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Chapter 5

The mass content of the Sculptor
Dwarf Spheroidal Galaxy

G. Battaglia, A. Helmi, E. Tolstoy, M. J. Irwin

paper in preparation

ABSTRACT– We derive the line-of-sight (l.o.s.) velocity dispersion profile of the
Sculptor dwarf spheroidal galaxy using the VLT/FLAMES low resolution spectra of
Red Giant Branch stars presented in Chapters 2 and 4. Our data extend out to and
beyond Sculptor nominal tidal radius. The l.o.s. velocity dispersion for all Sculptor
stars is approximately constant around 9 km s−1 out to the last measured point at
r = 1.3 deg (1.8 kpc, i.e. 13.3 core radii).
We also derive separately the dispersion profiles of the metal rich (MR) and metal
poor (MP) populations known to be present in Sculptor. The MR l.o.s. velocity
dispersion is ∼ 9 km s−1 in the central regions and then declines to ∼ 2 km s−1 at
0.5 deg. The profile for the MP stars is relatively flat and reflects the behaviour of
the global dispersion profile, in agreement with the fact that this is the dominant
population in Sculptor.
We compare these observed l.o.s. profiles to predictions from dark matter models.
The model that best fits the data is an isothermal profile with core radius rc = 0.5
kpc and mass enclosed within the last measured point 3.4± 0.7× 108 M� assuming
an increasingly radially anisotropic velocity ellipsoid. In this model the mass-to-light
ratio is 158±33 (M/L)� inside 1.8 kpc. Cosmologically motivated models such as
an NFW profile with c = 20 and virial mass Mv = 2.2+1.0

−0.7 × 109 M� also provide
a fit which is statistically consistent with the observations, but they tend to yield
poorer fits for the MR stars. The combined modeling of the two populations has
the important advantage of breaking some of the degeneracies present in modeling
Sculptor as a single component galaxy.
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5.1 Introduction

Dwarf spheroidal galaxies (dSphs) are the smallest objects which require the pres-
ence of dark matter (DM) to explain their kinematics in the context of Newtonian

gravity and they are also the most DM dominated kind of systems.
dSphs have similar luminosities (105, 106 L�) and central velocity dispersions (6-10

km s−1 ) to globular clusters (GCs), but they are much more extended, with half-light
radii of hundreds of parsecs, about one order of magnitude larger than for GCs. This
has an important implication: assuming that both these systems are in equilibrium,
the virial theorem implies no DM for GCs (Illingworth 1976; Pryor et al. 1988), while
large amounts are required to sustain the dispersion observed in dSphs.

This was first hinted at in the work of Aaronson (1983), who derived an M/L ratio
of 30 (M/L)� for the Draco dSph by measuring its central velocity dispersion with
three carbon stars. Despite the small number statistics and the problems connected
with the use of carbon stars to measure velocities, this suggested a large amount of
unseen matter in this galaxy. Since then numerous works have been carried out to
measure the DM content of dSphs. For a long time these measurements were based
just on the central value of the dispersion and on the hypothesis that mass follows light
(e.g., Mateo et al. 1991; Suntzeff et al. 1993; Hargreaves et al. 1994, 1996). The advent
of large telescopes with multi-fibres spectrographs has made the derivation of velocity
dispersion profiles possible for most of the dSphs around the Milky Way (MW), allowing
more sofisticated and accurate mass modeling (e.g., Kleyna et al. 2003; Wilkinson et al.
2006; Walker et al. 2006). These more recent works were able to rule out the hypothesis
that mass follows light, and this implies that dSphs must be embedded in extended DM
haloes. Furthermore, mass-to-light ratios of several 100s (M/L)� have been derived,
which makes dSphs the most DM dominated objects known to date.

However, the presence of DM in dSphs has been regularly questioned. The debate
as to whether dSphs have DM or not has been driven by the fact that dSphs are
small galaxies which (in general) orbit much larger systems. For instance, in the Local
Group the great majority of dSphs are found within 300 kpc of the MW or M31 and
are thus susceptible to experience strong interactions with the potential of the host.
This raises the question as to whether these systems are in equilibrium or if the large
observed velocity dispersion might merely be the result of tidal disruption. For example
Kroupa (1997) and Klessen & Kroupa (1998) found in numerical simulations that
tidally disrupted systems with no DM could reproduce the photometric and kinematic
properties of dSphs. These issues have triggered many studies looking for possible signs
of tidal disturbance in dSphs such as tidal tails, broadening of the horizontal branch
(HB) width and velocity gradients, as predicted by the models. Until now possible signs
of disturbance have been found only in the Carina (see Muñoz et al. 2006, and references
there in) and Ursa Minor dSphs (Bellazzini et al. 2002; Palma et al. 2003), although
the latter case is somewhat controversial. It is interesting that no tidal signatures have
been found in Draco (e.g. Ségall et al. 2007), which has a mass-to-light ratio of ∼300
(M/L)� (Kleyna et al. 2001), one of the largest ever measured.

Given that so few signs of tidal disruption have been found, we can assume that
most dSphs are in equilibrium. We can thus use these objects as a good test ground
for DM theories as the study of the DM mass content and distribution on small scales



5.1: Introduction 131

can put important constraints on the nature of DM (e.g., hot, warm, cold).
A prediction of DM theories of structure formation is the mass spectrum of virialized

structures. In this context “hot” DM can be excluded because it does not cluster on
such small scales as dSphs (e.g. Lin & Faber 1983; Gerhard & Spergel 1992). The
currently most succesful theory of galaxy formation in a cosmological context is based
on Cold DM (CDM). This theory however faces problems on the small galactic scales.
One of the most well-known issues is the “missing satellites problem”: CDM theories
predict the presence of 100-1000s bound substructures (subhaloes) surrounding a galaxy
like the MW (Moore et al. 1999; Klypin et al. 1999), whilst until two years ago there
were only 11 known MW satellites. This mismatch of 1-2 orders of magnitude between
the number of predicted and observed satellites has been somewhat mitigated by the
discovery of about 10 new low luminosity MW satellites in the past two years by SDSS
(Willman et al. 2005a,b; Zucker et al. 2006a,b; Belokurov et al. 2006, 2007; Walsh
et al. 2007). Whilst this suggests that the observed satellites might be the “tip of the
iceberg”, at the moment observations and CDM simulations are still far from being
fully reconciled.

A solution to the “missing satellites problem” was suggested by Stoehr et al. (2002)
and Hayashi et al. (2003), who proposed that the observed satellites might inhabit the
∼10 most massive DM subhaloes, implying that the mass of dSphs had been strongly
underestimated. They predicted these subhaloes to have peak circular velocities, vmax,
exceeding 35 km s−1 (Hayashi et al. 2003) and a present mass of ∼ 109 M� (Stoehr
et al. 2002), whilst haloes with lower peak circular velocities would “lack readily de-
tectable luminous counterparts” (Hayashi et al. 2003). Other solutions consider the
effect that the photoionizing background due to the reionization of the Universe has on
the formation of small galactic systems, proposing that after reionization gas accretion
and/or star formation is halted in systems with vmax < 30 km s−1 ; many dSphs should
thus have formed their stars before reionization in larger subhaloes (Bullock et al. 2000;
Benson et al. 2002; Kravtsov et al. 2004). Accurate measurements of the mass in dSphs
and fainter recent discoveries can help in confirming or disproving this hypothesis.

Another prediction that different theories provide is the density distribution of DM.
In the case of WDM, cored density profiles are expected (Dalcanton & Hogan 2001;
Kaplinghat 2005; Cembranos et al. 2005; Strigari et al. 2007c), whilst CDM predicts
them to be cusped (Dubinski & Carlberg 1991; Diemand et al. 2005). Specifically, in
the case of CDM theories of structure formation virialized objects should follow an
Navarro, Frenk & White (NFW) density profile (Navarro, Frenk, & White 1996, 1997)
on every scale, from galaxy clusters to the smallest dwarf galaxies. Here again CDM
encounters problems on the small scales: whilst the density profiles of galaxy clusters
and large galaxies are compatible with cuspy NFW profiles, this is not the case for some
low surface brightness galaxies (e.g. Flores & Primack 1994; Moore 1994; McGaugh &
de Blok 1998; de Blok et al. 2001). However it has been argued that these galaxies
rotation curves might have suffered from several effects, including instrumental ones
such as for instance due to beam-smearing or physical effects such as presence of bars,
triaxiality, which could prevent definitive conclusions on the subject (e.g. Hayashi &
Navarro 2006). For dSphs, i.e. on the smallest scales, several studies of the DM
density distribution (see Wilkinson et al. 2006; Walker et al. 2006; Koch et al. 2007,
and references there in) have shown that cores are compatible with the observations,
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although cusps cannot be excluded. Thus the debate is still open.
In this chapter we derive the mass content and distribution of the Sculptor (Scl)

dSph using our spatially extended and accurate spectroscopic dataset obtained at
VLT/FLAMES (Chapter 4). The previous mass determination for Scl dates back to
the work of Queloz et al. (1995). Using velocities for 23 Scl RGB stars in the central
regions, they derived a moderate mass-to-light ratio of 13±6 (M/L)�, resulting in a
mass of ∼ 3 × 107 M� . Recently Westfall et al. (2006) derived a velocity dispersion
profile for Scl out to 50 arcmin (using 147 stars), well within its nominal tidal radius
(see previous chapter), but they did not carry out a mass modeling.

5.2 The observational sample
The observational sample has already been described in Chapter 4. Here we remind
the reader that our spectroscopic targets were chosen from a box on the Scl CMD
(Fig. 4.2, Chapter 4) such that the stars have magnitudes and colours consistent with
being Scl Red Giant Branch stars.

After applying quality selection criteria we obtained velocities and metallicities for
470 Sculptor probable members, where the probable members are stars whose velocity
falls within 3σ from the systemic velocity. The spatial location of these stars is shown
in Fig. 4.6 (Chapter 4).

