

 University of Groningen

Empirically-grounded Reference Architectures
Galster, Matthias; Avgeriou, Paris

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2011

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Galster, M., & Avgeriou, P. (2011). Empirically-grounded Reference Architectures: A Proposal. In
EPRINTS-BOOK-TITLE University of Groningen, Johann Bernoulli Institute for Mathematics and Computer
Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-12-2022

https://research.rug.nl/en/publications/57dd2028-d1d7-4e6f-824c-50104e760860

Empirically-grounded Reference Architectures: A
Proposal

Matthias Galster
University of Groningen, The Netherlands

m.r.galster@rug.nl

Paris Avgeriou
University of Groningen, The Netherlands

paris@cs.rug.nl

ABSTRACT
A reference architecture describes core elements of the software
architecture for systems that stem from the same domain. A
reference architecture ensures interoperability of systems through
standardization. It also facilitates the instantiation of new concrete
architectures. However, we currently lack procedures for
systematically designing reference architectures that are
empirically-grounded. Being empirically-grounded would
increase the validity and reusability of a reference architecture.
We therefore present an approach which helps systematically
design reference architectures. Our approach consists of six steps
performed by the software architect and domain experts. It helps
design reference architectures either from scratch, or based on
existing architecture artifacts. We also illustrate how our approach
could be applied to the design of two existing reference
architectures found in literature.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design – methodologies,
representation; D.2.11 [Software Engineering]: Software
Architectures – data abstraction, languages; K.6.3 [Management
of Computing and Information Systems]: Software
Management – software development.

General Terms
Management, Documentation, Design.

Keywords
Software architecture, reference architecture, design process,
empirically-grounded.

1. INTRODUCTION
Software architectures play a significant role for software quality.
One way to systematically reuse architecture knowledge when
developing new software systems is through reference
architectures (RA) [1]. RA’s capture the essence of the
architecture of a collection of similar systems. These systems
usually belong to a certain technology domain, application
domain, or problem domain. The purpose of a RA is to facilitate
the development of concrete architectures for new systems, to
help with the evolution of a set of systems that stem from the

same RA, or to ensure standardization and interoperability of
different systems. Following Bass et al., we differentiate reference
model and RA [2]. A reference model is a decomposition of a
problem into parts that cooperatively solve the problem. A RA on
the other hand is a reference model mapped onto software
elements that cooperatively implement the functionality of the
reference model.

A RA is usually designed by capturing the essentials of existing
architectures of a group of products, and by taking into account
future needs and variability. This involves three main problems:
First, RA’s are usually designed in an unsystematic manner;
traceable and repeatable steps to design RA are missing [3].
Second, sometimes a RA needs to be designed from scratch,
without the ability to mine existing software architectures. Third,
there is usually no solid evidence about the validity of a RA.

To address the aforementioned problems, we attempt to develop
an approach to design RA’s a) in a systematic manner, either from
scratch or based on existing architecture artifacts, and b) so that
the resulting RA’s are empirically-grounded and thus valid to be
applied in a broad range of situations.

By empirically-grounded we mean that evidence for the relevance
and applicability of the building blocks (e.g., stakeholders,
concerns, models) of a RA must exist. In detail, “empirically-
grounded” includes two aspects [4]: 1) “Empirical foundation”
means that the RA must be based on sufficient real-life
phenomena and proven principles [1]. This means, the RA a) must
address real stakeholder interests, b) should be based on concepts
proven in practice, and c) the building blocks of the RA must
stem from the problem domain. 2) “Empirical validity” means
that the RA needs to be evaluated to ensure its applicability and
validity.

The advantage of empirically-grounded RA’s is that they ensure a
solid foundation for instantiated architectures. They would not be
specific to a particular organization, and be reusable for a broad
range of projects. Thus, the contribution of this paper is an
approach that helps architects and domain engineers design
empirically-grounded RA’s.

