!

(
1 − ps, j,k

)i−Ns
=

(
ps, j,k

1 − ps, j,k

)Ns e−dµ j dµNs
j

Ns!
lim

n→∞

n−Ns∑
k=0

dµk
j

k!

(
1 − ps, j,k

)k
=

e−ps, j,k µ j
(
ps, j,k dµ j

)Ns

Ns!
, (3.13)

hence it follows that dµs, j,k = ps, j,k dµ j. This result directly follows from the fact that in the case
of high number statistics the Binomial tends to a Poisson distribution and from the product rule of
the Poisson distribution. Specifically, each dµ j reads as

dµ j = µ0(α, f ,R)
dP
dm

∣∣∣∣∣
true

dm j . (3.14)

We now extend this result to two mass intervals of the same size dm; thanks to the sum rule, the
probability of Nobs objects being scattered is again Poissonian with dµs,k = (ps,1,kdµ1 + ps,2,kdµ2)

P(Nobs, dµs) =

Nobs∑
i=0

Ps,1(i)Ps,2(Nobs − i) =

Nobs∑
i=0

e−ps,1,kdµ1
(
ps,1,k dµ1

)i

i!

e−ps,2,kdµ2
(
ps,2,k dµ2

)Nobs−i

(Nobs − i)!
=

e
(
ps,1,kdµ1+ps,2,kdµ2

) (
ps,2 dµ2

)Nobs
Nobs∑
i=0

dµi
1

i!

dµ−i
2

(Nobs − i)!
=

e−
(
ps,1,kdµ1+ps,2,kdµ2

) (
ps,2,k dµ2

)Nobs

(
1 +

ps,1,k dµ1
ps,2,k dµ2

)Nobs

Nobs!
=

e−dµs,k dµNobs
s,k

Nobs!
. (3.15)
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By induction it can be shown that in the case of a generic number n of intervals dµs,k =
∑n

j=1 ps, j,k dµ j,

so that the probability of being scattered outside [Mmin,Mmax] and inside
[
Mlow,Mhigh

]
is a Pois-

son distribution with expectation value

µs =

n′∑
k=1

n∑
j=1

ps, j,k dµ j =

n′∑
k=1

n∑
j=1

ps, j,k µ0(α, f ,R)
dP
dm

∣∣∣∣∣
true

dm j dm′k . (3.16)

In the limit of equally infinitesimal intervals, i.e dm→ 0 and dm′ → 0 and making use of equation
(3.12) this becomes

µs = µ0(α, f ,R)
∫ Mhigh

Mlow

∫ Mmax

Mmin

e−(m−m′)2/2σ2

√
2πσ

dP
dm

∣∣∣∣∣
true

dm dm′ . (3.17)

q.e.d
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Chapter 4

Detection of a Dark Substructure
through Gravitational Imaging
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ABSTRACT
We report the detection of a dark substructure – undetected in the HST-ACS F814W image
– in the gravitational lens galaxy SDSS J0946+1006 (the “Double Einstein Ring”), through
direct gravitational imaging. The lens galaxy is of particular interest because of its relative
high inferred fraction of dark matter inside the effective radius. The detection is based on a
Bayesian grid reconstruction of the two-dimensional surface density of the galaxy inside an
annulus around its Einstein radius. The detection of a small mass concentration in the surface
density maps has a strong statistical significance. We confirm this detection by modelling the
substructure with a tidally truncated pseudo-Jaffe density profile; in that case the substructure
mass is Msub = (3.51 ± 0.15) × 109 M�, located at (1.23 ± 0.07)” from the lens centre, precisely
where also the surface density map shows a strong convergence peak (Bayes factor ∆ logE =

−128.0; equivalent to a ∼16–σ detection). We set a lower limit of (M/L)V,� & 120 M�/LV,�

(3–σ) inside a sphere of 0.3 kpc centred on the substructure (rtidal=1.1 kpc). The result is robust
under substantial changes in the model and the data-set (e.g. PSF, pixel number and scale,
source and potential regularization, rotations and galaxy subtraction). It can therefore not be
attributed to obvious systematic effects. Our detection implies a projected dark matter mass
fraction in substructure at the radius of the inner Einstein ring of f ∼ 2.2 percent (68% C.L) in
the mass range 4 × 106 M� to 4 × 109 M�. The likelihood ratio is 0.51 between our best value
( f = 0.0215) and that from simulations ( fN−body ≈ 0.003). Hence the inferred dark matter mass
fraction in substructure, admittedly based on a single lens system, is large but still consistent
with predictions. We expect to further tighten the substructure mass function (both fraction and
slope), using the large number of systems found by SLACS and other surveys.

4.1 Introduction
In the process of building a coherent picture of galaxy formation and evolution, early-type galax-
ies play a crucial role. Often unfairly referred to as red and dead objects, many aspects about
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their structure and formation are still unknown. What is the origin of the tight empirical rela-
tions between their global properties (Djorgovski & Davis, 1987; Dressler et al., 1987; Magorrian
et al., 1998; Ferrarese & Merritt, 2000; Gebhardt et al., 2000; Bower et al., 1992; Guzman et al.,
1992; Bender et al., 1993)? How do massive early-type assemble? What is the fraction of mass
substructure populating the haloes of early-type galaxies and is this in agreement with the CDM
paradigm(Kauffmann et al., 1993; Moore et al., 1999; Klypin et al., 1999; Moore et al., 2001;
Macciò & Miranda, 2006; Diemand et al., 2008; Springel et al., 2008; Xu et al., 2009)?
Gravitational lensing, especially in combination with other techniques, provides an invaluable
and sometimes unique insight in answering these questions (e.g. Rusin & Kochanek, 2005; Treu
& Koopmans, 2004; Koopmans et al., 2009, and references therein).
At the level of small mass structure lensing stands out as a unique investigative method; different
aspects of the lensed images can be analysed to extract information about the clumpy component
of galactic haloes. Flux ratio anomalies, astrometric perturbations and time-delays, in multiple
images of lensed quasars, can all be related to substructure at scales smaller than the images sep-
aration (Mao & Schneider, 1998; Bradač et al., 2002; Chiba, 2002; Dalal & Kochanek, 2002;
Metcalf & Zhao, 2002; Keeton et al., 2003; Kochanek & Dalal, 2004; Bradač et al., 2004; Keeton
et al., 2005; McKean et al., 2007; Chen et al., 2007; More et al., 2009).
As described by Koopmans (2005) and Vegetti & Koopmans (2009a), the information contained
in multiple images and Einstein rings of extended sources, can also be used. While the former
three approaches only provide a statistical measure of the lens clumpiness, the latter allows one
to identify and quantify of each single substructure, measuring for each of them the mass and
the position on the lens plane. Both approaches are however complementary in that the former is
more sensitive to low-mass perturbations, which are potentially present in large numbers, whereas
the latter is sensitive to the rarer larger scale perturbations.
The method of direct gravitational imaging of the lens potential – shortly described in the fol-
lowing section – represents an objective approach to detect dark and luminous substructures in
individual lens systems and allows on to statistically constrain the fraction of galactic satellites in
early-type galaxies. Extensively described and tested in Vegetti & Koopmans (2009a), the pro-
cedure is here applied to the study of the double ring SDSS J0946+1006 (Gavazzi et al., 2008)
from the sample of the Sloan Lens ACS Survey (SLACS), yielding the first detection of a dwarf
satellite through its gravitational effect only, beyond the Local Universe. Through out this chapter
we assume the following cosmological parameters with H0 = 73 km s−1 mpc−1, Ωm = 0.25 and
ΩΛ = 0.75.

4.2 The method

In this section we provide a short introduction to the lens modelling method. The main idea behind
the method of “gravitational imaging” is that effects related to the presence of dwarf satellites
and/or CDM substructures in a lens galaxy can be modelled as local perturbations of the lens
potential and that the total potential can be described as the sum of a smooth parametric component
with linear corrections defined on a grid. We refer to Vegetti & Koopmans (2009a) for a more
complete discussion.
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4.2.1 Source and potential reconstruction

As shown in Blandford et al. (2001), Koopmans (2005), Suyu et al. (2006) and Vegetti & Koop-
mans (2009a), it is possible to express the relation between perturbations in the lensed data (δd;
i.e. perturbations of the surface brightness distribution of the lensed images), the unknown source
surface brightness distribution (s) and perturbations in the lens potential (δψ) as a set of linear
equations δd = −∇s · ∇δψ. Through the Poisson equation δψ can be turned into a relation with the
convergence correction δκ = ∇2δψ/2.
For a fixed form of the lensing potential and regularization, the inversion of these equations leads
to the simultaneous reconstruction of the source and a potential correction. The source grid is
defined by a Delaunay tessellation which automatically concentrates the computational effort in
high magnification regions while keeping the number of degrees of freedom constant, which is
critical in assessing the Bayesian posterior probability and evidence for the model (see Vegetti &
Koopmans, 2009a). The procedure is embedded in the framework of Bayesian statistics which
allows us to determine the best set of non-linear parameters for a given potential and the linear
parameters of the source, to objectively set the level of regularization and to compare different
model families (MacKay, 1992, 2003; Suyu et al., 2006; Brewer & Lewis, 2006). Specifically, for
a particular lens system we wish to objectively assess whether it can be reproduced with a smooth
potential or whether mass structure on smaller scales has to be included in the model.
The modelling is performed via a four steps procedure: (i) We start by choosing a form for the
parametric smooth lens density profile, generally an elliptical power-law, and we determine the
non-linear parameters and level of source regularization that maximize the Bayesian evidence,
through a non-linear optimization scheme. (ii) In the case that this model is too simple and sig-
nificant image residuals are left, we allow for grid-based potential corrections. This leads to the
initial detection and localisation of possible substructures. (iii) The substructure masses and posi-
tions are then more precisely quantified by assuming a tidally truncated pseudo-Jaffe (PJ) profile
(Dalal & Kochanek, 2002) and by simultaneously optimising for the main lens galaxy and sub-
structure parameters, i.e. its mass Msub and position on the lens plane (xsub; ysub). (iv) Finally the
two models, i.e. the single power-law (PL) and the power-law plus PJ substructures (PL+PJ), are
compared through their total marginalized Bayesian evidences (E), that represent the (conditional)
probabilities of the data marginalized over all variable model parameters.

4.2.2 Detection Threshold of Mass Substructure

The method has a mass detection threshold to substructure that depends on the signal-to-noise
ratio and spatial resolution of the lensed images; for typical HST (e.g. SLACS) data quality the
mass detection threshold for a substructure located on the Einstein ring and with a pseudo-Jaffe
density profile is of the order of a few times 108M� and quickly increases with the distance from
the lensed images (see Vegetti & Koopmans, 2009a) because of the decrease in the image surface
brightness and local magnification.
Despite having been developed with the specific task of identifying and constraining the fraction
of substructure in lens galaxies, this technique can also be used to model complex lens potentials,
that are relatively smooth, but do not have the simple symmetries that are often assumed in mass
models (e.g. elliptical power-law density profiles). As shown in Barnabè et al. (2009), we can also
reconstruct the lensed images and the relative sources down to the noise level, even for systems
that are highly asymmetric and strongly depart from a power-law density profile. The grid-based
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potential correction is able to correct the inexact initial choice of the lens potential model and
recover existing asymmetries in the mass distribution.
In the rest of this chapter, we use this method to analyse the double Einstein ring system SLACS
SDSS J0946+1006 and search for deviations from a smooth power-law elliptical mass model.