5.3 Observed velocity dispersion profile
Velocity dispersion profiles are commonly used to study the mass content of a galaxy.
In resolved stellar population studies, velocity dispersion profiles are derived from the
measurement of velocities of individual stars, which are in general selected from a
specific region on a CMD. As can be seen in Fig. 4.2 (Chapter 4), these selection regions
are bound to contain a certain amount of interlopers, i.e. stars which do not belong to
the object under study. In our case most of the contaminants will be foreground stars
from the MW.

As the kinematics of these interlopers are unrelated to the object under study and
do not trace the object mass distribution, it is important to clean up the sample from
these objects.

We can divide the methods for interlopers’ removal in two basic kinds: a direct
and a statistical approach. In the direct approach it is possible to physically identify
which stars are contaminants and remove them. In the statistical approach instead
assumptions are made on the expected amount of contaminations, and the “suspected
contaminants” are either removed or their presence is taken into account in a statistical
sense.

At the magnitudes and colours considered here, the contamination from the MW
is most likely given by dwarf stars in the thin and thick disks. Since dwarfs have a
much higher surface gravity than RGB stars it is possible to use gravity indicators
as dwarf/giant discriminators (direct approach). For example, Washington M, T2 +
DDO51 photometry, which uses the gravity sensitivity of the Mg triplet and MgH line
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at 5150 Å, has proved to be a very successful dwarf/giants discriminator (e.g., Majewski
et al. 2000; Morrison et al. 2001).

However our V , I photometry is not suitable as discriminator, and the spectral
range covered by our data is from 8200 Å to 9000 Å , thus not including the Mg lines
at ∼ 5000 Å. Hence here we do not use a direct approach in order to separate the
contaminants from Scl∗.

Below we describe the two different statistical approaches we use to deal with the
presence of interlopers and derive the observed dispersion profile: first we describe the
traditional 3-σ clipping and then we introduce a more sofisticated maximum likelihood
approach. Finally we present first the global Scl l.o.s. velocity dispersion profile,
derived without separating the stars according to their metallicity, and then for the
MR and the MP components separately.

Beside the issue of contamination, the velocity dispersion profile will need to be
corrected for the rotation signal found in Scl, described in Chapter 4. This is necessary
because a rotational signature may artificially inflate the measured dispersion.

Our velocity dispersion profile will be obtained by binning the velocities of stars at
similar radii. Besides the issue of the optimal binning, it is also worthwhile exploring
the choice of how to bin the data: in elliptical or in circular annuli. In fact, one uses
stars with a non-spherical spatial distribution as kinematic tracers of an underlying
mass distribution which might be spherical (as well as oblate, prolate or even triaxial).

All of these effects are taken into account in both our statistical approaches when
deriving the global velocity dispersion profile and the two components profiles, but we
discuss these in more detail in the case of the 3-σ clipping approach for the global
profile.

5.3.1 3-σ clipping
The statistical approach commonly used to separate dSph members from MW stars is
to iteratively apply a k-σ cut on the observed velocity distribution (e.g., see Fig. 4.5 in
Chapter 4). The k-σ cut in common use is the 3σ which is justified by the fact that the
velocity distribution of stars in dSphs (as well as the velocity distribution of galaxies
in clusters) is close to Gaussian (see Wojtak et al. 2007, for references, more discussion
and tests). With this method those objects whose velocity exceeds the 3σ limit are
removed from the sample.

Here we apply this method to the Scl dataset, considering as probable members
those stars with heliocentric velocity in the range vsys±3σlos, as described in Chapter 4.

We derive the velocity dispersion profile for these stars both imposing bins of con-
stant width and also fixing the number of stars per bin to a constant value (Fig. 5.1),
i.e. N=40 with the exception of the last bin which contains 30 stars. A smaller number
of stars per bin is not desirable as it causes the velocity dispersion profile to be too
noisy. The binning is done in elliptical annuli of constant ellipticity and position angle
(e =0.32, P.A.= 99◦), to follow the projected shape of the stars spatial distribution. We
also allow the average velocity per bin to vary, and derive the dispersion with respect
to the average velocity in each bin (we will come back to this point later). We consider
∗ We will explore the use of the MgI line at 8807 Å as a possible direct dwarf/giant discriminator

in a future work.



134 chapter 5: The mass content of the Sculptor dSph

Figure 5.1: Kinematic properties of probable Scl members for the binning we use in
our analysis. From top to bottom: l.o.s. heliocentric velocity versus elliptical radius
(a); number of stars (b); average l.o.s. velocity (c, asterisks); l.o.s. velocity dispersion
for 3σ members (d, asterisks). In panel a) the solid line indicates the systemic velocity,
the horizontal long-dashed lines show the region used for the 3σ membership selection
and the vertical dashed lines show the binning. For comparison we show the average
l.o.s. velocity and the l.o.s. velocity dispersion profile derived fixing the number of
stars per bin to N = 40, with the exception of the last bin which contains 30 stars
(diamonds in panels c and d).
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as the error in the variance δvar =
√

2σ4
tot/N , where N is the number of stars per bin

and σ2
tot = σ2+ < σ2

meas > (see Hargreaves et al. 1994). Here σ is the dispersion in the
bin and < σ2

meas > is the variance due to the measured errors in the velocities. Here the
contribution of the latter is always very small compared to the measured dispersion.
Finally, the error in the dispersion is δvar

2σ
.

We find that the constant width binning and N=40 binning (Fig. 5.1) give very
similar results and the derived velocity dispersion profile is almost constant around
a value of ∼ 9 km s−1 , with an hint of decline in the last measured point. In the
following we adopt the binning with fixed bin size, which in general has a larger number
of points per bin and it is smoother.

Figure 5.1a,c also shows that at r & 0.7 deg the value of the average velocity per bin
departs from the systemic velocity. This is likely due to a combination of the rotation
signal (see Chapter 4) and the fact that in this distance range our coverage is biased
towards the west part of Scl, where there is an excess of stars with “receding velocities”.
The larger dispersion at r ∼ 0.6 deg might be in part due to this effect.

We point out that the bin centered at 1.3 deg is peculiar; of the 5 stars present
in this bin, 3 have large receding velocities with respect to the systemic (vh > 130
km s−1 ). These 3 stars are located close to the projected major axis, in the east side of
the galaxy (ξ [deg] ∼ +1.3, −0.2 < η [deg] < +0.2), which from our rotation analysis
(see Chapter 4) should be the approaching part. It seems likely that these 3 stars are
contaminants.

Elliptical versus circular binning: Analysis of the velocity moments fields in
elliptical galaxies (see for example Emsellem et al. 2004; Douglas et al. 2007) shows that
the contours of constant l.o.s. velocity dispersion have approximately the same shape
and orientation as the light distribution. Therefore mapping the kinematic behaviour
along circular annuli would mix together stars with different kinematics. However,
dwarf spheroidal galaxies appear to be much more DM dominated than large ellipticals,
thus the underlying DM potential might influence much more strongly the shape of the
equi-σlos contours. The relation between the potential and the shape of the equi-σlos
contours is not trivial as it also depends on the viewing angle and on the distribution
and kinematics of the stars (e.g. Lanzoni & Ciotti 2003, see also Eq. 5.12).

Since we do not have any constraints on the inclination, we opt for an empirical
approach to explore the effect of binning the data following the shape of the light
distribution. The velocity dispersion profile derived with the circular binning is shown
in Fig. 5.2. The differences with respect to the dispersion profile derived with the
elliptical binning are negligible, as the two profiles are everywhere consistent with each
other at the 1σ level. This is probably due to the fact that our coverage is mostly
sampling roughly along the major axis, where circular and elliptical radii coincide.
The lower value of the velocity dispersion in the last bin is due to the 3 peculiar stars
mentioned above, found at ξ [deg] ∼ +1.3, −0.2 < η [deg] < +0.2.

In the remainder of the paper we adopt elliptical binning.
Removing the rotation signal: To explore the effect of rotation we re-derived

the velocity dispersion profile by removing the observed rotation signal. Accurately
removing the rotation signal in principle requires knowledge of the global rotation
pattern, however, as we saw in Chapter 4, it is difficult to establish exactly how the
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system is rotating (e.g., vrot = f(x, y) or vrot = f(x) etc) with the present spatial
sampling. We adopt a simple empirical approach and assume that vrot = kx, where
k = −7.6 km s−1 deg−1 is the measured velocity gradient along the major axis and x
is simply the projected abscissa on the sky. We subtract vrot from the observed GSR
velocities, and propagate the error in the measured rotation signal onto the individual
velocity errors. After this subtraction, the velocity field and the average velocity along
the major axis are consistent with no rotation.

The velocity dispersion profile derived from these rotation-corrected GSR velocities
is shown in Fig. 5.3. Now the average velocity per bin at r &0.7 deg is consistent with
the systemic velocity (except in the last bin, the causes have already been discussed
above). This shows that, as anticipated, the variation of the systemic velocity with
radius was a combination of the rotation signal and the asymmetric coverage.

In the remainder of the chapter we use the rotation-subtracted GSR velocities to
derive velocity dispersion profiles.

5.3.2 Statistical approach
To apply a sharp k-σ cut to the whole sample in order to remove interlopers might
cause some problems.

The choice of the appropriate cut depends not only on the assumption that the
dSph velocity distribution is Gaussian but also on the amount of MW contamination
one expects given the bulk velocity of the system. For instance, we found that a 2.5-σ
cut is preferable to a 3-σ cut to limit the contamination in the case of the Fornax dSph
(Chapter 3), where the velocity distribution is heavily affected by MW foreground due
to its low heliocentric velocity (vsys = 54.1 km s−1 ).