In Section 2 of this paper we discuss related work. Section 3
introduces our approach to design empirically-grounded RA’s. In
Section 4 we discuss how our approach could be applied to the
design of two RA’s published in literature. In Section 5 we
discuss limitations and conclude the paper in Section 6.

2. RELATED WORK
It was only recently that the notion of RA has been brought to
attention in the systems engineering community [5]. RA’s often
appear in organizations or domains where the multiplicity of
applications requires life-cycle support in a distributed open

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
QoSA+ISARCS’11, June 20–24, 2011, Boulder, Colorado, USA.
Copyright 2011 ACM 978-1-4503-0724-6/11/06...$10.00.

153

world. In software engineering (SE), RA’s occur at different
levels of abstraction. For example, generic RA’s for service-
oriented architectures, such as IBM’s foundation architecture [6]
exist. Also, more specific RA’s can be found, e.g., for e-
contracting [7] or web browsers [8]. It has been argued that RA’s
are directly used in the product line context [1]. However, RA’s
can be categorized so that product line architectures are one type
of reference architecture [9]. Moreover, product line architectures
are less abstract than RA’, but more abstract than concrete
architectures [10]. In general, product line architectures represent
a group of systems that are part of a product line, produced by a
single organization, whereas RA’s represent the spectrum of
systems in a domain [8].

Cloutier et al. presented a high-level model for RA development.
This model covers the collection of information from existing
systems and the evolution of the RA [5]. High-level guidelines are
also provided by Pohl et al. to design RA as part of domain design
during product line engineering [1]. Also in the context of
software product lines, Bayer et al. proposed PuLSE-DSSA [11].
In PuLSE-DSSA, RA’s are created by capturing knowledge from
existing architectures. Angelov et al. recently studied RA’s in SE
and developed a classification which could act as a starting point
for designing RA’s [12]. However, this “framework for reference
architectures” focuses on a classification of RA’s, rather than
giving guidelines for designing a RA. ProSA-RA is a process to
design RA’s outside the product line domain [13]. However,
ProSA-RA focuses on aspect-oriented systems and neglects
empirical validity of the RA. Templates (but no guidelines) for
RA’s are often provided in industrial organizations.

Despite these efforts, in SE, systematic approaches to define RA’s
are missing [3], or guidelines are not documented [14]. Moreover,
most proposed RA’s lack an empirical foundation which would
make them truly generalizable. In domains outside SE, methods
for reference modeling have been introduced to support the
creation of reference models, processes, etc. For example, Karow
et al. [4] introduced the empirical construction of reference
process models in public administrations. Ahlemann and Gastl
presented a more general approach for constructing empirically-
grounded reference models for business processes [14]. We
believe that these approaches can act as a starting point for
developing methods that help construct valid RA’s in SE.

3. EMPIRICALLY-GROUNDED RA
Our approach is based on two inputs: 1) Existing RA’s and RA’s
in practice, and 2) literature on RA’s. The approach consists of six
steps (see following sub-sections):

Step 1: Decision on type of RA
Step 2: Selection of design strategy
Step 3: Empirical acquisition of data
Step 4: Construction of RA
Step 5: Enabling RA w/ variability
Step 6: Evaluation of the RA

A feedback from Step 6 allows the refinement of a RA. The RA
will go through a maturing process in several iterations. Also,
please note that instantiation of a RA and evolution of a RA are
out of the scope of our paper.

Throughout this section, we use a project from e-government in
the Netherlands to illustrate our approach. The goal of this RA

would be to support the implementation of a law about
subsidizing health care costs of citizens (WMO law). This RA
would be used in local municipalities.

3.1 Step 1: Decision on Type of RA
Deciding on the type for the RA is important as it determines
what information needs to be collected for constructing the RA
(Step 3). Furthermore, the RA type affects the construction of the
RA (Step 4). The selection of the type is primarily driven by the
purpose of the RA. Therefore, we group RA types based on two
“dimensions”: their usage context (Vogel et al. [9]), and the
characterization framework proposed by Angelov et al. [12]. This
means, a RA type is a combination of these two “dimensions”.

