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Stability and stabilization of mixed lumped and distributed parameter systems

R. Pasumarthy, A. J. van der Schaft
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Email: R.Pasumarthy, a.j.vanderschaft@math.utwente.nl

Abstract—We study boundary control systems which
are represented as port-Hamiltonian systems with respect
to an infinite-dimensional Dirac structure. Interconnection
of such systems with lumped parameter dissipative systems
again defines a port-Hamiltonian system. Typical exam-
ple is a power-drive consisting of a power converter, trans-
mission line and electrical machine. We study the stability
properties of such systems using the total Hamiltonian and
other conserved quantities determined by the Dirac struc-
ture, and explore their control within this context.

1. Introduction

The key ingredient of any port-Hamiltonian system is
a power-conserving interconnection structure (mathemati-
cally formalized by the geometric notion of a Dirac struc-
ture) linking the pairs of conjugate port variables of the
various ports corresponding to energy storage (defined by
a Hamiltonian function depending on energy variables),
resistive effects, external interaction, etc. The intercon-
nection of port-Hamiltonian systems defines a new port-
Hamiltonian system with Dirac structure determined by
the Dirac structures of the constituent parts. The port-
Hamiltonian framework applies to lumped parameter, as
well as to distributed parameter systems. This means
that the interconnection of lumped parameter sub-systems
with distributed parameter sub-systems defines a port-
Hamiltonian system with infinite-dimensional Dirac struc-
ture determined by the finite-dimensional Dirac structures
of the lumped parameter components and the infinite-
dimensional Dirac structures of the distributed parameter
components. Furthermore, the total Hamiltonian of the
mixed interconnected system is the sum of the Hamiltoni-
ans of the components. This offers a natural starting point
for the stability analysis of mixed systems. Furthermore,
by appropriately selecting the Dirac structures of the con-
trol components, Casimirs for the mixed systems may be
generated which may be used for shaping the total Hamil-
tonian to a Lyapunov function for a desired equilibrium.

2. Port-Hamiltonian systems and Dirac structures

It is well known [4, 5] that the notion of power con-
serving interconnections can be formulated by a geomet-
ric structure called a Dirac structure, which is a subspace
of the space of flows and efforts. We briefly discuss these

concepts both for finite as well as infinite-dimensional sys-
tems with scalar spatial variable. Refer [4, 5] for details.

2.1. Lumped parameter systems

To define the notion of Dirac structures for finite dimen-
sional systems, we start with a space of power variables
F × F ∗, for some linear spaceF , with power defined by

P =< e | f >, ( f , e) ∈ F × F ∗,

where< e | f > denotes the duality product, that is, the
linear functionale ∈ F ∗ acting on f ∈ F . F is called the
space of flows andF ∗ the space of efforts, with the power
of a signal (f , e) ∈ F × F ∗ denoted as< e | f >.

There exists onF × F ∗ a canonically definedbilinear
form�,�, defined as

� ( f a, ea), ( f b, eb)� :=< ea | f b > + < eb | f a >, (1)

( f a, ea), ( f b, eb) ∈ F × F ∗

Definition 1 [4] A constant Dirac structure onF × F ∗ is
a subspaceD ⊂ F × F ∗ such thatD = D⊥ with respect to
the bilinear form (1).

As an immediate corollary of the definition we see that for
all ( f , e) ∈ D we have that< e | f >= 0. Hence a Dirac
structure defines a power conserving relation.

Consider a lumped parameter physical system given by
power-conserving interconnection defined by a constant
Dirac structureD and energy storing elements with energy
variablesx. For simplicity we assume that the energy vari-
ables are living in a linear spaceX although everything can
be generalized to the case of manifolds. The constitutive
relations of the energy storing elements are specified by
their stored energy functionsH(x).

The space of flows is naturally partitioned asFS × F

with fS ∈ FS, the flows corresponding to the energy storing
elements andf ∈ F denoting the remaining flows (corre-
sponding to ports/sources). Correspondingly, the space of
effort variables is split asF ∗s ×F

∗, with eS ∈ F
∗
S the efforts

corresponding to the energy-storing elements ande ∈ F ∗

the remaining efforts. The Dirac structureD can then be
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given in matrix kernel representation as

D =

{

( fs, es, f , e) ∈ FS × F
∗
s × F × F

∗

| FS fS + ESeS + F f + Ee= 0

}

,

ESFT
S + FSET

S + EFT + FET = 0

with rank[FS
...ES
...F
...E] = dim(FS × F )

(2)

Now the flows of the energy storing elements are given by
ẋ, and equated with− fS (the negative sign is included to
have a consistent energy flow direction). The efforts eS

corresponding to the energy storing elements are given as
∂H
∂x = es. Substituting these into (2) leads to the description
of the physical system by the set of DAE’s

FS ẋ(t) = ES
∂H
∂x

(x(t)) + F f (t) + Ee(t) (3)

with f , e the port power variables. The system of
equations(3) is called a port-Hamiltonian system.