Finally, since there is no sharp distinction between the velocity distribution of MW
and dSphs stars, the k-σ method does not take into account that a percentage of MW
stars will fall within the k-σ range. This percentage will increase the farther out we go
from the centre of the galaxy as a consequence of the decreasing ratio between dSph
and MW densities.

In what follows we describe the more complete statistical approach we use to derive
the l.o.s. velocity dispersion of the Scl dSph. Our aim is take into account the MW
foreground contamination in the most reliable way possible. This means deriving the
level of contaminants in the region of the CMD that we used to select our targets, how
this is distributed in l.o.s. velocity and how its relative contribution to the Scl signal
changes with radius.

Relative number of stars We derive the expected numbers of RGB stars in Scl
and the MW contaminants in the selection region of the CMD from the observed RGB
surface density profile and relative foreground density derived from the photometric
analysis in Sect. 4.3.2. This allows us to determine the fraction of MW and Scl RGB
stars per distance bin, NMW(r1 < r < r2)/NTOT(r1 < r < r2), NdSph(r1 < r <
r2)/NTOT(r1 < r < r2), where NTOT(r1 < r < r2) = NMW(r1 < r < r2) +NdSph(r1 <
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Figure 5.2: As Fig. 5.1 but the distance from the centre is the circular radius.
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Figure 5.3: Variation of rotation-subtracted GSR velocity with elliptical radius (a),
average rotation-subtracted GSR velocity (b), velocity dispersion profile using rotation-
subtracted GSR velocities (c). In panels (b) and (c) the asterisks show the properties
derived from the 3σ members and the squares show the properties derived using the
statistical method presented in Sect. 5.3.2. The solid line in panel (a) and (b) indicates
the systemic velocity in the GSR system (vsys,GSR = 78.3 km s−1 ). We propagated
the error in the subtracted rotation signal onto the measured velocity errors of the
individual stars.
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Figure 5.4: Left: Fraction of Sculptor RGB stars and MW contaminants with respect
to the total as function of elliptical radius, derived from the observed surface brightness
profile and foreground density in Chapter 4. Right: as before, but these are the
expected fractions within the velocity range used for the 3-σ membership selection.

r < r2), and r1 and r2 are a generic inner and outer radii defining one elliptical
annulus (bin). Figure 5.4 (left) shows that already at a distance of r ∼0.7 deg the MW
foreground stars outnumber Scl RGB stars.

Line-of-sight velocity distribution of Milky Way stars We use the Besançon
model∗ (Robin et al. 2003) to estimate the velocity distribution of MW stars along
the Scl l.o.s. with V magnitude and V − I colour falling within our selection box for
RGB stars. The resulting velocity distribution is well approximated by the sum of two
Gaussians (see Fig. 5.5):

NMW,Bes(v) = k1,MWe
−

(v−v1,MW)2

2σ2
1,MW + k2,MWe

−
(v−v2,MW)2

2σ2
2,MW . (5.1)

In the heliocentric system the best-fitting parameters are v1,MW = 5.35 km s−1 ,
v2,MW = 15.98 km s−1 , σ1,MW = 12.86 km s−1 , σ2,MW = 50.37 km s−1 (reduced
χ2

min = 1.13). The ratio of the two Gaussians’ amplitudes is R = k2,MW/k1,MW = 1.02.
We make the reasonable assumption that the shape of the MW velocity distribution

does not vary across the small area under consideration. This implies that the parame-
ters v1,MW, v2,MW, σ1,MW, σ2,MW, R are fixed. Instead we let the normalization, k1,MW
and k2,MW, change with the distance from the centre. The reason is that, although
the density of MW stars is constant everywhere, the number of MW stars is changing
with radius because of the varying area of the elliptical annuli used for the binning.

∗ http://www.obs-besancon.fr/modele/modele.html
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Figure 5.5: Histogram of the
velocity distribution of MW
stars along the Scl l.o.s. and
with V magnitude and V − I
colour falling within our RGB se-
lection box from the Besançon
model. The errorbars are from
Poisson noise. The solid line
shows the best-fitting sum of
two Gaussian functions, and the
dashed and dashed-dotted lines
show the individual Gaussians.
For our purposes it is impor-
tant to model the velocity range
around [80, 140] km s−1 , where
Scl stars are likely to be found.

The MW foreground velocity distribution as a function of radius is then:

NMW(v, r1 < r < r2) = k1,MW(r1 < r < r2)e
−

(v−v1,MW)2

2σ2
1,MW +

+ k2,MW(r1 < r < r2)e
−

(v−v2,MW)2

2σ2
2,MW . (5.2)

The number of stars in each elliptical annuli is equal to the integral over the l.o.s.
velocities

NMW(r1 < r < r2) = k1,MW(r1 < r < r2)
√

2πσeff,MW (5.3)
where we defined σeff,MW = σ1,MW+Rσ2,MW. From the above we can derive k1,MW(r1 <
r < r2) and k2,MW(r1 < r < r2):

k1,MW(r1 < r < r2) = NMW(r1 < r < r2)√
2πσeff,MW

(5.4)

and
k2,MW(r1 < r < r2) = RNMW(r1 < r < r2)√

2πσeff,MW
. (5.5)

where NMW(r1 < r < r2) is derived from the photometry as described before. Now
both the shape and the normalization of the MW foreground l.o.s. velocity distribution
are determined at every radius.

dSph velocity distribution We assume that the l.o.s. velocity distribution of the
stars in the dwarf galaxy is well described by a Gaussian. At every radius the velocity
distribution of the dSph is

NdSph(v, r) = NdSph(r)√
2πσ2

dSph(r)
e
−

(v−vdSph(r))2

2σ2
dSph(r) (5.6)
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where NdSph(r) is fixed by the photometry. The quantity we are interested in is
σdSph(r).

Overall probability distribution The probability of observing a velocity vi ex-
tracted from the overall velocity distribution (dSph+MW), taking into account the
measured velocity errors σi, is:

P (vi | vdSph, σdSph) = NMW

NTOT
√

2πσeff,MW
e
−

(vi−v1,MW)2

2σ2
1,MW +

+ RNMW

NTOT
√

2πσeff,MW
e
−

(vi−v2,MW)2

2σ2
2,MW + NdSph

NTOT

√
2π(σ2

dSph + σ2
i )
e
−

(vi−vdSph)2

2(σ2
dSph+σ2

i
)
.(5.7)

The likelihood of observing a set of velocities vi with i = 1, ..., N is

L(v1, ..., vN | vdSph, σdSph) =
N∏
i=1

P (vi) (5.8)

We maximize the above likelihood function in each distance bin and find the corre-
sponding best-fitting average velocity vdSph(r) and dispersion σdSph(r). The errors are
determined from the intervals corresponding to 68.3% probability.

Results: Observed l.o.s. velocity dispersion profile Figure 5.4 (right) shows
that only beyond r ∼ 1.3 deg half of the stars that fall within the velocity range used
for the 3σ membership selection are likely to be MW contaminants. This distance
corresponds to our last measured point, thus we see that the MW contamination in
Scl is not severe in the sampled region. Hence we can use it as a good test for our
statistical method which should give similar results to our 3σ selection.

We apply the statistical procedure to the rotation-subtracted GSR velocities. Fig-
ure 5.3c,d shows that both the fitted average velocity and dispersion per bin are very
similar for the statistical and 3σ determinations. The two profiles are everywhere con-
sistent at the 1σ level. In the following we will use for our analysis the dispersion
profile derived from the maximum likelihood procedure.

Results: Observed l.o.s. velocity dispersion profile for MR and MP stars
We now derive the velocity dispersion profile for MR and MP RGB stars in the Scl
dSph. To apply the statistical method that we just described we need to derive: 1)
the number profile of MR and MP stars; 2) the amount of foreground contamination
in these two populations.

1) In Sect. 4.3.2 we fitted the RGB distribution with two components, where the
MR component was represented by a Sersic profile with best-fitting shape parameters
(Rs and m) as for the RHB star distribution and the MP component by a Plummer
profile with the best-fitting b parameter as for the BHB star distribution. We adopt
the normalization found from the two component fit. Therefore we associate to the
MR stars a Sersic profile with I0,MR = 4.5 ± 0.7 stars arcmin−2, Rs = 7.7 ± 0.9
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arcmin and m = 0.74± 0.07, and to the MP stars a Plummer profile with parameters
I0,MP = 0.60± 0.04 star arcmin−2 and bMP = 15.1± 0.5 arcmin.

2) We need to determine which fraction of the MW foreground contamination de-
rived from the Besançon model might contaminate the MR and the MP Scl components,
when considered separately. To estimate this, we simply calculate how many of the
stars found in our sample at v < vsys − 3σ (i.e. in the non-membership region more
populated by foreground stars) are classified as MR ([Fe/H]> −1.5) and how many as
MP ([Fe/H]< −1.7), and we repeat this for the various distance bins. The fraction of
stars with v < vsys− 3σ classified as MR is ∼ 0.5, whilst the fraction of stars classified
as MP is ∼ 0.2. We thus adopt as MW contaminants for the MR and MP population
the 50% and 20% of the amount derived from the Besançon model, respectively. Note
that as explained in Chapter 4 we are excluding the region −1.7 < [Fe/H] < −1.5 to
avoid that the MR and MP components might contaminate each others kinematics.

The resulting velocity dispersion profile for MR stars is shown in Fig. 5.6. The
profile declines very fast, and at r & 0.5 deg the statistical procedure assigns every ob-
served star to the MW component and not to Scl. For comparison the profile resulting
from the 3σ selection (also in Fig. 5.6) is very similar to the above profile out to r ∼
0.5 deg, whilst at larger distances it gives a higher dispersion, which does not follow
the trend observed at smaller radii.

