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Abstract—We study boundary control systems whichconcepts both for finite as well as infinite-dimensional sys-
are represented as port-Hamiltonian systems with respaems with scalar spatial variable. Refer [4, 5] for details.
to an infinite-dimensional Dirac structure. Interconnecti
of such systems with lumped parameter dissipative systems
again defines a port-Hamiltonian system. Typical exan®.1. Lumped parameter systems
ple is a power-drive consisting of a power converter, trans-
mission line and electrical machine. We study the stability To define the notion of Dirac structures for finite dimen-
properties of such systems using the total Hamiltonian argional systems, we start with a space of power variables
other conserved quantities determined by the Dirac strug- x ¥, for some linear spacg, with power defined by
ture, and explore their control within this context.

P=<e|f> (f,ed e F xF",
1. Introduction

) ] o ~where< e | f > denotes the duality product, that is, the
The key ingredient of any port-Hamiltonian system iginear functionale € * acting onf € #. 7 is called the

a power-conserving interconnection structure (mathematipace of flows and™ the space of féorts, with the power
cally formalized by the geometric notion of a Dirac strucs g signal f,e) € ¥ x ¥~ denoted as e| f >.

ture) linking the pairs of conjugate port variables of the
various ports corresponding to energy storage (defined

a Hamiltonian function depending on energy variables;?,
resistive &ects, external interaction, etc. The intercon- a 2 reb _ a b a
nection of port-Hamiltonian systems defines a new port- < (&), (f @) > =< >4 <17 (1)
Hamiltonian system with Dirac structure determined by (f2, &), (f°, &) e F x 7~
the Dirac structures of the constituent parts. The port-

Hamiltonian framework applies to lumped parameter, BDefinition 1 [4] A constant Dirac structure off X ¥ is
well as to distributed parameter systems. This means

£3 _ . .
that the interconnection of lumped parameter sub-syste%ﬁzugﬁﬁzgﬁoiﬁf)¢ suchthath = 2 with respect to
with distributed parameter sub-systems defines a port- '
Hamiltonian system with infinite-dimensional Dirac struc-
ture determined by the finite-dimensional Dirac structur ;
of the lumped parameter components and the infinité!! (f.€) € O we have thak e | f >= 0. Hence a Dirac
dimensional Dirac structures of the distributed paramet&fructure defines a power conserving relation.
components. Furthermore, the total Hamiltonian of the Consider a lumped parameter physical system given by
mixed interconnected system is the sum of the HamiltonPower-conserving interconnection defined by a constant
ans of the components. Thiffers a natural starting point Dirac structureD and energy storing elements with energy
for the stability analysis of mixed systems. Furthermore/ariablesx. For simplicity we assume that the energy vari-
by appropriately selecting the Dirac structures of the cortbles are living in a linear spadéalthough everything can
trol components, Casimirs for the mixed systems may Hee generalized to the case of manifolds. The constitutive
generated which may be used for shaping the total Hamilelations of the energy storing elements are specified by
tonian to a Lyapunov function for a desired equilibrium.  their stored energy functiorns(x).
The space of flows is naturally partitioned &s x ¥
2. Port-Hamiltonian systems and Dirac structures with fs € ¥, the flows corresponding to the energy storing
elements and € # denoting the remaining flows (corre-

It is well known [4, 5] that the notion of power con- sponding to porfsources). Correspondingly, the space of
serving interconnections can be formulated by a geomedffort variables is split ag x 7, with es € 7¢ the dforts
ric structure called a Dirac structure, which is a subspaamrresponding to the energy-storing elements ard#*
of the space of flows andterts. We briefly discuss these the remaining #orts. The Dirac structur® can then be

There exists orF x #* a canonically definetilinear
rm <, >, defined as

s an immediate corollary of the definition we see that for
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given in matrix kernel representation as
oo (s f.e) eFsx FoxF x 7
| Fsfs + Eses+ Ff + Ee=0 |~
EsFi + FsEL + EFT + FET =0

o 2
with rank[Fs:Es:F:E] = dim(Fs x F) @)