Based on the usage context, three items are differentiated [9].
Platform-specific RA’s (e.g., a service-based RA could be based
on a platform that uses web services, WSDL and UDDI, or a
platform that uses CORBA and an OMG trader) are specific to a
platform. Industry-specific RA’s (e.g., AUTOSAR) focus on the
needs of organizations in a specific industry. Industry-cross-
cutting RA’s cover more than one industry (e.g., IBM’s
foundation architecture used in e-commerce and e-government).

The characterization framework proposed by Angelov et al. [12],
defines five types of RA’s, based on why and when they are
created and where. With respect to when, “classical” RA’s are
created after experience from systems has been accumulated,
while “preliminary” RA’s are created before a system fully
implements the RA. With respect to why, “standardization” RA’s
focus on system interoperability in concrete architectures and
between systems built based on the same RA. “Facilitation” RA’s
aim at providing guidelines for the design of systems. With regard
to where, RA’s can be created for a single organization, or for
multiple organizations. This leads to the following five categories:
1) Classical, standardization architectures to be implemented in
multiple organizations; 2) classical, standardization architectures
to be implemented in a single organization; 3) classical,
facilitation reference architectures for multiple organizations
designed by a software organization in cooperation with user
organizations; 4) classical, facilitation architectures designed to
be implemented in a single organization; 5) preliminary,
facilitation architectures designed to be implemented in multiple
organizations. Details about these categories can be found in [12].

Example: The goals of a WMO RA would be twofold: a) Support
variability between municipalities with the possibility to
implement municipality-specific variants; b) at the same time
ensure interoperability between municipalities, and municipalities
and the national government. Thus, we would construct an
industry-specific RA (e-government). Also, the WMO RA is
classified as a classical facilitation RA as we aim at providing
guidelines for designing instantiated systems in municipalities.

3.2 Step 2: Selection of Design Strategy
In most cases, RA’s are not developed from scratch, but based on
previous project experience [15] and existing architectures.
However, sometimes, the RA is built without any previous
system. Thus, we differentiate two design strategies: a) Design the
RA from scratch; b) design RA from existing architecture
artifacts. This complies with [10] where RA’s can be “research-
driven” or “practice-driven”. “Research-driven” means that the
design of the RA is inspired by existing research effort, providing
a “futuristic” view of a class of systems (e.g., the e-contracting

Ensure “empirical
foundation”

Ensure “empirical validity”

154

RA presented in [7]). “Practice-driven” means that RA’s are
defined when sufficient knowledge in a domain exists to propose
best-practices [10]. Consequently, building RA’s from scratch has
a prescriptive character whereas building RA’s from existing
artifacts has a descriptive nature [10].

The decision on the design strategy is affected by the RA type. If
a preliminary RA type is chosen, the RA will be designed from
scratch. If a classical type is chosen, it is designed based on
existing architecture artifacts. The design strategy impacts what
data sources are needed for the empirically-grounded RA (Step
3).

Example: The WMO RA is not built from scratch but based on
existing architecture artifacts. Various municipalities in the
Netherlands already have IT infrastructures that support the
implementation of the WMO law in some form.

3.3 Step 3: Empirical Acquisition of Data

3.3.1 Identify data sources
To collect empirically-grounded data, the data sources have to be
identified. The RA type and design strategy selected in the
previous steps impact the data sources. For example, for classical
RA’s, existing documentation can be used, whereas preliminary
RA’s would need to draw on other types of documentation and
people. Platform-specific RA’s would require detailed platform
information (e.g., about CORBA) whereas industry-specific RA’s
would require detailed knowledge on business processes in a
domain. Nakagawa et al. recommend people (e.g., customers,
users, researchers), systems (including documentation and source
code), and publications / documents (e.g., technical reports, white
papers) as data sources [13].

