

 University of Groningen

Visual exploration of program structure, dependencies and metrics with SolidSX
Reniers, Dennie; Voinea, Lucian; Telea, Alexandru

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2011

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Reniers, D., Voinea, L., & Telea, A. (2011). Visual exploration of program structure, dependencies and
metrics with SolidSX. In EPRINTS-BOOK-TITLE University of Groningen, Johann Bernoulli Institute for
Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-12-2022

https://research.rug.nl/en/publications/6068171d-1c67-438a-a179-8333662dacc0

Visual exploration of program structure,
dependencies and metrics with SolidSX

Dennie Reniers
SolidSource BV, the Netherlands

Email: dennie.reniers@solidsourceit.com

Lucian Voinea
SolidSource BV, the Netherlands

Email: lucian.voinea@solidsourceit.com

Alexandru Telea
University of Groningen, the Netherlands

Email: a.c.telea@rug.nl

Abstract—We present SolidSX, an visual analysis tool for code
structure, dependencies, and metrics. Our tool facilitates the
understanding of large program code bases by simplifying the
entire pipeline from data acquisition up to visualization and
interactive querying. Secondly, SolidSX is an easy to use, scalable,
and configurable visualization component for compound attributed
graphs extracted by third-party tools, easy to integrate by devel-
opers in their own applications. We detail the architecture and
functions of SolidSX, present examples for its two use-cases, and
outline insights collected from tool usage in academia and industry.

I. INTRODUCTION

Program comprehension reportedly costs as much as 40% of
the software lifecycle. In the past decade, tens of visualization
tools for program comprehension have emerged. Many such
tools share the same conceptual data model: From raw data e.g.
code files, a compound attributed graph (CAG) is extracted.
Nodes encode program entities, e.g. folders, files, classes, and
methods; containment edges encode the program’s hierarchy;
association edges encode entity dependencies, e.g. uses, inherits,
imports, or calls; and key-value attributes on nodes and edges
encode e.g. names, metrics, or annotations.

However, such tools have limited impact in the IT industry.
Key reasons are limited visual scalability, long learning curves,
and poor integration with development toolchains [20], [2],
[10]. Different attempts to solve these problems exist. Dense
graph layouts target scalability, e.g. treemaps (CodeCity [31],
EvoSpaces [12]); directed-tree and SHriMP layouts (Mon-
drian [27], CodeCrawler [3]); adjacency matrices (Matrix-
Zoom [1], NDepend, Lattix); and multidimensional scaling
(Codemap [11]). End-user tools have simple installers, minimal
configuration and programming, and rely heavily on predefined
queries (NDepend, Lattix LDV, MatrixZoom [1]). Developer
and research tools focus on genericity and customizability e.g.
via scripting, but have longer learning curves (Rigi [28], Mon-
drian). Plug-ins for IDEs (Eclipse, KDevelop, Visual Studio)
and interchange input formats (FAMIX, GXL, XMI) address
toolchain integration.

In this paper, we present SolidSX, our quest to designing a
simple to use, yet generic and flexible, software visualization
tool for CAGs. Along the model of Maletic et al. [17], SolidSX
supports the task of visual exploration of large CAGs for
program comprehension; its audience includes end-users who
want to use the tool on their code in a few minutes, and
developers, who want to (re)use the tool’s visualizations to
build custom applications; the visualization target is a generic
CAG with any number and/or type of hierarchies, associations,

and attributes; the visualization medium is the standard PC
display; and the representation uses three linked views based
on treemaps, hierarchical edge bundling, and table lenses. We
next present the tool’s design decisions (Sec. II), the tool’s
three views (Sec. III), and sample end-user and developer usage
(Sec. IV). Section V concludes the paper.

II. ARCHITECTURE

SolidSX has a layered dataflow architecture (Fig. 1). The
input CAG comes in XML format or is extracted by static
analysis plug-ins in the tool’s own front-end (Sec. II-B). The
core layer implements the CAG data storage and querying
(Sec. II-A) and views (Sec. III). The interface layer offers view
management for embedding in third-party tools (Sec. II-C).

A. Core layer

We store our CAG data in a SQLite database. Besides nodes
and edges, called facts, we store two other items: selections and
attributes. Selections are sets of facts or other selections, created
interactively (click and select visible facts), by scripts, or stored
in the input data. Selections group semantically related elements
in dynamic, user-driven, task-specific, ways. They have unique
names by which they are referred in views or queries. Attributes
are named numerical, ordinal, categorical, or text values. Facts
can have any number of attributes with different names (keys).
Attributes are computed by queries or filters (e.g. complexity,
fan-in, fan-out, cohesion, coupling) or interactively set by users
(e.g., annotate certain classes as being ’unsafe’).