4.3 The data
In this section we present a brief overview of the double Einstein Ring lens system SLACS SDSS
J0946+1006. We refer to Gavazzi et al. (2008) for a more detailed description.
SLACS selects gravitational lens candidates from the Sloan Digital Sky Survey spectroscopic
database on the basis of multiple emission lines in the spectrum at redshifts larger than that of
the lower redshift target galaxies (Bolton et al., 2006). The system was selected by the presence
of multiple emission lines at zs1 = 0.609 in the spectrum of a lensing galaxy at zl = 0.222.
Subsequently confirmed as a strong lens with ACS on board the HST, the system shows a very
peculiar structure in the lensed images which are composed by two concentric partial rings, at
radii of 1.43′′ ± 0.01′′ and 2.07′′ ± 0.02′′, respectively, from the centre of the lens galaxy. This
particular configuration is related to the presence of two sources at different redshifts which are
being lensed by the same foreground galaxy (see Gavazzi et al. (2008) for the a priori probability
of this event in a survey such as SLACS); the nearest source is lensed into the inner ring (Ring 1),
while the second one, further away along the optical axis, is lensed into the outermost ring (Ring
2). Ring 1 with a F814W magnitude m1 = 19.784 ± 0.006 is one of the brightest lensed sources
in the SLACS sample, while Ring 2 with m2 = 23.68 ± 0.09 is 36 times fainter. Ring 2 is not
observed in the SDSS spectrum, and an upper limit to its redshift zs2 < 6.9 was set on the basis
of ACS imaging. As inferred by Gavazzi et al. (2008) the lens galaxy has a projected dark matter
mass fraction inside the effective radius that is about twice the average value of the SLACS lenses
(Gavazzi et al., 2007; Koopmans et al., 2006), i.e. fDM ≈ 73% ± 9%, corresponding to a project
dark matter mass approximately equal to MDM (< Reff) ≈ 3.58 × 1011 h−1

70 M�.
The high dark-matter mass fraction makes this system particularly interesting for CDM substruc-
ture studies. If the framework of galaxy formation given by N-body simulations is correct (sub-
structure mass function slope αN−body = 1.90 and projected dark matter fraction in substructure
fN−body = 0.3%), we would expect, within an annulus of 0.6′′ centred on the Einstein radius,
on average µ = 6.46 ± 0.95 substructures (Vegetti & Koopmans, 2009b) with masses between
4 × 106M� and 4 × 109M� (Diemand et al., 2007a,b, 2008). Whereas these have typical masses
a few times that of the lower limit on this range, the probability of finding a mass substructure
above & 108M� is certainly non-negligible.

4.4 Smooth Mass Models
In this section we describe the details and the results of our analysis. Because of the very low
surface brightness, and of the low signal-to-noise ratio of the images associated with Ring2, we
limit our study to a tight annulus around Ring 1, in which Ring 2 has been fully excised. This does
not affect the lens potential reconstruction which is almost solely constrained by the detailed in-
formation given by the high surface brightness distribution of Ring1. Our potential reconstruction
therefore only probes the region around the inner ring. The choice of reconstructing the potential
(ψ) inside a limited field of view (e.g. mask), rather than the surface mass density (κ), ensures
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Figure 4.1: The image of the lens system SDSS J0946+1006, obtained with HST-ACS through the filter
F814W, after subtraction of the lens surface brightness distribution.

that the potential and the resulting convergence reconstructions are both unbiased (see Koopmans,
2005, for a detailed discussion about this subtle point).

4.4.1 Image Reconstruction

At the first level of reconstruction all potential corrections are kept at zero. We start by assuming
that to first order the lens is well approximated by a simple smooth elliptical power-law density
profile (Barkana, 1998) with a convergence (surface density in terms of critical density Σc)

κ(r) =
b

2
√

qrγ−1 , (4.1)

where r =
√

x2 + y2/q2. The non-linear parameters describing the lens are: the lens strength b,
the position angle θ, the flattening q, the centre coordinates xc and yc, the density slope γ, the
shear strength Γsh and the shear angle θsh. We do not optimise for the mass centroid, but centre
it on the peak of the surface brightness distribution, as precisely determined from the HST image.
We show in Section 4.6.4 that this assumption does not alter the main results of the chapter, but
reduces our substantial computational load.
As described in more detail in Vegetti & Koopmans (2009a), the source grid is constructed from
a (sub) sample of pixels in the image plane which are cast back to the source plane using the lens
equation. The number of grid-points can be objectively set by comparing their Bayesian evidence.
In this particular case, we find that using all the image points (e.g. 81 × 81 pixels) is the most ap-
propriate choice. On the image plane the pixel-scale is constant and equal to 0.05”/pixel, while on
the source plane the Delaunay triangle-scale is adaptive and depends on the local lensing magnifi-
cation. We adopt an adaptive curvature regularization, weighting the regularization penalty by the
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inverse of the image signal-to-noise ratio. We find that this significantly improves the modelling
of sharp high dynamic range features in the lensed images, where in general all other forms of
regularization (e.g. gradient or unweighted curvature) falter and give much lower evidence values.
We use the results obtained by Gavazzi et al. (2008), for a single lens plane, as starting point ηηη0
and then optimize for the potential parameters and the level of the source regularization. The
resulting source and image reconstruction are presented in Fig. 4.2. In Table 4.1 the recovered
lens parameters and level of source regularization

{
ηηηb, λs,b

}
are listed. The recovered parameters

for the smooth mass component of the lens potential are somewhat different from the results in
Gavazzi et al. (2008), which we attribute to the fact that Gavazzi et al. (2008) makes us of both
Einstein rings and matches conjugate points instead of the full surface brightness distribution.
Some notable results for the smooth mass model are a density slope γ ≈ 2.20 and a mass axial
ratio of q = 0.96, indicating that the galaxy is very close to an isothermal sphere mass model,
although has a slightly steeper density profile. The quantity cannot be compared directly with the
slope measured by Gavazzi et al. (2008) because we are measuring the slope at the location of the
inner ring, while Gavazzi et al. (2008) is measuring the average slope in between the rings.

4.4.2 Image Residuals after Reconstruction

In Fig. 4.2, we clearly see remaining image residuals above the noise level, in particular near the
upper-most arc feature. The source appears to be a normal, although not completely symmetric,
galaxy. Structure in the source (e.g. brightness peaks and the faint tail-like feature to the upper-
right of the source) can also be one-to-one related to structure in the arcs. This provides strong
confidence the overall reconstruction of the system, as being remarkably accurate despite its com-
plexity. The source still shows significant structure on small scales, which is due to a preferred
low level of regularization, when optimizing for the Bayesian evidence (note that at this level the
evidence is simply the posterior probability of the free parameters, including the source regular-
ization).
The image residuals can be related either to different aspects of the reconstruction procedure, for
example to the modelling of the PSF, the choice of the simply-parametrized model for the lens
potential, the number and scale of the image pixels, the lens-galaxy subtraction or features in the
galaxy brightness profile. To test whether these residuals are related to the presence of substruc-
tures, however, we now first proceed by consider a more general model in which we allow for
very general potential corrections (see above). We discuss the effects of systematic errors in a
later section, but stress that non of the above systematic errors are expected to mimic localised
lensing features.

4.5 The Detection of Mass Substructure

From the “Occam’s razor” point of view, it is more probable that uncorrelated structures in the
lensed images are related to local small-scale perturbations in the lens potential, rather than fea-
tures in the source distribution itself (Koopmans, 2005; Vegetti & Koopmans, 2009a). It is, there-
fore, possible to describe galaxy substructure or satellites as linear local perturbations to an overall
smooth parametric potential and separate them from changes in the surface brightness distribu-
tion due to the source model (Koopmans, 2005). Given that the remaining image residuals are
small, we can assume that the values for the lens parameters recovered in the previous section
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Figure 4.2: Results of the lens and source reconstruction under the hypothesis of a smooth potential. The
top-right panel shows the original lens data, while the top-left one shows the final reconstruction. On the
second row the image residuals (left) and the source reconstruction (right) are shown.
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are sufficiently close to the real smooth component of the lens potential such that our linearized
reconstruction of the source and the grid-based lens-potential corrections are fully justified, as
discussed in Section 4.2.1.

4.5.1 Grid-based Substructure Modelling
The potential corrections are defined on a regular Cartesian grid with 21 × 21 pixels. Both
the source and the potential have a curvature regularization (in the case of the source inversely
weighted by the local image signal-to-noise ratio) and are initially over-regularized in order to
keep the potential corrections in the linear regime, where the formalism of the method is valid.
The potential corrections are repeated (adding the previous correction to the current total poten-
tial), until convergence is reached in the evidence value. Results for this linear reconstruction are
presented in Fig. 4.3.
The potential correction and convergence show a clear signature of a concentrated mass over-
density (i.e. a substructure) observed around the position (−0.5, 1.0)′′. We have tested the effect
of the potential-correction regularization on the stability of the reconstruction by using three dif-
ferent levels of regularization, in particular λδψ = 107, λδψ = 108 and λδψ = 109. As expected,
the convergence correction becomes smoother as the regularization increases; however the feature
near (−0.5, 1.0)′′ in the convergence-correction map remains clearly visible in each reconstruc-
tion, together with a minor mass gradient from the low right side of the ring to the up left side.
This gradient is associated with the presence of the substructure itself (curvature regularization
of the potential implies 〈κ〉 = 0 in the annulus and thus neither the total mass nor average con-
vergence gradient changes in the annulus; this is an advantage of the method). For the nearly
under-regularized case with λδψ = 107, the source is slightly twisted and the reconstruction be-
comes more noisy. This suggests that the potential allows for a minor amount of shear (we note
that shear has κ = 0 everywhere and that is not penalised by a curvature form of regularization),
but that the substructure, although noisier, is still present near the same position as in the other
reconstruction. We therefore believe, given the data, that this feature is genuine. This statement,
however, requires quantification. This is difficult at moment, based on the grid-based method, but
can be done if the substructure is modelled through a simply parametrized mass component.

4.5.2 Parametrized Substructure Modelling
We quantify the mass of this substructure by assuming an analytic power-law (PL)+ substructure
model. We assume the substructure to have a tidally-truncated pseudo-Jaffe (PJ) profile (Dalal &
Kochanek, 2002) with a convergence

κ(r) =
bsub

2

[
r−1 − (r2 + r2

t )−1/2
]
, (4.2)

where rt is the substructure tidal radius and bsub its lens strength; both are related to the main
galaxy lens strength b and to Msub by rt =

√
bsubb and Msub = πrtbsubΣc. Combining the last two

relations leaves its total mass and position on the lens plane as free parameters for the substructure
model. Fig. 4.4(b) shows the final result of the Bayesian evidence maximisation for both the main
lens and substructure parameters.
Remarkably, this procedure requires a substructure right at the position of the convergence over-
density found in the grid-based reconstruction. In terms of Likelihood, the PL+PJ model is
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favoured with a |∆ logL| = +161.0 over the PL model (i.e. roughly comparable to a ∆χ2 ∼
2 ∆ logL improvement). One might note, that the two models still seem to have similar levels of
image residuals. This can be attributed to a significant difference in the source regularization. The
smooth model, in order to fit the data, has to allow for more freedom to the source and has a lower
level of source regularization. Hence, part of the potential structure is “absorbed” in the source
brightness distribution. To assess the level at which the source regularization contributes to the
image residual level, we run a non-linear optimisation for the smooth model while keeping fixed
the regularization constant at the level of the best PL+PJ model, we call this over-regularized
model PL0,over (see Fig. 4.4(a)). The Likelihood difference, between a perturbed model and a
smooth one, is now further increased to |∆ logL| = +183.0. Hence, indeed there is some co-
variance between the potential and source models. However, no smooth potential model does as
well as models that include the PJ substructure model, near the position found in the grid-based
reconstruction. We are therefore convinced, based on the Likelihood ratio, that a PL+PJ model
provides a much more probable explanation of the data, than a PL model with a more structured
source model.
Despite the difference inL(ηηη), at this stage of the modelling, it not possible to state whether the de-
tection is statistically significant, because the effective number of degrees of freedom have not yet
been accounted for. As shown in the next section, a nested-sampling exploration and marginaliza-
tion of the posterior probability density can be used to clarify this point and provide the Bayesian
evidence values for the PL and PL+PJ models that can objectively be compared.

4.6 Error analysis and Model ranking

In this section, we present the statistical analysis on the model parameters and the total marginal-
ized evidence computation for model comparison. We are interested to test whether the lensed
images are compatible with a single smooth potential or whether the data indeed objectively re-
quire the presence of a mass substructure. We consider therefore two models, one defined by a
smooth lens with a power-law density profile and one containing an additional mass substructure.
In general, two models can only be objectively and quantitatively compared in terms of the total
marginalized Bayesian evidence and the Bayes factor, ∆ logE ≡ logE0 − logE1, which expresses
their relative probability given a specific data-set. Heuristically, the Bayesian evidence (E) can be
compared to the classic reduced χ2 (i.e. per degree of freedom), but without assumptions about
the Gaussianity of the posterior probability distribution function and about the lack of covariance
between the parameters (which could reduce the effective number of degrees of freedom).

