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Abstract

We present a study of the nearest–neighbor (nn) and next–nearest–neighbor (nnn)

exchange constants between magnetic Cu centers of the spin–Peierls material CuGeO3.

The dependence of these constants on the lattice parameters (modified e.g. by varia-

tion of temperature, pressure or doping) is calculated. Based on the observation that

the bond angles are more susceptible than the bond lengths we propose the so–called

”accordion” model for the description of the properties of CuGeO3. We show that the

nn exchange constant in the CuO2 ribbon is very sensitive to the presence and position

of the side group Ge with respect to this ribbon. The angle between the two basic

units the CuO2 ribbon and the GeO3 zig–zag chain is, besides the Cu-O-Cu angle in

the ribbon, one of the principal lattice parameters determining the nn exchange in

the c direction. The microscopic calculations of different exchange constants and their

dependence on the lattice parameters are carried out using different schemes (pertur-

bation theory; exact diagonalization of Cu2O2 clusters; band approach). The results

compare favorable with experiment. The influence of Si doping is also calculated, and
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the reasons of why it is so efficient in suppressing the spin–Peierls phase are discussed.

Thus the consistent microscopic picture of the properties of CuGeO3 emerges.

PACS: 75.10, 75.30E, 75.30H.

(Submit to Phys. Rev. B )

Keywords:theory, exchange, magnetism, semiconductors, spin-Peierls Transition, linear

chain.

Short title: spin–Peierls transition in CuGeO3.
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1 INTRODUCTION

The compound CuGeO3 shows a spin–Peierls (SP) transition at 14 K: in each Cu chain

the Cu cations dimerize and the spins form singlets. In this paper we study the exchange

constants as a function of variations in the lattice parameters in the uniform spin phase

as well as the SP phase. Changes in the lattice parameters can also be caused by applying

pressure, or doping.

The plan of this paper is as follows. In the next subsections of this introduction

we discuss the relevant structural, magnetic and magnetoelastic data. We finish this

introduction with a general qualitative discussion of the theory of superexchange applied

to this specific compound.

In the following sections we give a detailed account of the calculation of the exchange

constants. First, in section 2 we give details of a fourth–order perturbation theory ap-

proach. We show that the usually neglected side groups (in the case of CuGeO3 this is Ge)

have in this particular case a large influence on the sign and magnitude of the nearest–

neighbor (nn) exchange interaction. The influence of this Ge side group is studied.

Using perturbation theory we calculate the nn (sections 2.1 and 2.2) and next–nearest–

neighbor (nnn) exchange (section 2.3) constants in the c (chain) direction as well as in the

a and b direction. The values of the exchange constants thus obtained are quite reasonable,

but their dependence on the lattice parameters strongly deviates from the experimental

results. Therefore, in section 3 we use a different method, calculating the states of a Cu2O2

plaquette exact. This method gives quite satisfactory results for the lattice parameter (e.g.

pressure and temperature) dependence of these exchange constants.

In order to account for multiple spin transfer paths we also performed a calculation

using a band model for the anion states. The results reported in section 4 of the latter

compare well with those obtained from the exact diagonalization of the Cu2O2 plaquette

in section 3. Finally, in section 6 we give a discussion of the results; the conclusions and

summary can be found in the final section 7.
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1.1 The structure.

Before we discuss the magnetic properties it is convenient to describe relevant structural

details. The structure of CuGeO3 in the high temperature (HT) phase and in the SP phase

has been determined by Braden et al [1]. Some results of their analysis can be found in

table 1. In fig. 1 we have indicated the principal structural parameters important for our

discussion of the exchange constants in the c direction. In the HT phase all Cu and all Ge

ions are equivalent. The Cu have a near ideal square–planar coordination by O2 and these

edge–sharing squares form a CuO2 ribbon in the c direction. There are two O1 ions at a

distance 2.755 Å nearly perpendicular to the ribbon, which would complete a tetragonally

distorted octahedral coordination of Cu. This distance is too large to be of importance for

the local electronic structure of Cu. The Ge have a nearly ideal tetrahedral coordination

of O: two O2, shared with two CuO2 ribbons, and two O1’s. The 6 O–Ge–O angles are

about 1090, very near to the ideal tetrahedral angle. The interatomic distance of the two

O2 neighbors of a Ge is: 2.82 Å. These two O2 connect two Cu in different ribbons along

the b–axis. This is illustrated in fig. 2

Our preferred description of this system is as follows: linear GeO3 chains of corner

sharing GeO4 tetrahedra, and CuO2 ribbons of edge sharing CuO4 squares, both units

in the c direction. These two units share the O – which we will call the hinges of the

structure – of the CuO2 ribbon: at each side of the CuO2 ribbon one GeO3 chain, which

form a neutral undulating two dimensional layered structure in the b direction (see fig. 5.

The interatomic distance of O2–O2, which connect two Cu in different ribbons along

the a–axis, illustrated in fig. 3, is 3.06 Å. This is much longer than twice the usually used

ionic radius of O2− for 6–fold coordination, which is about 1.40 ± 0.05 Å, but nearly equal

to twice the van der Waals radius of oxygen (2 × 1.52 Å). This signifies that the bonding

between two layers as defined in the preceding paragraph is small, and probably of the van

der Waals type. A much smaller ionic radius of O2− of about 1.25 Å, fits the interatomic

distances: Ge–O2 and Cu–O2 and the O2–O2 forming the bridge between two Cu in the

same ribbon. This small ionic radius for O agrees with the rule from structural chemistry

that a decrease in the coordination number causes a decrease in the ionic radius: in our
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case O2 is coordinated by only three cations.

Other important structural factors for the calculation of the superexchange interactions

are the bond angles. The most important angle is bridge angle φ = 6 Cu–O–Cu in the

ribbon plane, which is slightly larger than 900. The deviation of this angle from 900,

β, determines the sign of the nn superexchange. Another important angle is the hinge

angle α = 6 (O2–O2)bridge–Ge, which is about 1600. These angles change as a function of

pressure, doping, temperature and at the SP transition. In the SP phase the hinge and

bridge angle have two distinct values (see table 1) due to the dimerization of the Cu chains.

A very simplified model for this SP transition is presented in fig. 4. It is predominantly

these angular variations which determine the properties of CuGeO3.

The angles which determine the transfer in the a and b direction are given in fig. 3

and 2: the angles ρa = 6 (O2–O2)bridge –Oa and ρb = 6 (O2–O2)bridge–Ob, which are about

1200 and θa = 6 (O2–O2)a–Cu and θb = 6 (O2–O2)b–Cu, which are about 1100. These

angles show only very small changes as a function of temperature and through the SP

transition.

1.2 The magnetic properties.

The magnetic properties – as well as properties related to it – of CuGeO3 in the ordered SP

phase can well be described by the Cross–Fisher [2, 3] theory, however magnetic properties

above the SP transition in the uniform phase do not agree with the usual 1D–Heisenberg

spin 1/2 model with nn exchange Jnn only. Also a consistent interpretation of these

properties based on this model seems impossible because it leads to widely different values

for this exchange constant.

In table 2 we have collected experimental values for the exchange constants of CuGeO3.

The exchange constants in the c direction are defined by the Heisenberg Hamiltonian:

HH = Jnn

∑

i

(1 + δ(T )(−1)i)SiSi+1 + Jnnn

∑

i

SiSi+2. (1.1)

Some authors do not specify how they define their exchange constants, which can easily

lead to confusion. At present a model which includes also nnn exchange Jnnn along the

Cu chain, gives the most consistent set of exchange parameters. Assuming Jnn ≈ 11 to
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15 meV and the frustration parameter γ = Jnnn /Jnn ≈ .24 – .51 an agreement can be

obtained between model calculation and experiments: high temperature (HT) suscepti-

bility, magnetic specific heat, magnon dispersion. We consider the exchange constants

determined in [15] as the most reliable set. For the exchange constants in the a and

b direction we rely on the ones determined by Nishi et al [6]. These are rather small,

compared with the interactions in the ribbon. Note however that from recent analysis of

Raman magnon spectra [18] one finds indications for significant interchain superexchange

interactions. This interchain exchange is probably also responsible for the disagreement

between the frustration parameter determined from these spectra and from susceptibility

and other data. Also Kuroe et al [17] find a somewhat larger interchain exchange interac-

tion in the b direction from an analysis of Raman spectra: Jb = 0.50 meV. Thus, whether

the Cu chain can safely be regarded as a 1D chain remains questionable.

In the SP phase one finds two alternating values for the nn exchange in the Cu chain.

This is usual expressed by: J±
nn = J(1 ± δ(T )), where J is the average nn exchange

interaction in the SP phase, and J±
nn are the two alternating values. The dimensionless

quantity δ(T ) depends on the temperature. From table 2 we see that the estimates of this

parameter at T = 0 K range from 0.014 to .3, i.e. over one order of magnitude. Gros et

al [18] find the best agreement with magnon spectra for an intermediate value.

An important feature of the Jnn–Jnnn model is that it predicts a spin–gap to develop

in the magnetic excitation spectrum for γ > γc ≈ .2412 [9]. This gap opens irrespective

of any lattice distortion. So a singlet spin liquid phase can originate either from the usual

SP mechanism or from frustration of the antiferromagnetic order due to a relative strong

Jnnn exchange interaction.

Based on the preliminary results of a study of the dependence of the exchange constants

on the bond angles ([19, 20]) we proposed a microscopic mechanism for the SP transition

in CuGeO3: in first approximation we attribute the main lattice changes as due to the

change in the soft bond angles especially the angle which the Ge–O bond makes with the

CuO2 ribbon – the hinge angle (α), and the Cu–O–Cu bridge angle (φ) in this plaquette.

In fig. 5 we present a simple picture of this model as applied to the distortion of the
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CuGeO3 lattice when pressure is applied along the b–axis. The two basic units of the

structure – the CuO2 ribbon and the GeO3 chain rotate around the shared O ions: the

hinges. This hinge angle has a strong influence on the strength of the nn exchange in

CuGeO3. We will see that its influence on the nnn exchange is small.

