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Abstract

The mathematical/geometric structure of discrete models of systems,
whether these models are obtained after discretization of a smooth system
or as a direct result of modeling at the discrete level, have not been studied
much. Mostly one is concerned regarding the nature of the solutions,
but not much has been done regarding the structure of these discrete
models. In this paper we provide a framework for the study of discrete
models, specifically we present a Hamiltonian point of view. To this end
we introduce the concept of a discrete calculus.

1 Introduction

The modeling of physical systems using differential equations (ordinary or par-
tial) is well-established. Solutions of most models are extremely difficult to
derive analytically. For this reason the models are discretized, various methods
exist for this, such that they are suitable for numerical simulation on computers.
Hence, one starts with a system for which the spatial and time variables live in
smooth spaces, and ends up with a system whose spatial and time variables live
in discrete spaces (more precisely the set of floating point numbers). But what
is the structure of the final system? To the knowledge of the authors very little
has been done regarding this question. Mostly one is interested in the nature
of the solutions, not the structure itself. Some researchers address questions
such as energy/momentum conservation - but very few answers have been given
regarding the complete structure of the system.
In [1] there has been an novel and very interesting attempt to formalize discrete
mechanical systems, Basically the well-known concepts of differential calculus
are placed in an algebraic setting using tools from algebraic geometry. Two of
the basic ideas in [1] are: replacing the field of reals by an arbitrary commuta-
tive ring, the use of the algebraic definition of a derivation as an analogue to a
vector field. There are two problems with this theory. Firstly in a fully discrete
setting, derivations are not the correct analogues of vector fields. We will argue
that twisted derivations are the appropriate analogues of vector fields, and this
has nontrivial consequences. Moreover, in general, computers use floating point
numbers for computations, and most of the research in numerical simulation
uses floating point numbers. But the set of floating point numbers is not a
ring, and without this most basic property trying to define any sort of formal
structure is a seemingly hopeless task. Also note that numerical simulations
employ many tools, from forward differences to Runge-Kutta methods and so
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on. What do such methods mean in the context of discrete physical systems?
The basic motivations of the paper are essentially to provide answers to the
above raised issues. Moreover in this paper we formalize discrete physical sys-
tems in a Hamiltonian framework. To this end we also introduce a discrete
calculus, the concept of discrete manifolds and so on. The outline of this paper
may be summarized as follows: to define a discrete calculus, to relate various in-
tegration techniques to the discrete calculus, and to define discrete-Hamiltonian
dynamics. Our basic motivation is to give a formal structure for discrete phys-
ical systems.

2 The algebraic structure of the set of floating

point numbers

Differentiable manifolds locally look like, loosely speaking, Euclidean Rn. If we
want to extend this definition to more general manifolds, we need to replace
the field R by a general ring. In the case of discrete manifolds, defined later
on, we would like to replace R with the set of floating point numbers F. The
reason for this is very simple, since most computers work with floating point
numbers, from our point of view this is the most obvious choice. However,
unlike R, F does not have an algebraic structure - as one usually understand it.
F is a finite set, algebraic operations defined on F usually have results that are
truncated(because of the finite precision of floating point numbers [2, 3]), and
hence some of the basic algebraic properties like associativity and distributivity
are destroyed. Hence F is not even a ring (c.f. [3] for more details), and then
it seems that there is simply no way that we can use it as a replacement for R

in the discrete setting. However since we would like to extend the concepts of
differential geometry to the discrete setting, we have to endow F with some new
algebraic structure.
The properties of floating point numbers have been very well researched, c.f.
[2, 3] among others. For the purpose of studying discrete mechanics the algebraic
structure of the set of floating point numbers is straightforward to deal with,
as will be obvious from latter sections. The algebraic structure is itself quite
simple. F is an example of what is called a quasi-ring, c.f. [4]. Loosely speaking,
a quasi-ring is a finite set closed under two special operations denoted by +, · s.t.
in general the set does not have the associativity and distributivity properties of
ordinary rings. +, · are called ’special’ because in F all operations are truncated,
unless they fall within a certain finite precision range, - for example: 2+10−15 =
2 in many computer architectures. Hence one can loosely think of +, · being the
usual operations in R followed by a truncation process.

Example 1 Floating point numbers F are examples of quasi-rings. The prop-
erties1 of the set of floating point numbers are:

1Note that the properties of F are not being defined formally. The reason for this is that
these properties are very well known, and one would need to introduce many entities in order
to formally define this, which we cannot do due to space constraints. In [4] we have formally
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Closure under addition and multiplication Yes.
Associativity/distributivity of addition and multiplication No.
Additive and multiplicative commutativity Yes.
Unique identity element w.r.t. +, · Yes.
Unique additive and multiplicative inverse Yes.

Hence F is a quasi-ring, this will be our discrete analogue of the reals(which is
a field, i.e. a ring with a multiplicative inverse). In our approach space and
time are considered as discrete, and importantly our system variables take their
values in F, the same goes for the independent variables space and time. So
for example systems do not evolve in integer time steps, rather they evolve in
floating-point time steps.
The point spacings in F are not constant, and it is in this respect that our ap-
proach is fundamentally different from the usual lattice approach to discretiza-
tion.

3 Non regular lattices

We are interested in modeling mechanical systems at the discrete level in order
to be able to represent those models on a computer. We require discreteness
because computers are not able to represent continuous variables, since they
can only handle floating point numbers. The set of floating point numbers F

is quite ’similar’ to regular lattices, but it exhibits an important difference: the
spacing between two consecutive elements is not constant. Let us now revisit
floating point numbers from a slightly different viewpoint.

Definition 1 A floating point number corresponds to a sequence of bits in the
form:

SE · · ·EF · · ·F =⇒ (−1)S × 1.F · · ·F × 2E···E−B

where S determines the sign (as (−1)S), E · · ·E represent the exponent, which
is biased by B to allow negative values, and F · · ·F represent the mantissa which
fixes the precision.