4.6.1 Prior Probabilities

Prior to the data-taking, little is known about the non-linear parameters describing the lens po-
tential model. A natural choice is therefore a uniform prior probability. We centre this prior on
the best smooth values ηb,i as recovered in Section 4.4.1, although the choice of prior range is not
very relevant as long as the likelihood is sharply peaked inside the prior volume:

P (ηi) =


constant for |ηb,i − ηi| ≤ δηi

0 for |ηb,i − ηi| > δηi.
(4.3)
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Figure 4.3: Results of the pixelized reconstruction of the source and lens potential corrections for three
different value of the potential corrections regularization λδψ = 107 (top panels), λδψ = 108 (middle panels)
and λδψ = 109 (low panels). The top-right panel shows the original lens data, the middle one shows final
reconstruction while the top-left one shows the image residuals. On the second row the source reconstruction
(left), the potential correction (middle) and the potential correction convergence (right) are shown.
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(a) (b)

Figure 4.4: Shown are the PL+PJ model (right panel) and for the PL model with the same source regular-
ization as the PL+PJ model (left panel). The residuals for the PL model are still subtle but have become
more pronounced and the source model also has more structure, despite over-regularization. Some of these
residuals are reduced by lowering the source regularization (see text), but the evidence difference between
the two models remains large.
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Hence, the sizes of the intervals are taken in a such a way that they enclose the bulk of the evidence
(i.e. likelihood times prior volume). Exactly identical priors for ηηη are used for both the smooth and
the perturbed model. Also in the latter case, the prior is centred on the mass model parameters
of the smooth model. This ensures that we are comparing their evidences in a proper manner.
The regularization constant has a prior probability which is logarithmically flat in a symmetric
interval around λs,b. The mass substructure is assumed to have a pseudo-Jaffe density profile and
a mass with a flat prior between Mmin = 4.0 × 106M� and Mmax = 4.0 × 109M� (Diemand et al.,
2007a,b) and a position with a flat prior over the complete data grid. We note that our recovered
mass, although close to the upper limit, is well inside this range (see below). We choose this range
to make a comparison with simulations easier, but could have chosen a smaller or larger range.
The results, however, are similar (only the evidence is offset by a constant value for both the PJ
and PL+PJ models).

4.6.2 The Evidence and Posterior Probability Exploration

One of the most efficient methods for exploring the posterior probability within the framework
of Bayesian statistics is the Nested-Sampling technique developed by Skilling (2004). Although
being faster than thermodynamic integration, the nested sampling can still be computationally
expensive as the overall computational cost rapidly grows with the dimension D of the problem
as O(D3/e2), where e is the desired level of accuracy (Chopin & Robert, 2008). Most of the
nested-sampling computational effort is required by the simulations of points from a prior proba-
bility distribution π(ηηη) with the constraints that the relative likelihood L(ηηη) has to be larger than
an increasing threshold L∗. Different approaches have been suggested in order to increase the
performance of this simulation. Chopin & Robert (2008), for example, proposed an extension
of the nested sampling, based on the principle of importance sampling, while Mukherjee et al.
(2006) developed an ellipsoidal nested sampling by approximating the iso-likelihood contours by
D-dimensional ellipsoids. Shaw et al. (2007), subsequently improved the ellipsoidal nested sam-
pling with a clusters nested sampling which allows efficient sampling also of multimodal posterior
distributions.
In our analysis, we replace the standard Nested Sampling used in Vegetti & Koopmans (2009a)
with MULTINEST, a multimodal nested sampling algorithm developed by Feroz & Hobson (2008).
As further improved by Feroz et al. (2009), MULTINEST allows to efficiently and robustly sam-
ple posterior probabilities even when the distributions are multimodal or affected by pronounced
degeneracies. The possibility of running the algorithm in parallel mode further reduces the com-
putational load.
The most appealing property of nested-sampling-based techniques is that they also efficiently ex-
plore the model parameter posterior probabilities and simultaneously compute the marginalized
Bayesian evidence of the model. The former provide error determinations for the parameters of a
given model, while the latter allows for a quantitative and objective comparison between different
and not necessarily nested (i.e. one model is not necessarily a special case of the other) models.
The Bayesian evidence automatically includes the Occam’s razor and penalises models which are
unnecessarily complicated. This means that a PL+substructure model is preferred over a single
PL only if the data require the presence of extra free parameters and the likelihood of the model
increases sufficiently to offset the decrease in prior probability (i.e. extra model parameters lead to
a larger prior volume and hence a smaller prior probability density near the peak of the likelihood
function).
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(a) (b)

(c) (d)

Figure 4.5: Top Left panel: The over-regularized PL model with a rotated PSF. Top Right panel: The
PL+PJ model with a rotated PSF. Bottom Left panel: The over-regularized PL model with a smaller pixel
scale and a different procedure for the lens galaxy subtraction. Bottom Right panel: The PL+PJ model with
a smaller pixel scale and a different procedure for the lens galaxy subtraction.
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4.6.3 The Substructure Evidence and Model Parameters
The main result of the Nested-Sampling analysis is that the PL+PJ model has a substructure with
mean mass

Msub = (3.51 ± 0.15) × 109M�,

located at a position (−0.651± 0.038, 1.040± 0.034)” (see Table 4.1); the quoted statistical errors
do not take into account the systematic uncertainties, but fully account for all covariance in the
mass model. In our case, systematic errors are mostly related to the PSF and to the procedure for
the subtraction of the lens galaxy surface brightness (see Marshall et al., 2007, for a discussion).
Effects related to systematic uncertainties are explored in Section 4.6.4. Note that the results of this
section are in agreement with those in the previous section and in particular that the substructure
is exactly located where the positive convergence correction is found by the pixelized potential
reconstruction (see Fig. 4.3).
Finally, we find that, the perturbed PL+PJ model is strongly favoured by the data with ∆ logE =

logEPJ − logEPL+PJ = 20353.90 − 20482.1 = −128.2. Heuristically, and ignoring the difference
in degrees of freedom between the PL and PL+PJ models, this would correspond in classical
terms to more or less a dramatic ∆χ2 ∼ 256 improvement in the model. Given that we have
thousands of data pixels and no major residuals features this shows that adding only a few extra
parameters to the lens model improves the agreement between the model and the data over a wide
range of data pixels. Heuristically one might further estimate the substructure mass error to be
δMsub ∼ Msub/

√
2|∆E| ∼ 0.2 × 109M�, which is indeed close to the proper determination of this

error. We are therefore confident about this detection and its strong statistical significance. This
represents the first gravitational imaging detection of a dark substructure in a galaxy. However,
to test the robustness of this detection (i.e. systematics) we will now subject our reconstructions
against several substantial changes in the model and the data, some of these going far beyond what
could be regarded as reasonable changes.

4.6.4 Robustness and Systematic Errors
A number of major sources of systematic error might still affect the lens modelling: the PSF mod-
elling, the pixel scale and lens galaxy subtraction from the lens plane. To determine at which
level systematic errors influenced the substructure detection we tested the PL+PJ modelling (see
Section 4.5) by rotating the PSF model through 90◦ from the original one; we call this model
(PL + PJ)psf90. We also used a different data-set with smaller drizzled pixels (0.03′′) and a differ-
ent lens galaxy subtraction procedure (using a Sersic profile rather than a b-spline surface bright-
ness profile); we call this model (PL + PJ)subt. We refer to the corresponding smooth models as
PLpsf90 and PLsubt, respectively. The results are shown in Figs. 4.5(a), 4.5(b), 4.5(c) and 4.5(d)
and listed in Table 4.1.
More precisely, (PL + PJ)subt is not only rotated but also has a different pixel scale (0.03”/pixel), a
different number of pixels, a different noise level, and a different PSF, so that we also test against
all these changes. We also check whether the form of source regularization has any effect by
running a PL and a PL+PJ modelling for a non-adaptive regularization constant and for a gradient
regularization. Finally we run an optimization for both the smooth and the perturbed model in
which the centre of the lens is allowed to change (PLcntr and (PL + PJ)cntr) and an optimization
with a larger PSF.
All tests (see Table 4.1) lead to results that are consistent with each other for both the main lens
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and the substructure parameters. First we note that rotating the PSF changes the evidence by
a value that could be expected based on the sampling error in the nested sampling. Hence, we
conclude that PSF effects are negligible. In the case of the subt model, we note that we are no
longer comparing the same data-sets and that the evidence values have dramatically changed.
This simply reflects the large increase by a factor ∼ (0.05/0.03)2 in the number of data-points.
Bayesian evidence can not be used to compare different data-set, but we can compare the PL subt
and (PL+PJ)subt models amongst each other. First, we remark that the pixel scale in this data-set is
considerable smaller than the resolution and pixel-scale in the image, hence neither the data pixels
nor their errors are fully independent. This leads to a rather odd stripped source reconstruction,
not observed for the original data-set. Despite this difference, we notice that image residuals in
the PL+PJ models are reduced, especially near the substructure positions, compared to the PL
model. The Likelihood difference is ∆ logLsubt = logLPJ − logLPL+PJ = −154 in favour of the
substructure model.
Over all, we are therefore confident that the substructure detection is not only a statistically sound
detection, but also robust against dramatic changes in the model and the data.

4.6.5 The Substructure Mass-to-Light Ratio

Based on the residual images, we determine an upper limit on the magnitude of the substructure in
two different ways: by setting the limit equal to three times the estimated (cumulative) noise level
or by aperture-flux fitting, both inside a 5×5 pixel (0.25′′×0.25′′) window. The aperture is chosen
to gather most of the light of the substructure, which is expected to be effectively point-like, given
the typical size of the optical counterpart of galaxies of ≈ 109M�. The two estimates are in good
agreement, because the image residuals are very close to the noise level. The 3–σ limit is found to
be IF814W,3σ > 27.5 magn. At the redshift of the lens-galaxy this corresponds to a 3–σ upper limit
in luminosity of 5.0 × 106 LV,�. Within the inner 0.3 kpc and 0.6 kpc, we find that the integrated
mass is respectively (5.8 ± 0.3) × 108M� and (1.1 ± 0.05) × 109M� and hence lower limits of
(M/L)V,� & 120 M�/LV,� (3–σ) and (M/L)V,� & 218 M�/LV,� (3–σ).
The mass of the substructure is at the upper end of the mass function of Milky Way satellites (see
Fig.4.6(a) and Fig.4.6(b)). This is not surprising as the normalisation of the mass function scales
as the total mass of the host galaxy and SDSS J0946+1006 is substantially more massive than
the Milky Way at fixed radius (factor ∼ 4). Moreover, if indeed gas is stripped from low-mass
satellites though feedback and radiation in a strong star formation or starburst phase of the lens
galaxy, during its formation, one might naturally expect that dwarf satellites that formed around
or near massive early-type galaxies have larger M/L ratios than those in the Milky Way. However,
the total M/L upper limit is not far from those found for the Milky Way satellites (e.g. Strigari
et al., 2008) (Fig.4.6(a)).