Figure 5.7 shows the velocity dispersion profile for the MP stars, which is consistent
with being constant or mildly declining. The shape is very similar to the overall profile
derived not imposing any metallicity cut, except at r .0.3 deg, where the MP velocity
dispersion is larger. At those radii the MR stars are present in a considerable number
and they tend to lower the overall profile because of their colder kinematics. Note that
for the MP stars the contamination from the MW is negligible at all distances.

5.4 Predicted velocity dispersion profile using the
Jeans equation

The Jeans equation for a spherical system is

d(ρ∗〈v2
r,∗〉)

dr
+ ρ∗

r
[2 〈v2

r,∗〉 − 〈v2
θ,∗〉 − 〈v2

ϕ,∗〉] = −ρ∗
dφ

dr
= −V

2
c
r

(5.9)

where ρ∗ is the density of the tracer∗, 〈v2
r,∗〉, 〈v2

θ,∗〉 and 〈v2
ϕ,∗〉 are the tracer second

velocity moments in the (r, θ, ϕ) direction respectively, and φ and Vc are the potential
and the circular velocity of the total mass distribution. As described in Binney &
Tremaine (1987), let us consider a galaxy whose velocity structure is invariant under
rotation about its centre, hence 〈v2

θ,∗〉 = 〈v2
ϕ,∗〉. In the absence of net streaming motions

in any of the directions, 〈v2
r,∗〉 = σ2

r , 〈v2
θ,∗〉 = σ2

θ , 〈v2
ϕ,∗〉 = σ2

ϕ. The Jeans equation thus
becomes

1
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2βσ2
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r
= −dφ

dr
= −V

2
c
r

(5.10)

∗ By “tracer population” we mean those objects whose kinematics can be used to recover properties
of the total potential. In this case our tracers are the stars, which trace the total potential given
by the mass distribution of the stars themselves and the DM.
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Figure 5.6: Kinematic properties for MR stars ([Fe/H]> −1.5). We show the variation
of rotation-subtracted GSR velocity versus elliptical radius (a); number of stars (b);
average rotation-subtracted GSR velocity (c); velocity dispersion profile using rotation-
subtracted GSR velocities (d). The solid horizontal line indicates the systemic velocity,
the horizontal long-dashed lines show the region used for the 3σ membership selection
and the vertical dashed lines show the binning. In panel (c) and (d) the squares
show the properties which we will use in our analysis and that were derived using the
maximum likelihood procedure, whilst the asterisks show the properties derived using
the 3-σ clipping. Here we have used a Sersic profile to represent the Scl MR stars in the
maximum likelihood procedure for deriving the velocity dispersion. At r & 0.6 deg the
maximum likelihood procedure assigns all the observed stars to the MW component.

where β is the velocity anisotropy parameter, defined as β = 1 − σ2
θ/σ

2
r , assuming

σ2
θ = σ2

φ. Note that β = 0 if the velocity ellipsoid is isotropic, β = 1 if the ellipsoid
is completely aligned with the radial direction, and β < 0 for tangentially anisotropic
ellipsoids.
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Figure 5.7: As previous figure but for MP stars ([Fe/H]< −1.7). For our analysis we
use the dispersion profile derived from the maximum likelihood procedure (squares) for
the MP stars.

The Jeans equation relates observable quantities like the density distribution of the
tracer and its radial velocity dispersion profile to quantities of interest such as the
total mass distribution. Knowing ρ∗(r) and β(r), and assuming a mass model, one
can derive the predicted radial velocity dispersion profile for the mass model under
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consideration and compare it to the observed radial velocity dispersion profile of the
tracer. However, knowledge of the velocity anisotropy parameter requires proper mo-
tion measurements of the individual stars and at the moment this is possible only in
the Solar Neighbourhood. Therefore in practise one uses parametrizations for how β
varies with r. The general solution of Eq. 5.10 is

σ2
r,∗(r) = 1

ρ∗ e
∫

2βdx

∫
x

∞
ρ∗ V

2
c e
∫

2βdx′′ dx′, x = ln r. (5.11)

The quantity to compare to the observations is the l.o.s. velocity dispersion of the
tracer population (Binney & Mamon 1982):

σ2
los(R) = 2

Σ∗(R)

∫ ∞
R

ρ∗(r)σ2
r,∗ r√

r2 −R2
(1− βR

2

r2
)dr (5.12)

where R is the projected radius (on the sky) and Σ∗(R) is the mass surface density of
the tracer.

One common assumption is to treat the velocity anisotropy as constant. In this
case the radial velocity dispersion predicted from the Jeans equation for a spherical,
non-rotating system is:

σ2
r,∗(β = constant) = r−2β

ρ∗(r)

∫ ∞
r

r′2βρ∗(r′)
Vc(r′)2

r′
dr′ (5.13)

and according to Łokas & Mamon (2003) Eq. 5.12 can be reduced to:

σ2
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We refer to Mamon & Łokas (2005) for the derivation of the l.o.s. velocity dispersion
profile from the Jeans equation using different hypotheses on β.

Although previous studies of dSphs have shown that the luminous matter gravi-
tational contribution is negligible, we can investigate this further by separating σlos
into the relative contributions of DM and luminous matter, σ2

los = σ2
los,DM + σ2

los,lum.
These are simply obtained by replacing the circular velocity V 2

c (r) in Eq. 5.14 with
V 2
c (r) = V 2

c,DM(r)+V 2
c,lum(r). dSphs do not appear to contain gas, hence the luminous

matter is solely represented by the stars.
As the discovery of multiple stellar populations in dSphs is a recent one, tradition-

ally dSph galaxies have been treated as single component systems. For consistency
with previous works, we will first analyze our data using this approach and thus com-
pare the l.o.s. velocity dispersion profile predicted by different DM models to the overall
observed l.o.s. dispersion profile. However, we will show that there is a significant ad-
vantage in modeling each component (e.g., MR and MP) separately, as it allows us to
relieve some of the degeneracies present in the single component modeling.

Below we discuss in detail the ingredients to solve the Jeans equation.
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5.4.1 The spatial distribution of the tracer
As a first approach we treat Sculptor as a single component galaxy, i.e. we not make
any distinction according to metallicity. In Sect. 4.3.2 we found that the surface number
density profile of RGB stars in Scl, N∗(R), is reasonably described by a Plummer profile,
with b = 12.7 arcmin. Assuming a constant mass-to-light ratio (M/L)∗ for the tracer,
the surface mass density Σ∗(R) is directly related to the surface brightness I∗(R),
i.e. Σ∗(R) = (M/L)∗ I∗(R). We also assume that the surface brightness is directly
proportional to the surface number density profile, i.e. I∗(R) = kN∗(R) (derived in
Sect. 4.3.2). The 3D density profile is derived from N∗(R) through inversion of Abel
integrals, assuming that the stars are spherically distributed.

Note that the predicted l.o.s. velocity dispersion profile depends only on the func-
tional form of the spatial distribution of the tracer population, therefore there is no
need to set the normalization, i.e. (M/L)∗ and k.

In the second approach we treat the MR and MP stars in Scl as distinct tracers.
For these we use the Sersic and Plummer profiles from Sect. 5.3.2. For the expression
of the 3D density associated to the Sersic profile we refer to Łokas (2002).

5.4.2 The kinematics of the tracer
We examine two specific aspects of the velocity behaviour of the tracer population,
namely how to deal with the detected rotation signal and what to assume for the
velocity anisotropy parameter.

Rotation: The expression for the projected velocity dispersion (Eq. 5.12), which
measures the projected random motion in a galaxy, has been derived for the hypothesis
that the system is not rotating.

Observations of rotating elliptical galaxies show that the l.o.s. velocity distribution
(LOSVD) is sometimes significantly skewed, so that the observed projected streaming
velocity and dispersion are not meaningful. In most of these cases this is due to the
presence of an embedded rotating disk (see Binney & Merrifield 1998, and references
therein), and the LOSVD can be approximated by a broad non-rotating component
superimposed on a narrower rotating component. However, if the LOSVD is close to
Gaussian, then the velocity dispersion calculated with respect to the observed streaming
motion reflects the intrinsic random motions of the galaxy.

The LOSVD is most likely to be skewed in the regions where the maximum ro-
tation signal is present. We checked that the Sculptor LOSVD in those regions (see
Chapter 4) is symmetric and centered around the expected rotation signal. Hence, we
can approximate the velocity dispersion derived from the rotation-subtracted velocities
with the velocity dispersion predicted for a non-rotating system.

Alternatively, in systems where the rotation law can be accurately derived and
there is enough statistics to derive the dispersion profile along both the major and
minor axes, one can use the Jeans equations in cylindrical coordinates for a rotating
system making an assumption as to how the motion in the azimuthal direction is
divided between random motions and streaming motions. The present coverage of this
dataset does not allow this alternative.

Velocity anisotropy: As already mentioned, the variation of the velocity anisotropy
with radius is not known. We thus compare our observations to the model predictions
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for two hypotheses: considering β as constant with radius; using the Osipkov-Merritt
parametrization for β (Osipkov 1979; Merritt 1985)

βOM = r2/(r2 + r2a) (5.16)

where ra is the anisotropy radius. In the Osipkov-Merritt parametrization the anisotropy
is always ≥ 0, i.e. it is never tangential. The central regions are isotropic, and for
ra →∞ the anisotropy becomes purely radial. At r = ra, β = 0.5. The smaller ra, the
faster the anisotropy becomes very radial. Models with large ra correspond to models
with almost isotropic behaviour.

5.4.3 Total mass distribution
The total mass distribution in which the tracer population is embedded is given by the
contribution of stars and DM.

Stars

To determine the contribution from the luminous matter to the circular velocity, Vc,lum,
we need to know its mass distribution, i.e. Mlum(r). What we measure, however, is
the number surface density in terms of star counts as a function of the projected ra-
dius R. As previously described, we trasform this into a surface brightness, Ilum(R),
and then into a mass surface density, Σlum(R). If we assume that the stellar popu-
lation is homogeneusly distributed with r, then the surface brightness profile Ilum(R)
is proportional to the number surface density profile. The surface density is then
Σlum(R) = (M/L)∗,V Ilum(R).