SQLite can be inefficient for multiple-table joins [8], [30].
We addressed this by the following schema (Fig. 2). Facts
have unique primary-key IDs. A hierarchy table stores one
containment edge per row, listed as (parent, child) node IDs.
An association table stores one association edge per row, listed
as (from, to) node IDs. A node attribute table stores all attributes
a1, . . . ,an of a node per row as n columns named by the
attribute keys. An edge attribute table does the same for edge
attributes. Edge types, e.g. calls, includes, are stored as edge-
type attributes. For each selection, two selection tables store
its node and edge IDs. Selection-specific fact attributes are
added as extra columns. This schema captures any CAG e.g.
class hierarchies, call graphs, or clone relations. Fig. 2 bottom
shows an example. The hierarchy has a file main.cc with
the main() and run(Foo) functions, and a class Foo with a
method load(). Associations capture call; define; and ’uses type’
relations (run(Foo) uses the type Foo), encoded as edge ’type’
attributes. Nodes have name and lines-of-code (LOC) attributes.

978-1-4577-0823-7/11/$26.00@2011 IEEE

Source code
- C, C++

- Java

- .NET/C#/VB

Static analysis
- code parsing

- binary analysis

- code duplication

Visualizations

Treemaps

- SQLite database

- XML & plain text files

- 3rd party formats

Persistent storage

Facts and metrics
- compound graphs

 - hierarchy

 - association

 - node/edge attributes

- metrics

 - string, numerical

- IDs of facts in the

 fact database

Selections

refer to

readwrite

Queries & filters
- call graphs

- code patterns

- metric engines

Fact database

Graphics engines

- OpenGL

- GLUT, FTGL

- wxWidgets

Applications

Scripting engines

- SQL

- C#

Legend

data flow

implemented using

refers to

Tree browsers

Table lenses Radial views

Interface layer

Core layer

Events

- messages

- sockets

Front-end layer

SolidSX end-user

Visual Studio plugin

Dependency evolution

Tiobe TICS tool

Fig. 1. SolidSX tool architecture layers and dataflows (see Sec. II)

Two selections model main()’s call graph (red) and run(Foo)’s
requires graph (green)1.

Analyses and visualizations are weakly typed: They all read,
and optionally create, selections (Fig. 1). This allows composing
visual analyses using selections as ’glue’, statically or at run-
time, with virtually no configuration costs. Components decide
internally how they execute their task on a given input selection.

Computing selections, annotations, or layout properties on-
the-fly imply creating, editing, and deleting hundreds of selec-
tion tables or attribute columns in a typical scenario. Separate
tables for each selection optimizes speed and memory load;
missing values are naturally handled by SQLite; so our schema
scales well to databases of hundreds of thousands of facts with
tens of attributes per fact [7]. Several hierarchies can be added
as multiple hierarchy tables. Simple queries and metrics can be
directly implemented in SQL. Traversing a graph for structure
queries (e.g. connected components or reachability) or rendering
is efficient, by iterating over the node and edge tables. For
example, rendering the CAG in Fig. 1 top (4000 nodes and
15000 edges), takes under 0.05 seconds on a commodity PC.

hierarchy table

edge ID parent

node ID

child

node ID
0

1

2

3

node attribute table

node ID attribute 1

(name)
main.cc

main()

run(Foo)

Foo

file

function

function

class

attribute 2

(type)

edge table

edge ID from

node ID

to

node ID

edge attribute table

edge ID attribute 1

(type)
defines

calls

uses type

calls

0

1

2

3

4

5

6

7

4

5

6

7

ID: 0
name: main.cc

LOC: 200

ID: 1 ID: 2 ID: 3

name: main()

LOC: 50

name: run(Foo)

LOC: 20

name: Foo

LOC: 100

ID: 4
name: load()

LOC: 80

ID: 0 ID: 1 ID: 2

ID: 3

ID: 4

ID: 5 ID: 6

ID: 7

0

0

0

3

1

2

3

4

0

1

2

1

1

2

3

4

4 load() method

attribute 3

(LOC)
200

50

20

100

80

contains

calls

defines

uses type

Legend

selection 1 tables

node ID

1

2

4

selection 1 (call graph of main())

selection 2 (requires graph of run(Foo))

edge ID

5

7

selection 2 tables

node ID

2

3

edge ID

6

Fig. 2. Database (top) for a simple CAG (bottom) with the call graph of main()
and the ’requires’ graph of run(Foo) (Sec. II-A)