4.7 The Substructure Mass Function
What does this imply for the ΛCDM model and the expected fraction of mass in substructure?
Given the statistical formalism presented in Vegetti & Koopmans (2009b), we can use this detec-
tion to constrain the projected dark matter mass fraction in substructure f and the substructure
mass function slope dN/dm ∝ m−α. We note that we can ignore the baryonic content in the sub-
structure, because of its large total mass-to-light ratio.
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(a)

(b)

Figure 4.6: Top panel: The integrated mass in units of solar masses, within the inner 0.3 kpc as a function
of the total luminosity, in units of solar luminosity for the Milky Way satellites (black points) and the sub-
structure detected in this chapter (red arrow). Note the small error on the substructure mass. Bottom panel:
the integrated mass-to-light ratio, within the inner 0.3 kpc as a function of the total luminosity, in units of
solar luminosity for the Milky Way satellites (black points) and the substructure detected in this chapter (red
arrow).
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Figure 4.7: Joint probability P (α, f | {ns,mmm}, ppp) contours and marginalized probabilities P ( f | {ns,mmm}, ppp)
and P (α | {ns,mmm}, ppp) for a uniform prior (solid lines) and for a Gaussian prior in α (dashed lines). Contours
(inside out) are set at levels ∆ log(P) = −1,−4,−9 from the peak of the posterior probability density.
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To make a proper comparison with simulations, we assume that the substructure mass can assume
any value from Mmin = 4.0×106M� to Mmax = 4.0×109M� (Diemand et al., 2007a,b, 2008) and
that the mass we can detect varies from Mlow = 0.15 × 109M� to Mhigh = Mmax. We note that
different limits would scale both the simulation and observed mass fraction in the same way. The
mass fractions quoted throughout the chapter are for this mass range only. We ignore the error on
the measured substructure mass; this does not influence the results because our detection is well
beyond the error σm = 0.15 × 109M� level. Given the quality of the fit for a PL+PJ model, we
are confident that there are no other substructures with mass above our detection threshold.
Figure 4.7 shows the joint posterior probability density function P (α, f | ns = 1,m = Msub, ppp) con-
tours and the marginalized probability densities P ( f | ns = 1,m = Msub, ppp)
and P (α | ns = 1,m = Msub, ppp), given one detected substructure ns = 1 with mass m = Msub;
where ppp is a vector containing the model parameters, Mmin, Mmax, Mlow and Mhigh. Specifically,
from the marginalized probability density distributions we find f = 2.56+3.26

−1.50% and α = 1.36+0.81
−0.28

at a 68% confidence level for a flat prior on α and f = 2.15+2.05
−1.25% and α = 1.88+0.10

−0.10 at a 68%
confidence level for a Gaussian prior centred in 1.90 ± 0.1. The same results are found if an error
on the mass measurement and a detection threshold Mlow = 3 × σm are assumed.
As already discussed in Vegetti & Koopmans (2009b), while even a single lens system is enough
to set upper and lower limits on the mass fraction, a larger number of lenses is required in order
to constrain the mass function slope, unless a stringent prior information on the parameter itself
is adopted. By assuming a Gaussian prior of the mass function slope centred in 1.90, we can
quantify the probability that the dark matter mass fraction is the one given by N-body simulations
fN−body ≈ 0.3% (Diemand et al., 2007a,b, 2008), by considering ratio between the posterior prob-
ability densities P

(
fN−body, α = 1.9| ns = 1,m = Msub, ppp

)
and

Pmax ( f , α = 1.9 | ns = 1,m = Msub, ppp) and find that this ratio is 0.51. Hence, currently our mea-
surement and that inferred from N-body simulations still agree as a result of the rather larger error-
bar on the measured value of f . The combination of more lens systems is, of course, required to
set more stringent constraints also on α. We plan such an analysis in forthcoming papers.
Given our best value of f = 0.0215 for α = 1.9, we might expect to detect ∼1 mass substruc-
tures above our 3–σ mass-threshold of 4.5 × 108M�. It is therefore unlikely that we have missed
many substructures with a mass slightly below that of our detection. Given this result and image
residuals already at the noise level, we believe that adding a second substructure is not warranted
and missing lower-mass substructure leads only to a minor bias (note that logarithmic bins have
nearly equal amounts of mass for α = 1.9).

4.8 Summary
We have applied our new Bayesian and adaptive-grid method for pixelized source and lens-
potential modelling (Vegetti & Koopmans, 2009a) to the analysis of HST data of the double
Einstein ring system SLACS SDSS J0946+1006 (Gavazzi et al., 2008). This system was cho-
sen based on its large expected dark-matter mass fraction near the Einstein radius and the high
signal-to-noise ratio of the lensed images. Although these two facts should be uncorrelated to
the mass fraction of CDM substructure, both incidences maximize the change of detection. We
find that a smooth elliptical power-law model of the system leaves significant residuals near or
above the noise level; these residuals are correlated and spread over a significant part of the lensed
images. Through a careful modelling of this data including either lens-potential corrections or an
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additional (low-mass) simply parametrized mass component, we conclude that the massive early-
type lens galaxy of SLACS SDSS J0946+1006 hosts a large mass-to-light ratio substructure with
a mass around Msub ∼ 3.5 × 109M�, situated on one of the lensed images. A careful statistical
analysis of the image residuals, as well as a number of more drastic robustness tests (e.g. changing
the PSF, pixel number and scale, regularization level and form, galaxy subtraction and image ro-
tation), confirm and support this detection. Based on this detection, the first of its kind, we derive
a projected CDM substructure mass fraction of ∼ 2.2% for the inner regions of the galaxy, using
the Bayesian method of Vegetti & Koopmans (2009b); this fraction is high, but still consistent
with expectations from numerical simulations due to the large (Poisson) error based on a single
detection. The numerical details of our results can be further summarised as follows:

1. Using a Bayesian MultinestMarkov-Chain exploration of the full model parameter space,
we show that the identified object has a mass of Msub = (3.51 ± 0.15)× 109M� (68% C.L.)
and is located near the inner Einstein ring at (−0.651±0.038, 1.040±0.034)′′. The Bayesian
evidence is in favour a model that includes a substructure versus a smooth elliptical power-
law only, by ∆ log(E) = −128.2. This is roughly equivalent to a 16 − σ detection.

2. At the redshift of the lens-galaxy a 3–σ upper limit in luminosity is found of 5.0×106 LV,�.
Within the inner 0.3 kpc and 0.6 kpc, we find that the integrated mass is respectively (5.8 ±
0.3)×108M� and (1.1±0.05)×109M� and hence lower limits of (M/L)V,� & 120 M�/LV,�
(3–σ) and (M/L)V,� & 218 M�/LV,� (3–σ). This is higher than of MW satellites, but
maybe not unexpected for satellites near massive elliptical galaxies.

3. The CDM mass fraction and a mass function slope are equal to f = 2.15+2.05
−1.25% and α =

1.88+0.10
−0.10, respectively, at a 68% confidence level for a Gaussian prior on α centred on

1.90 ± 0.1. For a flat prior on α between 1.0 and 3.0, we find f = 2.56+3.26
−1.50%. Asking

whether the f = 2.15% is consistent with fN−body = 0.3%, we find a likelihood ratio of
0.51; indeed both are consistent. This is the result of the considerable measurement error
found for f , because it is based on only a single detection.

This is the first application of our adaptive “gravitational imaging” method to real data and clearly
shows its promise. In the near future we will apply the method to a larger set of SLACS lenses
in order to constrain, via the statistical formalism presented in Vegetti & Koopmans (2009b), the
dark matter fraction in substructure and the substructure mass function.
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Quantifying dwarf satellites through
gravitational imaging in SDSS
J120602.09+514229.5
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imaging: the case of SDSS J120602.09+514229.5”, 2010.

ABSTRACT
SDSS J120602.09+514229.5 is a gravitational lens system formed by a group of galaxies at
redshift zFG = 0.422 lensing a bright background galaxy at redshift zBG = 2.001. The main
peculiarity of this system is the presence of a luminous satellite near the Einstein radius of the
lensed images that slightly deforms the giant arc. This makes SDSS J120602.09+514229.5 the
ideal system to test our grid-based Bayesian lens modelling method, designed to detect galactic
satellites independently from their mass-to-light ratio, and to measure the mass of this dwarf
galaxy despite its relative high redshift. We model the main lensing potential with a composite
analytical density profile consisting of a single power-law for the group dominant galaxy, and
two singular isothermal spheres for the other two group members. Thanks to the pixelized
source and potential reconstruction technique of Vegetti & Koopmans (2009a) we are able to
detect the luminous satellite as a local positive surface density correction to the overall smooth
potential. Assuming a truncated Pseudo-Jaffe density profile, the satellite has a mass Msub =

(2.75± 0.04)× 1010 M� inside its tidal radius of rt = 0.68′′. This result is robust against changes
in the lens model, with a fractional change in the substructure mass from one model to the other
of 0.1 percent, although larger for different substructure models. We determine for the satellite
a luminosity of LB = (1.6 ± 0.8) × 109 L�, leading to a total mass-to-light ratio within the tidal
radius of (M/L)B = (17.2± 8.5)M�/L�. The central galaxy has a sub-isothermal density profile
as in general is expected for group members. From the SDSS spectrum we derive for the central
galaxy a velocity dispersion of σkinem = 380 ± 60 km s−1 within the SDSS aperture of diameter
3′′. The logarithmic density slope of γ = 1.7+0.25

−0.30 (68% CL), derived from this measurement,
is consistent within 1-σ with the density slope of the dominant lens galaxy γ ≈ 1.6 determined
from the lens model. This chapter shows how powerful pixelized lensing techniques are in
detecting and constraining the properties of dwarf satellites at high redshift.
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5.1 Introduction
Comparison between numerical CDM simulations and direct observations of the Milky Way and
Andromeda has shown the existence of a strong discrepancy in which the abundance of predicted
subhaloes outnumbers that of observed dwarf galaxies (e.g. Kauffmann et al., 1993; Klypin et al.,
1999; Springel et al., 2008; Kravtsov, 2010, and references therein). Reconciling the luminosity
function with the mass function is therefore a crucial test for CDM models. With the specific
aim of addressing this issue, a grid-based Bayesian lens modelling code was developed by Veg-
etti & Koopmans (2009a). This technique is able to identify possible mass substructure in the
lensing potential, by reconstructing the surface brightness distribution of lensed arcs and Einstein
rings. Several tests on mock data have shown that we can detect mass substructure as massive as
Msub ≥ 108M� (Vegetti & Koopmans, 2009a,b).
In a recent application to the lens system SDSSJ0946+1006 from the Sloan Lens ACS Survey
(SLACS, Bolton et al. (2006)), the method has proved to be successful in recovering the smooth
lensing potential and in identifying a high mass-to-light ratio ((M/L)V,� & 120 M�/LV,�) satellite
with mass Msub ∼ (3.51 ± 0.15) × 109M� while reconstructing the data to the noise level (Veg-
etti et al., 2009). However, the complexity of the data and systematic effects related for example
to sub-pixel structure, PSF modelling and spatially varying noise can complicate the source and
the potential reconstruction and all their effects always have to be carefully assessed and quan-
tified. A definitive test is therefore required to calibrate the capability of our technique. SDSS
J120602.09+514229.5 (Lin et al., 2009) with a luminous satellite right on the lensed images (see
Fig. 5.1) is an ideal system to accomplish this task. In this chapter we present a full analysis of
SDSS J120602.09+514229.5, measuring the mass and the mass-to-light-ratio of the dwarf satellite
and showing the strength of the method on known satellites. Through out the chapter we assume
the following cosmology H0 = 73 km s−1 mpc−1, Ωm = 0.25 and ΩΛ = 0.75.

5.2 The data
SDSS J120602.09+514229.5 was observed with the Hubble Space Telescope (HST) in cycle 16
(P.I.: S. Allam). WFPC2 images were obtained through three filters, F450W, F606W, and F814W.
We base our lens model on the F606W data because they provide the best combination of depth
and resolution.
Four dithered exposures were obtained, each with an integration time of 1100 s. We retrieved the
calibrated exposures from the HST archive and use multidrizzle to combine them. The final image
has a pixel scale of 0.05 arcsec.
To model the observed structure of the lensed source, we require knowledge of the point spread
function (PSF) of the drizzled image. Since there are no suitable stars in the field, we rely on a
model PSF created with Tiny Tim, v6.3 (Krist, 1993).1 The PSF is generated for the position of
the lens system on chip 2 of the WFPC2, sub-sampled by a factor 10. Sub-sampling is necessary
because the dither pattern involves half-pixel shifts which cannot be taken into account by Tiny
Tim alone. Instead we rebin the highly sub-sampled PSF to the original WFPC2 pixel scale once
for each science exposure, with the output grid shifted by five sub-sampled pixels to account for
half-pixel shifts. The rebinned PSF is copied to the position of the lens galaxy G1 in copies of
the four science files after setting the image data to zero. These PSF exposures are then drizzled

1http://www.stsci.edu/software/tinytim/tinytim.html
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G1

G3
G2

G4

1"

Figure 5.1: Overview of the lens system SDSS J120602.09+514229.5. This false-colour image was created
from HST/WFPC2 images in F450W, F606W and F814W.

with the same parameters as before to create an approximation to the PSF of the drizzled science
image.
Light from the outer parts of the main lens galaxies G1, G2 and G3 contributes a few percent
to the light at the location of the lensed arc images. We subtract de Vaucouleur models of these
galaxies, generated with galfit2, version 3.0 (Peng et al., 2002). The effective radius of G1 is
determined at 3.9±0.1 arcsec.
Finally, we need to remove the satellite galaxy G4. Since this galaxy sits on top of an arc image
and it is not a priori clear what the background level due to light from the arc is, no unambiguous
model of G4 can be determined. Due to its compactness we opt to subtract a simple Gaussian
model with FWHM 0.173 arcsec and normalisation determined from visual impression of the
image after subtraction. Changes in the normalisation within a plausible range do not significantly
affect the potential reconstruction.
A spectrum of G1 is available from the Sloan Digital Sky Survey (Fig. 5.2). This spectrum has
a fairly low signal-to-noise ratio of S/N ≈ 8 (per pixel) and no kinematic measurements are
given in the SDSS database. With the template fitting method described in Czoske et al. (2010,
in preparation; see also Czoske et al. (2008)) and the Indo-US spectrum (Valdes et al., 2004) of
the K2III star HD 195506 as template we obtain a good fit (reduced χ2 = 1.11) with a velocity
dispersion of σkinem = 380 ± 60 km s−1 within the SDSS aperture of diameter 3′′. This is lower
but not inconsistent with the value that Lin et al. (2009) obtained from fitting a singular isothermal
ellipsoid model to the lens configuration, σlens = 440 ± 7 km s−1. Note, however, that this value
applies to the entire mass doing the lensing, whereas our value is for the main lens galaxy G1
only.