Example: The consequences of the RA type and the construction
strategy on selecting data sources for the WMO RA are as
follows: First, to create an industry-specific RA, domain studies
help collect sufficient empirical data, including process
information within municipalities. Second, the standardization
aspect requires a consensus between different organizations. This
includes organizations that will use the RA, organizations that
will communicate with the RA, as well as organizations that
oversee the operations of municipalities. For gathering data
required for constructing the WMO RA, we could therefore
identify the following data sources. First, the business process
descriptions of the WMO law as implemented in municipalities
can be searched. This source describes how the law is actually
executed in municipalities. In a preliminary study, seven
municipalities and their processes of implementing the WMO law
were chosen for data collection [16]. Second, the IT infrastructure
of municipalities provides insights into commonalities and
variations between the technical implementation of the WMO
law. Third, consulting with software vendors provides a more
technical as well as logical view of what needs to be present in the
RA. Fourth, mining standards, regulations and existing RA for
local e-government provide help scope the WMO RA.

3.3.2 Record architecture data
The data for empirically-grounded RA’s needs to be collected
using empirical data collection techniques, e.g., interviews,
questionnaires, or document analysis. The information to collect
depends on what information should be included in the RA. This
depends on the level of detail of the RA, its intended size, the RA

type and the design strategy. When the RA is not built from
scratch, existing architectures can be mined and generalized using
qualitative analysis techniques, e.g., content analysis. A domain-
specific modeling language might be used to model the data.
Responsibilities, resources, etc. might be recorded. This step also
includes the definition of stakeholders that a) will be using the RA
to instantiate concrete architectures, and b) will be using
instantiated architectures. Furthermore, architecture concerns
(interests of stakeholders in the RA; technical or business) and
architecture-significant requirements have to be identified.

Example: For a WMO RA, we could record the data in several
ways. Interviews and document analysis can collect business
process information and information about the current IT
infrastructure, variations and commonalities between
municipalities, and potential technical solutions. For the WMO
RA, security, privacy and variability are architecture significant
requirements. Major stakeholders are IT managers in
municipalities, WMO case managers in municipalities, citizens,
the national government, and software vendors.

3.4 Step 4: Construction of RA
Based on the empirical data collected in the previous steps, the
RA can be constructed. The construction includes the
documentation of the RA in a description. Here, we follow
ISO/IEC 42010 [17]. This means, the RA is described in terms of
architecture views. Also, as our approach utilizes ISO/IEC 42010,
viewpoint and view selection depends on concrete concerns. For
example, based on the abstraction level of the RA, Beneken
suggests functional, logical and technical views [15]. Sometimes,
several technical RA views can adhere to one logical view [18].
Components that are defined in the technical view might refine
components of the logical view. Similarly, according to Cloutier
et al., a RA should address a technical view, business view and
the customer context (i.e., requirements), which partially overlap
[5]. Moreover, while a functional view is relevant at early stages
of development, technical views are used when detailed
architectures are needed [15]. Concerns and views would depend
on the RA type as well as the data collected in Step 3.

The basic structure of the RA can be derived from collected
information (Step 3) and consists of the common building blocks
of the architecture (common stakeholders, views, model kinds)
according to ISO/IEC 42010. Building blocks identified based on
the data collected in Step 3 should be compared to identify
common solution parts. The common elements can become parts
of the RA. Specific architecture elements can be hidden and
annotated with specific data for adaptation during the instantiation
of the RA (see Step 5).

Furthermore, special attention should be given to quality
attributes (QA). Starting point for this task is the RA type and the
collected data. These help identify architecture significant
requirements and key drivers. Here, patterns and tactics should be
added to the RA in order to achieve QA and key drivers. To find
appropriate patterns and tactics, we suggest a search of the
patterns and tactics literature, so that designers of the RA do not
have to develop new solutions which are not proven.