Now the flows of the energy storing elements are given by

X, and equated with-fs (the negative sign is included to Figure 1:D1 || D« || D2
have a consistent energy flow direction). THEoHS eg

corresponding to the energy storing elements are given as

M = g, Substituting these into (2) leads to the descriptio-3: Systems with dissipation
of the physical system by the set of DAE's Dissipation cam enter into port-Hamiltonian systems by
9H terminating some of the ports by resistive relations. This
Fsx(t) = ESW(X(t)) + Ff(t) + E€t) (3) can also be viewed as interconnecting a Dirac structure

with a resistive relation given by
with f,e the port power variables. The system of

equations(3) is called a port-Hamiltonian system. Rifr+ Reer =0
By the power conserving property of a Dirac structure it _ _
follows that any port-Hamiltonian system satisfies the envhere fg, er respectively denote the flow andf@rt vari-

ergy balance ables corresponding to the resistive elements and theesquar
dH oH matricesRs andR satisfy the symmetry and semi-positive
E(X(t)) —< &(X(t)NX(t) - eT(t)f(t) definiteness condition

T _ T
which means that the increase in internal energy of the RiRe = ReR; = 0
port-Hamiltonian system is equal to the externally sum*)“eThe interconnection of the Dirac structure and the resstiv

power. relation then has the following property
2.2. Distributed parameter systems DIR* =D -R

In order to define a Dirac structure for an infinite-
dimensional system we have to consider an infinite?
dimensional function space. Through out the paper we Ry fr — Reér = 0
will only consider systems with a 1-dimensional spatial TR
domain. This function space will be defined as followg_g js called a pseudo-resistive structure since it corre-
7 = Fp(2) x Fo(2) x Fy, with F,(Z), Fq(Z) denoting the  gh0nds to negative instead of positive resistance).
space of forts of the two energy domains interacting with ~ gimjjar property also holds for the case of distributed

each other ané;, denoting the boundanyfferts. Thef" is  arameter systems where dissipation can enter into the sys-
defined as the dual spaces®f with respect to the duality (e eijther through the spatial domain or by terminating the

product boundary or boundaries of the system by a resistive rela-
tion.

here—R denotes the pseudo-resistive structure given by

|
< (ep, &g, &), (fp, fg, fo) >= f[fpep + fq€ql + o I
0

o S ) _ _ 3. Interconnections of port-Hamiltonian systems
Similar to the finite dimensional case, we define the bilinear

form between two elements &f x F* as Mixed lumped and distributed parameter port-
1 ) X Hamiltonian systems arise from interconnections arise
<< (fheh), (2, &) >>2 by interconnection of a distributed parameter system to a

! lumped parameter system either through the spatial domain

1e2 1 1 1¢2 2 2y |l
j(;(epfp + ety + efy + e fg)dz+ (gt + €5f) or through the boundaries of the distributed parameter
system (see [3] for example). Such interconnections of

Then the following system defines a port-Hamiltonian sysyort-Hamiltonian systems represented by their respective
tem Dirac structures can be studied as follows: Consider

fo 0 dlfe)]. [f 1 0]feplaz two Dirgc structureDy, D, (lumped parameter) defined
[fq = [d 0 [eq ; [eo] = [0 _1] [eq Iaz} (4)  respectively on the product spacEs<¥F o and¥; and %
and a Stokes’ Dirac structur®., on the product space
with |3z denoting the restriction to the bound#Z. FoxF p X FgxF1, with Fo and # being linear spaces
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(representing the space of boundary variables of tH&imilarly in the case of a Stokes-Dirac (with zero bound-
Stokes’ Dirac structure) angf,q an infinite dimensional ary conditions) structure with a given resistive relatian,
function space withp, q representing the two flerent Casimir is any functionaC : X — R which satisfies
physical energy domains interacting with each other.

Now we study interconnection of the two Dirac struc- (0. €p, 0, &g, — frp, €rp: — frep €RQ) € D (8)
tures O; and D, interconnected to each other via the ) o
Stokes-Dirac structur®... The total interconnection of Where frp, frq are the flow variables of the resistive ele-
Dy, Do, andD,. The total interconnection ab;,D., and ments.correspondin.g to tkpeandq energy domains, simi-
D, is defined such thaty, e, are the shared flow and ef- larly with the gforts. implying that

fort variables betwee®; andD., and fi, g are the shared dc
flow and dfort variables betweem, and D.,. Also see i f epfp+eyfy=0
Figure(1). z