B. Static Analysis Front-end
SolidSX provides several parsers: Recoder (Java) [16], Re-

flector (.NET/C#) [19], and Microsoft’s bscsdk parser (Visual
1We highly recommend viewing this paper in full color

C++ .bsc symbol files). These provide CAGs with folder-file-
class-method and namespace-class-method hierarchies, depen-
dencies (calls, symbol usage, inheritance, and package/header
inclusion), and basic metrics (LOC, comments, complexity, fan-
in, fan-out, and symbol location). Recoder, Reflector, and bscsdk
are lightweight, robust, and fast (roughly 100KLOC/second),
perfect for on-the-fly structure-and-dependency visualization.
For .NET/VB/C#, Java, and Visual C++, static analysis is fully
automated: Users pass a code root directory and, for Java,
optional classpaths. C/C++ analysis beyond Visual C++ uses
CAGs created by the external SolidFX C/C++ analyzer [24].
SolidFX scales to millions of LOC, covers gcc, C89/99, and
ANSI C++, and handles incorrect and incomplete code. Integra-
tion with other heavyweight C++ analyzers e.g. Columbus [5]
or Clang [15], although not yet done, is easy – we only need to
convert the analyzer’s output to SolidSX’s XML input. Using
lightweight C++ analyzers e.g. CPPX [13], gccxml, and MC++
is ineffective as these deliver incorrect data due to simplified
preprocessing and name lookup. The C/C++ parsers of Eclipse
CDT, KDevelop, QtCreator, and Cscope are slightly better in
correctness, but are not designed as reusable components.

C. Toolchain Integration

SolidSX’s visualizations can be added to existing analysis
tools. Rather than offering fine-grained visualization APIs like
Rigi, Mondrian, or CodeCrawler, we took a coarse-grained,
black-box, approach. SolidSX listens for asynchronous Win-
dows command messages, e.g. load a dataset, zoom on some
subset, change view parameters, and also sends user interaction
events, e.g. user has selected a fact, as messages. Hence,
SolidSX can be embedded in any third-party tool via thin
wrappers which read, emit, and process such messages. No
access to SolidSX’s source code is needed. For example, we
integrated SolidSX in Visual Studio by writing a plug-in of
around 200 LOC which translates between the IDE and SolidSX
events (Fig. 3 bottom). Selecting and browsing code in the two
tools is now in sync. The open SQLite format further simplifies
data-level integration. Adding SolidSX to Eclipse, KDevelop,

and QtCreator is under way, once we finalize the importers from
these IDEs’ fact databases into our SQL database.

III. VIEWS

We limited SolidSX to a few visualizations (Fig. 3 top):
Table lenses draw cells as pixel bars scaled and colored by
attribute values [18]. Hierarchically bundled edges (HEBs) show
CAGs by bundling association edges along hierarchy edges [6].
Squarified cushion treemaps compactly show structure and
metrics for tens of thousands of facts [21].

Treemap view

Radial view

Tree browser

Table lens
code size complexity

hot spot

Visual C++ editor SolidSX view

Fig. 3. Top: SolidSX views (tree browser, treemap, table lens, radial); Bottom:
Visual Studio integration of SolidSX (see Sec. II-C)

Each view has an user-specified input selection in the fact
database. If views share an input selection, changes to this se-
lection automatically show up in the views (the linked view con-
cept). Interaction behaves similarly: selecting items in any view,
e.g. by mouse picking, updates a global user selection. Shared
selections allow to easily create complex analyses of structure,
dependencies, and attributes along different viewpoints. Views
only receive selection names as input and pull their data on
demand, so large datasets are efficiently handled by reference.
Additionally, SolidSX provides classical tree browsers, legends,
annotations, details-on-demand at the mouse, and attribute-
based searches. Predefined colormaps are suggested based on

attribute types i.e. ordinal, categorical, or numerical. Views have
carefully designed presets so they can be used with no extra
customization.

We extended the original HEB layout from [6] in several
ways. Luminance cushion textures on nodes emphasize the
hierarchical structure. When nodes are collapsed or expanded,
the layout is smoothly animated between the initial and final
views, which helps maintaining the so-called mental map (see
the actual tool or tool videos at [22]). Multiple edges between
collapsed nodes are visually rendered as a single edge. If edge
color mapping is on, this edge shows the aggregated value (min,
max, or average) of the collapsed edges’ attributes, as specified
by user preferences. Adjacent nodes smaller than a few pixels
are replaced by gray, untextured, bars. This tells that the view
cannot fully show its input and also keeps a high frame-rate
regardless of dataset size, since the amount of nodes drawn
never exceeds the view size divided by the minimal node size.
We use the same technique for the table lens and treemap views.