Example: The description of a WMO RA would describe
common modules for assessing the eligibility of a citizen for
governmental support. Furthermore, due to existing RA’s for e-
government in local municipalities, interfaces with external
entities can be described. The RA would have a process view and

155

a technical view. Business processes from the process view are
mapped onto implementation structures in the technical view.

3.5 Step 5: Enabling RA with Variability
To allow the creation of instances of the RA, variability has to be
enabled. Based on the empirical data collected in previous steps,
it is possible to derive variation points in the architecture for
instantiation. There are three possible ways to enable variability:
1) Annotation of RA; 2) variability models; 3) variability views.
Depending on the case, any of these three approaches or a
combination can be used. Annotation would simply mark any
elements within any architecture model with information about
variability (e.g., using attributes or rules). As the RA description
follows ISO/IEC 42010, we also can define specific variability
models. This means, a variability model could be used in any RA
view. Furthermore, variability views could be used, so that
variability-related concerns can be framed by specific viewpoints.

Example: In the WMO RA, annotations of model elements in the
process view can be included for differing age requirements to be
eligible for government services, or varying method of assessing
the physical condition of a citizen. The technical view can include
specific variability views to describe how variability impacts QA.

3.6 Step 6: Evaluation of the RA
The quality of the RA can be tested empirically in a specific
project situation. Its value can be assessed based on the utility it
provides within a project. In detail, for assessing the quality of the
RA, we differentiate two aspects: a) Correctness and the utility of
the RA itself, and b) the support for efficient adaptation and
instantiation. The quality of the RA with regard to correctness and
utility depends on whether it can be transformed into a
meaningful organization-specific architecture. However, the
quality of its adaptation support relies on the usefulness of the
annotations with attributes and rules, the variability model, and
variability views.

If the RA is not built from scratch, evaluation is less critical as the
RA should be using proven architecture concepts anyway. This
means, the validation of concepts in RA’s is often derived from
preceding architectures [5]. In that case, the focus of RA
evaluation should be put on evaluating the support for efficient
instantiation. In cases where innovative technologies or
applications are introduced and in which RA’s are built from
scratch, it is usually challenging to have sufficient proof for the
validity of a RA [5]. However, in our approach, the data used for
constructing the RA has been empirically collected to mitigate
this problem. In addition, reference implementations, and
prototyping and an incremental approach can be used for
validation and proof. Moreover, the evaluation of the RA can be
done by mapping existing widely used architectures on the RA
and see how / if they comply.

For both construction strategies, checklists can be applied to
evaluate the quality of a RA. Similar to the evaluation of concrete
architectures, a list of questions that guide reviewers can be used.
These checklists can be extended with criteria for good RA’s,
including adaptability, understandability, accessibility within
organization, and the inclusion of key issues of specific domains.
However, due to the special nature of RA’s, specific evaluation
methods are needed [10]. A RA evaluation method has been
proposed by Angelov et al. [10].

Example: In the case of a WMO RA, evaluation would be done
in two ways. First, RA documentation would be sent to domain
experts for review. Second, feedback from domain experts in
practice would be collected through online discussion forums.

4. USAGE OF APPROACH
In this section we apply our approach to two RA’s published in
literature and show how our approach could be applied to design
these RA’s. The questions we are interested in are “How is our
process reflected in the design of existing reference
architectures?” and “What problems could be avoided in the
design of RA?”.