2http://users.obs.carnegiescience.edu/peng/work/galfit/galfit.html
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Figure 5.2: SDSS spectrum of galaxy G1 is shown in the upper panel. The spectrum of K2III star HD 195506
is convolved with a Gaussian line-of-sight velocity distribution of dispersion 380 km s−1 overlaid in red. The
residuals of the fit are plotted in the lower panel, with the expected noise spectrum overlaid in blue. The
masked regions are for Balmer lines, metal lines that typically show abundance anomalies compared to
galactic template spectra, atmospheric absorption features and regions that appear contaminated with strong
spikes.
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5.3 Lens Modelling
The lens modelling is performed using the Bayesian adaptive method of Vegetti & Koopmans
(2009a) to which we refer for a detailed description. Briefly we proceed as follows:

1. Initially, we only assume a smooth analytic model for the main lens potential (i.e. we only
consider G1,G2 and G3) and maximize the relative posterior probability in terms of their
lens parameters. At this point we ignore the satellite G4.

2. We fix the lens potential at the maximum posterior values found in the previous iteration
and run a simultaneous pixelized reconstruction of the source surface brightness distribution
sss and the potential correction δψψψ. This leads to the detection and localisation of possibly
present mass substructures in the lens potential.

3. Finally, we build a composite analytic model in which both the main lenses and the detected
satellite have a power-law (PL) density profile and we optimize the relative penalty function
for the corresponding parameters. The power-law is truncated in the case of the satellite.

In the next sections we describe this procedure in more detail as applied to the lens
SDSS J120602.09+514229.5, and show that it is able to detect and quantify the satellite G4.

5.3.1 Smooth potential parametric reconstruction
We initially start with a smooth model that explicitly excludes the satellite G4. We model the
lensing potential as the combination of a single power-law ellipsoid for G1 and two singular
isothermal spheres (SIS) for G2 and G3 with a surface density in terms of critical density Σc
(Kormann et al., 1994)

Σ (r) =
Σc b

2
√

q rγ−1 , (5.1)

tessellation where r =
√

x2 + y2/q2.
Given the relatively high dynamic range of the lensed image surface brightness distribution, the
source is reconstructed on a Delaunay tessellation grid that is built from the image plane by casting
every second pixel in RA and DEC back to the source plane. The area of each triangle (i.e. the grid
resolution) depends on the local lens magnification. A curvature source regularisation is adopted
(Vegetti & Koopmans, 2009a). The free parameters for the posterior probability maximization
are the lens strength b, the position angle θ, the axis ratio q and the density slope γ for G1, the
lens strength for G2 and G3, the strength of the external shear Γsh and its position angle θsh. The
best PL+2SIS model is reported in Table 5.1. We find that this is an incomplete and simplified
description for the true lensing potential of SDSS J120602.09+514229.5 and do not expect it to
provide a good description of the data. It does however provide a sufficient starting point for
the next modelling step. Following Lin et al. (2009) we also tried a simplified model where the
lensing potential of G1, G2 and G3 is described by a single global SIE (plus external shear), with
free parameters being b, θ, q, the centroid coordinates xc and yc, Γsh and θsh (see Table 5.1).
For this model our results are consistent with Lin et al. (2009) but still provide an approximate
description of the lens data. Assuming the total mass inside the Einstein radius and the SDSS
luminosity-weighted stellar velocity dispersion as two independent constraints, we determine an
effective logarithmic density slope, based on spherical Jeans modelling (see Koopmans et al. 2006
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for details), of γ = 1.7+0.25
−0.30 (68% CL), assuming orbital isotropy (β = 0), an effective radius of

3.9±0.1 arcsec for G1 and a seeing of 1.5 arcsec. Conversely, the best PL density slope of G1, i.e.
γ = 1.58, predicts a dispersion of 340 km/s. Hence the best PL model is in excellent agreement
with the measured stellar velocity dispersion, although the SIE model, which predict a larger
dispersion of 450 km/s is still marginally in agreement given the larger error on its measured
value.

5.3.2 Satellite detection

The next step is to test whether the pixelized technique is able to identify the satellite G4. We fix
the lens parameters of G1, G2 and G3 to the values found in the previous section and run a lin-
earized grid-based reconstruction for the source surface brightness and lens potential corrections.
To ensure the linearity of the solution, both the source and the potential corrections are initially
over-regularized and then the relative regularization constants are slowly lowered. Curvature reg-
ularization is used for both the source sss and potential corrections δψψψ.
The potential corrections are reconstructed on a regular Cartesian grid with 81 × 81 pixels and
a pixel scale of 0.12′′. Via the Poisson equation δψψψ can be translated into convergence (surface
density) corrections δκκκ = 1

2 (δψ11 +δψ22). A strong positive convergence correction is found at the
exact position of G4 (see Fig. 5.3). Smooth non-negligible density corrections are also found on
the upper side of the arc. These could be related to the fact that the source regularization is not at
its optimal level, but slightly over-regularized, or more likely to smooth deviations of the starting
model from the true mass distribution (see e.g. Barnabè et al., 2009).
Reconstructions with different values of source and potential regularization lead to very similar
results (see Fig. 5.4). As expected, the potential correction at the position of G4 becomes more ex-
tended and less concentrated for higher levels of regularization (λs = 3.0×106 and λδψ = 3.0×109,
λs = 3.0 × 106 and λδψ = 3.0 × 108) but is otherwise the same for all other combinations of these
parameters. This indicates the robustness of the results against changes in the source structure and
potential smoothness.
Also the single global SIE leads to a similar convergence map, with the density correction corre-
sponding to G4 located at the same position and having a comparable intensity as for the multiple-
component model. The satellite detection is therefore robust against different choices for the initial
smooth global lens potential. In fact a SIE+PJ model is slightly better than a PL+2SIS+PJ one.
This could be interpreted as due to the presence of a common halo for this group of galaxies. It is
important to note that the convergence correction is located exactly at the position of the peak of
the surface brightness distribution of G4 as recovered in Section 5.2 via a Gaussian fit.
We conclude that the extra freedom allowed to the lens potential via the linear potential correc-
tions compensates/corrects for the inadequacies of the global lens potential and both identifies and
precisely locates possible mass substructure.

5.3.3 Satellite mass

In this section we further quantify the pixelized substructure by an analytic model and constrain
the relative parameters in the context of that model. We assume an analytic mass model consisting
of a single PL for G1, two SIS for G2, G3 and a Pseudo-Jaffe (PJ) for G4 as well as a simplified
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Figure 5.3: Results of the pixelized reconstruction of the source and lens potential corrections. The top-right
panel shows the original lens data, the middle one shows final reconstruction while the top-left one shows
the image residuals. On the second row the source reconstruction (left), the potential correction (middle) and
the potential correction convergence (right) are shown.
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Figure 5.4: Results of the pixelized reconstruction of the convergence corrections for different value of the
potential and source regularization λs = 3× 103 (top panels), λs = 3× 104 (middle panels), λs = 3× 106 (low
panels) λδψ = 3 × 107 (left panels) and λδψ = 3 × 108 (middle panels) and λδψ = 3 × 108 (right panels).
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model SIE+PJ. The Pseudo-Jaffe profile reads as (Dalal & Kochanek, 2002; Vegetti et al., 2009):

Σ(r) =
Σc bsub

2

[
r−1 − (r2 + r2

t )−1/2
]
, (5.2)

where rt =
√

bsubb is the tidal radius for a lens strength bsub. The satellite G4 is centred on the po-
sition where the peak of the convergence correction was found by the pixel-based reconstruction.
The free parameters for G1, G2, and G3 are the same as before, while the only free parameter
for G4 is the mass within the tidal radius Msub = πrtbsubΣc. The recovered best parameters are
listed in Table 5.1 for both models. The inferred substructure mass is not strongly affected by
small changes in the substructure position; a systematic change of 1 pixel in the centre coordi-
nates leads, for example, to a change in the substructure mass of only 1 percent.
They respectively lead to a satellite mass and tidal radius Msub = (2.78 ± 0.04) × 1010M�,
rt = 0.68′′ (PL+2SIS+PJ) and Msub = (2.75 ± 0.04) × 1010M�, rt = 0.81′′ (SIE+PJ).
The reader should not be tempted to compare the different models in terms of the Likelihood
reported in Table 5.1; models can be only compared in terms of the Bayesian evidence, which
requires to integrate over the multidimensional space of the posterior probability density distribu-
tion over the free-parameters. The model comparison is not relevant for our current analysis and
this step is therefore not carried out.

5.3.4 Satellite mass-to-light ratio
Finally, we estimate the luminosity of G4 by integrating the Gaussian model to the F606W sur-
face brightness profile obtained in Section 5.2. We expect this to lead to a underestimate of the
luminosity, because of the sharply dropping wings of the Gaussian model. Fitting more realistic
models is, however, difficult due to the compactness of G4 and the contamination with the arc
light. The colour of G4 is consistent with that of the main lens galaxies G1, G2 and G3, which in-
dicates an old stellar population. The absolute rest-frame B-band magnitude is obtained following
the prescription of Treu et al. (1999) for an elliptical galaxy and is MB = −17.5, corresponding to
a luminosity of LB = (1.6±0.8)×109 L�. The large error estimate includes the uncertainty due to
arc light contaminating G4 and the model uncertainty for the light profile. The total mass-to-light
ratio of G4, inside the tidal radius, is thus (M/L)B = (17.2±8.5)M�/L�. As explained, this should
be really only considered an upper limit to the true mass-to-light ratio. Plausible de Vaucouleur
profiles are typically 0.8 mag brighter than the Gaussian model, leading to a total luminosity of
LB = (3.3 ± 1.6) × 109 L� and a mass-to-light ratio of (M/L)B = (8.2 ± 2.61)M�/L�. This re-
sults is consistent with little to no dark matter inside the tidal radius of this satellite; this is also
in agreement with the typical stellar mass-to-light ratio at this redshift (M/L)B ≈ 5M�/L� (Treu
et al., 2005).

5.4 Summary
We have applied the grid-based Bayesian lensing code by Vegetti & Koopmans (2009a) to the lens
system SDSS J120602.09+514229.5, which has a known luminous satellite located on the lensed
arc. We have shown that the perturbation of the lensed arc, created by the satellite, can be used to
gravitationally identify the satellite itself and determine its lensing properties, in particular to get
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an accurate mass measurement. We performed several tests that show that the satellite detection
and its recovered mass are robust against changes in the source structure, level of lens potential
smoothness and choice of the smooth global lensing model. The main results of this work can be
summarised as follows:

• A relatively complex model, containing one single power-law, two singular isothermal
spheres and a Pseudo-Jaffe satellite, yields to a satellite mass Msub = (2.75±0.04)×1010M�
inside the tidal radius. This result is consistent with a simpler SIE+PJ model.