1.3 The magnetoelastic properties.

So, of interest for our model are the dependencies of these exchange constants on the

lattice parameters. Büchner et al (1996) [21] have recently performed a study of the

magnetostriction and thermal expansion of CuGeO3 single crystals. They obtained for

the pressure dependence of the susceptibility χ along the three principle axes δχii/δPi at

60 K: the a–axis -2.5 %/ GPa , the b–axis 5 %/ GPa, and for pressure along the c–axis: 1

%/ GPa. These pressure dependencies are nearly constant from 20 K up to 60 K. Assuming

that in the paramagnetic phase at temperatures far above the SP transition temperature,

the magnetic susceptibility follows a Curie–Weiss type law, one derives for the variation

of the nn exchange in the ribbon with pressure δ lnJnn = 2.3δ ln χ, so: δ ln Jnn = −5.7,

+11.5 and +2.3 %/GPa, in the a, b and c direction, respectively. We assume that the

other exchange contributions are either too small or are independent of pressure.

In order to interpret these magnetoelastic data with structural distortions we have to

relate them to elastic data. We use the following elastic constants for an interpretation of

these data: c11 = 66 GPa; c22 = 24 GPa;c33 = 300 GPa. We neglect off–diagonal elastic

response.

First consider pressure along the b– and c–axes as these are most straightforward to

interpret. Assuming that most of the distortions due to the application of pressure are

due to changes in the bond angles one finds for pressure along the c–axis, the bridge angle

is the softest structural parameter: δφ/δP )c axis = −0.40/GPa, while for pressure along

the b–axis the hinge angle is the most soft structural parameter: δα/δP )b axis = −50/GPa,

where the angle φ = 6 (Cu-O-Cu) is the bridge angle, and the angle α = 6 (Ge-ribbon)

the hinge angle. For their values see table 1. The effect of pressure along the b–axis on

the structure is illustrated with a somewhat simplified version of fig. 5 in fig. 6. The
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compression of the lattice due to pressure along the b–axis changes the hinge angles α

while leaving the bond lengths nearly constant.

Pressure along the b–axis can also cause a slight increase of the bridge angle, but we

neglect this response of the lattice; an increase in the bridge angle would cause a decrease

of the O2–O2 bondlength, which is already very small and thus very unlikely. Such an

increase of the bridge angle would make CuGeO3 more antiferromagnetic, and when we

ignore this change in φ we even somewhat underestimate the effect Pb on Jnn.

Another structural distortion due to pressure along the c–axis would be a buckling

of the CuO2 chain. The effect of such a buckling on the exchange constants is probably

small, and antiferromagnetic. So when we ignore this buckling effect we underestimate

the effect of Pc on Jnn.

The data for pressure along the a–axis are more difficult to translate into changes of

a single bond angle. Pressure along this axis would cause probably first a decrease of

the van der Waals gap between the layers. The next effect would be a decrease in the

thickness of the these layers. This thickness is determined first by the Ge–O–Ge zig–zag

chain. So a compression of the layers can be accomplished by stretching the GeO3 chain

which will force an increase of the Cu–O–Cu bridge angles. However like we argued in the

previous paragraph this increase of the bridge angle is counteracted by the repulsion of

the two O2 bridge ions between two nn Cu ions in the chain. Furthermore, an increase of

the tetrahedral angle at The Ge which connects two CuO2 ribbons will flatten even more

the GeO3 chain. The latter could well lead to an increase in the distance between two Ge

neighbors in the a direction. A variation of the hinge angle by a rotation around the O

hinges of the two principle subunits is not susceptible directly to the a–axis compression.

A simple accordion effect increasing the b–axis, i.e. a rotation around the O hinges, will

not help in compressing the system in the a direction.

So altogether one cannot make a straightforward estimate of the change in bridge

angles induced by pressure along the a–axis. Assuming that each tetrahedral O–Ge–O

angle contributes half of the compression one can make an estimate of the change in the

bridge angle. From this we expect that pressure along the a–axis will have an effect
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opposite to pressure along the c–axis, which would be about 2 to 3 times as large as the c–

axis effect. So we derive an increase of the bridge angle of about 20 per GPa pressure along

the a–axis. This is about 5 times as large as for applying pressure along the c–axis, while

the change in susceptibility is only about 2.5 times as large. From this one might conclude

that probably the largest change in the tetrahedral angle is the one connecting two CuO2

ribbons, i.e. the Ge–O–Ge angle in the b direction, which does not force a change in the

bridge angle, and agrees with the earlier argument of constant O2–O2 distance.

For a detailed analysis of these data we refer to Büchner et al (1997) [22]. These data

show that the magnetic properties are very sensitive to the hinge angle α = 6 O–O–Ge

and bridge angle φ = 6 Cu–O–Cu, like we predicted [19].

From the above we derive that the nn exchange constant in the ribbon varies with

these bond angles as follows. Büchner et al (1997) finds from the shift of the SP transition

temperature under applying pressure along the c–axis a change in the nn exchange constant

only due to the variation in the bridge angle: δ ln Jnn/δφ ≈ 5.8 % /0, and applying pressure

along the b–axis a variation in the nn exchange only due to a variation in the hinge angle:

δ ln Jnn/δα ≈ 2 % /0.

This analysis of the variations of the exchange constant with pressure in terms of

bond angles are based on the assumption of rigid bond lengths, and that only one soft

bond angle varies with pressure applied along each principle direction (b, c). This simple

analysis is not applicable for Pa: in this case more than one bond angle is involved.

Another way to derive these variations would be to correlate the angular variation with

the change in lattice constant as a function of temperature. For the hinge angle this leads

to a twice as large variation and for the bridge angle to nearly the same variation with

the lattice parameters. So we suggest that the uncertainty in the angular variation of the

nn exchange constant derived above has an error of about 100 % and for the hinge angle

a much smaller uncertainty caused by variations in the bridge angle.

Furthermore Büchner et al (1997) find the following approximate relation between the

variation of the SP transition temperature and the average susceptibility (χ) at 60 K:

[δTSP /δPi]/[δχ/δPi] ≈ 1.5 ± 0.4 107 K g/emu for all directions i = a, b, c. Let us assume
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that the SP transition temperature is proportional to the exchange constant. Then we have

for the linear variation of the nn exchange constant δJnn/δPi = constant0.5 × δχii/δPi,

and we find for the relative variations of the exchange constant in the a, b and c direction:

δJnn = −1.1 : 2.5 : 0.6. Above we found for this relative variations from the analysis of

the HT susceptibility approximately the same ratios: −1.1 : 2.2 : 0.45.

1.4 Superexchange and Structure

As is well–known an exchange between magnetic moments in insulating magnetic com-

pounds based on late transition–metals is predominantly caused by the so–called superex-

change. This superexchange is due to the overlap of the localized orbitals of the magnetic

electrons with orbitals of intermediate nonmagnetic ligands. There are many processes

contributing to superexchange, which appear under various names in various calculational

schemes. Nevertheless, usually the sum of these partial processes give results which follow

the Goodenough–Kanamori–Anderson (GKA) [24] rules. These rules are based on orbital

symmetry considerations and the assumption that the most important covalent bonding

is dpσ. According to these rules a 1800 superexchange (the magnetic ion–ligand–magnetic

ion angle is 1800) of partially filled d shells with dpσ bonding, is antiferromagnetic, whereas

a 900 superexchange is weakly ferromagnetic. This qualitative difference between 1800 and

900 superexchange is due to the fact that, when considering σ bonding only, in the former

case the orbitals of the magnetic electrons are overlapping with the same ligand orbital,

while in the latter case the magnetic orbitals are overlapping with different mutually or-

thogonal ligand orbitals. Neglecting direct dd interactions, the molecular orbitals, based

on these atomic p and d orbitals, are orthogonal, and so there is only a ferromagnetic

superexchange contribution.

Obviously, when π bonding and/or direct dd hybridization become important these

rules do not hold anymore. Also when in the 900 case the orthogonality of the intermediate

ligand orbitals is not strict the GKA rules have to be modified. Such is in fact the case

for the nn superexchange along the c–axis in CuGeO3, which has recently been discussed

in detail by the present authors [19].
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There we have shown that in the case of 900 superexchange one should not only take

into account the local symmetry of the cation but also the symmetry at the anion position.

When valence orbitals of the same type centered at an anion involved in spin transfer

between the two cations have different hybridization with a side group, one can have an

antiferromagnetic interaction instead of the ferromagnetic one predicted by the GKA rules

for 900 superexchange.

In principle similar rules hold for the nnn superexchange interactions. For the nnn

superexchange in the c direction the spin from one Cu can be transferred over two in-

termediate O–p orbitals to the other nnn Cu. In this case the O–p orbitals have a finite

transfer with both nnn magnetic Cu–d orbitals. So these nnn Cu–d orbitals are not or-

thogonal, and this will lead to an antiferromagnetic superexchange interaction; if there is

a finite transfer between two magnetic orbitals, kinetic exchange will usually win from the

ferromagnetic direct or potential exchange.

In the case of CuGeO3 there are two such transfer paths (fig. 7) between nnn’s along

the c–axis. It is clear that this leads to a relatively large antiferromagnetic superexchange

interaction. In the nnn case the ferromagnetic Kramers–Anderson contribution, which is

due to two–site cation–d anion–p exchange and which may cause the pure 900 exchange

to be ferromagnetic, is much smaller than the antiferromagnetic kinetic superexchange.

In section 2 we consider the nn exchange along the c–axis, using various schemes:

perturbation theory, and an exact diagonalization of a Cu2O2 plaquette. The effect of the

Ge side group attached to the bridging O pair is taken into account using two approaches.

In the first, most simple approach the influence of Ge is taken into account by a shift of

one of the p orbitals (py), and a covalent reduction of the matrix elements containing this

orbital. The hinge angle α only appears to describe the effective hybridization between

the Ge–sp3 and this py orbitals.