4.1 Web Brower RA
Grosskurth and Godfrey proposed a RA for web browsers [8]. We
summarize the steps of our process as it would apply to this RA.
Step 1: The RA type was a classical standardization RA used in
multiple organizations, and industry-cross-cutting. Step 2: The
construction strategy was building the RA from existing
architecture artifacts, namely two existing mature web browsers.
Step 3: The acquisition of data included the identification of data
sources (documentation of two web browsers and the software
itself; no people). The data collection happened through document
analysis. No architecture significant requirements were identified.
Steps 4 and 5: The RA was constructed by aggregating common
elements between the two analyzed web browsers into one
architecture model. After constructing the RA, no annotation took
place and no variability model was included. Step 6: The
evaluation of the RA was done by checking the reference
architecture against the architecture of two other web browsers.
This means, the web browser RA was evaluated through mapping
existing widely used architectures on the RA. This happened in a
straight-forward manner and therefore showed the applicability
and completeness of the web browser RA. As this shows, not all
steps of our approach were applied when designing the web
browser RA. Overall, only the steps of construction (Step 3) and
evaluation (Step 5) of our process were explicitly used in the
design of the web browser RA, and discussed in [8].

4.2 RA for Visual Mining Applications
Nakagawa et al. presented a RA for the visual mining domain
[13]. We chose this RA as it followed a process during design that
is similar to ours. Again, we provide a summary of how our steps
would have applied to the design of this RA. Step 1: The RA type
was a classical facilitation RA, used in multiple organizations,
being platform-specific (aspect-oriented RA). Step 2: The
construction strategy was building the RA from scratch. Step 3.1:
Data sources included people (visual mining researchers, tool
developers), visual mining tools, and publications (books,
technical reports, scientific papers). Step 3.2: Data types and
inputs were identified. Step 4: Based on architecture-relevant
requirements, architecture views were created, using patterns,
such as MVC. Step 5: No annotations or a variability model were
included to facilitate the creation of instances. Step 6: Even
though validation of RA is part of the process used to design the
RA for the visual mining domain, no evaluation was performed.

4.3 Summary
These two examples show that our approach would have been
applicable to the development of existing RA’s. However, to fully
follow our approach, more activities than the ones performed to
develop the RA’s would have been necessary. Furthermore, the

156

examples showed that our approach is partially reflected in how
these two RA’s were designed.

The problems we encounter in the two RA’s are the lack of
empirical validity, the lack of annotations in the RA, and the lack
of support for RA evolution. Thus, our approach would avoid the
lack of traceable design and instantiations of concrete
architectures.

5. LIMITATIONS
Even though we analyzed RA’s in practice, we did not develop a
new, fully-fledged RA. On the other hand, we have illustrated our
approach using a real project from the e-government domain.

Furthermore, some of the steps in our approach are generic or
abstract. For example, we do not prescribe what data collection
techniques to use or what sources of data to mine. This is because
many aspects depend on the type of RA as well as the
construction strategy chosen (see Section 3.1 and Section 3.2).

Finally, designing empirically-grounded RA’s might include
additional effort that might not be feasible in certain contexts
(e.g., for small-scale RA’s or very generic RA’s).

6. CONCLUSIONS AND FUTURE WORK
We presented an approach to design empirically-grounded RA’s
in SE. Empirically-grounded RA’s are built upon evidence for the
relevance and applicability of the different elements of a RA. To
develop the approach, we drew on existing RA’s and on processes
to design reference models and architectures.

Future work includes the application of our approach to the
design of a RA in the e-government domain. As shown in some
examples throughout the paper, our approach has shown to be
useful in this context. Furthermore, we will investigate how to
adapt the proposed approach for service-oriented RA’s.

7. ACKNOWLEDGMENTS
This research has been partially sponsored by NWO SaS-LeG,
contract no. 638.000.000.07N07.

8. REFERENCES
[1] Pohl, K., Boeckle, G. and van der Linden, F. 2005. Software

Product Line Engineering - Foundations, Principles, and
Techniques. Springer Verlag, Berlin / Heidelberg.

[2] Bass, L., Clements, P. and Kazman, R. 2003. Software
Architecture in Practice. Addison-Wesley, Boston, MA.

[3] Eklund, U., Askerdal, O., Granholm, J., Alminger, A. and
Axelsson, J. 2005. Experience of Introducing Reference
Architectures in the Development of Automotive Electronic
Systems. ACM SIGSOFT Software Engineering Notes, 30, 4,
1-6.