Compared to the real numbers, F is not dense, but yet the variation (in
the point spacings) is not random, since it depends on the range of numbers
represented by the exponent. Hence, for numbers with the same value of the
exponent, the spacing is constant and equal to 2e−nm where e is the value of
the exponent and nm is the number of digits of the mantissa. It is easy to see:

Lemma 1 The set of floating point numbers is only continuous for a represen-
tation with an infinite number of bits in the mantissa.

A very important issue to be taken into account is that the cardinality of the
set of floating point numbers depend on the computer we work on: the larger

defined quasi-rings and the properties of F.
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the memory, the larger and denser the set. Therefore, continuum limit is also a
natural goal in the process.

In this sense, we can write:

Lemma 2 Consider the floating point numbers scheme with a varying number
of digits N , and denote the resulting set as FN . Then, the limit when N → ∞
are the real numbers, i.e.:

lim
N→∞

FN = R

As we are interested in modeling physical systems, it is enough to be able
to recover a subset of the reals Rn, which without loss of generality can be
considered to be V = [0, 1)n ⊂ Rn.

Definition 2 Consider a non-regular discrete space FnN to be any discrete
set of V such that, for any two consecutive points in one direction, the euclidian
distance between them is an element of FN .

Obviously, the cardinality of the set FN corresponds to the number of real
numbers which can be defined by usingN bits in the representation. It is exactly
2N , as in the case of the integers.

Definition 3 Let A and B be two discrete spaces. We shall call discrete map-
ping to any bijection between the sets Ψ : A→ B.

Asking the discrete mapping to be a bijection only is not sufficient, for example
in the smooth setting one asks for differentiability also. In fact in our discrete
setting we demand the discrete mapping to be also discrete-differentiable, a
concept we introduce in Section 4.1.

3.0.1 A ’basis’ for FnN

In the following, it will be quite useful to define the analogue of basis for floating
point numbers. It is trivial to see:

Lemma 3 The elements (

n
︷ ︸︸ ︷

(1, 0, · · · , 0),

n
︷ ︸︸ ︷

(0, 1, 0, · · · 0), · · ·

n
︷ ︸︸ ︷

(0, · · · , 0, 1) generate the
elements in F

n
N with linear combinations of FN elements. We will refer to this

as the canonical set of generators or canonical basis of FnN .

Proof. In each dimension, the property is trivial, since the value of the element
of FN itself defines the suitable coefficient, i.e.

(λ1, · · · , λn) = λ1(1, 0, · · · , 0)+λ2(0, 1, 0, · · · , 0)+· · ·+λn(0, · · · , 0, 1) λi ∈ FN

The system does not define a basis, though, because the representation is not
unique. Any element µi ∈ FN such that λi · µi = 0 (truncation errors) allows
to define a set as (1, µ2, 0, · · · ), with the same coefficients. In spite of this, with
respect to this ’basis’, the decomposition is unique, because the element 1 ∈ FN

is the identity element for the product.
Note that even though we should not be using the word ’basis’ (since this is
meant only for vector spaces), we will stick to this abuse of notation.
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3.1 Calculus on Fn

In this section we study a discrete analogue of calculus on what we call non-
regular discrete spaces, [4], (an example of such a space being the space of
floating point numbers). We argue in Remark (1) why such a approach is
preferable to developing a discrete calculus on regular lattices. Now we take
the following approach to developing a discrete calculus on Fn: first we define
discrete functions, then discrete vectors and discrete covectors. Using these
we define global objects like discrete tensors, discrete vector fields and discrete
forms. Towards the end of the section we touch upon an important aspect of
our discrete mechanics - the relation between various integration techniques and
different ’types’ of discrete vectors. Finally we present the concept of discrete
differentiability.

3.1.1 Functions:

The most obvious step would be to consider functions in the natural way, i.e as
mappings from a regular discrete vector space onto the elements of F (the one
dimensional discrete space):

A(Fn) = {f ε : F
n → F} (1)

It is trivial to see that the set A(Fn) can be endowed with an additive
structure which makes of it a group. Also we can choose as scalars the elements
of F itself. The product by scalars is closed in F.

In any case, from the set theoretical point of view, it is trivial to see that
the continuum limit of the set above becomes the set of functions of Rn, i.e.

Lemma 4 limN→∞A(FnN ) = A(Rn)

3.1.2 Discrete Vectors

Definition 4 A discrete vector at the point p ∈ Fn is a pair (p, q) where
q ∈ Fn. We will denote by TpF

n the set defined as the union of all possible
vectors defined at the point x, i.e.

TpF
n = {(p, q) ∈ F

n × F
n} ∼ F

n

TpF
n is called the tangent space at p. A simple example of a discrete vector can

be given as follows. Let c : [0, T ] → Fn be a discrete curve on Fn, with c(0) = p

and [0, T ] ⊂ F. We define a tangent vector ∆c(t)
∆ at c(t) as follows:

∆

∆t
c(t) =

c(t+ δ) − c(t)

δ
(2)

where δ ∈ F. In other words the tangent vector at c(t) is defined by two points
(c(t), c(t + δ)). There are various definitions of vectors in the discrete setting.
We shall encounter such definitions in Section WHAT? where we also present,
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in detail, the algebraic and geometric properties of discrete vectors. For now we
shall use the definition of vectors as given above.

We can consider the effect of discrete mappings at the level of vectors:

Lemma 5 Let A and B be Fn-spaces and Ψ : A → B be a discrete mapping.
Then, the mapping Φp∗ : TpA→ TΨ(p)B defined as:

Ψp∗(p, q) = (Ψ(p),Ψ(q)),

defines a one-to-one correspondence of the tangent spaces at the point p ∈ A
and Ψ(p) ∈ B.

We demand for Φp∗ to be discrete differentiable, see Section 4.1. Again, at any
point of the lattice, we can consider as many discrete vectors as points, i.e. the
cardinality of the space of discrete vectors is 2N .

We have shown in [4] that from the analysis done in terms of the tangent
groupoid on Fn, that the limit when N → ∞ of a sequence of vectors at a point
p ∈ [0, 1) defined on the family of lattices corresponds to an element of TpR

n,
thus validating our definition of discrete vector.