In a second approach to describe the influence of the side group Ge on the O–p levels

we rotate these O-p orbitals of the O–O bridge so that one obtains a σ bonding between

O–py and the Ge–sp3 hybrid. The states in the planar Ge–O–O–Ge cluster can easy be

diagonalized. This is described in Appendix A.
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We study these nn and nnn exchange interactions as a function of the lattice param-

eters. We find that perturbation theory, giving quite reasonable results for the exchange

constants themselves, is not able to describe their dependence on the bond angles as found

from the analysis of the pressure dependence of the magnetic susceptibility. We find that

an exact diagonalization of the Cu2O2 plaquette is more successful in this respect, and

results of this approach can be found in section 3. The reason that the exact diagonaliza-

tion of the cluster model gives better results compared with the fourth–order perturbation

expansion is that in the perturbation approach the angular dependence is mainly caused

by the hybridization, the splitting of the levels being constant. In the case of an exact

diagonalization the changes in the hybridization are partly compensated by the changes

in the level splitting.

Because of the large ratio of the nnn and nn exchange, the question arises whether

one should also take into account an exchange interaction along the c–axis with neighbors

further away. In order to do this systematically we use a band model for the electronic

structure of the nonmagnetic anion states. Such a model has been described by one of the

present authors [26]. In this model we only consider two cations at a distance R, each with

one nondegenerate half–filled d–like state, interacting via a fully–occupied valence band,

consisting of mainly anion p states. In this case one obtains a closed set of equations in

terms of two–particle Green functions. We have taken into account ppσ as well as ppπ

bonding. The effect of the Ge side group is easily taken into account within the simple

scheme, by shifting the energy of the p levels and by introducing a covalent reduction

parameter for the matrix elements involving these O–p orbitals. In this approach we only

calculate the contribution corresponding to the kinetic exchange and correlation exchange

mechanism. The contributions stemming from the two–site dp exchange and from the

anion on–site pp exchange are calculated in fourth–order perturbation theory. In section

4 we give a short account of the application of this model to CuGeO3.

In section 2.3 we consider using perturbation theory the exchange interactions along

the a– and b–axis. An estimate of these superexchange constants is of importance because

these determine whether one can safely consider CuGeO3 a 1D Heisenberg spin system
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or one has also to take into account these superexchange interactions in case they are

of comparable magnitude to the ones along the c–axis. The exchange transfer paths are

illustrated in fig. 2, and 3. Note first that in both cases there are two exchange transfer

paths for the nn interactions, and there is a transfer path to the nnn Cu in both these

directions, which partly coincides with the one of the nn transfer paths. Because the O–O

bond length is in the a–axis case much longer than in the b–axis case, it is clear that the spin

transfer along the b–axis is stronger then along the a–axis. So we expect that the kinetic

superexchange interactions between the CuO2 ribbons in the b direction are larger than in

the a direction. In the b direction we expect a weak antiferromagnetic interaction, and in

the a direction an even weaker antiferromagnetic or even weak ferromagnetic interaction.

An important clue for the microscopic picture of the SP transition stems from a com-

parison of the magnetic properties of weak doping by Zn for Cu and Si for Ge. One finds

in both cases that a small amount of impurities has an appreciable lowering effect on the

SP transition temperature. That small substitutions of Si for Ge has a large effect on

the SP transition is at first sight difficult to understand, because Ge and Si ions are only

indirectly involved in the nn superexchange interaction in the Cu chains. However closer

examination shows that the Si ion has a number of effects on nn superexchange along

the c–axis. First, because Si4+ has a smaller ionic radius than Ge4+, it causes one of the

Cu–O–Cu angles of the CuO2 plaquette to decrease, and secondly it may increase the

Cu–O bond length. Furthermore, this O bonded to Si is taken out of the CuO2 ribbon

plane. This is illustrated in fig. 10. All these small geometrical changes add to a relative

large absolute decrease in the kinetic exchange coming from the Cu–O–Cu transfer path

to which Si is attached. Due to this relative local distortion of the O–hinge, i.e. the hinges

of the accordion model, the accordion motion becomes frustrated. This distortion inhibits

an easy rotation of the CuO2 ribbon w.r.t. the GeO3 chain. Si is attached to two CuO2

ribbons and so is twice as effective as Zn on a Cu position to destroy the ordered SP phase.

We discuss the consequences of this substitution for nn superexchange in the c direction

in section 5.
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2 Theory

Let us first discuss the nn exchange interaction along the c–axis because these seem to

be of major importance for an understanding of the magnetic properties of CuGeO3. The

nn superexchange involves spin exchange over two 900 cation–anion–cation transfer paths.

Expressions for the various contributions to superexchange for this configuration have been

presented before in a discussion of effects due to side groups – bonded to the bridging O

ligands of two magnetic cations – on superexchange [19]. There we emphasized especially

these side group effects in a more general context. Below we want to apply these ideas

in a somewhat more rigorous scheme to CuGeO3. In order to illustrate the method and

approximation we use let us consider in some detail the nn 900 superexchange along the

c–axis in CuGeO3. The Cu ions have a d9 configuration. The unpaired electron is in

a dx2−y2 orbital as illustrated in fig. 8. On the oxygen we only consider the px and py

orbitals in he ribbon plane. We will only consider σ–type covalent mixing between this

Cu–d orbitals and these O–p orbitals. It is defined by λ = tdp/∆, where ∆ = ǫd − ǫp, and

tpd = 〈d|Heff |p〉 is the transfer integral.

The influence of the side group Ge is taken into account in two factors. First, by a

shift in energy (δp) of the atomic O p levels bonded with Ge, and secondly by introducing

a covalent reduction parameter η for the various interactions involving this p orbital. In

this model we neglect the influence of the pz orbital hybridization with the Ge sp3–like

hybrid. The pz is perpendicular to the ribbon plane and so does not participate in the

spin transfer process. This model is equivalent to a model in which only the Ge-O bonding

levels are taken into account in the spin exchange process. Because of their high energy,

the antibonding Ge-O bonds are not participating in the spin exchange process.

In [19] we did not take into account explicitly that Ge is outside the ribbon plane. At

room temperature the hinge angle is about 1600, i.e. about 200 out of the ribbon plane.

Changes in this angle as a function of temperature, pressure and phase are – as we will

see – the principal causes for the changes of the nn exchange interaction along the ribbon.

And thus a study of the sensitivity of the exchange interactions for these induced changes

in the lattice parameters can be important for an understanding of the mechanism of the
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SP transition in CuGeO3.

As we discussed in the introduction, this hinge angle is very susceptible to pressure

along the b–axis. In this case the CuO2 ribbons are rigid units, rotating with respect to the

rigid chain of GeO4 coupled tetrahedra: the accordion model (see fig. 5). The angles and

bond lengths within the CuO2 ribbon and the GeO4 tetrahedra remain the same while the

CuO2 ribbons rotate around the O shared with the GeO4 tetrahedra. This is illustrated in

fig. 6 where we present a simplified version of this model emphasizing the changes in the

hinge angle and the bridge angle. Inspection of fig. 5 makes it clear that there is enough

room in the structure for such a rotation of these units with respect to each other.

2.1 The influence of side groups.

In the first approximation one explicitly introduces a mixing of the Ge–sp3 and O–p

orbitals, depending on its angle with the ribbon. We define the Gesp3–Opy transfer integral

by Vσ = 〈sp3|Heff |py〉 = cos(α)V0σ , where V0σ is the value of this matrix element when

Ge is in the ribbon plane. This model is a simple extension of the model presented by the

present authors [19]: the hybridization and therefore the covalency factor η depends on

the hinge angle α.

In this model the covalency factor defined above is to lowest order

η = 1/(1 + δp/δσ cos2(α))1/2, (2.2)

where δp is the energy shift of the py level due to the Ge–O covalency, and δσ is the energy

difference between the Ge–sp3 level and the O–py level. This factor η is used to correct

the matrix elements involving the O–py level. For example the ppσ bonding in the O pair

bridge between two Cu in the ribbon, becomes

W⊥ = W0⊥η2. (2.3)

Also because of this hybridization of the py orbitals with the Ge orbitals the Cud–Op,

transfer becomes less effective by a factor η.

The usual way to discuss the superexchange interaction for the 900 cation–anion–cation

configuration is to take the axis of quantization like in fig. 8. In this picture one can easy
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see that for 900 there is no spin transfer possible between the two cations via dpσ bonding.

For our arguments it is convenient to rotate the axis of quantization as shown in fig. 9.

In this picture spin transfer between two nn Cu vanishes because of an interference effect:

due to the phase difference between transfer via the various possible transfer paths the

total nn Cu–Cu spin transfer vanishes.

The principal contributions to the nn superexchange within this model for the elec-

tronic structure are a ferromagnetic contribution due to the spin polarization of the ligand

p orbitals, caused by one of the Cu spins, interacting with the spin on the other Cu by an

two–site pd exchange. This gives a ferromagnetic contribution:

Jnn,KA = −8λ2Jpd, (2.4)

A second ferromagnetic contribution comes from the Hund’s rule coupling on the O–p

orbitals, and is proportional to the on–site exchange interaction JH on the O–p orbitals:

JHund = −4λ2JH . (2.5)

Both these contributions are possible in the 900 as well as in the 1800 cation–anion–cation

configuration. In the case of 900 the two-site Jpd is smaller than in the 1800 case, because

it is in the first case effectively a dpπ–type charge overlap, while in the second case it

is a dpσ–type charge overlap. These two mechanisms are held responsible for the often

found ferromagnetic superexchange in the 900 case, because as we will see in this limit the

antiferromagnetic contributions (nearly) vanish.