Treemap views can be customized. First, users can select
which levels they want to see out of the total number of hierar-
chy levels. Skipped levels are removed on-the-fly when laying
out the treemap, which is very fast. For each selected level,
one can choose a different layout: slice-and-dice, squarified,
strip [21], or sorted, and also specify attribute names whose
values to use for node color, size, label, and order. Secondly,
we propose an adaptation of the squarified layout where we keep
sibling node sizes constant but lay them out sorted according
to an attribute value. This arranges siblings in their parent cell
from the top-left to the bottom-right corner. Mapping a second
attribute to e.g. color allows one to quickly see correlations (or
lack thereof) between two attributes of a hierarchy.

Figure 3 (top) shows SolidSX’s views on a C# system (45
KLOC). The HEB view shows function calls and system struc-
ture. Calls go from blue to gray. Node colors show McCabe’s
metric on a green-to-red colormap, thereby enabling structure-
complexity correlations. We see e.g. that the most complex
functions (warm colors) are in the classes located top-left in
the HEB view. The table lens view shows several function-
level code metrics, sorted on decreasing complexity, i.e. how
different metrics correlate. In Fig. 3, we see that complexity
is not correlated to code size. Alternatively, one can select
e.g. the most complex or largest functions in the table lens
and see where they appear in the HEB or treemap views.
The treemap view shows a flattened system hierarchy (only
module and function levels are selected); functions are colored
on complexity and ordered from the top-left to the bottom-right
corner of their parent cells on code size using the sorted layout.
The ’hot spot’ in the figure shows a module that has a certain
amount of size-complexity correlation, but not a perfect one:
A perfect correlation would yield a continuous red-to-green
color gradient along the module cell’s diagonal. Building the
entire scenario, static analysis included, took about 2 minutes
and under 20 mouse clicks.

IV. TOOL AVAILABILITY AND USAGE

SolidSX is written in C++ with wxWidgets (GUI) and
OpenGL 1.1 (rendering). A Windows-based installer, manuals,

videos, and sample data are available [22]. SolidSX’s treemap,
table lens, and radial views were used in earlier code quality
assessments [7], [26], [25]. Their combination in one tool and
black-box reuse mechanism shown here are new. SolidSX has
been used for three years by over 100 students in lectures
on software quality assurance, testing, and maintenance [23].
Lecture feedback shows that SolidSX needs around 15 minutes
to install and learn. SolidSX was also used to visualize evolving
dependencies in a Subversion (SVN) repository. Data mining
used the SharpSvn C# library. Inheritance, type usage, and
include relations were extracted from each version with the
CCCC analyzer [14] into SolidSX’s SQL database (Sec. II-A).
This tool reuses SolidSX’s HEB view to show dependencies in a
user-selected version, colored by type or evolution status (added
in the current revision, deleted in the next revision, or persistent
between two revisions). Figure 4 shows a snapshot from this tool
for the KOffice repository (over 10000 files, 3500 versions, over
a 8 year period) [9]. The developers who created this evolution
visualization tool were in no way familiar with SolidSX, did not
have access to its source code, and used a different programming
language (C#) than in SolidSX (C++). The keys to reuse
were SolidSX’s open SQL data model (Sec. II-A) and the
message-based mechanism that allows ’driving’ SolidSX from
any application via Windows messages (Sec. II-C). Source code
and manuals of our evolution visualization tool are available [4].

revision browser SolidSX component

analysis log view

Fig. 4. Subversion dependency evolution browser with SolidSX reuse

V. CONCLUSIONS

We have presented SolidSX, an integrated tool for visualizing
large software compound attributed graphs. SolidSX simplifies
the task of end-users interested in visualizing such data by
several design decisions: choice of highly scalable, visually
stable, layouts (table lens, treemaps, and radial plots); tight
integration with automated static analyzers for Java, .NET, and
Visual C++; and a simple, fixed-schema, fast SQL database for
data storage and querying. An event-based mechanism allows
black-box tool reuse with no source-code knowledge for custom
tool construction and toolchain integration. Several applications
in research, consulting, and education show that SolidSX is an
effective, efficient, and simple solution for visualizing the struc-
ture, dependencies, and attributes of large software systems.

Ongoing work covers extending SolidSX with UML diagram
views, evolving compound graphs, integration in the TICS cod-
ing standard assessment framework [29]. and the provision of
all views as a web service infrastructure for easier deployment
in client-server environments.

REFERENCES

[1] J. Abello and F. van Ham. MatrixZoom: A visual interface to semi-external
graphs. In Proc. InfoVis, pages 183–190, 2005.