• The satellite has a total mass-to-light ratio within the tidal radius of (M/L)B ≈ 8.0M�/L�,
consistent with the presence of little to no dark matter inside the tidal radius, assuming a
typical (M/LB)? ≈ 5.0M�/L�

• G1, the main galaxy in the group, has a density profile which is sub-isothermal γ = 1.58 ±
0.1. This is not unexpected for galaxies in groups (e.g Sand et al., 2004)

• we measure for G1 a velocity dispersion of σkinem = 380±60 km s−1 within the SDSS aper-
ture of diameter 3′′. This is consistent with theσSIE value from Lin et al. (2009) obtained by
fitting a singular isothermal ellipsoid model to the lens configuration. From a more proper
lensing and dynamics model we predict a stellar velocity dispersion of 340 km/s for the best
PL model of G1 that as a logarithmic density slope of γ = 1.58. Conversely, we predict a
density slope of γ = 1.7+0.25

−0.30 (68% CL) from the observed stellar velocity dispersion. This
agrees very well with that determined from the PL model of G1, but is also still marginally
in agreement with the SIE model.

This chapter demonstrates the great potential of pixelized lensing techniques in robustly identify-
ing and measuring the key properties of small mass structure/dwarf satellite in distant galaxies.
The application of this method to a large uniform set of lens galaxies will allow in the near future
to constrain the general properties of mass substructure in galaxies and to test the CDM paradigm
on these small scales.
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Chapter 6

Improved sensitivity to substructure
with Ground Based Adaptive Optics

Work done in collaboration with: L. V. E. Koopmans, P.J. Marshall, C.D. Fassnacht, T. Treu, & A.S. Bolton.

ABSTRACT
We study the gravitational lens system SDSS J0737+3216 observed both with the
Hubble Space Telescope (HST) and with the laser guide star adaptive optics (LGSAO)
system on the Keck telescope to show that, high quality infrared ground based data
can provide similar constraints on the lens galaxy mass distribution as HST data.
We model the system using the Bayesian adaptive method by Vegetti & Koopmans
(2009a). HST and Keck-LGSAO observations yield to models which are consistent
with each other. We then use mock data realisations, based on the best reconstructed
model of SDSS J0737+3216, to compare the sensitivity of the different data sets to
mass structure in the lens galaxy. We find that Keck-LGSAO observations are as sen-
sitive as HST to mass substructure.

6.1 Introduction
We have shown in Chapter 3 of this Thesis that a relatively large number of high quality observed
lens systems are required to constrain both the dark matter mass fraction in substructure and the
substructure mass function. Thanks to the SLACS survey, a sample of 100 lenses is already
available with HST data-quality, while future surveys such as LSST/JDEM in the optical and
EVLA, e-MERLIN, LOFAR and SKA in the radio are expected to provide as many as ∼ 104 new
systems. However, in the near future a significant amount of data could already be provided by
ground based observations with adaptive optics such as the LGSAO system on the Keck telescope.
It is important, therefore, to understand how well data taken with these instruments can constrain
the properties of the lens galaxy and its mass substructure. For this purpose we consider the lens
system SDSS J0737+3216 for which both HST and LGSAO from Keck are available. A similar
analysis has already been carried out by Marshall et al. (2007). This work differs in two major
aspects from Marshall et al. (2007): we model the lens system not with a parametric source but
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using the fully pixelized adaptive Bayesian method of Vegetti & Koopmans (2009a) and we extend
the analysis to the detection of mass substructure and their properties.

6.2 The data
Here we give a short introduction of the lens system SDSS J0737+3216 and observations carried
out with Keck and HST. We refer to the work by Marshall et al. (2007) for a more detailed descrip-
tion. The system was selected as a lens candidate from the SDSS catalogue by the presence of
multiple emission lines at redshift zs = 0.5812 superimposed on the spectrum of a lens galaxy at
redshift zl = 0.3223. It was subsequently observed with the Advanced Camera for Surveys (ACS)
and the Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) on board HST (HST
program 10494), through the filters F555W (2200 s) and F814W (2272 s). A one-orbit observa-
tion with NIC2 through the filter F106W was obtained with NICMOS (2560 s). In addition, SDSS
J0737+3216 was imaged with the LGSAO system on the Keck II telescope. A total integration of
3120 s was obtained in the K′ band with the near-infrared camera (NIRC2). The pixel scale of the
AO observations is 0.04” pixels−1.

6.3 Lens modelling
We model the lens system SDSS J0737+3216 using the adaptive grid method developed by Veg-
etti & Koopmans (2009a). We refer to Chapter 2 of this Thesis for a detailed description of the
modelling procedure. For both data sets we model the lens surface density profile as a single
power-law (see Chapter 4) with the following free parameters: the lens strength b, the position
angle θ, the axis ratio q, the centroid coordinates xc and yc, the density slope γ, the shear strength
Γsh and position angle θsh. Both data sets are modelled using a curvature regularization for the
surface brightness distribution of the source. The regularization is adaptive with the inverse of
the signal-to-noise ratio as weight function for the LGSAO system. In the case of HST data we
build the adaptive grid on the source plane using every pixel on the lens plane, while in the case
of LGSAO data using one every two pixels is sufficient. We subsequently seek for the best set
of parameters describing the lensing potential. In both cases we find that the lens mass profile
is well described by a power-law with a slope close to isothermal. All lens parameters are con-
sistent between the two observations (see Table 6.1). A similar result was also found with the
parametric source modelling by Marshall et al. (2007). This shows that high-quality images from
NIRC2+LGSAO can provide comparable constraints in terms of the lens main parameters. Figure
6.1 show the reconstructed lensed images and source galaxy for HST and LGSAO data in the top
and bottom panels respectively.

6.4 Sensitivity to substructure
In this section we want to assess whether LGSAO data are also as sensitive as HST data to small-
scale mass substructure in the lens galaxy. For this purpose we create a series of mock data
containing a dark substructure of different masses Msub = (0.001, 0.003, 0.01, 0.03, 0.1, 0.3) ×
1010M�, located, as an example, on the lensed arc at (0.63,−0.67)′′. The smooth component of
the lens potential is kept fixed at the best parameters found in the previous section. By running
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Figure 6.1: Results of the lens and source reconstruction under the hypothesis of a smooth potential for HST
data (top) and LGSAO data (bottom). The top-right panel shows the original lens data, while the top-left one
shows the final reconstruction. On the second row the image residuals (left) and the source reconstruction
(right) are shown.
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a pixelized linear reconstruction which allows for the presence of local potential corrections, we
determine the lowest substructure mass that can be detected in that specific position. We find that
for both data sets the substructure detection threshold is Msub = 0.03 × 1010M� (see Fig. 6.2 top
and middle panels). We stress that this is only a single example and that this conclusion does not
necessarily hold for all lensing geometries.

We then consider an analytic model where the substructure has a truncated pseudo-Jaffe profile
(PJ, Chapter 4). We run the non-linear optimization for the main lens and substructure parameters.
Specifically, the free parameters for the substructure are its mass and central coordinates. Both
HST and LGSAO data lead again to comparable results. We conclude that in this specific case,
good quality ground based observations are equally sensitive to substructure as HST and can
recover the substructure parameters equally well (see Table 6.1). Finally we create a second set
of mock LGSAO data containing the same mass substructures but with improved quality. The
new systems have half the noise level as the original images. In this case the mass threshold for
substructure detection is lowered by a factor three. With an integration time four times longer
the sensitivity to substructure can be considerably improved from Msub = 0.03 × 1010M� to
Msub = 0.01 × 1010M� (see Fig. 6.2 bottom panels).

6.5 Summary and future work
We have analysed HST and ground based adaptive optics observation of the lens system SDSS
J0737+3216. Although admittedly based on a single system, in the following we list our major
results:

• in agreement with Marshall et al. (2007) we find that HST and LGSAO IR observations lead
to comparable constraints on the main lens parameters.

• the lens galaxy SDSS J0737+3216 has an isothermal density profile near the Einstein ring.

• HST and LGSAO appear equally sensitive to mass substructure in the lens galaxy and can
equally well recover the substructure parameters in several mock simulations.

• LGSAO with improved resolution over HST can lower the detection threshold of mass
substructure. Integration times four times longer lead to a lowering of the detectable mass
threshold by a factor three.

We presented in this chapter a qualitative comparison between HST and LGSAO data, based on
the system SDSS J0737+3216. This system is unique in that is has both data-sets available and
the lensed source is a star-forming galaxy (not a bright quasars) suitable for grid-based modelling.
In the future we plan a more quantitative analysis where the different data sets are compared in
terms of the posterior probability distributions for the lens and substructure parameters. Thanks to
its high magnification, gravitational lensing provide a unique opportunity to study the structure of
high and intermediate redshift source galaxies, otherwise not observable in such detail. Marshall
et al. (2007) have shown that high-quality images from NIRC2+LGSAO, the same as considered
here, are capable of providing very similar results on the source model parameters to data sets
from HST ACS and HST NICMOS. While these authors have modelled the source galaxy using a
parametric model we have used a grid-based reconstruction, leaving little to no residuals between
the data and the model. Further simulations are required in order to understand which effects play
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Figure 6.2: Results of the pixelized reconstruction of the source and lens potential corrections for HST
data with a dark substructure of mass Msub = 0.03 × 1010 M� (top panels) and LGSAO data with Msub =

0.03 × 1010 M� (middle panels) and with Msub = 0.01 × 1010 M� (bottom panels). The top-right panel shows
the original lens data, the middle one shows final reconstruction while the top-left one shows the image
residuals. On the second row the source reconstruction (left), the potential correction (middle) and the
potential correction convergence (right) are shown.
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a crucial role in the analysis of background sources by means of pixelized lensing methods and
which properties of these sources can be confidently reconstructed and to what accuracy.
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Chapter 7

Conclusions and future work

ABSTRACT
Measuring the CDM substructure mass function represents a key test of the CDM paradigm
and provides an important step forward in understanding the physical properties of dark matter.
Because of the predicted large total mass-to-light ratio of the missing substructures, gravita-
tional lensing provides a unique opportunity to detect them. In this Thesis we have presented a
new adaptive-grid method that based on a Bayesian analysis of the surface brightness distribu-
tion of highly magnified Einstein rings and arcs allows to identify and precisely quantify mass
substructure in gravitational lens galaxies. We have also developed a Bayesian formalism to sta-
tistically interpret mass substructure detections and obtain constraints on the major properties
of galaxy subhaloes such as the dark matter mass fraction in subhaloes and the subhalo mass
function. This is of particular importance when addressing the missing satellite problem. We
have then applied our technique to the analysis of the SLACS lens SDSS J0946+1006. This has
led to the discovery of a very high mass-to-light ratio mass substructure at redshift z = 0.222.
With the lens system SDSS J120602.09+514229.5 we have shown that the method can indeed
detect substructure in lens galaxies and measure important properties such as the substructure
mass and tidal radius, none of which can be obtained other than through gravitational lens-
ing. Finally, we have demonstrated that high-quality infrared images from Keck laser guide
star adaptive optics observations are equally sensitive to substructure and can recover the main
lens and the substructure parameters equally well as optical data sets from HST ACS and HST
NICMOS under certain conditions. Future applications of the method here presented involve
addressing the missing satellite problem in a unique manner in lens galaxies and galaxy clusters
and other projects related to the structure of gravitational lens galaxies, and lensed sources.

7.1 Summary of main results
In this Section we provide a review of the most important results of this Thesis:

1. Bayesian analysis of gravitational lens systems
In Chapter 2 we developed a new lensing modelling technique of direct gravitational imag-
ing of the lens potential to detect dark and luminous substructures in early-type lens galaxies
(Vegetti & Koopmans, 2009a). This technique does not depend on the nature of dark mat-
ter, on the shape of the main galaxy halo, strongly on the density profile of the substructure,
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nor on the dynamical state of the system. It can be applied to local galaxies as well as to
high redshift ones, as long as the lensed images are highly magnified, extended and have
a good signal-to-noise ratio. The key idea behind the method is that effects related to the
presence of dwarf satellites and/or CDM substructures in a lens galaxy can be modelled
as local perturbations of the lens potential and that the total potential can be described as
the sum of a smooth parametric component with linear corrections defined on a grid. For a
given form of the lensing potential the relation between the lensed image surface brightness,
the lens potential corrections and the background source surface brightness distribution can
be expressed as a set of linear equations, that can be efficiently solved. The regularized
inversion of these equations leads to the simultaneous detection of eventual mass substruc-
ture in the lens potential (as positive density corrections) and to the reconstruction of the
pixelized source surface brightness distribution. In particular, the source is reconstructed on
an adaptive grid (Delaunay tessellation), where the pixel size is smaller in higher magnifi-
cation regions. This not only makes the method particularly efficient and accurate but also
ensures the conservation of the number of degrees of freedom, which is relevant for consis-
tent statistical comparison between different lens potential models. The procedure is fully
and consistently embedded in the framework of Bayesian statistics. Therefore, models with
and without substructures can be objectively ranked in terms of their Bayesian evidence, a
generalisation of the maximum likelihood, which quantitatively includes the Occam’s razor
and penalises overly-complex models.