When the Cu–O–Cu angle deviates from 900 also other mechanisms start to contribute

to the nn superexchange interaction. The most important are the kinetic and the correla-

tion+ring exchange mechanisms. A brief discussion of these mechanisms can be found in

[19] and a detailed account in [26]. A simple derivation gives for the contribution of the

kinetic exchange mechanism:

Jkin,nn,c = −16
[

λ2
x∆x − λ2

y∆y

]2
/Ud, (2.6)

where the excitation energies include the pp hybridization W⊥, and the shift δp due to the

side group Ge: ∆x = δdp, and ∆y = δdp + W⊥ + δp. The covalency parameters include
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the geometric factors: λx = λ sin(φ) sin(φ/2) and λy = λη sin(φ) cos(φ/2), where η takes

into account that part of the py orbital is hybridized into an antibonding Ge–O (sp3–py)
∗

orbital. One can easy check that Jkin,nn,c vanishes in the case of equivalent px and py

orbitals.

For the correlation and ring exchange mechanism one finds:

Jcor,nn,c = −16λ4
x∆2

x

(

1

2∆x
+

1

∆xx

)

− 16λ4
y∆

2
y

(

1

2∆y
+

1

∆yy

)

+8λ2
xλ2

y(∆x + ∆y)
2

(

1

∆x + ∆y
+

1

∆xy

)

, (2.7)

where the excitation energies are ∆µν = ∆µ + ∆ν + Uµν ; Uµν is the Coulomb interaction

on the ligand p orbitals. The terms with ∆µν are contributions involving excitations from

one ligand, while the terms with ∆µ are due to excitations from p orbitals on different

ligands. The latter are the genuine ring exchange contributions.

One can show, by expanding Jcor,nn,c in Uµν/(∆µ + ∆ν), that it includes the Hunds

rule contribution JHund. The remaining contribution is:

J ′
cor,nn,c = −16(λ2

x∆x − λ2
y∆y)(λ

2
x − λ2

y). (2.8)

This contribution also vanishes in the case of equivalent O–p orbitals.

Results of this approach, using the parameters of table 4 are presented in table 5 for

various values of the Cu–O–Cu angle, at room temperature and at 20 K and also for both

angles φ (see table 1) in the SP phase and for the average angle of φ in the SP phase.

Note that the ratio γ of the nnn and nn exchange is in the region where one expects a

significant contribution from spin frustration on the SP transition.

An important parameter in the SP phase is the ratio: δ = |J1 − J2|/(J1 + J2). We

find approximately δ = 0.09, which is in the range of values found in literature (see

introduction).

The gap in the spin wave spectrum in the SP phase is approximately given by: ESG =

2.1J0(µ)2/3 [2]. We find ESG = 1.4 meV, which is small compared with the experimental

value of about 2.1 meV. The deviation from the experimental value can be due to the

extra contribution coming from the frustration of the exchange interaction in the CuO2

ribbon.
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2.2 Explicit side group hybridization

Another and probably better way to include Ge is to rotate the axis of quantization of

the O–p levels with the rotation of the Ge, so that the O-py orbital always points to the

Ge–sp3 hybrids. Here we will not give the details of this approach. It is sufficient to

mention that the calculation of the exchange interactions follows the same calculational

scheme as for the simple side group approach presented in the previous subsection.

In this approach the covalency parameter η does not change with the 6 Ge–(O–O)bridge

but one now has to solve for the O-py and O-pz levels explicitly, and neglecting again the

Ge–like antibonding (sp3–py)
∗ states one can easily diagonalize the problem. More details

can be found in Appendix A.

The results of this attempt to improve the simple side group model presented in the

previous section are rather disappointing: the discrepancy between the angular depen-

dence of the nn exchange along the c–axis and experiment increases: they differ by an

order of magnitude. We conclude from this that when one accounts only for variations

of the transfer matrix elements and but not for the variations in the perturbed energies

of the electronic states, one overestimates the angular dependence of the superexchange.

Before we give details of a nonperturbational approach, which corrects for this deficiency,

we present first results about the superexchange interactions which do not have such a

strong angular dependence: the nnn superexchange along the c–axis, and the nn and nnn

superexchange in the a and b direction.

2.3 The next-nearest-neighbor exchange interactions.

Let us consider the nnn superexchange along the CuO2 ribbon shown in fig. 7. We take

into account only the ppσ bonding: W‖. Thus we only need to consider the p orbitals

directed along the c–axis: the px orbitals in this figure. There is no side group effect

because these p orbitals are perpendicular to the Ge sp3 orbitals. The various contributions

to the nnn exchange along the c–axis become
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• The kinetic exchange:

Jkin,nnn,c = −4λ4
x

[

1

δdp + W‖
− 1

δdp − W‖

]2

δ4
dp/Ud. (2.9)

• The correlation exchange:

Jcor,nnn,c = −4λ4
xδ4

[

1

(δdp + W‖)2(2δdp + 2W‖ + Upx
/2)

+
1

(δdp − W‖)2(2δdp − 2W‖ + Upx
/2)

−

4
δ2
dp

(δ2
dp − W 2

‖ )2(2δdp + Upx
/2)

]

. (2.10)

• The ring exchange contribution:

Jring,nnn,c = −2λ4
xδ4

dp

[

1

(δdp + W‖)3
+

1

(δdp − W‖)3
− 2

δdp

(δ2
dp − W 2

‖ )2

]

. (2.11)

• The ferromagnetic Kramers–Anderson contribution:

Jferro,nnn,c = 8λ2
x

[

1

δdp + W‖
− 1

δdp − W‖

]2

δ2
dpJpd,c, (2.12)

where Jpd,c is the two–site dp exchange between the px orbital and the dx2−y2 orbital.

We have taken Jpd,c = (Jpσdσ +Jpπdσ)/2, and we approximate Jpσdσ ≈ 4Jpπdσ in our

numerical evaluation of the nnn superexchange.

The total nnn exchange along the c–axis is given by the sum of these contributions:

Jtot,nnn = Jkin,nnn,c + Jcor,nnn,c + Jring,nnn,c + Jferro,nnn,c. (2.13)

The expressions for the nn superexchange interactions in the a and b direction are

equivalent to those for the nnn exchange in the c direction. Also in this case there are two

transfer paths involving two oxygens. One has only to change the definition of some of the

parameters in the expressions for the contributions to nnn exchange in the c direction.

Concerning the geometrical factors only the Cu–O–O bond angles and O–O bond lengths

are different. In both directions (a and b) the O–O bond in the transfer paths are in a plane

perpendicular to the ribbon. In the a–axis case the O–O bond is nearly perpendicular to

that of the Ge–O bond: τa = 820, while for the b–axis case this angle is about τb = 350.
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So for the a direction we expect a weak influence of the side group on the superexchange

interaction while in the b direction we expect a larger influence of the side group. The

reduction factor is:

ηi = 1/(1 + δp/δσ cos2(τi))
1/2. (2.14)

The dp covalency is now given by

λi,σ = λ0xηi cos(ρi) sin(φ), (2.15)

where ρi (i = a, b) is the angle between the O–O pair and the Cu–O bond in the ribbon

(ρa = 1080, ρb = 1110). The factor sin(φ) corrects for the fact that the dx2−y2 is not along

the Cu–O bond. Although the two transfer paths to the nn Cu sites in another ribbon

are not equivalent concerning their torsion – one Cu–O–O–Cu path has a torsion of 00

or 1800, while the other has a torsion of about 1100 – this is of no importance for the

evaluation of the superexchange when one only takes into account σ bonding.

A peculiarity of the CuGeO3 structure is that in both a and b directions there is

exchange to nnn Cu via one transfer path which is equivalent with one of the transfer

paths to the nn Cu. So the contributions to the nnn superexchange in the a and b direction

are the same except for a numerical factor as those for the nn superexchange. Obviously,

in the latter case the ring exchange does not contribute. Thus, the expressions for the

nnn in the a and b direction can be easily written down.

Ji,kin,nnn = Ji,kin,nn/4,

Ji,cor,nnn = Ji,cor,nn/2,

Ji,ferro,nnn = Ji,ferro,nn/2. (2.16)

These two superexchange constants nn and nnn are of the same order of magnitude.

3 Exact diagonalization of the Cu2O2 plaquette

In this section we give the results of an exact diagonalization of the Cu2O2 plaquette. The

set of parameters used in this section are the same as used in the previous sections. We

20



also take into account the ppπ bonding, and take for the ratio Wπ/Wσ = 0.5.

The side group effect is incorporated in the following way. We neglect in first instance

the hybridization of the p orbitals on the O bridge atoms. Then we need to diagonalize

only the Ge–O unit. The energy of the sp3–pσ bonding state is:

ω = 0.5

(

∆σ −
√

∆2
σ + 4V 2

0σ

)

. (3.17)

We obtain the following expression for the covalency parameter:

η =
[

sin2 α + a2
p cos2 α

]1/2
, (3.18)

where ap is the amount of O–p character in the sp3–pσ bond, and α is the hinge angle. The

influence of the side group is now taken into account as due to two sources: a geometrical

and a chemical one. The first is reflected in the hinge angle α, and the second by the

hybridization of the O–p orbitals with the side group (Ge). It is clear that when the hinge

angle is 900 there is no side group effect, regardless of the strength of the hybridization.

The side group effect has a maximum when the hinge angle is 1800, that is in case the Ge

is in the CuO2 plane.

Using the parameters given in the caption of table 6 we find for the covalency parameter

η = 0.925, and for the shift of the O–p level δp = 1.65. We have calculated the change

of the nn exchange constant as a function of temperature, accounting for the changes

in lattice parameters, and find that it varies from 13.5 meV at 300 K to 13.3 meV at

20 K. We also calculate the nn exchange constants in the SP phase and find: the Cu–

Cu dimer exchange is J+
nn = 14.04 meV and for the other nn exchange constant we find

J−
nn = 12.82 meV, so |J+

nn−J−
nn|/(2J) = 0.046. This is approximately the same value found

experimentally. Finally, we calculated the dependence of the nn exchange as a function

of the bridge and hinge angle. We find that these are of the right order of magnitude

compared with experiment.
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4 The band model for the superexchange interactions in the

ribbon

For a further understanding and analysis of the magnetic properties of CuGeO3 it is of

importance to know whether the further neighbor superexchange interactions in the c di-

rection can be safely neglected. Furthermore we have seen that a perturbation approach

is not able to describe the angular dependence of the nn exchange interactions. In the

previous section we gave results of an exact treatment of a Cu2O2 plaquette, and found

results for the dependence of the exchange constants in approximate agreement with ex-

periment. Below we present a model for the calculation of the exchange interaction in

which the nonmagnetic (anion) states are represented by bands, and of the cations we

only take into account two sites. Basically this is the two–impurity Anderson model

applied to non-metals. We also want to study whether a cluster model gives the right

order–of–magnitude estimate of the exchange constants and their dependence on the lat-

tice parameters. A band model is more appropriate for a study of the nnn and next nnn

exchange interactions than cluster models because it implicitly takes into account transfer

paths up to infinite order, and a band model is only limited by the number of orbitals

used as a basis for the description of the bands.