By the power conserving property of a Dirac structure it
follows that any port-Hamiltonian system satisfies the en-
ergy balance

dH
dt

(x(t)) =<
∂H
∂x

(x(t))|ẋ(t) >= eT(t) f (t)

which means that the increase in internal energy of the
port-Hamiltonian system is equal to the externally supplied
power.

2.2. Distributed parameter systems

In order to define a Dirac structure for an infinite-
dimensional system we have to consider an infinite-
dimensional function space. Through out the paper we
will only consider systems with a 1-dimensional spatial
domain. This function space will be defined as follows
F ∗ = F∗p(Z) × F∗q(Z) × F∗b, with F∗p(Z), F∗q(Z) denoting the
space of efforts of the two energy domains interacting with
each other andF∗b denoting the boundary efforts. TheF is
defined as the dual space ofF ∗ with respect to the duality
product

< (ep, eq, eb), ( fp, fq, fb) >=
∫ l

0
[ fpep + fqeq] + eb fb |

l
0

Similar to the finite dimensional case, we define the bilinear
form between two elements ofF × F ∗ as

<< ( f 1, e1), ( f 2, e2) >>,
∫ l

0
(e1

p f 2
p + e2

p f 1
p + e2

q f 1
q + e1

q f 2
q )dz+ (e1

b f 2
b + e1

b f 2
b ) |l0

Then the following system defines a port-Hamiltonian sys-
tem

[

fp

fq

]

=

[

0 d
d 0

] [

ep

eq

]

;

[

fb
eb

]

=

[

1 0
0 −1

] [

ep |∂Z
eq |∂Z

]

(4)

with |∂Z denoting the restriction to the boundary∂Z.
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Figure 1:D1 ‖ D∞ ‖ D2

2.3. Systems with dissipation

Dissipation cam enter into port-Hamiltonian systems by
terminating some of the ports by resistive relations. This
can also be viewed as interconnecting a Dirac structure
with a resistive relation given by

Rf fR + ReeR = 0

where fR, eR respectively denote the flow and effort vari-
ables corresponding to the resistive elements and the square
matricesRf andRe satisfy the symmetry and semi-positive
definiteness condition

Rf R
T
e = ReR

T
f ≥ 0

The interconnection of the Dirac structure and the resistive
relation then has the following property

(D ‖ R)⊥ = D ‖ −R

where−R denotes the pseudo-resistive structure given by

Rf fR − ReeR = 0

(−R is called a pseudo-resistive structure since it corre-
sponds to negative instead of positive resistance).

Similar property also holds for the case of distributed
parameter systems where dissipation can enter into the sys-
tem either through the spatial domain or by terminating the
boundary or boundaries of the system by a resistive rela-
tion.

3. Interconnections of port-Hamiltonian systems

Mixed lumped and distributed parameter port-
Hamiltonian systems arise from interconnections arise
by interconnection of a distributed parameter system to a
lumped parameter system either through the spatial domain
or through the boundaries of the distributed parameter
system (see [3] for example). Such interconnections of
port-Hamiltonian systems represented by their respective
Dirac structures can be studied as follows: Consider
two Dirac structuresD1,D2 (lumped parameter) defined
respectively on the product spacesF1×F 0 andF1 andF0

and a Stokes’ Dirac structureD∞ on the product space
F0×F p × Fq×F l , with F0 and Fl being linear spaces
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(representing the space of boundary variables of the
Stokes’ Dirac structure) andFp,q an infinite dimensional
function space withp, q representing the two different
physical energy domains interacting with each other.

Now we study interconnection of the two Dirac struc-
turesD1 and D2 interconnected to each other via the
Stokes-Dirac structureD∞. The total interconnection of
D1, D∞ andD2. The total interconnection ofD1,D∞ and
D2 is defined such thatf0, e0 are the shared flow and ef-
fort variables betweenD1 andD∞ and fl , el are the shared
flow and effort variables betweenD2 andD∞. Also see
Figure(1).