[2] S. Charters, N. Thomas, and M. Munro. The end of the line for Software
Visualisation? In Proc. IEEE Vissoft, pages 27–35, 2003.

[3] S. Ducasse and M. Lanza. The class blueprint: Visually supporting the
understanding of classes. IEEE TSE, 31(1):75–90, 2005.

[4] M. Ettema and E. Vast. Dependency evolution analyzer, 2010.
www.cs.rug.nl/svcg/SoftVis/DepEvol.

[5] R. Ferenc, A. Beszédes, M. Tarkiainen, and T. Gyimóthy. Columbus –
reverse engineering tool and schema for C++. In Proc. ICSM, pages 172–
181. IEEE, 2002.

[6] D. Holten. Hierarchical edge bundles: Visualization of adjacency relations
in hierarchical data. In Proc. IEEE InfoVis, pages 741–748, 2006.

[7] H. Hoogendorp, O. Ersoy, D. Reniers, and A. Telea. Extraction and visu-
alization of call dependencies for large C/C++ code bases: A comparative
study. In Proc. ACM Vissoft, pages 137–145, 2009.

[8] I. Kaplan. Implementing graph pattern queries on a relational database.
In Tech. Rep. LLNL-TR-400310. Lawrence Livermore Natl. Lab., 2008.

[9] KOffice Team. KOffice software repository, 2011. www.koffice.org.
[10] R. Koschke. Software visualization in software maintenance, reverse

engineering, and re-engineering: a research survey. J. Soft. Maint. and
Evol., 15(2):87–109, 2003.

[11] A. Kuhn, D. Erni, P. Loretan, and O. Nierstrasz. Software cartography:
Thematic software visualization with consistent layout. JSME, 22(3):191–
210, 2010.

[12] M. Lanza, H. Gall, and P. Dugerdil. EvoSpaces: Multi-dimensional
navigation spaces for software evolution. In Proc. CSMR, pages 293–
296, 2009.

[13] Y. Lin, R. C. Holt, and A. J. Malton. Completeness of a fact extractor.
In Proc. WCRE, pages 196–204. IEEE, 2003.

[14] T. Littlefair. C/C++ code counter, 2007. sourceforge.net/projects/cccc.
[15] LLVM Team. Clang C/C++ analyzer home page, 2011. clang.llvm.org.
[16] A. Ludwig. Recoder java analyzer, 2010. recoder.sourceforge.net.
[17] J. Maletic, A. Marcus, and J. Collard. Atask oriented view of software

visualization. In Proc. Vissoft, pages 57–65, 2002.
[18] R. Rao and S. Card. The table lens: Merging graphical and symbolic

representations in an interactive focus+context visualization for tabular
information. In Proc. CHI, pages 222–230. ACM, 1994.

[19] Redgate Inc. Reflector .NET API, 2011. www.red-gate.com/products.
[20] S. Reiss. The paradox of software visualization. In Proc. IEEE Vissoft,

pages 59–63, 2005.
[21] B. Shneiderman. Treemaps for space-constrained visualization of hierar-

chies, 2011. www.cs.umd.edu/hcil/treemap-history.
[22] SolidSource. SolidSX Software eXplorer, 2011. www.solidsourceit.com.
[23] A. Telea. Software quality assurance and testing (sqat) course

assignment, 2010. Univ. of Groningen, the Netherlands,
www.cs.rug.nl/∼alext/SQAT/Assignment.

[24] A. Telea and L. Voinea. An interactive reverse-engineering environment
for large-scale C++ code. In Proc. ACM SOFTVIS, pages 67–76, 2008.

[25] A. Telea and L. Voinea. A tool for optimizing the build performance of
large software code bases. In Proc. IEEE CSMR, pages 153–156, 2008.

[26] A. Telea and L. Voinea. Visual software analytics for the build optimiza-
tion of large-scale software systems. Comp. Stat., 26(3), 2011.

[27] M. Theus and S. Urbanek. Interactive Graphics for Data Analysis:
Principles and Examples (Computer Science and Data Analysis). CRC
Press, 2008.

[28] S. Tilley, K. Wong, M. Storey, and H. Müller. Programmable reverse
engineering. Intl. J. Software Engineering and Knowledge Engineering,
4(4):501–520, 1994.

[29] Tiobe Inc. TICS coding standards framework, 2011. www.tiobe.com.
[30] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and D. Wilkins.

A comparison of a graph database and a relational database: A data
provenance perspective. In Proc. ACM SE, pages 68–80, 2010.

[31] R. Wettel and M. Lanza. Program comprehension through software
habitability. In Proc. ICPC, pages 231–240, 2007.