2. Statistics of mass substructure
In Chapter 3, we introduced a statistical formalism for the interpretation and the general-
isation of subhalo detection in gravitational lens galaxies, that allows one to quantify the
mass fraction and the mass function of CDM substructures (Vegetti & Koopmans, 2009b).
Given mock sets of lenses, with properties typical of a CDM cosmology, we analysed how
well the true parameters can be recovered. The formalism depends on several parameters,
such as e.g. the number of lenses, the mass detection threshold and the measurement errors.
At the moment with a number of arc/ring lens systems ≤ 100 it is possible to constrain the
substructure mass fraction down to a level well below 1.0% with a 95% confidence level.
In the near future a sample of 200 lenses, equivalent in data-quality to the Sloan Lens ACS
Survey and a detection threshold for the substructure mass of 108M�, could allow one to
determine f = 0.5± 0.1% (68% CL) and α = 1.90± 0.2 (68% CL) and thus test the ΛCDM
predictions.

3. SDSS J0946+1006
In Chapter 4, as first application to HST data, the method was used to model the gravita-
tional SLACS lens galaxy SDSS J0946+1006 (Vegetti et al. 2009). This system is charac-
terised by a relative large dark matter fraction, which makes this lens particularly interesting
in terms of CDM substructure. Through a careful modelling of this data including either
lens-potential corrections or an additional (low-mass) simply parametrized mass compo-
nent, we find that the massive early-type lens galaxy of SLACS SDSS J0946+1006 hosts
a large mass-to-light ratio ( (M/L)V,� ≥ 120 M�/LV,�, 3-σ) substructure with a mass of
Msub ∼ 3.5 × 109M�, situated on one of the lensed images. The Bayesian evidence is in
favour of a model that includes a substructure versus a smooth elliptical power-law only, by
∆ log(E) = −128.2. This is approximately equivalent to a 16-σ detection. A careful statisti-
cal analysis of the image residuals, as well as a number of robustness tests (e.g. changing the
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PSF, pixel number and scale, regularization level and form, galaxy subtraction and image
rotation), confirm and support this detection. Using the statistical formalism of Chapter 3,
we derive a projected CDM substructure mass fraction of ∼ 2.2+2.05

−1.25% for the inner regions
of the galaxy. This fraction is high, but still consistent with Dalal & Kochanek (2002) and
also with expectations from numerical simulations, which predict fractions between 0.3 and
0.5 percent (Diemand et al., 2008; Springel et al., 2008).

4. Luminous satellites: SDSS J120602.09+514229.5
SDSS J120602.09+514229.5 is a gravitational lens system formed by a group of galax-
ies at redshift zFG = 0.422 lensing a bright background galaxy at redshift zBG = 2.001.
The main peculiarity of this system is the presence of a luminous satellite near the Ein-
stein radius of the lensed images that slightly deforms the giant arc. This makes SDSS
J120602.09+514229.5 the ideal system to test our grid-based Bayesian lens modelling
method, designed to detect galactic satellites independently from their mass-to-light ratio,
and to measure the mass of this dwarf galaxy despite its relative high redshift. We showed
that the pixelized source and potential reconstruction technique of Vegetti & Koopmans
(2009a) is able to detect the luminous satellite as a local positive surface density correc-
tion to the overall smooth potential. We then showed, the satellite has a mass Msub =

(2.75 ± 0.04) × 1010M� inside its tidal radius of rt = 0.68′′. This result is robust against
changes in the lens model, with a fractional change in the substructure mass from one
model to the other of 0.1 percent. We determined for the satellite a luminosity of LB =

(1.6±0.8)×109 L�, leading to a total mass-to-light ratio within the tidal radius of (M/L)B =

(17.2 ± 8.5)M�/L�. The central galaxy has a sub-isothermal density profile as in general is
expected for group members. From the SDSS spectrum we derive for the central galaxy a
velocity dispersion of σkinem = 380 ± 60 km s−1 within the SDSS aperture of diameter 3′′.
The logarithmic density slope of γ = 1.7+0.25

−0.30 (68% CL), derived from this measurement, is
consistent within 1-σwith the density slope of the dominant lens galaxy γ ≈ 1.6 determined
from the lens model.

5. Detecting substructure with ground based observations
Finally, in Chapter 6 we analysed optical HST ACS and HST NICMOS, and Infrared Keck
laser guide star adaptive optics observations of the lens system SDSS J0737+3216. The
main goal of this chapter was to compare the two data sets in terms of capability in con-
straining the main lens parameters and in terms of sensitivity to mass substructure. By
modelling both data sets using the Bayesian method of Chapter 2 we found that the lens
mass profile is well described by a power-law with a slope close to isothermal and that all
the lens parameters are consistent between the two observations. This supports the results of
Marshall et al. (2007) obtained with a parametric source modelling technique. Using mock
data realisations of SDSS J0737+3216 we also concluded that HST and Keck-LGSAO are
equally sensitive to mass substructure in the lens galaxy and can equally well recover the
substructure parameters. Moreover Keck-LGSAO with improved resolution can lower the
detection threshold of mass substructure.
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7.2 Future work
In this section I present future applications and extensions of the method to a wide range of mass
scales and wavelengths:

1. Apply the method to a large sample of gravitational lens galaxies, in order to constrain
the projected dark matter mass fraction in substructure and the substructure mass function.
The existing sample of nearly 100 SLACS lenses allows one to constrain the substructure
mass fraction down to a level well below 1.0% with a 95% confidence level (Chapter 3),
which is the level currently predicted from N-body simulations. The method is very versa-
tile and allows one not only to detect mass substructure in the lens galaxy (Chapter 4), but
also to reconstruct general features departing from a simple smooth symmetric power-law
model (Barnabè et al., 2009). The method here developed can therefore be used to quan-
tify the average power-spectrum of the mass surface density of early-type lens galaxies and
for the first time assess whether their structure agrees with what is predicted by numerical
simulations.

2. Extend the current search for mass substructure to clusters and groups of galaxies us-
ing gravitationally lensed giant arcs. A substantial number of similar CDM substructures
are expected in cluster of galaxies. CDM simulations are nearly invariant when scaled from
galaxies to clusters. Hence the CDM substructures with masses larger than 104 solar mass,
as currently predicted in galaxies, corresponds to more than 106−7 solar mass substructure
in clusters. Hence, clusters should be abound with CDM substructure, just as much as
galaxies. Exactly as for lens galaxies, the presence of a mass substructure, in front of one or
more of the lensed images, will modify the surface brightness structure of those lensed im-
ages over a characteristic region ∆θ ∼ µlens × θE,pert, where µlens is the magnification of the
arc due to the main lens and θE,pert is the scale over which the substructure would normally
lens (in absence of the main lens). The large magnification of these arcs µlens ∼ 50 makes
them particularly sensitive to substructure masses around 108M�, right in the middle of the
range predicted by CDM simulations for dark substructures.

3. Constraining the properties of the source galaxy. To date, pixelized lensing techniques
have been mostly used to infer the structure of the lens galaxy and have essentially neglected
the details of the background source galaxy, beyond its level of smoothness. However, these
techniques represent the only possibility to study the properties of distant faint galaxies
which could not be observed otherwise. Rigourous testing is therefore needed in order to
understand which effects may play a crucial role in the analysis of background sources and
which properties of the latter can be confidently reconstructed and with which accuracy. In
particular, the presence of strong degeneracies between the source structure and the lens
potential, which may hinder a correct understanding of the source properties, still need to
be fully understood and quantified. The Bayesian formalism and in particular the Bayesian
evidence, makes this quantification possible.

4. Apply the method to adaptive-optics observations of strong lens systems on galaxy,
group as well as galaxy cluster scales in order to assess the feasibility of these ground-
based studies. Ground-based Adaptive Optics with super-HST resolution can improve the
sensitivity to substructure (e.g. with the new generation large telescopes). Tests on real
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and mock data are, therefore, required in order to quantify the substructure mass detection
threshold as a function of the sensitivity and angular resolution.

5. Further extend the method to handle multi-wavelength data-sets. A combined multi-
wavelength analysis of arcs and Einstein rings can provide stronger constraints both on the
lensing potential and the background source galaxy. However, so far most of the work has
been focused on optical data. These extensions are particularly relevant in prospect of large
multi-wavelength surveys, with planned instruments, such as the Square Kilometre Array,
Large Synoptic Survey Telescope and Joint Dark Energy Mission telescopes.
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R., Moustakas L. A., Burles S., 2009, ApJL, 703, L51

Koopmans L. V. E., Bolton A., Treu T., et al., 2009, ApJL, 703, L51

Koopmans L. V. E., Fassnacht C. D., 1999, ApJ, 527, 513

Koopmans L. V. E., Treu T., 2002, ApJL, 568, L5



BIBLIOGRAPHY 123

Koopmans L. V. E., Treu T., Bolton A. S., Burles S., Moustakas L. A., 2006, ApJ, 649, 599

Kormann R., Schneider P., Bartelmann M., 1994, A&A, 286, 357

Kravtsov A., 2010, Advances in Astronomy, 2010, 8

Kravtsov A. V., Gnedin O. Y., Klypin A. A., 2004, ApJ, 609, 482

Krist J., 1993, in R. J. Hanisch R. J. V. Brissenden . J. B., ed., Astronomical Data Analysis
Software and Systems II Vol. 52 of Astronomical Society of the Pacific Conference Series,
Tiny tim: an hst psf simulator. pp 536–+

Kroupa P., Theis C., Boily C. M., 2005, A&A, 431, 517

Kuzio de Naray R., McGaugh S. S., de Blok W. J. G., Bosma A., 2006, ApJS, 165, 461

Lin H., Buckley-Geer E., Allam S. S., Tucker D. L., Diehl H. T., Kubik D., Kubo J. M., Annis J.,
Frieman J. A., Oguri M., Inada N., 2009, ApJ, 699, 1242