From our photometric analysis we found that the projected distribution of all Scl
stars (from the 90% complete sample) is best approximated by a Plummer profile with
b = 13.1± 0.2 arcmin. This is also consistent with the best-fitting profile for the tracer
population, i.e. the RGB stars. The mass distribution for a Plummer profile is

Mlum(r) = (M/L)lum Ltot r
3

(b2 + r2)3/2
(5.17)

where (M/L)lum is the mass-to-light ratio of the luminous component and Ltot its
luminosity.

We assume Ltot = L∗,V = 2.15 × 106L� (Mateo 1998) and (M/L)lum,V =2. The
sole effect of the mass-to-light ratio is to vary the amplitude of the projected velocity
dispersion for the luminous component as

√
(M/L)∗,V . We will see in the next section

that the contribution of the luminous matter to the total dispersion is negligible for
any reasonable choice of (M/L)lum,V .

Dark matter

We consider two different models for a spherically symmetric dark-matter halo poten-
tial:
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• Pseudo-Isothermal sphere. This model has been extensively used in the context of
extragalactic rotation curve work (see Swaters et al. 2000, and references therein).
The density profile and circular velocity associated to this model are:

ρ(r) = ρ0
r2c

(r2c + r2)
, (5.18)

and
V 2

c (r) = V 2
c (∞)

(
1− rc

r
arctan r

rc

)
, (5.19)

where rc is the core radius, ρ0 = V 2
c (∞)

4πGr2c
is the central density and Vc(∞) is the

asymptotic circular velocity. At large radii the density behaves as ρ ∝ r−2.
The resulting mass profile is:

M(< r) = 4πρ0r
2
c
(
r − rc arctan r

rc

)
. (5.20)

The profile is completely defined by ρ0 and rc, or any couple of non-degenerate
parameters.

• NFW model. This profile is motivated by cosmological N-body simulations in a
CDM framework (Navarro et al. 1996, 1997). In this case the DM density profile
is given by

ρ(r) = δcρ
0
c

(r/rs)(1 + r/rs)2
(5.21)

where rs is a scale radius, ρ0
c the present critical density and δc a characteristic

over-density. The latter is defined by δc = 100 c3g(c)
3

, where c = rv/rs is the
concentration parameter of the halo, rv its virial radius, and g(c) = (ln(1 + c)−
c/(1 + c))−1. The circular velocity associated with this density distribution is

V 2
c (s) = V 2

v g(c)
s

[
ln(1 + cs)− cs

1 + cs

]
(5.22)

where Vv is the circular velocity at the virial radius rv and s = r/rv. The
concentration c has been found to correlate with the halo virial mass Mv in the
range 1011-1014h−1 M� (Navarro et al. 1997; Bullock et al. 2001; Wechsler et al.
2002), so that at a given redshift more massive haloes have lower concentrations.
Using the formula in Gentile et al. (2007) the concentration predicted for a MW-
sized halo (MV ∼ 1.0×1012 M� ) is ∼ 10; extrapolating the behaviour at smaller
masses, higher concentrations are expected for dSph galaxies (c = 20 for a virial
mass ∼ 1010 M� and c = 35 for a virial mass ∼ 108 M� ). In principle, the
relation between c and Mv makes the NFW model completely defined by one
parameter (e.g., Mv). However at a fixed mass the scatter in the predicted
concentration is large, of the order of ∆(log10 c) = 0.18 (Bullock et al. 2001),
thus we do not consider the NFW density profile as a one-parameter family, but
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we describe it both by the concentration c and by the virial mass or the circular
velocity at the virial radius.
At large radii (for r � rs), the density behaves as ρ ∝ r−3, and therefore, the
total mass diverges logarithmically. The resulting mass profile is

M(< r) = Mv
f(r/rs)
f(c)

(5.23)

where f(x) = ln(1 + x)− x

1 + x

When integrating Eq. 5.12, we set the upper integration limit to rv where we use
r2βρ∗σ

2
r,∗|rv = 0 (we are essentially assuming that the particles are bound out to

the virial radius). As we will see in the next Section, the extent of the luminous
matter is a few kpc, an order of magnitude smaller than the extent of the DM
halo, thus setting the upper integration limit to rv instead of to infinity will not
affect our results, only decrease the computation time.

5.5 Results from kinematic modeling
The methodology we use consists of comparing the observed l.o.s. velocity dispersion
σlos for each distance bin with that predicted for the different models discussed in the
Sect. 5.4. We explore the space of parameters which define each model and determine
the χ2 as:

χ2 =
Nbins∑
i=1

(
σlosi − σlos(Ri; pβ , p)

εi

)2
. (5.24)

The variable p denotes a characteristic parameter of each dark matter model (e.g. the
mass enclosed within the last measured point for the isothermal sphere and the virial
mass for the NFW model), pβ denotes a parameter describing the behaviour of the
velocity anisotropy (pβ = β for the models using β constant with radius, pβ = ra
for the models using βOM). Finally, εi is the error in the observed l.o.s. velocity
dispersion. The best-fitting parameters are defined as those for which χ2 is minimized.
We quote as errors in the individual parameters the projections of the ∆χ2 = 2.3 region
(corresponding to the region of 68.3% joint probability for a two free parameters χ2

distribution).

5.5.1 Scl as a single component galaxy
β constant with radius

• Isothermal sphere: In this model the total mass of the DM halo is not finite,
therefore we choose to fit the value of the mass within the last measured point,
M(< rlast), where rlast =1.8 kpc. This quantity is related to the core radius and

the asymptotic circular velocity by V 2
c (∞) = GM(< rlast)

(
rlast − rc arctan rlast

rc

)−1
.
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Figure 5.8: Left: Observed l.o.s. velocity dispersion profile (squares with er-
rorbars) overlaid on the best fit model (solid line) for an isothermal sphere
with β constant and rc = 0.05 (black), 0.5 kpc (grey). The dotted lines show
the contribution of the stars (M/L=2) and the dashed lines the dark matter con-
tribution. Assuming a distance of 79 kpc for the Scl dSph, 1 deg ∼ 1.4 kpc.
Right: Contour plots of ∆χ2 corresponding to a probability of the 68.3%, 95.4%
and 99.73% (1-2-3σ regions) for the isothermal sphere models shown in the left
panels, as indicated by the colours.

Therefore the isothermal sphere model can be fully described by two parameters,
i.e. M(< rlast) and rc. The other free parameter to take into account is the
velocity anisotropy β. In practise, we fix the core radius to several values and
minimize the χ2 to obtain the best-fitting M(< rlast) and β.

We explore the performance of models with core radii rc = 0.001, 0.05, 0.1, 0.5, 1
kpc (in Fig. 5.8 we plot the results for the rc = 0.05, 0.5 kpc models). We find that
the best results are obtained for core radii smaller than 0.1 kpc. The latter models
predict similar velocity dispersion profiles, of comparable fit-qualities (χ2

min ∼ 8),
and result in tangential values of the velocity anisotropy.

This tendency for increasing tangential anisotropy with decreasing core radius
comes from the fact that smaller core radii models have higher concentrations
of mass in the central regions and this tends to increase the central value of the
velocity dispersion. To match a nearly constant velocity dispersion profile the
anisotropy then needs to be tangential.

Figure 5.8 show the results for the model with rc = 0.05 kpc, with best-fitting
parameters β = −1.1+0.7

−1.1 and M(< rlast) = 1.3 ± 0.2 × 108 M� . In general, we
find that as the core radius increases, the best-fitting anisotropy changes from
tangential to radial and the best-fitting mass becomes larger. For rc=0.5 kpc
(see Fig. 5.8), the predicted velocity dispersion profile is too large both in the
inner and in the outer regions. The ability of the isothermal model to fit these
data diminishes for larger core radii.
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Figure 5.9: Left: Observed l.o.s. velocity dispersion profile (squares with er-
rorbars) overlaid on the best fit models (solid lines) for an NFW model with
β constant and c=20 (grey), 35 (black). Right: Contour plot of ∆χ2 corre-
sponding to a probability of the 68.3%, 95.4% and 99.73% (1-2-3σ regions) for
the NFW models shown in the top panel, as indicated by the colours.

• NFW model: For this model we let the concentration vary from c =20, 25, 30,
35, and for each of these values we derive the best-fitting virial mass and velocity
anisotropy.
Among the four models we explored, the one with the highest concentration,
c = 35, gives the best result, with best-fitting parameters β = −0.5+0.4

−0.8 and a
virial mass Mv = 6.1+2.2

−1.6 × 108 M� (χ2
min = 8.3, M(< rlast) = 1.4+0.5

−0.4 × 108

M� ). For the other concentrations the best-fitting profiles are in reasonable
agreement with the data (χ2

min =8.8-10.9). The best-fitting virial mass differs by
approximately a factor two between the lowest and highest concentration models
(in Fig. 5.9 we plot the results for the c = 20 and c = 35 models), whilst the
best-fitting anisotropies are all mildly tangential, and consistent with each other.
We can refer to this effect as to the “virial mass-concentration degeneracy”: for
each concentration, the combination of c and the best-fitting virial mass is such
that all the models have similar M(r) within the last measured point, which in
turn results in similar best-fitting β for all of them to be consistent with the same
σlos.

β Osipkov-Merritt

We now relax the assumption of a constant velocity anisotropy. We repeat the fitting
procedure using βOM for the velocity anisotropy. In this case the anisotropy radius ra
is the free parameter.