A general model of this kind has already been proposed by Geertsma and Haas [26].

We follow this paper (see Appendix B) and give the appropriate expressions for the case of

CuGeO3 (see Appendix C). The basic idea of this model is to calculate the superexchange

between two magnetic half–filled nondegenerate orbitals which are a distance R apart by

considering only their hybridization with fully occupied valence band states, which usually

consists mainly out of anion states. The empty conduction band states are neglected. The

latter usually consist mainly of cation s states. The d states of the other cations are

also neglected. So we have effectively a two–particle system. Spin transfer can only be

mediated by excitations from the fully occupied valence states. One can now write down

a closed set of integral equations for the two–particle (holes) energies of this system. The

energy difference of the singlet and triplet ground state gives the exchange constant (2J).
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In this model we neglect the ferromagnetic two–site dp contribution and the contri-

bution coming from Hund’s rule mechanism in the band states. These contributions are

calculated in a perturbation scheme, similar to that in section 2.

We proceed as follows. First we calculate the ground state energy of the triplet states

using self-consistent second–order perturbation expansion in the dp hybridization tpd:

ΩT = 2(ǫ0d + Ud − Γ(ΩT )). (4.19)

The expression for the energy shift function Γ can be found in Appendix B (equation B.35).

This solution for the triplet state is independent of the interatomic distance between the

two Cu. There are also fourth–order tpd contributions, but these are neglected. These can

become important when the energy of the ground state in this self–consistent second–order

approximation is very close to the band states. This is not the case for CuGeO3.

We find two contributions to the superexchange interaction. One is due to the kinetic

spin transfer mechanism in which in the intermediate state two holes are on one of the

cations, and the other – the correlation and ring exchange mechanism, in which the two

holes are in band states. The kinetic exchange contribution for two Cu at a distance R is:

Jkin(R) = 4Sd
|γ(ΩT,R)|2

Ud
, (4.20)

where γ(Ω, R), defined by eqn B.36 in Appendix B is the effective dd transfer integral

between the two Cu–d orbitals. It is similar to the transfer integral usually defined in the

Hubbard model. In our model the transfer integral is a function of energy. The factor Sd

is the amount of d character in the two–particle ground state. This normalization factor

is of importance in case of large effective hybridization between the d and band states, i.e.

in case when the triplet state ΩT is close to the top of the valence band.

The correlation and ring exchange contributions are together:

Jcor(R) = Sd(Θ
S(ΩT,R) − ΘT(ΩT,R)), (4.21)

where Θ is given by eqn B.39 in Appendix B.

The side group effect is taken into account in the same way as in the exact solution for

the Cu2O2 plaquette discussed in the previous section. Next we calculate the electronic
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structure of the O–p bands. The pp transfer matrix elements are defined with respect to

their value for a bridge angle of 900. Then we can write (see fig. 7):

W‖ = Wσx = W/(1 + sin β)W⊥ = Wσy = W/(1 − sinβ). (4.22)

The π bonding is a factor r = Wπ/Wσ smaller.

Because we cannot include the important ferromagnetic contributions directly in this

model, we treat them using perturbation theory. This is permissible in case we calculate

the angular dependence of the nn exchange. because these two contributions depend only

weakly on the variation of the bridge and hinge angle. For the further neighbor exchange

interactions it is less clear whether one can safely use this perturbation scheme for the

ferromagnetic Hund’s rule and Kramers–Anderson exchange contributions.

The expressions we use for the ferromagnetic exchange due to two–site pd exchange

are for the nn contribution

Jnn,ferro = −8λ2Jpd, (4.23)

for the nnn superexchange:

Jnnn,ferro = −8λ2 W 2
σx

ǫ2
0d

Jpd, (4.24)

and for the next nnn

Jnnnn,ferro = −8λ2 W 4
σx

ǫ4
0d

Jpd. (4.25)

For the nn Hunds rule contribution

Jnn,Hund = −4λ4JO,H , (4.26)

for the nnn

Jnnn,Hund = −4λ4W0xW0y/ǫ
2
0dJO,H , (4.27)

and for the next nnn

Jnnnn,Hund = −4λ4W 2
0xW 2

0y/ǫ
4
0dJO,H . (4.28)

For the calculation of the exchange interactions we used a similar set of parameters (see

table 6) as used before in the other calculations. The results for the nn and nnn, presented
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in table 6, are in remarkable agreement with those from simple perturbation theory, and

agree with experiment; the value of the ratio of the nnn and nn superexchange γ thus

also agrees with experiment. The dp covalency with the parameters of this table is about

0.24 (calculated as
√

(1 − Sd)/Sd). The shift, δp, of the O–p level is about 1.65 eV, and

η = 0.93. These values are approximately the same as in the calculations presented in the

previous sections.

We have also calculated the nn exchange and the parameter γ as a function of the

bridge angle (β = φ− 900) and hinge angle (α). Results of this study are presented in fig.

11 and fig. 12. For this set of input parameters the dp covalency is nearly independent of

these angles. We see that the nn exchange increases by a factor two, from the situation

when there is no side group effect (α = 900) to the expected maximum side group effect

(α = 1800). For the chosen set of parameters the nn exchange changes sign for β ≈ 0.

The nn exchange has a minimum for φ < 900. If our model for the lattice changes induced

by pressure along the b–axis is right, then we expect that the hinge angle decreases on

applying pressure along the b–axis, and so the nn exchange decreases and the ratio γ of

nnn and nn exchange increases.

We have also studied the influence of the chemical bonding factors of the side group.

Results are presented in fig. 13 and 14. The nn exchange constant and the ratio γ vary

strongly as a function of these chemical bonding factors. The first derivative of the nn

exchange with respect to the bridge angle is nearly constant, while its derivative with

respect to the hinge angle varies strongly as a function of these chemical bonding factors.

We have also calculated the dependence of the nn exchange on the dp and pp covalency,

for the set of parameters of table 6. We find that a 1 % change in these parameters causes

a change of about 0.4 (dp) and 0.3 (pp) meV in the nn exchange constant.

We have studied the temperature dependence of the exchange constants. We find that

the nn exchange constant varies only slightly in going from 300 to 20 K: it increases by

about 0.2 meV. In the SP phase we find a difference of about 1.1 meV between the weak

J−
nn = 13.96 meV, and strong one J+

nn = 15.02 meV. This gives |J+
nn − J−

nn|/(2J) = 0.037.

This agrees with the ratio obtained from the exact diagonalization of the cluster described
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in the previous section.

Finally, we find that the next–nnn superexchange is a factor 40 to 100 smaller than

the nnn superexchange interaction. Thus it is indeed safe to include only first and second

neighbor interactions in a chain.

5 Substitution of Si by Ge.

There appeared some puzzling experimental results on the magnetic properties of low Si

doped CuGeO3. Compared with the results of low substitution of Zn for Cu, Si is sur-

prisingly even more effective in suppressing the SP phase. For the case of Zn substitution

this suppression is obvious, because Zn effectively cuts the magnetic interactions in the

Cu chain. For Si this is less obvious. We adopt the following structural model to describe

how Si perturbs locally the lattice. We assume that Si substituted for Ge is situated at the

original Ge site, and attracts the nn O to form a more or less ideal tetrahedron, with bond

lengths like found in SiO2. The part of the lattice of importance in the next discussion

is shown in fig. 10. Various hybridization parameters like the dp, the pp and the sp3-p

have to be corrected for the changes in the interatomic distances. Also the change of the

geometrical factors in the form of bond angles have to be taken into account. We assume

that all other ions remain fixed at their positions.

When we substitute Si for Ge the transfer path (u) between nearest neighbours in the

ribbon, with Si as a side group, will differ from that with Ge as a side group (l). So we

introduce two dp covalency parameters: one for the Si side group: λµu, and one for the

Ge side group: λµl, where µ refers to the px and py orbitals on the O. Also the O-p Si-sp3

one-electron excitation energy δµu differs from that of Ge δµl.

The expressions for the contributions to the nn exchange in the ribbon become a

somewhat more involved, but can be easy written down, and are in Appendix D. We

approximate the dpπ covalency by: λπ = λσ/3. For the two one–site dd exchange integrals

we take 1 eV.

The Si–O bond length is about .13 Å smaller than that of Ge–O. Within the model for

the deviation proposed above we find that βu ≈ 30, and that the Cu–O and (O–O)bridge
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become both about 10 % larger: tpdu ≈ .9tpd, Jpdu ≈ .9Jpd and W⊥ → 0.9W⊥. We neglect

the slight deviation from planarity of the Cu2O2 plaquette.

As a result we find that Jc,nn ≈ 0±0.5 meV. So Si destroys the nn superexchange in the

Cu2O2 plaquette. The only coupling that remains is the nnn over the plaquette. Compared

with Zn, Si will be more effective in destroying the nn coupling, because it is attached

to two ribbons. Another factor which may influence the doping dependence of the SP

transition is that Zn and Si act differently on the frustration: if one takes into account the

nnn exchange interaction, a Zn–doped chain will be still totally antiferromagnetic (albeit

with weakened AF exchange between Cu’s across Zn), whereas Si, with the Jnnn included

will render the corresponding bond either completely frustrated, or even ferromagnetic.