We can take linear combinations of elements of TpF
n with coefficients in F,

and then we can claim that an arbitrary linear combination of the form:

λ1v1 + λ2v2 + · · · + λkvk ≡ (p, λ1q1 + · · ·λkqk) λi ∈ F, vi ∈ TpF
n,

belongs to TpF
n. And now, this structure can be taken, in the continuum limit,

to the usual vector space structure of Rn, since the elements λi belong to FN ,
and this set goes to R in the limit. If we consider the canonical basis of Fn, we
see that each element v ∈ TpF

n has, as coordinates,

v = v1(1, 0, · · · , 0) + · · · vn(0, · · · , 0, 1)

if v = (v1, · · · , vn) ∈ Fn. Summarizing, any system of coordinates used to
parameterize the points of F do define a coordinate system for the tangent space.
Another equivalent way of defining the coordinate system for the tangent space
is explained, using the concept of discrete-differentiability, in Proposition 1.

When representing vectors, we will denote the canonical basis as:

(0, · · · , 0,

i
︷︸︸︷

1 , 0, · · · 0) ≡ vi

Remark 1 There are certain fundamental limitations in using the usual reg-
ular lattice approach towards a discrete mechanics. We present now a highly
condensed summary of one particular problem (among many). Just the way we
have defined tangent spaces on nonregular spaces in Definition 4., we can do
exactly the same on regular lattices.
It is clear then that, in principle, an arbitrary combination of discrete vectors
at a point p on the regular lattice with integer coefficients makes sense and it
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is closed in the tangent space denoted by TpR
n
ε , where Rnε denotes the regular

lattice i.e.

λ1v1 + λ2v2 + · · · + λkvk ≡ (p, λ1q1 + · · ·λkqk) λi ∈ Z, vi ∈ TpR
n
ε ,

belongs to TpR
n
ε , as long as the combination λ1q1 + · · ·λkqk belongs to Rnε . The

problem of this construction is that it does not define a proper continuum limit,
since even though in the limit it does provide linear combinations of real vectors,
but it does so only with integer coefficients, since the scalars λi must belong to
Z for the combination above to be closed. So we end up with the conclusion that
the discrete structure defined on regular lattices does not go to the corresponding
smooth structure on Rn in the continuum limit.

3.1.3 Discrete Covectors

Definition 5 Consider the discrete space Fn. A discrete covector α at the
point p ∈ Fn is defined as a mapping from any pair of points of the form (p, q),
where q ∈ Fn to the discrete space F. It can be represented as the link connecting
p and q with the value of the function associated to the link. Since we can take a
collection of vectors at a particular point, dual to this, we take the collection of
discrete covectors and this collection is denoted by T ∗

pFn also called the cotangent
space at p.

Now we can study the analogue of the usual duality for real numbers. We can
use the linear structure we defined for the vectors to define again the analogue
of the duality product of the real case. Hence, we claim that the action of a
vector vp ∈ TpF

n on a covector α ∈ T ∗
p Fn gives as a result a F-number which

is associated to the point p, i.e. we define a function. And now, unlike for a
regular lattice case, this function is a F function, and hence goes to the limit to
define the proper Rn function associated to the action of the smooth vector on
the smooth covector.

3.1.4 Tensors

We now have vectors and covectors, so the definition of general tensors is com-
pletely straightforward:

Definition 6 We shall call discrete tensor contravariant of order r and
covariant of order s to the elements trs of the vector space

(Tp)
r
s = {t ∈ TpF

n
N × · · · (r times) · · · × TpF

n
N × T ∗

pF
n
N × · · · (s times) · · · × T ∗

pF
n
N}

As in the smooth case, completely symmetric and completely skew-symmetric
tensors will be particularly important, particularly the last (because we need
k–forms and multivectors to represent our mechanical objects).
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3.2 Global objects

Definition 7 We shall call discrete tensor field contravariant of order r
and covariant of order s to the mapping which assigns to each point of the
discrete space F

n a discrete tensor of order r and covariant of order s:

T : F
n → set(Tp)

r
s

The particular case of vector fields is then defined as:

Definition 8 We shall call discrete vector field to the mapping X which
assigns to each point p ∈ F

n a discrete vector:

X(p) ∈ TpF
n ∀p ∈ F

n ⇒ X(p) = (p, q) q ∈ F
n

From the representation we chose for the vectors, it is quite obvious that
we can define the analogue of the flow of vector fields in a very straightforward
manner:

Definition 9 Let X be a discrete vector field. We shall call the flow of X to
the sequence of points in Fn

p0, p1, p2, · · ·

such that:
X(pi) = (pi, pi+1)

It is also possible to extend the additive structure that we defined on TpF
n to

the space of discrete vector fields in the natural way: given two discrete vector
fields X,Y , their sum X + Y is defined as the vector field whose value at the
point p ∈ Fn is given by the vector X(p) + Y (p) ∈ TpF

n.

Definition 10 We shall call a discrete k–form to any mapping α which as-
signs to each point of the discrete space p ∈ F

n an oriented hypersurface of
dimension k whose perimeter contains p and a FN–value We will represent that
object as α(p → p1 → · · · → pn).

We will denote by
∧k

(Fn) the set of discrete k–forms of the discrete space
Fn, and by

∧•
(Fn) the set of discrete forms of any order.

This definition allows us to consider functions trivially as 0–forms, since accord-
ing to the definition it defines a hypersurface of dimension 0 (i.e. one point).