• Isothermal sphere: we explore the same range of core radii as in the previous
section (Fig. 5.10). In this case the best-fitting model is defined by rc =0.5 kpc,
ra = 0.4+0.2

−0.1 kpc and M(< rlast) = 3.2 ± 0.5 × 108 M� (χ2
min = 8.3). Also the
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Figure 5.10: As Fig. 5.8. Here the model is an isothermal sphere with βOM;
the grey line and contours show the rc = 0.05 kpc model and the black lines and
contours the rc = 0.5 kpc model.

models with rc = 0.1, 1 kpc give acceptable results. The resulting best-fitting
mass for each of the models is almost equal to the case with constant anisotropy,
whilst the quality of the fit is in some cases very different. Now that the minimum
value the anisotropy can assume is zero, the predicted central dispersion remains
too high for small core radii, resulting in a bad fit. Conversely, for large core radii
instead the fit with constant β was predicting too large a dispersion in the outer
parts, which is now lowered by the very radial anisotropy, giving an acceptable
fit.

• NFW model: we explore the same range of concentrations as in the previous
section (Fig. 5.11). As in the hypothesis of constant anisotropy, the explored
models with different concentrations give similar, acceptable results, with best-
fitting masses comparable to the previous case and velocity anisotropies consistent
with isotropy. Unlike the constant β case, now the quality of the fit improves for
lower concentrations.

Remarks on this section

From the above analysis we see that the modeling of Scl as a single component system
is subject to several degeneracies.

The isothermal sphere model gives an example of the well-known “mass profile-
anisotropy degeneracy”: the best-models for the β(r) = constant case, which have
small core radii (rc < 0.1 kpc), mildly tangential β and a mass within the last measured
point of ∼ 1.3 × 108 M� , give fits of comparable quality to the best-model with
β(r) = βOM (i.e. radial anisotropy), which has a larger core radius (rc = 0.5 kpc)
and approximately twice the mass. In this case, knowledge of the global value of the
anisotropy parameter would help to distinguish between the two models.



5.5: Results from kinematic modeling 153

Figure 5.11: As Fig. 5.9. Here the model is an NFW with βOM; the black line and
contours show the c = 20 model and the grey lines and contours the c = 35 model.

Within the β(r) = constant case, which is slightly favoured with respect to the
β(r) = βOM case, we find that it is not possible to distinguish between an isothermal
sphere and an NFW model. The best isothermal models (rc < 0.1 kpc) produce very
similar velocity dispersion profiles to the best NFW model (c = 35), both in terms
of the mass predicted within the last measured point (1.3-1.4×108 M� ) and of the
predicted, mildly tangential, anisotropy. The reason for this is that we are sampling a
distance range where the logarithmic slope of the dark matter density distribution is
very similar for both the models, explaining the similarities between the two fits.

5.5.2 Scl as a two component galaxy

From the previous section we saw that it is difficult from the analysis of the overall
velocity dispersion profile of Scl to prefer one dark matter model over the other. We
now use Scl MR and MP components as different tracers of the same potential in the
attempt to relieve some of the above degeneracies.

In this case we treat as free parameters: the mass of dark matter in Scl (virial
or within the last measured point), the parameter defining the anisotropy of the MR
stars (βMR or ra,MR) and the anisotropy of the MP stars (βMP or ra,MP) as there is no
reason to assume that MR and MP stars have the same orbital chracteristics. For each
combination of these 3 parameters we compare the predicted to the observed velocity
dispersion for the MR component, obtaining a χ2

MR value. We repeat this exercise for
the MP component (χ2

MP). We find the best-fitting parameters by minimizing the sum
χ2 = χ2

MR + χ2
MP. The resulting χ2 distribution has 3 free parameters and 11 degrees

of freedom, and as errors in the individual parameters we quote the projection of the
region of combined 68.3% probability (corresponding to a ∆χ2 = 3.53).
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Figure 5.12: Observed MR (left) and MP (right) velocity dispersion profile
(squares with errorbars) wih overlaid the best-fitting model (solid line) from the
joint fit of the velocity dispersion profile of MR and MP stars. The model is an
isothermal halo, in the hypothesis of β constant with the radius and rc = 0.05
kpc (grey), 0.5 kpc (black).

β constant with radius

In this case the fits for both an isothermal and an NFW model are quite poor, as the
joint fits are not satisfactory for both MR and MP components simultaneausly.

• Isothermal sphere: the best result for a joint fit of the MR and MP velocity
dispersion profiles is given by a model with a core radius rc = 0.5 kpc, M(<
rlast) = 3.3 ± 0.8 × 108 M� , βMR & 0.65, 0.3 . βMP . 0.9, with χ2

min =
(χ2

MR + χ2
MP)min = 17.3 (Figs. 5.12, 5.A1). All the models are able to reproduce

the rapid decline of the MR velocity dispersion with very radial anisotropies. In
general larger core radii are preferred by the MR population not to overpredict
the amplitude of the central dispersion. Instead the almost flat trend of the MP
population is better reproduced by small core radii and tangential anisotropy.

• NFWmodel: Figures 5.13 and 5.A2 show that lower concentrations are favoured
by the MR component for the same reason as above: the lower concentration mod-
els predict a lower central dispersion, because they have less mass in the central
regions. As for the isothermal model, very radial anisotropies are required to
explain the rapid decline of the MR velocity dispersion. In contrast the MP dis-
persion is better described by models with larger concentrations and tangential
β.

β Osipkov-Merritt

• Isothermal sphere: When assuming a βOM (Figs. 5.14, 5.A3) we find that an
isothermal sphere model with rc =0.5 kpc, M(< rlast) = 3.4 ± 0.7 × 108 M� ,
ra,MR = 0.2+0.1

−0.15 and ra,MP = 0.4+0.3
−0.2 kpc gives an excellent description of both
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Figure 5.13: Observed MR (left) and MP (right) velocity dispersion profile (squares
with errorbars) wih overlaid the best-fitting model (solid line) from the joint fit of the
velocity dispersion profile of MR and MP stars. The model is an NFW halo, in the
hypothesis of β constant with the radius and c =20 (black), 35 (grey).

the MR and MP velocity dispersion profiles (χ2
min = 6.9, with χ2

MR = 0.6 and
χ2

MP = 6.3).

Models with different core radii yield either a good fit for the MR stars or for the
MP stars, but not for both simultaneously.

• NFW model: In the case of an NFW halo (Figs. 5.15, 5.A4), the best fit is
given by a model with c = 20, Mv = 2.2+1.0

−0.7 × 109 M� , ra,MR = 0.2 ± 0.1 kpc
and ra,MP = 0.8+2.0

−0.4 kpc (χ2
min = 10.8, with χ2

MR = 4.2 and χ2
MP = 6.6). This

gives a mass within the last measured point of ∼ 2.4+1.1
−0.7 × 108 M� , which is

consistent with the mass predicted by the best-fitting isothermal sphere model.
This model tends to overpredict the central values of the MR velocity dispersion,
and this tendency is accentuated for larger concentrations. NFW haloes with
c < 20 would be needed to improve the agreement with the MR dataset. We
discuss this further below.

Remarks on this section

The joint fit of the observed velocity dispersion profile for MR and MP stars reveals that
both for an isothermal and an NFW model, a constant velocity anisotropy is strongly
disfavoured. Models with Osipkov-Merritt velocity anisotropy give excellent fits to the
data (see Table 5.1). In both cases the quality of the fit for the MP component is
comparable (χ2

min ∼ 6). There is however a significant difference in the quality of the
fit for the MR component, which is much better for the isothermal sphere. The NFW
model, on the other hand, overpredicts the central values of the MR velocity dispersion
profile.
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Figure 5.14: Observed MR (left) and MP (right) velocity dispersion profile (squares
with errorbars) wih overlaid the best-fitting model (solid line) from the joint fit of the
velocity dispersion profile of MR and MP stars. The model is an isothermal halo, in
the hypothesis of βOM and rc =0.05 kpc (top), 0.5 kpc (bottom).

Table 5.1: Parameters of the best-fitting dark matter models for the two components
Sculptor modeling. The columns show: the minimum χ2, the reduced minimum χ2,
the minimum χ2 for the MR and the MP component, the parameter defining the
anisotropy of the MR and the MP component (this is β itself for the β = const case,
and the anisotropy radius ra[kpc] for the β = βOM case), the mass contained within
the last measured point.

χ2
min χ2

min/ν χ
2
min,MR χ2

min,MP pβ,MR pβ,MP M(< rlast)
Iso rc = 0.5 kpc β = const 17.3 1.6 2.7 14.6 0.9 0.7 3.3±0.8× 108 M�
NFW c = 20 β = const 17.3 1.6 4.9 12.4 0.8 0.1 2.0+1.3

−0.7 × 108 M�
Iso rc = 0.5 kpc β = βOM 6.9 0.6 0.5 6.3 0.2 0.4 3.4±0.7× 108 M�
NFW c = 20 β = βOM 10.8 1.0 3.8 7.0 0.2 0.8 2.4+1.1

−0.7 × 108 M�
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Figure 5.15: Observed MR (left) and MP (right) velocity dispersion profile (squares
with errorbars) wih overlaid the best-fitting model (solid line) from the joint fit of the
velocity dispersion profile of MR and MP stars. The model is an NFW halo, in the
hypothesis of βOM and c =20 (top), 35 (bottom).

It is particularly important then to accurately determine the amplitude of the cen-
tral values of the velocity dispersion profile. For this we can use our VLT/FLAMES
velocities from high resolution (HR) measurements in the central regions of the Scl
dSph. As described in Chapter 2, 93 stars in the Scl central regions overlap in our HR
and LR datasets. As the HR velocities are derived from the measurements of ∼100
lines, the resulting error in velocity is considerably smaller than the one we typically
obtain from CaT measurement.