It is this factor which possibly explains why Si doping is not twice but even three times

more effective in suppressing the SP phase than the Zn ones [27]

6 Discussion.

The fourth–order perturbation expansion usually used in the calculation of superexchange

constants, is also successful in the case of the various exchange interactions in CuGeO3.

We find good agreement of our calculations with experiment. We find a value for the

frustration parameter (see table 5) which is in the range of values found in literature (see

table 2). Also the values for the two alternating exchange constants in the SP phase is in

the range of values found in the literature (see also table 2. The exchange in the a and b

direction are in our perturbation scheme nearly two orders of magnitude smaller than the

nn exchange in the c direction.

However the results for the angular dependence of the nn superexchange using this

perturbation approach differ by nearly an order of magnitude from the experimental data.

Also further refinements in the treatment of the O–O bridge and the hybridization between

these O and the Ge side group give no improvement; on the contrary, the disagreement

for the angular dependence with experiment increases.

In this perturbation scheme the transfer matrix elements depend on these angles. In

the formulation of the superexchange these are the only ingredients which depend on the
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angle. The excitation energies do not depend on the transfer integrals. However, we

know that in general these also may depend on the size of the transfer integrals. This is

usually neglected, and the transfer integrals and excitation energy are taken from some

tight–binding fit to an electronic bandstructure or cluster calculation, so that actually one

takes the energy of the perturbed states: one thus renormalizes the excitation energies.

The energy differences of these perturbed states have a second order dependence on the

transfer integrals.

When the unperturbed energy differences are of the same order as the transfer integrals,

these energies become very sensitive to changes in the transfer integrals. This is actually

the case in CuGeO3.

In order to take into account simultaneously changes in matrix elements and in the ex-

citation energies, we perform an exact diagonalization of a Cu2O2 cluster, using essentially

the same model as in the perturbation approach. We calculated the energy difference of

the singlet and triplet state. In this approach the results for all exchange interactions and

the dependence of the nn exchange on the bond angles compare well with available experi-

mental data. The shift in excitation energy due to the change in bond angles compensates

partly the change in the transfer integrals. The consequence is that the nn exchange in

the ribbon is much less sensitive to changes in the lattice parameters.

We obtain rather small – nearly two orders of magnitude smaller than the nn exchange

in the c direction – values for the exchange in the a and b direction. We also find a rather

small next–nnn exchange in the c direction from our solution of the band model. Thus

from our calculation it follows that one can view this compound as a frustrated 1D spin

system with nn and nnn exchange in the c direction.

We calculated the consequences of the substitution of Ge by Si, using the perturbation

approach. Due to the decrease in the bridge angle φ, and the increase in the hinge angle β

the nn exchange in the ribbon decreases strongly. We know that the perturbation approach

overestimates the sensitivity of exchange for these lattice changes. However even a much

smaller change in the nn exchange, for example a decrease by only 50 %, would have drastic

consequences, because such a value would effectively frustrate the exchange interaction:

28



nn and nnn exchange then become approximately the same, which may introduce kink in

the long–range order.

The values for the alternating exchange constant in the SP phase are of the right order

of magnitude; note however that the analysis of the experimental data give values which

differ by an order of magnitude (see discussion in the introduction).

Another consequence of this model is an elastic one. The rotation of the two 1D sublat-

tices CuO2 and GeO3 around the shared oxygen becomes frustrated in case of substitution

of Si for Ge: the Si–O bond is shorter than the Ge–O bond. Rotation of these two units

would then also involve a change in the Cu–O bondlengths: increase of the hinge angle

would increase the Cu–O bond length, in order to accommodate the Si–O bond length.

Thus we expect that Si doped CuGeO3 shows a less strong dependence of the susceptibility

on applying pressure along the b–axis.

7 Summary and Conclusions.

In this paper we carried out microscopic calculations of the exchange constants in CuGeO3

and studied their dependence on the lattice parameters. Our treatment in this paper allows

to explain many features of this compound, which at first glance look rather puzzling, such

as the observed sensibility for pressure applied perpendicular to the CuO2 ribbons, and

the sensitivity of the nn exchange along the c–axis to Si doping

We show how the account taken of the local geometry and the side groups Ge and Si

lead to a rather detailed microscopic picture of the distortions in CuGeO3, both above and

below the SP transition. These results are largely specific for this particular compound,

although some of the conclusions (for example the role of side groups in superexchange

and the importance of soft bond bending modes) are of a more general nature.

We conclude that a perturbation approach is valid for the calculation of the superex-

change parameters for a fixed set of lattice parameters, but when one wants to study the

dependence of these exchange parameters on the lattice parameters one has to take into

account also the shift of the energy levels. Only in the limit of very ionic compounds these

shifts are too small to be of significance. A cluster model – in our case Cu2O2 – and also
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a band model for the anion (O) states give results that compare well with experiment.

We conclude also that the nn exchange in the CuO2 ribbon is most sensitive to changes

in the hinge angle. The other exchange interactions, in the ribbon and between ribbons,

are rather insensitive to the side group Ge. The sensitivity of the nn exchange to the

changes in the lattice is due to the strong interference effects which are not present in

the case of the other exchange interactions: nnn in c direction, and nn in the a and b

direction. This sensitivity to the side groups is also the cause of the large influence of Si

substitution on the nn exchange.

The presence of the two one–dimensional sublattices: the CuO2 ribbon and the GeO3

chain, which can easy rotate with respect to each other around the shared O ions – the

accordion model – is the basis for the understanding of the properties of this inorganic

spin–Peierls compound.
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A Explicit side group treatment.

In this appendix we give the expressions for the covalency parameters in case we take

into account explicitly the O-Ge σ hybridization. On the Ge we only consider a sp3

hybridized orbital pointing in the direction of the O in the ribbon, hybridizing with the

O–py orbital. The O–px orbital points along the ribbon, and therefore the O–px orbital

are not hybridizing with the sp3 hybrids. We neglect again ppπ bonding. For more details

see the main text. Note that we now also have to include the pz orbitals on the O, because

they have a component in the CuO2 ribbon plane. The px are not affected, these remain

in the ribbon, perpendicular to the Ge-sp3 hybrid. Because all three p orbitals of O can

now participate in the spin transfer process, the number of covalency parameters increases

from 2 to 3.

In this approximation the dpσ covalency parameters λx , λy and λz can be written as:

λx = λ0x sin(φ) sin(φ/2),

λy = λ0y sin(φ) cos(φ/2) cos(α)η0,

λz = λ0z sin(φ) cos(φ/2) sin(α), (A.29)

where λ0µ = tdpσ/∆µ (µ = x, y, z), and where ∆µ is the energy difference between the

dxy orbital and pµ: ∆x = δdp, ∆y = δdp + δp + Wy and ∆z = δdp + Wz. Furthermore the

ppσ transfer is for the bridging O pair: Wy = W⊥η2
0 cos2(α) and Wz = W⊥ sin2(α). The

covalency parameters λy and λz depend on the angle α = 6 (Ge–(O–O)pair−−bridge. When

this angle is 900, λy vanishes, because Ge is perpendicular to the Cu2O2 plaquette. In

this case there is no side group effect. When α = 1800, λz vanishes, because Ge is in the

plane of the plaquette. In this limit the side group effect has a maximum.

In order also to take into account the change in the O–O pair bond length, we define

W as the transfer integral in case that the 6 Cu–O–Cu is 900. For the pp hybridization

we assume a R−2 scaling, and for the dp we assume a R−3 scaling So for the deviation

from 900, given by β, and assuming that the Cu–O bond length does not change we can

write for the pp transfer integral of the O–O pair bridge,

W⊥ = W/(1 − sin(β)), (A.30)

31



and for later use the ppσ transfer along the ribbon

W‖ = W/(1 + sin(β)). (A.31)

B Two impurity Anderson Model for Superexchange in Non

metals

In this appendix we give the expressions for the various functions appearing in equations

for superexchange in CuGeO3 in the two–impurity Anderson Model. In this model the

nonmagnetic states are described by band states, and the magnetic states by localized

d–like functions. The hybridization between these two kind of states is tdk. The only

Coulomb interaction one takes into account is the on–site Coulomb interaction Ud on the

two magnetic ions.

The basic equations for the electronic structure and the exchange interactions can be

found in [26]. There are two contributions to superexchange: the kinetic superexchange

and the correlation exchange. The latter includes the ring exchange contribution. The

ferromagnetic contributions due to the Hund’s rule coupling in the nonmagnetic states

and the ferromagnetic due the exchange coupling between the band and localized states

do not appear in this model.

The expression for the kinetic exchange up to fourth order in the dk hybridization is

for two d orbitals 1 and 2 at a distance R:

Jkin = 2
(

Γ(ΩS) − Γ(ΩT )
)

+ 4
|γ12(Ω

S |2
ΩS + 2ǫ0d + Ud − Γ(ΩS)

, (B.32)

where the triplet energy is given by the solution of:

ΩT = −2
(

ǫ0d + Ud − Γ(ΩT )
)

, (B.33)

and the singlet energy is given by the solution of

ΩS = −2(ǫ0d + Ud − Γ(ΩS)) − 2
|γ12(Ω

S)|2
ΩS + 2ǫ0d + Ud − Γ(ΩS)

. (B.34)

The energy of the triplet state is in this contribution independent of the distance between

the cations, while the energy of the singlet state depends on the distance between the two
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atoms. The second–order energy shift is:

Γ(Ω) =
∑

k

|tdk|2
Ω + ǫ0d + Ud + ǫk

, (B.35)

and we have defined:

γ12(Ω) =
∑

k

t1ktk2

Ω + ǫ0d + Ud + ǫk
, (B.36)

where the sum over k also is over the bands.

An expansion around the lowest triplet energy determined from equation B.33 gives

for this kinetic energy contribution for two d orbitals 1 and 2 at a distance R:

Jkin(R) = 4Sd
|γ12(Ω

T |2
Ud

, (B.37)

where Sd is the total d character in the particle triplet ground state. It is given by

Sd = 1/(1 − 2
δΓ(Ω)

δΩ

∣

∣

∣

∣

Ω=ΩT

). (B.38)

Especially in covalent systems, where the perturbed partially filled localized states are

near the top of the fully occupied valence band, this factor is important to obtain good

agreement between an exact solution and this approximate expansion.