This yields the following bilinear form onF1 × F
∗
1 ×

Fp,q × F
∗
p,q × F2 × F

∗
2 :

� ( f a
1 , f

a
p , f

a
q , f

a
2 , e

a
1, e

a
p, e

a
q, e

a
2), ( f b

1 , f
b
p , f

b
q , f

b
2 , e

b
1, e

b
p, e

b
q, e

b
2)�

:=< eb
1| f

a
1 > + < ea

1| f
b
1 > + < ea

2| f
b
2 > + < eb

2| f
a
2 >

+

∫

Z

[

ea
p f b

p + eb
p f a

p + eb
q f a

q + ea
q f b

q

]

(5)

Proposition 2 [1] Let D1,D2 andD∞ be Dirac structures
as said above (defined respectively with respect toF1×F

∗
1×

F0×F
∗
0,Fl×F

∗
l ×F2×F

∗
2 andF0×F

∗
0×Fp,q×F

∗
p,q×Fl×F

∗
l ).

Then D= D1‖D∞‖ D2 is a Dirac structure defined with
respect to the bilinear form onF1×F

∗
1×Fp,q×F

∗
p,q×F2×F

∗
2

given by (5).

So far in the composition we have considered systems with-
out dissipation. At this point one might ask what if there is
dissipation in the system? This is answered by the follow-
ing corollary.

Corollary 3 LetD1 ‖ R1,D2 ‖ R2 andD∞ ‖ R∞ be Dirac
structures as defined above interconnected to their respec-
tive resistive relations (representing their dissipation), then
the composed system will again have a structure of the form
D ‖ R with the property that(D ‖ R)⊥ = D ‖ −R where
−R is a pseudo resistive structure (corresponding to neg-
ative resistance).D is the composition of the individual
Dirac structures andR is the composition of the individual
resistances of the subsystems.

4. Casimirs and Control

Casimirs are functions that are conserved quantities
of the system for every Hamiltonian. They are com-
pletely characterized by the Dirac structure of the port-
Hamiltonian system. A functionC : X → R is a
Casimir function of the autonomous port-Hamiltonian sys-
tem (lumped parameter) with a given resistive relation to
be any functionC : X → R satisfying

(0, e,− fR, eR) ∈ D (6)

implying that

d
dt

C =
∂TC
∂x

(x(t))ẋ(t) = eT fp = 0 (7)

Similarly in the case of a Stokes-Dirac (with zero bound-
ary conditions) structure with a given resistive relation,a
Casimir is any functionalC : X → R which satisfies

(0, ep, 0, eq,− fRp, eRp,− fRq, eRq) ∈ D (8)

where fRp, fRq are the flow variables of the resistive ele-
ments corresponding to thep andq energy domains, simi-
larly with the efforts. implying that

dC
dt
=

∫

Z
ep fp + eq fq = 0

Remark 4 In case of a finite dimensional system with dis-
sipation we see that in case of definiteness of the resistive
relation, if a function is a conserved quantity (a Casimir)
for one resistive relation it actually needs to be a Casimir
for all resistive relations; see [2] for a proof.

Now let us address the question of designing a controller
port-Hamiltonian system such that the controlled system
has the desired stability properties. The controlled system
satisfies

d
dt

(Hp + Hc) ≤ 0

In casex∗ is not a minimum forHp, then a possible strategy
is that we generate Casimir functionsC(x, ξ) for the closed-
loop system by appropriately choosing the controller port-
Hamiltonian system. The resulting Lyapunov function is
then given by the sum of the plant and controller Hamilto-
nians and the corresponding Casimir function,

V(x, ξ) := Hp(x) + Hc(ξ) +C(x, ξ)

The objective is then to construct a Lyapunov function such
thatV has a minimum at (x∗, ξ∗), with ξ∗ still to be chosen.
This strategy is based on finding all the achievable Casimirs
of the closed-loop systems.

4.1. Achievable Casimirs

We consider here a case where the plant port-
Hamiltonian systemDp is the interconnection of a dis-
tributed parameter port-Hamiltonian system with a lumped
parameter system connected to one of its boundary and
the controller system a lumped parameter port-Hamiltonian
system connected to the other end of the distributed param-
eter system. Typical example is a power-drive consisting
of a power converter, transmission line and electrical ma-
chine.