The velocity dispersion derived from the HR measurements for MR and MP stars
is shown in Fig. 5.16 and agrees well with the dispersion from the CaT. The value of
the velocity dispersion for the MR stars using the HR data is ∼ 6.4 ± 1.1 km s−1 at
R = 0.15 kpc in comparison to the LR value 8.2±1.7 km s−1 . When repeating the
χ2 fitting procedure substituting the velocity dispersion from the LR in the first 3
bins with that obtained from the HR dataset we find that the NFW model fits are
worst, even if we allow for lower concentrations. The best fit is now obtained for
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Figure 5.16: HR VLT/FLAMES Scl sample (left: MR stars; right: MP stars). From
top to bottom: rotation-subtracted GSR velocity, number of stars per bin, velocity
dispersion per bin (asterisks). For comparison the squares with errorbars in the bottom
panels show the velocity dispersion for MR (left) and MP (right) stars derived from
our low resolution sample. The solid horizontal line indicates the systemic velocity;
the dotted lines the usual 3σ range; the vertical dashed lines the binning used.

a c = 15 and Mv = 4.2+2.5
−1.7 × 109 M�model. This model predicts a lower velocity

dispersion for the MR stars, more in agreement with the data, but the overall fit is
still not satisfactory for this component (χ2

min = 12.7, χ2
min,MR = 4.8). For higher

concentrations the performance of the fit improves for the MP stars and is poorer for
the MR, and viceversa for lower concentrations.

On the contrary an isothermal sphere with rc =0.5 kpc still gives an excellent fit
using also the HR data. This further strengthens the case for the isothermal sphere
model with relatively large core under the assumption of an Osipkov-Merritt anisotropy.

5.6 MOND
As alternative to the presence of dark matter, we briefly explore the performance
of Modified Newtonian Dynamics (MOND) in recovering the observed l.o.s. velocity
dispersion profile of Scl. First we consider all Scl members together and then we jointly
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fit the dispersion profiles of MR and MP stars.
In the MOND framework the true acceleration g is related to the Newtonian accel-

eration gN by
µ(x)g = gN (5.25)

where x = |g|/a0, a0 is the critical acceleration and µ(x) is an unspecified function
that asymptotically behaves as µ(x) = x when x � 1 and µ(x) = 1 when x � 1
(Milgrom 1983). The standard value of a0 was derived by Begeman, Broeils, & Sanders
(1991) from a sample of high-resolution rotation curves for spiral galaxies and is a0 =
1.2× 10−10 m s−2.

In principle, the attractiveness of MOND resides in its predictive power. Unlike in
the case of dark matter models, the MOND potential does not involve free parameters
and it is completely defined by a0 and the amount of visible matter, parametrized by
its mass-to-light ratio M/L. The MOND force field is determined through Eq. 5.25.
We can use the Jeans equation to derive the predicted MOND l.o.s. velocity dispersion
profile where the total potential is represented by the stellar potential in the MOND
regime. Now that the only potential is due to the stars we cannot fix the stellar M/L
but we must consider it as a free parameter. In this case we use the stellar M/L in the
V band. As in the previous section we must assume a functional form for β (with a
corresponding free parameter).

For µ(x) we explore the performance of µKM(x) = x/
√

1 + x2 (Kent 1987; Milgrom
1988, hereafter KM), and µFM05(x) = x/(1 + x), which was found to better agree with
observations of the terminal velocity curve of the MW given the standard value of a0
(Famaey & Binney 2005, hereafter FB05).

The solutions for the gravitational field in the MOND regime are:

gKM = a0

√
y2 + y

√
y2 + 4

2
(5.26)

and
gFB05 = a0

2
(y +

√
y2 + 4y) (5.27)

where y = gN/a0.

5.6.1 Scl as a single component galaxy

In the case of Scl the stars are distributed as a Plummer sphere with b = 13.1 arcmin
(as in Sect. 5.4.3). We find a good agreement between the predicted l.o.s. velocity
dispersion profile and the observed one, both in the case of β constant with radius
and βOM (reduced χ2

min ∼ 1). Both functional forms for µ(x) give very similar and
consistent results for the best-fitting values of the free parameters. The model that
performs slightly better has constant β and µFM05, which gives a χ2

min = 8.1 for a
β = −0.3+0.3

−0.5 and M/L= 4.1+1.1
−0.8 (M/L)� (Fig. 5.17). The predicted shape and quality

of fit are very similar to the best-fitting DM models (see Sect. 5.5).
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Figure 5.17: Left: Observed velocity dispersion profile for the Sculptor dSph (squares
with errorbars) wih overlaid the best-fitting MOND model (solid line) in the hypothesis
of β constant with radius. Here we use the functional form for µ(x) proposed by KM
(see text). Right: Contour plot of ∆χ2 corresponding to a probability of the 68.3%,
95.4% and 99.73% (1-2-3σ regions) relative to the model in the left panel.

Figure 5.18: Observed MR (left) and MP (right) velocity dispersion profile (squares
with errorbars) wih overlaid the best-fitting MOND model (solid line) from the joint fit
of the velocity dispersion profile of MR and MP stars in the hypothesis of βOM. Here
we use the functional form for µ(x) proposed by FM05 (see text).
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5.6.2 Scl as a two component galaxy
In the case of a combined fit of the MR and MP velocity dispersion profiles we find that
there is a better agreement between predictions and observations in the case of βOM.
The best-fitting model (χ2

min = 13.5, with χ2
MR = 5.8 and χ2

MP = 7.7) has parameters
ra,MR = 0.2±0.1 kpc, ra,MP = 1.4 kpc (with a lower limit of 0.5 kpc) and M/L= 4.8+1.7

−1.3
(M/L)� (Fig. 5.18). This model matches the data well except in the first bin of the
MR velocity dispersion profile, as the model predicts a dispersion which is too large,
especially if we take into account the more precise value of 6.4 km s−1 indicated by the
HR data for the second bin.

The quality of the fit for this MOND model is poorer than with for the best-fitting
isothermal and NFW models.

The M/L ratio for the luminous component that we derived from the combined
MR and MP fit remains very similar to the single component case. These best-fitting
M/L in the V band are towards the higher end of what predicted for an ancient simple
stellar population for a Salpeter IMF (Maraston 1998).

5.7 Discussion
Our analysis shows that taking into account the presence of the MR and MP com-
ponents in Scl has important implications for the kinematic modeling of this galaxy.
First of all, ignoring the presence of multiple components impacts the interpretation of
modeling results. Secondly, as distinct tracers of the potential the MR and MP com-
ponents when properly distinguished allow us to better constrain the mass distribution
and content of Scl in comparison to the traditional single component approach.

5.7.1 The multi-component nature of Scl
The MR stars in Scl, which dominate the central regions, exhibit a strongly declining
velocity dispersion profile. In contrast, the more spatially extended MP stars have a
dispersion profile which is mildly declining with distance from the centre. This combi-
nation conspires to produce a nearly flat velocity dispersion profile when no distinction
in metallicity is made and all the stars are considered together. This is because the
colder velocity dispersion of the MR stars tends to lower the overall dispersion in the
central regions, whereas the middle and outer regions are dominated by the hotter
kinematics of the MP stars.

This interplay between MR and MP stars can explain the apparent contradictions
found when comparing the results of previous kinematic studies of Scl, particularly if
one takes into account the differences in the location and sample sizes. For example pre-
vious studies, none of which had metallicity information available, found systematically
lower dispersions in the central regions because of the bias induced by preferentially
sampling the MR population. Queloz et al. (1995) found a very low dispersion for Scl
(6.2± 1.1 km s−1 ) when observing the very central regions (the inner 0.15 deg) with a
sample of only 23 stars, which can be readily explained by the fact that, inadvertedly,
they were mostly probing the colder kinematics of the MR stars. In contrast, Westfall
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et al. (2006), with a larger sample covering more of the galaxy, found a global disper-
sion ∼8 km s−1 out to 0.5 deg, and ∼11 km s−1 at larger radii, which is consistent with
our findings (their Fig. 12).

It is possible that the combination of multiple components producing nearly flat
global dispersion profiles is more common and may lead to the incorrent interpretation
of kinematic modeling. Flat dispersion profiles, as seen in Scl, are better modelled
by a constant, mildly tangential velocity anisotropy, as found by Kleyna et al. (2002),
Łokas (2002) and Kazantzidis et al. (2004) to fit the global dispersion profiles of Draco
and Fornax. As noted by Kazantzidis et al. (2004), this is in agreement with predic-
tions from formation scenarios of dSphs, such as tidal stirring (Mayer et al. 2001a,b).
However, tangential anisotropy is not required when considering the kinematics of the
multiple components separately. In fact, in our analysis of the Scl dSph, radial or close
to isotropic velocity ellipsoids are favoured by the indipendent kinematic modeling of
the MR and MP stars. McConnachie et al. (2006) also showed that the shape of the
overall velocity dispersion profile of Draco and Fornax can be reproduced by isotropic
toy models assuming two components. It is thus important to accurately define the
detailed properties of even these most simple small systems.

5.7.2 Comparison to ΛCDM models
The multi-component nature of Scl has allowed us to constrain fundamental properties
such as its mass content and distribution. Our interpretation favours a cored profile;
however a cusped profile such as the NFW model is also statistically consistent with
these data. We can also use the derived properties of Scl to test further predictions
of DM theories, such as the mass spectrum of satellite galaxies predicted to orbit the
MW, and to put constraints on the nature of dark-matter.

In the Introduction (Sect. 5.1) we touched upon the “missing satellites problem”
that challenges CDM theories. Most solutions to this problem propose a threshold in
the peak circular velocity, vmax, for the DM subhaloes in which dSphs are embedded.
This prediction can be tested by measuring vmax for dSphs. However this is not a
simple measurement.