The energy of the two–particle singlet and triplet states including the correlation and

ring exchange mechanism are up to fourth order for two d states 1 and 2 determined by

the following integral equations:

ΩS/T = −2(ǫ0d + Ud − Γ(ΩS/T )) −
∑

k,l

[

(

1

ΩS/T + ǫk + ǫ0d + Ud
+

1

ΩS/T + ǫl + ǫ0d + Ud

)2

|t1l|2 |t2k|2 ± t2ltl1t1ktk2

ΩS/T + ǫk + ǫl

]

, (B.39)

where the +/- apply to the singlet/triplet state. Let us denote the sum over k, l in the rhs

of this expression by ΘS/T . We assume that the exchange constant is much smaller than

any of the excitation energies. We may expand the energy of the singlet state around the

triplet state energy given by equation B.33, and we obtain for the correlation contribution

to the superexchange interaction:

Jcor(R) = Sd(Θ
S
12 − ΘT

12), (B.40)
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which can be further approximated by

Jcor(R) = 2Sd

∑

k,l

[

(

1

ΩT + ǫk + ǫ0d + Ud
+

1

ΩT + ǫl + ǫ0d + Ud

)2 t2ltl1t1ktk2

ΩT + ǫk + ǫl

]

. (B.41)

Using one single orbital for the sum over k and l one can easily check that this leads to

the usual expression for the correlation exchange contribution for a three center cation–

anion–cation cluster model. Also one can check easily that it includes the ring exchange

contribution.

C Application to CuGeO3

In the case of CuGeO3 we only consider the CuO2 ribbons.

The band states are described by ǫµk. where µ is a band index. The unperturbed d

states d1 and d2 have an energy ǫ0d. We only consider the O–p orbitals px, py in the CuO2

ribbon plane. We take into account the ppσ as well as the ppπ hybridization. These split

up into four bands, of which only two are interacting with the dxy orbitals. The linear

combinations are:

px− = (pxu − pxl)/
√

2; py+ = (pyu + pyl)/
√

2, (C.42)

where the subscript u and l refer to the upper and lower O chain. The energies of these

two linear combinations are:

ǫ− = ǫpx = ǫ0px + Wπx; ǫ+ = ǫpy = ǫ0py − Wσy. (C.43)

The Wσy also contains a covalent factor η which takes into account the hybridization of

the py orbital with the side group orbitals in our case the sp3 hybrids of Ge. Also the

energy of the py orbital is shifted by an amount δp due to this Ge–O hybridization. So

ǫ0py = ǫ0px + δp. For the pp hybridization we assume a R−2 scaling, and for the dp we

assume a R−3 scaling. Both Wπx and Wσy depend on the bridge angle φ. Expressed in

terms of their value for the case φ = 1800, we can write for these two parameters:

Wσx = W0/(1 − sin β); Wσy = W0/(1 + sin β). (C.44)
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For convenience we define the following quantities:

gx = [sin(φ) cos(φ/2)]2; gy = [η sin(φ) sin(φ/2)]2. (C.45)

These expression contain the geometrical factors: the bridge angle φ, and the influence of

the side group is represented by the covalency factor η. The energy shift functions for the

two bands read:

Γx−(Ω) =
8t2pd

2π
gx

∫ π

0

1 + cos k

Ω + ∆x(k)
dk, (C.46)

Γy+(Ω) =
8t2pd

2π
gy

∫ π

0

1 − cos k

Ω + ∆y(k)
dk, (C.47)

and the total shift is

Γ(Ω) = Γx−(Ω) + Γy+(Ω), (C.48)

where we have defined:

∆x(k) = ǫx + Wσx cos k; ∆y(k) = ǫy − Wπy cos k,

ǫx = ǫ0d + Ud + ǫ0px + Wπx; ǫy = ǫ0d + Ud + ǫ0py + Wσy. (C.49)

The kinetic transfer for two dxy orbitals at a distance R = cn, where n is an integer, and

c the nn Cu–Cu distance in the ribbon, is determined by the function:

γx−(Ω, n) =
8t2pd

2π
gx

∫ π

0

(1 + cos k) cos kn

Ω + ∆x(k)
dk,

γy+(Ω, n) =
8t2pd

2π
gy

∫ π

0

(1 − cos k) cos kn

Ω + ∆y(k)
dk, (C.50)

and the total kinetic transfer is

γ(Ω, n) = γx−,n(Ω) + γy+,n(Ω). (C.51)

The total kinetic energy shift is

Θkin(Ω, k) = 4
|γ(Ω, n)|2

Ω + 2ǫ0d + Ud − Γ(Ω)
. (C.52)

The correlation energy shifts are for the singlet and triplet state:

ΘS/T
xx (Ω, n) =

∫ π

−π
dk

∫ π

0
dl

(1 + cos k)(1 + cos l)(1 ± cos(k − l)n)

Ω + ∆xx(k, l)

(

1

Ω + ∆x(k)
+

1

Ω + ∆x(l)

)2

,
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ΘS/T
y (Ω, n) =

∫ π

−π
dk

∫ π

0
dl

(1 − cos k)(1 − cos l)(1 ± cos(k − l)n)

Ω + ∆yy(k, l)

(

1

Ω + ∆y(k)
+

1

Ω + ∆y(l)

)2

,

ΘS/T
xy (Ω, n) =

∫ π

−π
dk

∫ π

0
dl

(1 + cos k)(1 − cos l)(1 ± cos(k − l)n)

Ω + ∆xy(k, l)

(

1

Ω + ∆x(k)
+

1

Ω + ∆y(l)

)2

.

(C.53)

The +, − sign applies to the singlet (S) and triplet (T) state respectively. The total

correlation energy shift is for the S/T two particle state:

ΘS/T (Ω, n) = 2
t4pd

π2

[

g2
xΘS/T

xx (Ω, n) + g2
yΘ

S/T
yy (Ω, n) + 2gxgyΘ

S/T
xy (Ω, n)

]

. (C.54)

From this quantity for n = 1, 2 and 3 we calculate the nn, nnn and next nnn superex-

change interactions.

D The equations for the nn exchange with Si substitution.

In this appendix we give the expressions for the nn exchange in the c direction in case Si

is sunstituted for one of the Ge side groups.

The ferromagnetic dp contribution is given by:

Jferro = 4[λ2
0xl cos

6(βl) + λ2
0xu cos6(βu)]Jdσpπ

+4[λ2
0xl sin

2(βl) cos4(βl) + λ2
0xu sin2(βu) cos4(βu)]Jdσpσ , (D.55)

where we have neglected the Jdπpπ and the Jdπpσ proportional to sin4(β).

The kinetic exchange contribution is

Jkin = −4/Ud

[

λ2
xl∆xl + λ2

xu∆xu − λ2
yl∆yl − λ2

yu∆yu

]2
. (D.56)

There are two contributions to the correlation exchange. The first one involves a double

excitation on one O and one p level, and gives

Jcor,1 = −8λ4
xu∆2

xu/Dxxu − 8λ4
xl∆

2
xl/Dxxl − 8λ4

yu∆2
yu/Dyyu − 8λ4

yl∆
2
yl/Dyyl. (D.57)

The second contribution is due to the double excitation from two p levels on the same

O:

Jcor,2 = 4λ2
xuλ2

yu(∆xu + ∆yu)2/Dxyu + 4λ2
xlλ

2
yl(∆xl + ∆yl)

2/Dxyl. (D.58)
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Finally we have the ring exchange contribution, which is given by the double excitation

from p orbitals on different O of the O pair bridge. One obtains:

Jring = −4λ2
xuλ2

xl(∆xu+∆xl)−4λ2
yuλ2

yl(∆yu+∆yl)−4λ2
xuλ2

yl(∆xu+∆yl)−4λ2
yuλ2

xl(∆yu+∆xl).

(D.59)

Note that these correlation contributions already contain the contribution due to Hunds

rule.

Next to these contributions there appear two new ferromagnetic contributions due to

a kinetic transfer mechanism. The contributions vanish in the case that the transfer paths

along the two bridge O are the same. In the case of a single Si substitution the upper (via

the O bonded to Si) and lower (bonded to Ge) transfer paths are inequivalent, The two

contributions which appear are due to Hunds rule coupling on the Cu: one due to dπ–dσ

and the other due do dσ1
–dσ1

on–site exchange.

We find for these contributions:

Jnnπσ = 4 [(λxuλπxu + λyuλπyu)∆u − (λxlλπxl + λylλπyl)∆l]
2
(

Jπσ

Ud

)2

, (D.60)

and

Jnnz2,x2−y2 = 4
[

(λxuλz2xu + λyuλz2yu)∆u − (λxlλz2xl + λylλz2yl)∆l

]2
(

Jz2,x2−y2

Ud

)2

.

(D.61)
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Table 1: Structure details relevant for the calculation of the various superexchange inter-

actions. Data are from [1].

Bond/angle 300 K 20K 4.2 K

Cu–O2 1.9326 1.9327 1.9351/1.9322

(O2–O2) perp.chain 2.5089 2.504 2.4984/2.5159

(Ge–O1)chain 1.7730 1.7761 1.742

Cu–O1apical 2.7549 2.7295 2.7300

(O2–O2)a−−axis 3.062 3.028

(O2–O2)b−−axis 2.8249 2.825

(O2–O2)par.chain 2.9404 2.9445

α = 6 Ge–(O–O)c−−bridge 159.52 158.85 159.86/158.10

φ = 6 (Cu–O–Cu)ribbon 99.06 99.24 99.56/98.76

τa = 6 Ge–(O–O)a−−bridge 82.00 81.55

τb = 6 Ge–(O–O)b−−bridge 35.38 35.49

ρa = 6 (O–O)c−−bridge–Oapath 118.48 119.62

ρb = 6 (O–O)c−−bridge–Obpath 124.14 123.35

θa = 6 (O–O)a−−bridge–Cu 108.03 108.67

θb = 6 (O–O)b−−bridge–Cu 111.36 110.81

6 torsion(Cu–(O–O)a–Cu) 72.95 (1×)

180.0 (1×)

6 torsion(Cu–(O–O)b–Cu) 109.22 (1×)

0.00 (1×)
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Table 2: Some experimental values for the exchange constants in CuGeO3, all in meV.