Then we define the wedge product:

Definition 11 Let α ∈
∧j

(Fn) and β ∈
∧k

(Fn). Then, we define the product
α∧β to be the (j+k)– discrete form which assigns, at each point, of the discrete
space, the hypersurface defined by the union of the j+1–points which define the
j–dimensional hypersurface associated to α and the k + 1 points which define
the k–dimensional hypersurface associated to β. If the union of the points does
not define a hypersurface of dimension j + k the wedge product is zero.
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The discrete exterior differential is a mapping:

∆ :
∧k

(Fn) →
∧k+1

(Fn)

defined in the following way. Consider, for instance, a function f ∈ A(Fn).
The function corresponds to the assignment of an element of F at each point of
the discrete space. The definition of a discrete one-form implies that we must
construct a covector at each point. We can do that in many different ways, but
if we want to preserve at the discrete level the smooth property:

X(f) = 〈X,∆f〉,

the definition of the exterior differential must take into account the type of
action that vector fields have on functions. For the forward difference method,
this leads us to a definition of the exterior differential such as to define the
one-form ∆f ∈

∧1(Fn) which assigns to the link connecting each pair of points
(p, q) the value f(q) − f(p). Hence, in the natural basis, we would obtain as a
representation:

∆f(p) =
∑

i

(f(p+ εi) − f(p))dxi

Analogously, given a one form α ∈
∧1

(Fn), we define the two form ∆α to
be the mapping which assigns to every point p ∈ F

n one surface defined by a
triplet of points (p, q, r) (where q, r ∈ Fn) and the value

∆α(p → q → r) = α(p → q) + α(q → r) + α(r → p)

Lemma 6 From the definition above, d is nilpotent:

∆2 = 0

Proof. It is completely analogous to the usual proof of the boundary operator
of simplicial homology being nilpotent. For instance, in the case of functions
we have, for any p, q, r ∈ Fn

∆2f(p→ q → r) = ∆f(p→ q) + ∆f(q → r) + ∆f(r → p)

= f(q) − f(p) + f(r) − f(q) + f(p) − f(r) = 0

4 A class of discrete vectors

Let A(Fn) be the algebra of functions on Fn. The functions in A(Fn) are
considered to be F-valued functions. In the smooth setting in order to define the
concept of a tangent vector at a certain point, one considers functions defined
in a neighborhood (i.e. an open set) of that point. In the discrete setting
however the concept of ’locality’ is a bit different. What should be the radius
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of this open set in our discrete case? It cannot be of arbitrary radius, because
then the continuum limit would make no sense. This obviously means that
the discrete tangent vector in an n-dimensional discrete regular space must be
defined only by points that are immediate neighbors. Then we can consider
functions f ∈ Ap(F

n) defined on such an open set around the point p ∈ F
n. We

have seen before that one particular way to explicitly define a discrete vector is
as in 2. Then we have discrete vectors vi := (p, p+ εi) defined as follows:

Definition 12 (The Euler discrete vector)
Define elements v1, . . . , vn ∈ TpF

n by letting:

vi(f(p)) =
f(p+ εi) − f(p)

εi
(3)

where εi = ε · 1i, and where 1i = [0, · · ·, 1, 0, · · ·]T . vi is called a discrete vector
and it has the following very important property:
A Euler discrete vector at a point p is a linear map vi : Ap(F

n) → F which
satisfies the following modified Leibniz rule:

vi(f · g) = vi(f) · g(p) +Autvi(f(p)) · vi(g), ∀f, g ∈ Ap (4)

where Autvi is an automorphism which is a linear map Autvi : Ap(F
n) → F,

corresponding to the discrete vector vi, defined as:

Autvi(f(p)) := f(p+ εi), p ∈ F
n (5)

such that Autvi(f · g) = Autvi(f) · Autvi(g); ∀f, g ∈ A

Let us now see (4) in an example: consider two discrete functions f, g ∈ A(Fn).
Then (dropping all indices):

v(f · g) =
f(p+ ε) · g(p+ ε) − f(p) · g(p)

ε
= v(f(p)) · g(p) + f(p+ ε) · v(g(p))

= v(f) · g +Aut(f) · v(g)

In fact every discrete vector, see Section (4) for definitions of other discrete
vectors, has the fundamental property (4). An arbitrary Euler discrete vector
v := (p, p+ ε̄) in TpF

n is written as:

v(f(p)) =
f(p+ ε̄) − f(p)

ε̄

s.t. the modified Leibniz rule is satisfied and where Autv(f(p)) = f(p+ ε̄).
To summarize, we have that a Euler discrete vector v : Ap(F

n) → F is
a linear mapping satisfying a modified Leibniz rule (4). From an algebraic
geometric viewpoint such an object would be defined by the action of a twisted
derivation, c.f. [5], on a point p. We define on our discrete regular space F

n:

10



Definition 13 Discrete vector field
A discrete vector field is a linear mapping X : A(Fn) → A(Fn) which assigns

to every point p ∈ Fn a Euler discrete vector vp of TpF
n as follows:

Xp(f) := v(f(p))

and is a twisted derivation, i.e. it satisfies the following property; X : A(Fn) →
A(Fn) s.t. ∀f, g ∈ A(Fn)

X(f · g) = X(f) · g +AutX(f) ·X(g)

where AutX : A(Fn) → A(Fn) s.t.

AutXp(f(p)) = f(p+ ε), ∀p ∈ F
n

where (p, p+ ε) of course corresponds to discrete vectors at every point p ∈ Fn.

In the smooth setting there is a unique definition of vectors. Due to the lack
of a limiting process, it turns out that (3) is just one particular representation of
the smooth vector. Or from a discrete mechanics viewpoint, it is only a single
element of a class of discrete vectors. (3) is called the Euler discrete vector
because it represents both the forward difference and the backward difference
methods, the backward difference is expressed differently, i.e. as

f(p) − f(p− εi)

εi

where f , p and εi are as defined in (3). but it has a similar structure as for (3).
Similarly (3) can be rewritten to represent a central difference method, i.e.

f(p+ εi) − f(p− εi)

2εi

One of main strengths of numerical analyses has been the large number of
integration techniques available - for example, Euler techniques Runge-Kutta,
Verlet, Leap-frog among others. Each of these techniques is used heavily in
practice, and there is a large amount of theoretical studies also done, [6].
A fundamental question arises here - to what type of geometrical/mathematical
entity in our framework do these various integration techniques correspond to?
We start off with investigating the second order Runge-Kutta method. We
denote a second order Runge-Kutta discrete vector by rk2. Below we are going
to do roughly the following: given a discrete curve y : [0, T ] → Fn, [0, T ] ⊂ F

and we want to define a rk2 discrete vector at the point y(t): first we use the
Euler method to compute y(t+ δ). Using this we recompute y(t+ δ) by finding
a point halfway across the time interval and using a midpoint discrete vector(to
be made clear below) across the full width of the interval. Formally we proceed

as follows; let ∆y(t)
∆t be a Euler discrete-vector, then first we compute y(t + δ)

as follows:

∆y(t)

∆t
=: f(y, t), ⇒ y(t+ δ) = y(t) + δ · f(y, t)

Let k1 = δ · f(y, t)

11



Then we recompute y(t+ δ) as:

yrk2(t+ δ) = y(t) + δ · f(y(t) + k1/2, t+ δ/2)

So now we have a new value for y at t+ δ which we denote by yrk2(t+ δ). Then
we have a new kind of discrete vector ∆

∆t rk2
:

∆y(t)

∆t

∣
∣
∣
∣
rk2

=
yrk2(t+ δ) − y(t)

δ

which we call the rk2 discrete vector. Note that the rk2 discrete vector can also
be called a midpoint discrete vector(since it is nothing more than a midpoint
derivative!). We can extend the above idea to Runge-Kutta methods of any
order, see [4] for more details. Now consider the rk2 discrete vector. A collection
of such objects (when we consider an equivalence class of discrete curves, [4])
forms a free module structure(like we have seen before for the Euler discrete
vector). This is the tangent space formed by rk2 discrete vectors. This tangent
space is different from the tangent space formed by Euler vectors. We use the
usual notation TpF

n, it should be clear from the context what type of elements
are used to define the tangent spaces. Now consider functions f ∈ Ap(F

n).
Then we have

Definition 14 From (3) let k = εi ·vi(f(p)). Define elements v1|rk2, ..., vn|rk2 ∈
TpF

n by letting:

vi|rk2(f(p)) =
frk2(p+ εi) − f(p)

εi
(6)

where
frk2(p+ ε) = f(p) + εi · vi(f(p) + k/2)

vi|rk2 is called a rk2 discrete vector and it satisfies the modified Leibniz rule,
i.e.

vi|rk2(f · g) = vi|rk2(f) · g +Autvi|rk2(f(p)) · vi|rk2(g), ∀f, g ∈ Ap

A similar definition can be written for Runge-Kutta vectors of any order. Hence
a Runge-Kutta vector is also a discrete vector. Further more one can easily show
that the Leapfrog method can also be incorporated into our setting, thereby
giving us a Leapfrog discrete vector. Hence one can see how a wide variety
of integration techniques turn out simply to be nothing more than just discrete
vectors in our setting.

4.1 Discrete Differentiability

The notion of a discrete differentiability is crucial. In the smooth setting the con-
cept of differentiability is used to distinguish between various functions. Like-
wise it is possible to do so in the discrete setting, and also our definition will,
in the limit, correspond to the usual definition of differentiability in the smooth
case. We first adapt the definition of the smooth case here:

12



Definition 15 A function f : Fn → F is said to be discrete-differentiable at
p ∈ Fn iff there exists a mapping G : A(Fn) → Fn s.t.

f(p+ εi) − f(p) −G(f(p) · εi
εi

= 0

where εi = ε · 1i, 1i = [0, · · ·, 1, 0, · · ·].

Remark 2 From the above definition it might seem that any, and every, dis-
crete function on Fn is discrete-differentiable!, after all we are not demanding a
limiting process. The only things that we need are the values of f at the points
p+ εi and at p. So it seems that the definition is of no formal use. Fortunately
this is not the case in general. Indeed, since we are working with floating point
numbers it can very easily happen that f(p+εi)−f(p) gives a result which is too
large to be contained in F, and hence we have what is usually called an overflow
situation, c.f. [2]. In this case the above definition is not satisfied. A lot of
such overflow, or underflow, situations can happen - and hence there are many
discrete functions that are not discrete differentiable! Moreover note that, in
the continuum limit we recover the usual definition of differentiability, and then
L ∈ F would correspond to the ∞ element of the reals.

To formalize the above remark we need an extra notion - that of discrete
’smoothness’.

Definition 16 Discrete Smoothness
A function f : Fn → F is said to be smooth, in a discrete sense, around a point
p ∈ Fn , if in an open set around the point p we have that:

|f(p+ ε) − f(p)| < L

where L is the largest number in F.

We explain in detail the discrete differentiability of a two-dimensional function
g : F

2 → F. The one-dimensional case f : F → F is straightforward; define

G(f(p)) · ε = v(f(p)) · ε

where v(f) is as defined in (3). This satisfies the definition of discrete differen-
tiability(by direct substitution) for one-dimensional functions f : F → F.
For the two(and higher) dimensional case things are a bit different because, as
we will make clear soon, there is more than one path along which the discrete dif-
ferentiability of the function can be defined. We want to know when f : F2 → F

is differentiable at a point p ∈ F2. On F2 we first define the path vectors. At a
point p ∈ F2 define the path vectors v1 and v2, see Figure 1, as:

v1(f(p)) =
f(p+ (ε, 0)) − f(p)

ε
, v2(f(p)) =

f(p+ (0, ε)) − f(p)

ε

Note that in the above we have assumed that the point spacings are the same,
and hence we used a single ε to indicate the equal spacing. This result holds in

13



the general case also, but notationally it is much simpler to assume equal point
spacings. Then define the concatenation of these path vectors as follows:

(v2 	 v1)(f(p)) :=
f(p+ (ε, 0)) − f(p)

ε
+
f(p+ (ε, ε)) − f(p+ (ε, 0))

ε
(7)

However in the discrete case, since we do not have a limiting process as in the
smooth case we obtain an equivalence class of concatenations depending on the
path taken to define the vectors, see Figure 1. In the smooth case we do not

 

PSfrag replacements

p p(p + (ε, 0)) (p + (ε, 0))

(p + (ε, ε)) (p + (ε, ε))(p + (0, ε)) (p + (0, ε))

(v2 	 v1)(f(p)) (v1 	 v2)(f(p))

v1

v1

v2v2

Figure 1: Path vectors of a two-dimensional function.

have such a situation, because in the limit all points(that are an ε distance from
p) converge to p, implying that in the limit there is no such thing as a path.
What the above equation implies is that any discrete vector vp at a point p on
the lattice F2 can be written as a concatenation of two path vectors, v1 and v2.
Now we come to the differentiability of the two dimensional function. Define