From our analysis of Scl we have seen that the determination of vmax in the standard
single component modeling is subject to several degeneracies. In particular, for an
NFW profile the virial mass/concentration degeneracy does not allow us to constrain
the vmax of the DM halo. This degeneracy is expecially severe in systems where the
peak of the velocity curve occurs beyond the farthest point probed by the data (see
also Strigari et al. 2006), as in Scl. However, with our two component modeling of Scl
we were able to relieve this degeneracy and significantly constrain the range of vmax
allowed by the data. For the best-fitting NFW models we find vmax = 24 km s−1 when
using only the LR data (c = 20,Mv = 2.2+1.0

−0.7×109 M� ) and vmax = 27.6 km s−1 when
adding the HR data (c = 15 andMv = 4.2+2.5

−1.7×109 M� ). These values are a bit lower
but not incompatible with what is predicted if dSphs are assumed to have formed their
stars before reionization, but more difficult to reconcile with the values of vmax > 35
km s−1 predicted by Stoehr et al. (2002) and Hayashi et al. (2003) if dSphs inhabit the
most massive subhaloes.

At this point we could simply conclude that the peak circular velocity of Scl is
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a bit lower than what is typically expected for CDM subhaloes. However, a proper
comparison between predictions and observations should take into account how the
properties of a subhalo (satellite), like its concentration, density profile etc, can be
modified by interactions with the host galaxy. It is possible that the vmax values
measured today for dSphs are not representative of what they were in the past, but
that they have been lowered as a consequence of the fact that subhaloes lose mass
because of the tidal forces exterted by their host halo. The change in vmax is related
to the orbital history of the satellite and thus how strong has been the interaction
with the host galaxy. Satellites that suffer dramatic mass loss will have their vmax
reduced by as much as 50% (Hayashi et al. 2003; Kravtsov et al. 2004). For systems
with pericentric distances &50 kpc, mass loss because of tidal interaction is likely to
be minimal and vmax changes only slightly (Fig. 3 in Kravtsov et al. 2004). Recent
proper motion measurements for Scl suggest a pericentric distance of 70 kpc (Piatek
et al. 2006) which would imply that the currently measured vmax resembles the initial
value. However these proper motions still have large uncertainties and thus it is not
possible to firmly establish the orbital history of Scl.

A possible way to circumvent the uncertainties in the comparison between predic-
tions and observations is to use quantities which are both well determined observation-
ally and are not expected to be significantly altered during the evolution of the satellite.
One example is the DM mass within the extent of the light distribution. In this respect
it is worth considering the suggestion of revisiting the missing satellites problem made
by Strigari et al. (2007b). These authors proposed to use the mass enclosed within
0.6 kpc, M0.6. They derived M0.6 for the MW satellites using the latest kinematic
information from the literature and compared the data to the predictions from the Via
Lactea simulation (Diemand et al. 2007). They found that the observed M0.6 cumula-
tive function could be reproduced by assuming that either the dSphs were embedded
in the earliest accreted subhaloes or that they were in the most massive haloes at the
time of accretion (note that they did not use the observed satellite spatial distribution
as a constraint). For the Scl dSph they found M0.6 = 2.7 ± 0.4 × 107 M� assuming a
CDM halo. For comparison, we find M0.6 = 4.4+1.1

−0.8 × 107 M� (where the errors are
derived by marginalizing with respect to the other parameters) from our best-fitting
NFW profile (c = 20). This value is larger than what found by Strigari et al. (2007b)
but in 2σ agreement with their result.

The approach of using the mass enclosed within a certain point, be it within 0.6
kpc or the extent of the light distribution, seems to be promising and less subject to
uncertainties. Obviously this requires homogeneity in the measurements of the different
galaxies, whose mass should be considered out to the same radius.

An independent test on the nature of DM can be given by experiments devoted
to detect γ-ray flux from DM haloes. In this context, γ-rays are produced by anni-
hilation between weakly interacting particles, such as for instance WIMPS, which are
good candidates for CDM. Strigari et al. (2007a) showed that, assuming that dSphs
are embedded in smooth NFW haloes, the expected γ-ray flux depends on the NFW
parameters such as the characteristic density ρs and the scale radius rs, and from their
analysis they found that Ursa Minor and Draco are the most promising targets in terms
of expected γ-ray flux. Using the parameters from our best-fitting NFW model we find
ρs = 1.7 × 107 M� kpc−3 and rs = 1.7 kpc, which give an expected flux ∼ 10−11
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photons cm−2 s−1 from a region of 2 degrees radius centered on Scl assuming a smooth
DM halo, slightly above the predictions of Strigari et al. (2007a) (their Fig. 3). This
makes Scl a potentially interesting target for GLAST (see Strigari et al. 2007a, and
references therein), although still fainter than Ursa Minor and Draco.

5.8 Summary and conclusions
We derived the l.o.s. velocity dispersion profile of the Sculptor dSph out to its nominal
tidal radius using accurate velocities from low resolution (R ∼6500) VLT/FLAMES
spectroscopic measurements of ∼ 470 RGB stars in the CaT region, supplemented by
HR (R∼20000) velocities in the centre.

The observed global velocity dispersion profile is approximately constant around 9
km s−1 out to its last measured point at 1.3 deg (1.8 kpc). When taking into account
the metallicity information, we find that MR stars exhibit a strongly declining velocity
dispersion profile while the MP velocity dispersion profile is consistent with being nearly
flat or mildly declining.

We compared the observed l.o.s. velocity dispersion profile to the predictions of DM
models, in order to derive the Scl mass content, using a maximum likelihood method
which takes into account the presence and percentage of MW foreground interlopers,
and how this varies with radius.

Following the traditional approach, we first modeled Scl as a one component galaxy.
In this case, we find that the results are subject to several degeneracies that do not
allow us to distinguish between a cored and a cusped DM distribution.

Because of the two distinct kinematic components identified in Scl (Chapter 4) we
were also able to model Scl as a two component system, using the MR and MP popu-
lations as distinct tracers of the same potential. This allowed us to break some of the
degeneracies that plague single component modeling. Under the explored assumptions
for the behaviour of the velocity anisotropy, some of the models are not able to simul-
taneously satisfy both the MR and MP velocity dispersion trends, and in particular
they are unable to reproduce the central values of the MR velocity dispersion. From
the combined fit of MR and MP stars we find that the best model is a cored profile
with rc =0.5 kpc and M(< rlast) = 3.4±0.7×108 M� , which gives an excellent repre-
sentation of the data assuming an increasingly radial anisotropy. An NFW profile with
c = 20 and a virial mass Mv = 2.2+1.0

−0.7×109 M� is also statistically consistent with the
data, but it overpredicts the central velocity dispersion of the MR component. The
mass enclosed within the last point by the NFW model is M(< rlast) = 2.2+1.0

−0.7 × 108

M� , which is consistent with the cored profile value within 1σ. These values for the Scl
mass within the last measured point do not confirm (by an order of magnitude) the sug-
gestion that dSph galaxies might have a common mass scale of 4× 107 M� (Wilkinson
et al. 2006). The scale radius rs = 1.7 kpc derived from our best-fitting NFW model
appear to confirm the suggestion made by Penarrubia et al. (2007) that the stellar
component of dSphs is likely to be deeply embedded in their DM halo, resulting in a
core radius-scale radius ratio of 0.07.

An alternative approach such as MOND is also statistically consistent with these
data but less satisfactory than any of the best fitting dark matter haloes fit under the
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velocity anisotropy assumptions we used. A velocity ellipsoid which is tangential in
the central region and becomes radial in the outskirts would, however, likely improve
the quality of fit both for an NFW model and a MOND approach.

We conclude that the mass of Scl is one order of magnitude larger than was derived
in previous measurements (Queloz et al. 1995) and that the favoured mass distribution
is a cored profile with rc = 0.5 kpc assuming an Osipkov-Merritt velocity anisotropy.

The results from such a large and spatially extended dataset which combines kine-
matic and metallicity information clearly shows that attention should be paid to the
way targets are selected even in these seemingly simple systems.

The use of the kinematics of distinct stellar populations to help breaking the mass
distribution/velocity anisotropy degeneracy has proved very useful. Since most of the
dSphs satellites of the Milky Way show multiple stellar components, the technique
pioneered here should be applied more widely in the future.
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Appendix 5.A Contour plots from Scl two compo-
nents modeling

Figure 5.A1: Contour plot of ∆χ2 corresponding to a probability of the 68.3%, 95.4%
and 99.73% (1-2-3σ regions) for the isothermal models in the hypothesis of β constant
with the radius shown in Fig. 5.12 (top: rc = 0.05 kpc; bottom: rc = 0.5 kpc; left:
MR; right: MP). Hereafter for the joint fit of MR and MP stars we are treating the
χ2 distribution as a 3 parameters distribution, and we plot the projections of the 3D
probability region onto the considered parameter plane.
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Figure 5.A2: Contour plot of ∆χ2 corresponding to a probability of the 68.3%, 95.4%
and 99.73% (1-2-3σ regions) for the NFW models in the hypothesis of β constant with
the radius shown in Fig. 5.13 (top: c = 20; bottom: c = 35; left: MR; right: MP).
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Figure 5.A3: Contour plot of ∆χ2 corresponding to a probability of the 68.3%, 95.4%
and 99.73% (1-2-3σ regions) for the isothermal models in the hypothesis of βOM shown
in Fig. 5.14 (top: rc = 0.05 kpc; bottom: rc = 0.5 kpc; left: MR; right: MP).
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Figure 5.A4: Contour plot of ∆χ2 corresponding to a probability of the 68.3%, 95.4%
and 99.73% (1-2-3σ regions) for the NFW models in the hypothesis of βOM shown in
Fig. 5.15 (top: c = 20; bottom: c = 35; left: MR; right: MP).
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Figure 5.A5: Contour plots of ∆χ2 corresponding to a probability of the 68.3%,
95.4% and 99.73% (1-2-3σ regions) relative to the best-fitting MOND model shown in
Fig. 5.18 for MR (left) and MP (right) stars.
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