The parameters are defined by the equation 1.2.

Jnn Jnnn Ja Jb γ δ(0) method reference

-10.4 – 0.044 -0.35 – – Magn. Suscept.; [4]

-7.6 – – – – 0.17 Magn. Suscept.;[5]

-10.4 – 0.1 -1.0 – 0.12 Inel.Neutron Scat.; [6]

-15.5 – – – – – Magn. sat.; [7]

-11.9 – – – – – Low field magn.; [14]

-5.8 -4.9 0.00±0.03 -0.315 0.86 – Magnon disp.; [8]

-13.0 -3.1 – – 0.24 0.03 HT Magn. Suscept.+ LT Magnon dispersion; [9]

-13.8 -4.9 – – 0.36 0.014 HT Magn. Suscept.; [10],[11]

-12.8 -6.6 – – 0.51 – Inel. Neutron Scat.; [12]

-15.5 -2.8 – – 0.18 – Raman; [13]

-11.0 – – – – – AF Res.; [14], Cu(Zn)GeO3: J = Jnn + Jb

-13.8 -4.9 – – 0.36 – HT Magn. Suscept. + magn.–stric.; [15]

-10.7 -3.7 – – 0.35 – HT Magn. Spec. Heat from Raman Scat.; [16]

-9.02 – 0.050 -0.50 – – Raman spectra: [17].

Table 3: The variation of the magnetic susceptibility with pressure from [22], the lattice

constants with pressure from: [23]. In the final column we find the variation of the principle

bond angle.

Direction i delta ln χi/δPi cii δ ln i/δPi δJnn/δPi

[%/GPa] [GPa] [% /GPa] [meV/GPa]

a -2.5 66 -1.5 -0.60

b +5 24 -4.2 +1.20

c +1 300 -0.3 +0.24
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Table 4: Parameter values used in the calculation of the superexchange interaction. En-

ergies are in eV.

tdpσ 1 Ud 7 Upxx 5 Jpdπ 0.025

Wppσ 1 JHund,O 0.4 Upyy 5 Jdz2,dx2−y2 1

δdp 4.0 Jdπdσ 1 Upxy 4.2 δp 0.4
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Table 5: The exchange constants as calculated in the various perturbation approximations

described in the text. We give only the parameters which differ from the ones given in

table 4.

A: Perturbation results for the simple Ge–O hybridization model. The geometrical de-

pendence of the two–site pd exchange is not explicit taken into account. Parameters:

tpd = 0.9; δσ = 4; Japd = 0.017; Jbpd = 0.018; Jcpd = 0.029.

B: Perturbation results for the simple Ge–O hybrization model for the Cu2O2 cluster.

Parameters: tpd = 0.9; δσ = 4; Jpσdσ = 3Jpπdσ ; Jpπdπ = 0; Jpσdπ = 0.5Jpπdσ .

C: Perturbation result for the Cu2O2Ge2 cluster, the py–pz mixing is neglected. Parame-

ters: δσ = 4; Jcpd = 0.026 (0.053); Japd = 0.031;

Jbpd = 0.032; Jxpd = 0.053; Jypd = 0.045.

Model A B C experiment

Jc,nn 300 K 9.8 102 7.8 13.8 [15]

20 K 10.1 10.6 8.0 –

4 K (1) 10.8 11.2 9.2 –

(2) 9.0 9.6 6.4 –

Jc,nnn 3.2 3.2 5.2 (4.20) 4.9 [15]

Ja,nn 0.02 – -0.03 -0.1[6]

Ja,nnn -0.02 – -0.07 –

Jb,nn 0.06 – 0.02 1.0 [6]

Jb,nnn -0.02 – -0.08 –

δ ln Jc,nn/δβ 20 % 18 % 30–45 % 5.8 %

δ ln Jc,nn/δα 0.5% 0.5 % 4.8 % 2.0 %

γ (20 K ) 0.32 0.3 0.66(0.52) 0.36[15]
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Table 6: The exchange constants for the exact solution of:

The Cu2O2 plaquette. Parameters used: tpd = 1.0, W = .9; ǫ0d = −4.0; Ud = 7, V0σ = 3.7;

∆σ = 6.65; Jpd = 0.03; ǫ0px = −13.4; Ux = Uy = 5.0; Uxy = 3.8.

Band model: Parameters used are the same as for the plaquette except: ǫ0d = −3.7;

Jpd = 0.04; JOH = 0.6. All energies are in eV. Exchange constants in meV. The structural

parameters we used are those at 20 K.

Model α β Jnn γ δ ln Jnn/δβ δ ln Jnn/δα

Cu2O2 plaquette 158.85 9.24 13.5 – 9.7 % 0.56 %

band model 158.85 9.24 14 .31 10 % 1 %

experiment – – 13.8 [15] 0.36 [15] 5.8 % 2 %
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Figure 1: The CuO2 ribbon, with the Ge side groups, and the tetragonal distortion of the

Cu coordination by O: the four O2 form a rectangular coordination of Cu, while the two

O1 are shifted along the ”tetragonal” axis rather far away from Cu. The bridge angle φ

and hinge angle α are indicated.

Figure 2: The nn and nnn transfer paths for superexchange in the b direction. The nn

exchange in the b direction is between Cu–0 and Cu–1, and the nnn exchange is between

Cu–0 and Cu–1’. The bond lengths and angles used in the calculation are indicated. For

details see the text.

Figure 3: The nn and nnn transfer paths for superexchange in the a direction. The nn

exchange is between Cu–0 and Cu–1 is along two Cu–O–O–Cu transfer paths, while the

nnn to Cu–1’ is along one of these transfer path. The various bond lengths and angles

used in the text are indicated.

Figure 4: The SP transition. We emphasize the SP distortion as predominantly one where

the angles are changing. In the SP phase the dimerization of the Cu chain is predominantly

due to the occurrence of two sets of angles (φ1, α1) and (φ2, α2), the bridge and hinge

angle respectively.

Figure 5: The accordion effect due to pressure along the b–axis, viewed along the c–axis.

The CuO2 ribbon/chains as well as the GeO3 chains are rotating with respect to each

other as rigid units, around the shared O2 ions: the hinges. Thereby the hinge angle α

decreases. In the figure we keep the GeO3 chain in unit A fixed. Arrows indicate the

movement of the neighbor units: CuO2 ribbon, and the GeO3 chains w.r.t. to this fixed

unit. The direction and length of these arrows is only a general indication of the type of

distortion.

Figure 6: A simplified representation of the distortion due to pressure along the b–axis.

The hinges are at the O2 atoms. We emphasize the central role of the hinge angle in

the distortion of the lattice: both Ge–O bonds move clock–wise, leaving the bond lengths

constant; thereby the hinge angle α decreases.
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Figure 7: Exchange along the c–axis. We have indicated the various transfer matrix

elements used in the text: tpd between Cu-d and O-p, W‖ and W⊥ – the pp transfer

between two nn O along and perpendicular to the Cu chain, and V0σ – the σ–type transfer

between the Ge-sp3 hybrid and an O-p orbital. Also the energies of the local unperturbed

states at the Cu (ǫ0d) and on the O (ǫ0p) are indicated. The nn superexchange is between

Cu–0 and Cu–1, the nnn superexchange between Cu–0 and Cu–2.

Figure 8: The original quantization axes for 900 superexchange. The angle β is the

deviation of the bridge angle M1–Li–M2 (φ) from 900. The dx′2−y′2 orbitals on the M1

and M2 and the px′ and py′ orbitals on the ligands L1 and L2 are shown. The transfer

matrix elements between the ligand p and magnetic d orbital is t.

Figure 9: The new quantization axes. The axes x′ and y′ are rotated over 450 to x and

y, with respect to those used in fig. 8. The σ–bonding orbitals on the side groups S1

and S2 are shown. The angle β is the deviation from ideal 900 geometry. The transfer

integral between dxy and px is t, and the transfer integral between the py orbitals on the

two ligands L1 and L2 is W .

Figure 10: The Cu2O2GeSi cluster. We illustrate the local distortion due to Si substitution.

The O which is bonded to the Si is shifted along the Si–O bond in the direction of Si. The

bridge angle (φ) decreases while the hinge angle (α) increases.

Figure 11: Results of the band model: the nn superexchange (Jnn: full line) and the ratio

of the nnn and nn superexchange (γ: dashed line) as a function of the deviation of the

bridge angle β = φ − 900. We used the following values for the parameters: Parameters

used: tpd = 1.0, W = .9, ǫ0d = −3.4, Ud = 7, V0σ = 3.7, ∆σ = 6.65, Jpd = 0.03, JOH = 0.6

All energies are in eV.

Figure 12: Results of the band model: the nn superexchange (Jnn: full line) and the

ratio of the nnn and nn superexchange – the frustration parameter γ: dashed line – as a

function of the hinge angle φ. The parameters used are the same as in fig. 11
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Figure 13: Results of the band model: the nn superexchange Jnn (full line), the frustration

parameter γ (dotted line) (ratio of the nnn and nn superexchange), the derivative of Jnn

w.r.t. the bridge angle α (long dashes), and Jnn w.r.t the hinge angle β (short dashes) as

a function of the Ge–O hybridization Vσ. The parameters used are the same as in fig.: 11

Figure 14: Results of the band model: the nn superexchange Jnn (full line), the frustration

parameter γ (dotted line) (ratio of the nnn and nn superexchange), the derivative of Jnn

w.r.t. the bridge angle α (long dashes), and Jnn w.r.t the hinge angle β (short dashes) as a

function of the energy difference between the O-p and Ge-sp3 hybrid: dσ. The parameters

used are the same as in fig. 11
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