G(f) =
f(p+ (ε, 0)) − f(p)

ε
+
f(p+ (ε, ε)) − f(p+ (ε, 0))

ε
⇒ G(f) · εi = f(p+ (ε, 0)) − f(p) + f(p+ (ε, ε)) − f(p+ (ε, 0))

With this choice for G, we have differentiability for the two dimensional case,
this can be checked by direct substitution of G into Definition 15. Note that
the differentiability of functions is independent of the path taken, as can be
easily seen when we substitute the above choices of G(i.e. v1 	 v2 or v2 	 v1)
into the definition of discrete differentiability. G is called the gradient of the
function and our definition of G is coordinate free. Extending this idea to higher
dimensional discrete vectors, an n-dimensional discrete vector vp at the point p
on the n-dimensional lattice Fn, can be written as the concatenation of n path
vectors, i.e.

vp = c1v1 	 c2v2 	 · · · 	 cnvn (8)

or any other n!-linear combination of the above elements. Hence we have an
equivalence class, of representations, with n! elements. Using this in the next
section we will define the set of linear independent elements generating the
tangent spaces on discrete manifolds.
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5 Discrete Manifolds, Tangent and Cotangent

spaces

Discrete manifolds locally look like, loosely speaking, the space of floating point
numbers Fn. To do anything further we need a topological structure and a
metric for F

n. F
n does have a topological structure, which is inherited from R

n.
Likewise with the metric. So what we have on Fn are a relative topology and a
relative metric, see [4]. Now let Z be a discrete set which is also a topological
manifold. Suppose that for any l ∈ Z there exists an open set U containing
l, and a bijection ψ mapping U onto some open subset of Fn for some fixed
n. Fn is a special kind of a free module over F of finite rank n, see [4, 7] for
more details. Hence we have on Fn the natural coordinate functions (i.e. basis
elements) denoted by ri, i := {1, . . . , n}. Then by composition with ψ we obtain
coordinate functions zi, i := {1, . . . , n} on U by letting zi = ri ◦ ψ. (U,ψ) is
called a coordinate chart. As we have seen in Definition 15., there exists a notion
of discrete differentiability on Fn, and of course we would then like to transfer
this notion onto Z also. In order to do this we impose the conditions that the
coordinate chart mappings ψ be homeomorphisms and that the corresponding
coordinate transformation maps S = ψ ◦φ−1 : φ(U ∩V ) → ψ(U ∩V ) be discrete
differentiable. The second condition is known as compatibility of coordinate
charts. The collection of compatible coordinate charts is said to be an atlas,
and we define that there exists a maximal atlas if any coordinate chart (U, θ),
that is compatible with any coordinate chart of the atlas, also belongs to the
atlas.

Definition 17 Let Z be a discrete topological set2 (so it automatically Haus-
dorff) Then Z is a discrete differentiable manifold if it has a maximal atlas.

We have introduced tangent spaces in Section 3.1. Now we have all the necessary
ingredients to define the basis of a tangent space. Note that since we are not
dealing with vector spaces, it is not correct to use the terminology ’basis’ -
however for this paper we stick to this abuse of notation. Denote discrete
vectors(either ordinary or mixed) in TpF

n by vi p. Then

vi p(r̄j) = δij , i, j ∈ {1, . . . , n}

where r̄j are the coordinate functions on Fn. Since r̄j are independent natu-
ral coordinates on Fn, it follows that {v1 p, · · ·, vn p} are independent module
elements in TpF

n. The following proposition shows that these independent ele-
ments are actually the basis of the tangent space.

Proposition 1 {v1 p, · · ·, vnp} form a basis of the tangent space TpF
n.

Proof. We have seen that on the lattice Fn, any discrete vector vp is written
as the concatenation of path vectors. So for an n-dimensional tangent space
we can write vp by a concatenation of n-path vectors as in (7). This directly

2Since Z is a finite set, it is second countable.
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implies that for any function f ∈ Ap(F
n), the action of an arbitrary discrete

vector vp on f can be written as

vp(f) = c1v1(f) ◦ c2v2(f) ◦ · · · ◦ cnvn(f) =

n∑

i=1

civi p(f)

Hence {v1 p, · · ·, vn p} form a basis of the tangent space.
Now we move onto discrete manifolds Z. For any point l ∈ Z we associate
a coordinate chart (U,Ψ), where U is a neighborhood of the point l, and the
map ψ : U ⊂ Z → Y ⊂ F

n is a homeomorphism. Now we define the tangent
map between Z and Fn. Let TlZ be the tangent space of Z at the point l, and
denote its elements by a|l. Given ψ : Z → Fn, the tangent map(at l) is a linear
mapping ψ∗|l : TlZ → Tψ(l)F

n defined as

[ψ∗|l(a|l)](f) = a|l(f ◦ ψ), ∀f ∈ Aψ(l)(F
n) (9)

Once this is done we then have a basis for the tangent space TlZ:

a1|l, ...,an|l

by letting ai|l := ψ−1
∗ l (vi|ψ(l)

), since ψ is an homeomorphism we can do this.
The analogous concept of a vector field on configuration space is a discrete

vector field which we already encountered in 13. And the analogous concept to
a one form is a discrete one form which we have encountered in Definition 10.
These concepts can be easily extended onto discrete manifolds, see [4].

We have defined discrete covectors on Fn in Definition 5. We now define this
on the discrete manifold. Since the tangent space TlZ is a free-module, there
exists a dual free-module, of the same dimension, defined as:

Definition 18 Let azi be the basis of the tangent space TlZ, corresponding to
the coordinate functions zi of the algebra A. Then we denote the set of basis
elements of the dual free-module T ∗

l Z, called the cotangent space, by {∆zi|l}
such that

∆zi|l(azj |l) = δij

Since the tangent space is a free-module, hence the cotangent space is also a

free-module and so any discrete covector can be written as
n∑

i=1

αi∆zi|l.

Proceeding along such lines we can define tangent/cotangent bundles and
their associated structure, see [4] for further details.