Following the theory of achievable Casimirs [1] and ex-
tending it to the case of systems with dissipation, the set
of achievable Casimirs arefunctionals C(x(t), q̄(z, t)) such
thatδC(x(t), q̄(z, t)) belongs to the space

PCas = {e1,ep, eq | ∃Dc such that∃e2 :

(0,e1,− fR, eR, 0,0, ep, eq,− fRp,eRp,− fRq, eRq,0, e2,0, 0)

∈ Dp ‖ Dc}
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where fR = [ fR1 fR2]T , eR = [eR1 eR2]T , with ( fR1,eR1) denoting
the flows and efforts variables of the dissipation term in the finite
dimensional part of the plant Dirac structure, and (fR2,eR2) the
flow and effort variables associated with the dissipation term in
the controller Dirac structure (finite dimensional).

Similar to the case of systems without dissipation [1], the fol-
lowing proposition (which we state here without proof) character-
izes the achievable Casimirs of the closed-loop system, regarded
as functions of the plant state by characterization of the space
PCas.

Proposition 5 The space PCas defined above is equal to the space

P̃ = {e1,ep,eq | ∃( fb,eb) such that

(0,e1, fR1,eR1,0,0, ep,eq,− fRp,eRp,− fRq,eRq, fb,eb) ∈ Dp}

where (fb,eb) are the boundary variables.

Example 6 A simple example in this case would be to consider
a plant system where we interconnect the distributed parameter
system (for example a transmission line) at one end to a finitedi-
mensional port-Hamiltonian system, the Dirac structure ofwhich
would be given as
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δqH |0

[

fl
el

]

=

[

−δφH |l
δqH |l

]

; δφH |0= gT (x)∂xH

(9)
The achievable Casimirs in this case are all functionals C such
that

J(x)∂xC + g(x)δqC |0= 0

gT (x)∂xC = 0

dδφC −GδqC = 0

dδqC − RδφC = 0

We see that the first two conditions correspond to the finite dimen-
sional part of the plant sub-system where as the last two condi-
tions correspond to the transmission line.

5. Stability analysis

We discuss stabilization of systems by the control by intercon-
nection methodology. The aim is to generate Casimirs for the
controlled system such that the closed-loop energy can be shaped
in such a way that it has a minimum at the desired equilibrium.
We define stability for the mixed lumped and distributed parame-
ter system in the sense of Lyapunov as follows.

Definition 7 The equilibrium pointχ∗ of a distributed parameter
system is said to be stable in the sense of Lyapunov with respect
to the norm‖ · ‖, if for everyε > 0 there exists aδ > 0 such that
‖ χ(0)− χ∗ ‖< δ =⇒ ‖ χ(t) − χ∗ ‖< ε for all t > 0, whereχ(0) is
the initial condition.

The underlying proof for stability can be summarized in the
following steps (similar to the case studied in [3]; see alsothe
references therein).

• Defining the candidate Lyapunov function on the basis of
the plant and controller Hamiltonians and the corresponding
Casimir functions as

V(χ) = H(x) + Hc(ξ) +H(q̄(·, ·)) +C(χ)

whereχ = (x, ξ, q̄(·, ·)), with Hc to be defined.

• Assigning equilibrium: The first-order conditions

∇Hd(x) ,































∂
∂x Hd(χ∗)
∂
∂ξ

Hd(χ∗)
δMHd(χ∗)
δEHd(χ∗)































≡ 0

• The second-order conditions
Introduce the nonlinear functional

N(∆χ) = Hd(χ∗ + ∆χ) − Hd(χ∗) (10)

proportional to the second variation ofHd(χ) in the sense
that its Taylor expansion about∆χ is

N(∆χ) ≈
1
2
∇2Hd(χ∗)

and determine the convexity conditions (with respect to a
suitable norm) that the functional (10) must satisfy to assure
that it is definite, i.e.

c1 ‖ ∆χ ‖
2≤ Hd(χ∗ + ∆χ − Hd(χ∗) ≤ c2 ‖ ∆χ ‖

2 (11)

with α, c1, c2 > 0. A suitable norm in our case would be

‖ ∆χ ‖=
(

| ∆x |2 + | ∆ξ |2 +
∫ l

0
∆q2

M (z, t)dz+
∫ l

0
∆q2

E(z, t)dz
) 1

2

(12)
with | · | the standard Euclidean norm.
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