Lynden-Bell D., 1982, The Observatory, 102, 202

Mac Low M., Ferrara A., 1999, ApJ, 513, 142
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Lange tijd dachten astronomen dat alle materie in het Heelal zichtbare materie was en dat alle
materie licht zou uitzenden of reflecteren in alle richtingen. Zodra dit licht de aarde had bereikt,
kon het gebruikt worden om informatie te verkrijgen over de materie die dit licht had uitgezonden,
of over algemene eigenschappen van het heelal. Natuurlijk geldt dit nog steeds, maar nu weten we
dat de meeste materie niet direct waargenomen kan worden omdat het geen licht uitzendt. Door
de “onzichtbare natuur” van deze materie wordt “donkere materie” genoemd.
Historisch gezien zijn er twee observaties die ertoe hebben geleid dat astronomen in het bestaan
van donkere materie geloven: clusters van sterrenstelsels en spiraalstelsels.
Vaak leven sterrenstelsels niet geı̈soleerd, maar bevinden zij zich in clusters van sterrenstelsels.
Tussen deze clusters bevinden zich grote leegtes (voids), die ongeveer 80% van alle ruimte bevat-
ten. Zichtbare materie is verdeeld als een kosmisch web, waarin sterrenstelsels zich bevinden op
wanden en filamenten, die de gebieden met nauwelijks zichtbare materie van elkaar scheiden.
Vanwege hun onderlinge gravitationele aantrekkingskracht bewegen sterrenstelsels in een cluster
met een hoge snelheid ten opzichte van elkaar. Door deze snelheden te bestuderen ontdekten as-
tronomen in de jaren dertig dat deze snelheden veel groter waren dan te verwachten viel op grond
van de massa van alleen de zichtbare materie in de cluster. Dit leidde tot de hypothese dat er naast
zichtbare materie een materievorm bestaat die wel een gravitationele wisselwerking kent, maar
geen licht uitzendt.
Een soortgelijke conclusie werd bereikt door de rotatiekrommes van spiraalstelsels te bestuderen.
Spiraalstelsels hebben een dichte centrale kern, waaromheen lange armen zich wikkelen, vaak in
de rotatierichting van het stelsel. Alle materie in zo’n stelsel roteert rond het centrum van het
stelsel met een snelheid die alleen afhangt van de afstand tot het centrum en de hoeveelheid ma-
terie binnen het opgespannen volume. Weer vonden astronomen dat de waargenomen snelheden
groter waren dan men kon verwachten op grond van alle zichtbare materie en dat derhalve de een
of andere vorm van onzichtbare materie moest bestaan.
De vraag is nu, hoeveel donkere materie is er?
Einsteins algemene relativiteitstheorie, tot nu toe de meest fundamentele theorie waarmee we het
Heelal kunnen verklaren tot op de grootste afstanden, definieert een grootheid genaamd de kritieke
dichtheid als een zekere hoeveelheid materie in een kosmisch volume. Deze kritieke dichtheid
bepaalt de huidige en toekomstige vorm van het Heelal. Het is belangrijk om de totale massa
van het Universum te bepalen, om te zien of het Heelal een dichtheid heeft die kleiner, groter of
gelijk is aan de kritieke dichtheid. Voor deze vergelijking gebruiken astronomen een dimensieloze
grootheid Ω, die de dichtheidsparameter wordt genoemd. Deze parameter is gedefinieerd als het
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quotient van de waargenomen dichtheid van het Heelal en de kritieke dichtheid. Als Ω kleiner is
dan één, dan leven wij in een open Heelal dat niet genoeg materie bevat om de uitdijing te stop-
pen. Als Ω precies één is, spreekt men van een vlak Heelal, dat precies genoeg massa bevat om
de uitdijing te stoppen. Als Ω echter groter is dan één, is het Heelal gesloten. In dit geval is er
zoveel massa in het Heelal dat de uitdijing vertraagd wordt en zelfs over gaat in samentrekking.
De eindfase van dit proces wordt de big crunch genoemd. Sommige wetenschappers geloven dat
dit proces zo sterk lijkt op de big bang, dat de deze zich zal herhalen en het Heelal opnieuw begint.
Verschillende componenten dragen bij aan de grootte van Ω: baryonische materie, donkere ma-
terie en donkere energie, zodat Ω = Ωb + ΩDM + ΩΛ. Theoretisch natuurkundigen voorspellen
dat Ω één is en dit wordt door een aantal waarnemingen bevestigd. Het is daarom noodzakelijk
dat de verschillende materie- en energiecomponenten van Ω zodanig optellen dat hun som gelijk
is aan één.
Astronomen hebben bepaald dat de bijdrage van de baryonische materie aan de totale hoeveel-
heid materie in het Heelal slechts 5 procent is. Een substantiële hoeveelheid materie bevindt zich
daarom in een donkere component. Omdat er geen observationeel bewijs bestaat dat ΩDM groter
is dan 23%, moet de resterende 72% van de massa zich wel in iets dat bevinden “donkere energie”
genoemd wordt. Deze “donkere energie” wordt soms in verband gebracht met de aanwezigheid
van de kosmologische constante Λ.
Een andere belangrijke vraag is waar deze donkere materie zich bevindt en hoe zij verdeeld is. De
meeste astronomen zijn het er over eens dat donkere materie voorkomt in de vorm van uitgestrekte
halo’s rond heldere sterrenstelsels. Dit is bijvoorbeeld het geval voor de Melkweg, ons eigen ster-
renstelsel: de Magelhaense Wolken, twee satellietstelsels aan de zuidelijke sterrenhemel, laten
een baanbeweging zien die wordt beinvloed door de donkere materiehalo van de Melkweg. In
het algemeen impliceert de aanwezigheid van zichtbare materie een zekere hoeveelheid donkere
materie. Een probleem voor waarnemers is echter als er structuren bestaan die alleen donkere
materie bevatten. Het direct waarnemen van deze structuren is onmogelijk; we kunnen dan alleen
hopen dat zij zich dicht genoeg bij een zichtbaar systeem bevinden, zodat we hun indirect kunnen
waarnemen door hun gravitationele effecten. Er is niet bekend hoeveel donkere materie zich in dit
soort structuren bevindt. Het ΛCDM-model, op dit moment het populairste model rond de vorm-
ing van structuur in het Heelal, voorspelt dat ieder sterrenstelsel omgeven wordt door ongeveer
honderdduizend satellietstelsels. Echter, er zijn slechts 30 satellietstelsels waargenomen voor onze
eigen Melkweg. Deze discrepantie, door astronomen het “probleem van de missende satelliets-
telsels” genoemd, kan worden verklaard als de donkere satellietstelsels die voorspeld worden door
het ΛCDM-model om de een of andere reden nauwelijks sterren hebben gevormd of bevatten en
daarom extreem lichtzwak of zelfs onzichtbaar zijn. De enige manier waarop dit soort stelsels kan
worden waargenomen is door het effect dat hun zwaartekracht heeft op zichtbare systemen.
In dit proefschrift heb ik een nieuwe methode ontwikkelt om deze “missende satellietstelsels” via
hun gravitationele karakter, in het bijzonder door hun effect op zwaartekrachtlenzen, te detecteren.
Zwaartekrachtlenzen zijn systemen voorspeld door de algemene relativiteitstheorie: wanneer een
massa, de “zwaartekrachtlens” (bijvoorbeeld een sterrenstelsel), tussen de waarnemer en een
helder achtergrondsterrenstelsel ligt (“de bron”) zal het licht van deze bron omgebogen worden
door de zwaartekracht van de lens. Dit leidt tot verschillende effecten, die afhankelijk zijn van
de massa en massaverdeling van de lens. In het minst extreme geval lijkt het voor de waarne-
mer alsof de bron een fractie is verschoven en lichtelijk vervormd, terwijl in de meest extreme
gevallen (sterke lenswerking), zoals die behandeld in dit proefschrift, meerdere afbeeldingen van
de bron en soms zelfs reusachtige bogen en ringen zichtbaar zijn. Een van de prettigste eigen-
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schappen van zwaartekrachtslenzen is hun gelijkwaardige gevoeligheid voor zowel donkere als
zichtbare materie. Zij kunnen daarom gebruikt worden om tamelijk nauwkeurig de massa van
de zwaartekrachtlens te meten. Deze techniek is eveneens gevoelig voor de manier waarop ma-
terie verdeeld is in het lensstelsel. Over het algemeen kan gezegd worden dat wanneer materie
gelijkmatig verdeeld is in het lensstelsel, dit een ander effect heeft op de afbuiging van het licht
van de bron, dan wanneer deze materie verdeeld is over satellietstelsels. In het bijzonder leidt de
aanwezigheid van een satelliet tot een extra vervorming van een boog of een ring. Zoals wij laten
zien in dit proefschrift kunnen de waarnemingen van deze vervormingen gebruikt worden om de
aanwezigheid van satellietstelsels aan te tonen en hun massa’s en posities te bepalen. Door naar
veel zwaartekrachtlenssystemen te kijken en hun donkere/lichtzwakke satellietstelsels te tellen
kan men de voorspellingen van het ΛCDM-model testen. Om op betekenisvolle manier de resul-
taten van waarnemingen van verschillende lenssystemen te combineren binnen de ΛCDM-theorie,
heb ik een statistische methode ontwikkeld.
Sterrenstelsels met sterke zwaartekrachtlenswerking zijn echter zeldzaam. Onlangs heeft de SLACS
survey, gewijd aan het vinden van elliptische zwaartekrachtlenzen met de Hubble Ruimte Tele-
scoop (Hubble Space Telescope, HST), ongeveer honderd nieuwe zwaartekrachtlenzen in kaart
gebracht, velen met bogen en Einstein ringen. De sterrenstelsels in de SLACS survey bevinden
zich op afstanden tussen de 1 en 4 miljard lichtjaar. Deze sterrenstelsels zijn uitermate geschikt
voor de toepassing van mijn methode om donkere satellietstelsels te vinden.
In dit proefschrift heb ik een van de SLACS sterrenstelsels, genaamd SDSS J0946+1006, onder-
zocht. Dit is een zeer zeldzaam type lens, opgebouwd uit twee bronnen op verschillende afstanden
van de waarnemer en de lens. Elke bron wordt vervormd tot een ring en daarom nemen we twee
concentrische ringen met verschillende straal waar. Vanwege deze zeldzame eigenschap heet het
systeem de “dubbele Einstein ring”. Het belangrijkste resultaat van ons onderzoek naar deze lens
is het bestaan van een voorheen onontdekte donkere structuur. Het bestaan van deze structuur
impliceert een donkere materiefractie die weliswaar zeer hoog, maar nog steeds consistent is met
wat voorspeld wordt door ons kosmologische model. Natuurlijk is dit maar één sterrenstelsel, en
de analyse van meerdere systemen is noodzakelijk voordat wij hardere conclusies kunnen trekken
over het aantal satellietstelsels en hun donkere materiefractie.
Echter, niet alle satellietstelsels zijn donker of lichtzwak. Enkele zijn zo helder dat hun licht zelfs
van grote afstand waargenomen kan worden. Dit is bijvoorbeeld het geval voor het lenssysteem
SDSS J120602.09+514229.5. Een uiterst interessante eigenaardigheid van deze lens is dat er een
helder satellietstelsel precies op een boog ligt en deze vervormt door de zwaartekracht. Wij krij-
gen hier dus informatie over het satellietstelsel via twee verschillende wegen, namelijk door licht
van de satelliet direct waar te nemen, en door naar het licht dat door de zwaartekracht van de satel-
liet vervormd is te kijken. We kunnen daarom dit systeem gebruiken, zowel om onze methode op
een rigoreuze manier te testen, als ook om de eigenschappen zoals massa, straal en lichtkracht te
bepalen. Geen enkele andere techniek is in staat om ons een dergelijke schat aan informatie te
verschaffen.
Beide lenssystemen zijn waargenomen door HST. Deze ruimte telescoop, vernoemd naar de
Amerikaanse astronoom Edwin Hubble, is in zijn baan gebracht door de space shuttle in april
1990. Hoewel Hubble niet de eerste ruimtetelescoop is, is het wel een van de grootste en meest
veelzijdige en is welbekend vanwege zowel zijn betekenis voor public relations als zijn essentie
als onderzoeksinstrument. Hij moet ten miste tot 2014 functioneren, wanneer zijn opvolger, de
James Webb Ruimte Telescoop (James Webb Space Telescope, JWST) gelanceerd zal worden.
JWST is voor veel astronomische toepassingen veel beter dan HST, maar omdat JWST in het in-
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frarood waarneemt, moeten de waarnemingen van JWST meer gezien worden als een aanvulling
op de optische en ultra-violette waarnemingen van Hubble, dan als een vervanging hiervan.
Een interessant alternatief voor waarnemingen vanuit de ruimte wordt gegeven door waarnemin-
gen met telescopen op aarde, die gebruik maken van technologie die adaptieve optica genoemd
wordt. Wanneer lichtstralen van een object de atmosfeer van de aarde bereiken, worden zij ver-
bogen. Het gevolg is dat de afbeelding van een ster gemaakt door een telescoop op aarde er niet
uitziet als een scherp puntje, maar als een wazige uitgestrekte bron. Om dit probleem op te lossen
zijn er systemen ontwikkeld die automatisch kunnen corrigeren voor deze distorties.
In het laatste deel van dit proefschrift laat ik zien dat infraroodwaarnemingen vanaf de grond met
adaptieve optica, onder bepaalde omstandigheden even gevoelig of zelfs gevoeliger zijn dan op-
tische waarnemingen uit de ruimte om galactische satellietstelsels te ontdekken. Ik concludeer
hieruit dat de informatie die dit soort data verstrekt over de structuur van zwaartekrachtlenzen en
hun satellietstelsels complementair is aan de data die we via HST krijgen.