6 Discrete Hamiltonian mechanics

In the following subsection we give a brief description of how we represent system
dynamics in our discrete setting. Then we restrict ourselves to Hamiltonian
dynamics.
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6.1 Discrete Dynamics

Systems are described by an algebra A(Z) on a manifold Z. In the smooth
case this is just the algebra of functions (with the continuity degree we wish to
impose) of the corresponding manifold. In our discrete case we have the algebra
of discrete functions of the corresponding discrete manifold. These functions
represent the set of positions of the system. The algebra A(Z) is generated by
a finite set of generators zi. In the discrete case we also need a second copy of
the algebra to describe the velocities. The velocities have some type of finite-
difference representation, hence by considering two copies of the algebra we can
represent both the position and the velocity of the system.
The dynamics are described as follows: since time is discrete, the evolution is
described by several copies of A, one for each time instant:

h = A0 ×Aδ ×A2δ × · · ·Atδ · · · ×ATδ

where t ∈ [0, 1, 2, ..., T ] ∈ F, and δ is the integration time step. Hence if the
system starts from A0 at time 0 we must provide an algorithm Φ to define
elements of the next copies of A in h. h is called as the space of histories. The
evolution of a function f ∈ A0 is then represented by the point

(f,Φ(f),Φ(Φ(f)), · · ·,ΦT (f), · · ·) ∈ h

Note that if the discrete system is the result of a discretization of a continuous
system, this corresponds to, roughly speaking, an integrator. There are sev-
eral ways to define the algorithm describing the system evolution. [8, 1] have
developed the algorithm for the Lagrangian framework, although this has been
developed on lattices. In this paper we develop the algorithm for the Hamilto-
nian framework. There are two ways we can proceed from here - the symplectic
approach or the Poisson approach.

6.2 Poisson manifolds

In the smooth case, the Poisson structure is usually defined in two ways. One is
by the generalization of the symplectic structure i.e.: If (M,w) be a symplectic
manifold, f, g ∈ C∞(M) and Xf , Xg ∈ X(M) be the corresponding vector
fields, then the Poisson bracket is the function {f, g} = w(Xf , Xg). In our
formulation we are unable to do the above, as yet, since we do not know how
to define a canonical symplectic form. The other way is to use a completely
anti-symmetrical tensor field of order (2, 0), whose action on a pair of exact
one-forms defines a Poisson bracket. We proceed in this latter setting.

Definition 19 Let Z be a discrete manifold and consider the algebra of discrete
differentiable functions A(Z) on Z. Consider a skew-symmetric (2, 0) tensor
J : Ω1(A)×Ω1(A) → A(Z). J defines a Poisson bracket by its action on a pair
of exact one-forms as follows:

{f, g} := J(df, dg) (10)

such that {·, ·} is a skew-symmetric bilinear operation on A(Z) with the property
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• {, } is a twisted derivation in each factor, i.e. it satisfies the following
modified Leibniz rule:

{f, g · h} = {f, g} · h+AutXf (g) · {f, h}

J is called a discrete Poisson-tensor. A discrete manifold Z whose algebra of
functions A(Z) is endowed with a Poisson bracket is called a discrete Poisson
manifold.

{, } as defined above should actually be called almost Poisson, since we are not
asking of it to satisfy any kind of Jacobi-identity. We discuss a fully Poisson
bracket later on in this section. We claim that to compute the Poisson bracket
of any pair of functions in a given set of local coordinates, it suffices to know
the Poisson brackets between the coordinate functions themselves - we will see
towards the end of this section how this works out. The brackets between the
coordinate functions:

J ij(z) = {zi, zj} (11)

are called the structure functions of the discrete Poisson manifold relative to
the given local coordinates and uniquely determine the Poisson structure itself.
The structure functions can be given a skew-symmetric matrix representation,
J(z), whose coefficients are in F, and is called the structure matrix of A(Z).
Then we define:

{f, g} = ∇f · J ∇g =
∑

ij

azif J
ij

azjg (12)

where ∇(f) = (azif) is the gradient of the function f , it is a column of discrete
vectors. We want to know which matrices J(z) are the structure matrices for
almost-Poisson brackets.

Proposition 2 Let J(z) = J ij(z) be an m × m matrix of functions of z =
(z1, . . . , zn) defined over an open subset P ⊂ Fn. Then J(z) is the structure
matrix for an almost-Poisson bracket over A(P ) if it has the properties of Bi-
linearity, Skew-symmetry and Modified Leibniz rule:

Proof. Note that the almost-Poisson bracket as in (12) automatically satisfies
bilinearity. For the modified Leibniz rule we have:

{f, g · h} =
∑

ij

azif J
ij

azj (g · h) =
∑

ij

azif J
ij

(

azjg · h+Aut(g) · azih

)

The Poisson bracket (10) is skew-symmetric due to the Poisson tensor J . Then
the skew-symmetry of the structure matrix is equivalent to the skew-symmetry
of the bracket (10).
Note that any constant skew symmetric matrix (whose coefficients belong to F)
trivially satisfies the above requirement and thus determines a Poisson bracket.
Next we look at a special case of the structure matrices. We consider a J for
which the Poisson bracket (12) looks as follows:

J =

[
0 1
−1 0

]

⇒ {f, g} = azif azj g − azjg azif
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Now let us check the properties of this simple bracket. Skew-symmetry and
bilinearity are obvious. The modified Leibniz rule is :

{f, g · h} = azif azj (g.h) − azjf azi(g.h)

= azif azjg · h+ azif azjh · Aut(g) −
[
azjf azig · h+ azjf azih ·Aut(g)

]

= {f, g} · h+Aut(g) · {f, h}

A manifold Z, where A(Z) is equipped with a Poisson bracket, is called a Pois-
son manifold, the bracket defining a Poisson structure on A(Z). Let Z be a
Poisson manifold, then w.r.t the bilinearity and modified Leibniz properties of
the Poisson bracket, note that given a function H ∈ A(Z) the map

f 7→ {f,H}

defines a discrete vector field on A(Z).

Definition 20 Let Z be a Poisson manifold and H ∈ A(Z). The Hamiltonian
discrete vector field3 associated with H is the unique discrete vector field XH

satisfying
XH(f) = {f,H} = −{H, f} (13)

for every f ∈ A(Z).