[4] Karow, M., Pfeiffer, D. and Raeckers, M. 2008. Empirical-
based Construction of Reference Models in Public
Administrations. In Proceedings of the Multikonferenz
Wirtschaftsinformatik (Munich, Germany). Gito-Verlag,
1613-1624.

[5] Cloutier, R., Muller, G., Verma, D., Nilchiani, R., Hole, E.
and Bone, M. 2010. The Concept of Reference
Architectures. Systems Engineering, 13, 1, 14-27.

[6] High, R., Kinder, S. and Graham, S. 2005. IBM's SOA
Foundation - An Architectural Introduction and Overview.
Technical Report. IBM.

[7] Angelov, S. and Grefen, P. 2008. An E-contracting
Reference Architecture. Journal of Systems and Software,
81, 11, 1816-1844.

[8] Grosskurth, A. and Godfrey, M. 2005. A Reference
Architecture for Web Browsers. In Proceedings of the
International Conference on Software Maintenance
(Budapest, Hungary). IEEE Computer Society, 661-664.

[9] Vogel, O., Arnold, I., Chughtai, A., Ihler, E., Kehrer, T.,
Mehlig, U. and Zdun, U. 2009. Software-Architektur -
Grundlagen - Konzepte - Praxis. Spektrum Akademischer
Verlag, Berlin / Heidelberg.

[10] Angelov, S., Trienekens, J. and Grefen, P. 2008. Towards a
Method for the Evaluation of Reference Architectures:
Experiences from a Case. In Proceedings of the Second
European Conference on Software Architecture (Paphos,
Cyprus). Springer, 225-240.

[11] Bayer, J., Ganesan, D., Girard, J.-F., Knodel, J., Kolb, R. and
Schmid, K. 2003. Definition of Reference Architectures
Based on Existing Systems. Technical Report. Fraunhofer
Institute for Experimental Software Engineering.

[12] Angelov, S., Grefen, P. and Greefhorst, D. 2009. A
Classification of Software Reference Architectures:
Analyzing Their Success and Effectiveness. In Proceedings
of the Joint Working IEEE/IFIP Conference on Software
Architecture & European Conference on Software
Architecture (WICSA/ECSA) (Cambridge, UK). IEEE
Computer Society, 141-150.

[13] Nakagawa, E. Y., Martins, R. M., Felizardo, K. R. and
Maldodano, J. C. 2009. Towards a Process to Design Aspect-
oriented Reference Architectures. In Proceedings of the
XXXV Latin American Informatics Conference (CLEI´2009)
(Pelotas, Brazil), 1-10.

[14] Ahlemann, F. and Gastl, H. 2007. Process Model for an
Empirically Grounded Reference Model Construction. In
Reference Modeling for Business Systems Analysis, P. Fettke
and P. Loos, Eds. IGI Global, Hershey, PA, 77-97.

[15] Beneken, G. 2006. Referenzarchitekturen. In Handbuch der
Softwarearchitektur, R. Reussner and W. Hasselbring, Eds.
dpunkt Verlag, Heidelberg, 357-370.

[16] Bouma, T. D. Process Analysis and Requirement
Specification of Software as Service for WMO Provision
Applications at Dutch Municipalities. Master thesis,
University of Groningen, Groningen, The Netherlands, 2010.

[17] ISO/IEC. 2010 Systems and Software Engineering -
Architecture Description. ISO/IEC 42010, Geneva,
Switzerland.

[18] Stricker, V., Lauenroth, K., Corte, P., Gittler, F., Panfilis, S.
D. and Pohl, K. 2010. Creating a Reference Architecture for
Service-based Systems - A Pattern-based Approach. In
Towards the Future Internet, G. Tselentis, A. Galis, A.
Gavras, S. Krco, V. Lotz, E. Simperl, B. Stiller and T.
Zahariadis, Eds. IOS Press, Amsterdam, 149-160.

157