It is easy to show, see [4], that to compute the Poisson bracket of any pair
of functions in a given set of local coordinates it suffices to know the Poisson
bracket between the coordinate functions themselves - i.e. it suffices to know
the structure functions.

Remark 3 {Hamiltonian dynamics on Poisson manifolds}
We have a canonical mapping from the algebra A(Z) onto the space of discrete
vector fields Der(A) of the algebra:

f 7→ Xf = {f, ·}, ∀f ∈ A(Z) (14)

This means that our system is represented by the algebra A(Z) which denotes
the positions of the system, moreover the algebra is endowed with a canonical
mapping A(Z) → Der(A). The dynamics in the smooth case are given by the
equations governing the flow of XH and are called as Hamiltons equations for
the Hamiltonian function H. The discrete dynamics are defined as: For any
f ∈ A(Z):

∆f(t)

∆t
= {f,H} ⇒ fn+δ = fn + δXH(fn) (15)

So in the limit as δ → 0 we recover the definition of dynamics in the smooth
case: ḟ = {H, f} = XH(f). The discrete dynamics as we defined above, gives a
mapping An → An+δ, and this is the algorithm we desire.

3discrete analog of a Hamiltonian vector field.
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The form of equation (15) is very special. Indeed, it implies energy conservation,
i.e.

∆H

∆t
= {H,H} = 0

However most integration techniques are not energy conserving. This would
necessitate in a modification of the definition of dynamics as in (15). For our
purposes energy conservation is very important, indeed in future work we aim at
extending the discrete framework developed in this paper to Port-Hamiltonian
systems [9, 10], and then energy conservation is certainly the most important
first integral that needs to be conserved. In our definition of discrete Poisson
dynamics (15), we assume that we have integration algorithms which are energy
conserving.

Remark 4 Invariance of Poisson Brackets
We now show that canonical transformations leave the Poisson brackets invari-
ant. The basic idea is as follows: let η = [q p]T and ξ = [Q P ]T be two different
coordinate representations of the set of generators of A(Z). Then define a matrix
M

M =

[
apQ aqQ
apP aqP

]

s.t. ξ̇ = Mη̇. The equations of motion are in the form η̇ = J · ∇H where J is a
skew-symmetric matrix. With this choice for M we one can easily show

J = M · J ·MT

Now consider η and ξ to be n-dimensional vectors of, say, the type
η = [q1, ..., qn, p1, ..., pn]

T . Now for any pair of functions f, g ∈ A(Z) we have
defined {f, g} as in (12). Then

{f, g}η =(∇ηf)T · J · ∇ηg = (∇ξf)T ·M · J ·MT · ∇ξg = (∇ξf)T · J · (∇ξg)

={f, g}ξ

Let us now see, in the following very simple example, the energy behavior
w.r.t. to two different types of integration algorithms.

Example 2 Consider a discrete model of an LC-circuit, the Hamiltonian will
have the form H(q, φ) = 1

2 (q2 + φ2), where q(t), φ(t) are discrete curves on
a discrete manifold Z. First we consider the usual Euler forward difference
approach, i.e. we have difference equations of the type: q(t+ δ) = q(t) + δ · φ(t)
and φ(t+ δ) = φ(t) − δ · q(t). Then the energies at times t and t+ δ are given
by:

H(t) =
1

2

(

q2(t) + φ2(t)

)

H(t+ δ) =
1

2

(

[q(t) + δ · φ(t)]2 + [φ(t) − δ · q(t)]2
)
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Obviously H(t+ δ) 6= H(t). And what this means is that our formal definition
of Poisson dynamics (15) does not capture this non-conservation of energy, i.e.
(15) implies {H,H} = 0 which is of course not true as we have shown above.
Our definition of Poisson dynamics assume energy conservation, but this is not
so when using most integration techniques. Hence in the discrete setting we need
to define a more general type of Poisson dynamics. We do not attempt to do
that in this paper. There are many ways of exactly conserving energy, c.f. [11]
and the references therein. Now we introduce an Euler integration technique
that does conserve energy. The basic idea is adopted from [11]. Consider the
modified Euler dynamics:

q(t+ δ) = q(t) + δ · φ(t), φ(t+ δ) = φ(t) − δ · q(t) + f(t)

where f(t) is s.t. H(t + δ) −H(t) = 0. Such an f(t) is easy to obtain, indeed
we have:

H(t+ δ) −H(t) = δf2 + 2φf − 2δqf + δ(φ2 + q2)

and solving the above for H(t+ δ)−H(t) = 0 we obtain the desired f(t). Hence
we can easily design energy conserving algorithms. However this means that
formally we must change the definition of the Poisson dynamics (15). So in
the Hamiltonian framework, given two discrete curves q(t) and φ(t), for energy
conservation we cannot define q̇ = {q,H} and φ̇ = {φ,H}. Rather we should,
for example, define the dynamics as:

q̇ = {q,H}, φ̇ = {φ,H}+ f(t)

where f(t) is s.t. ∆H
∆t = 0. In essence we have changed one part of the dynamics

i.e. φ(t). Of course one could also change q(t), it makes no difference for energy
conservation.
The above analysis extends to other integration techniques as well, like Runge-
Kutta, Leap-frog etc.
Note a fundamental problem in the above energy-conserving algorithm, the Pois-
son structure is destroyed due to this additional term. Of course an alternative
is to consider adaptive time steps, but here too the geometric structure is de-
stroyed. We shall see in [12] how such problems are avoided.

7 Conclusions

In this paper we have formalized discrete physical systems in an Hamiltonian
framework. Moreover we also investigated the relationship between different
choices of integration techniques and the corresponding discrete vector, in other
words we showed that many integration techniques are nothing more than dis-
crete vectors. Finally we presented discrete Hamiltonian dynamics on discrete
Poisson manifolds with an example.
However already one can see certain fundamental problems with the energy con-
serving approaches that are used, either the one we showed above or any of the
other well-known ones. The basic problem is that it destroys the Hamiltonian
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geometric structure at the discrete level. We show in future work, [12], how this
problem which exists for Hamiltonian systems is avoided in the framework of
port-Hamiltonian systems.
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