This yields the following bilinear form orff1 x ¥ X Remark 4 In case of a finite dimensional system with dis-
FoaXFpg X Fax T3 " sipation we see that in case of definiteness of the resistive

a ea ea ea a b b b <b relation, if a function is a conserved quantity (a Casimir)
< (f. T 13 15 €. €. €6, €0). (7. 5. Tg. £7. €. €. €6, €0) (01 e resistive relation it actually needs to be a Casimir
=< fd >+ <>+ <If) >+ <fd> for all resistive relations; see [2] for a proof.
+ f[ee,‘)f,? +eDfd+ ehfd + Afl) (5) Now let us address the question of designing a controller
z

port-Hamiltonian system such that the controlled system
Proposition 2 [1] Let D1, D, andD., be Dirac structures has the desired stability properties. The controlled syste
as said above (defined respectively with respegitoF;x  satisfies
FoxXF o, FIxF| XF2xF 5 andFoxF oXFpgXT pgXFIXF ). E(Hp +H) <0
Then D= D4||D|| D, is a Dirac structure defined with dt
respect to the bilinear form ofiyxF 1 XFp X o xF2XF,  In casex, is nota minimum foHp, then a possible strategy
given by (5). is that we generate Casimir functiofigx, &) for the closed-

) . ) _loop system by appropriately choosing the controller port-
So farin the composition we have considered systems withyymijtonian system. The resulting Lyapunov function is

out dissipation. At this point one might ask what if there ispa given by the sum of the plant and controller Hamilto-
dissipation in the system? This is answered by the folloWsizns and the corresponding Casimir function
ing corollary.

Corollary 3 LetD || Ry, Dz || R, andD,, || R, be Dirac V(% €) i= Hp() + He() + C(x.£)

structures as defined above interconnected to their respegpg gpjective is then to construct a Lyapunov function such
tive resistive relations (representing their dissipaidhen 5t has a minimum ab(, £,), with £, still to be chosen.

the composed system will again have a structure of the forfijs strategy is based on finding all the achievable Casimirs
D || R with the property thatD || R)* = D || —R where of the closed-loop systems.

—R is a pseudo resistive structure (corresponding to neg-
ative resistance).?D is the composition of the individual
Dirac structures ancR is the composition of the individual
resistances of the subsystems. We consider here a case where the plant port-
Hamiltonian systenD, is the interconnection of a dis-
tributed parameter port-Hamiltonian system with a lumped
parameter system connected to one of its boundary and
Casimirs are functions that are conserved quantitiége controller system alumped parameter port-Hamiltonian
of the system for every Hamiltonian. They are comsystem connected to the other end of the distributed param-
pletely characterized by the Dirac structure of the portter system. Typical example is a power-drive consisting
Hamiltonian system. A functio€ : X — R is a Of a power converter, transmission line and electrical ma-
Casimir function of the autonomous port-Hamiltonian syschine.
tem (lumped parameter) with a given resistive relation to Following the theory of achievable Casimirs [1] and ex-

4.1. Achievable Casimirs

4. Casimirs and Control

be any functiorC : X — R satisfvin tending it to the case of systems with dissipation, the set
y - fying of achievable Casimirs affenctionals Gx(t), q(z t)) such
(0,6, —fr,er) €D (6) thatsC(x(), g(z t)) belongs to the space
implying that Pcas = {€1, €y, & | AD. such thate, :
q aTC (0,e1, —fr, €r, 0,0, &, &, — frp, &kp, — frep ERe, 0, €, 0, 0)
d_tc = W(x(t))k(t) =e'fp=0 (7 €Dy | Dc}
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wherefg = [fre fro]™, &k = [ &=, With (fre, €re) denoting .
the flows and forts variables of the dissipation term in the finite
dimensional part of the plant Dirac structure, arfg,(ex2) the
flow and dfort variables associated with the dissipation term in
the controller Dirac structure (finite dimensional).

Similar to the case of systems without dissipation [1], thle f
lowing proposition (which we state here without proof) ceer-
izes the achievable Casimirs of the closed-loop systenardegl
as functions of the plant state by characterization of thecasp

PCas-

Proposition 5 The space P,s defined above is equal to the space

P = {e1. €. & | I(fo. &) such that
(0, €1, fri, €r1,0,0, €, €, — frp, ERp, — frRe» ERG> To» E0) € D}

where (fy, &) are the boundary variables.

Example 6 A simple example in this case would be to consider
a plant system where we interconnect the distributed pat@ame
system (for example a transmission line) at one end to a filite
mensional port-Hamiltonian system, the Dirac structurevbfch
would be given as

-X -JX) 0 0] [R¥ 0 Of\[okH] [-9(%)
—aql=|| 0 0 d|+| 0 G o|||sH|+| 0 |6H
o o dof o o RJeH | o
fil _[=0sH . T
&)= 5 ok o= g9

9)

The achievable Casimirs in this case are all functionals Chsu
that

J(X)0xC + 9(X)64C lo=0
g'(x)8,C =0
ds,C - G§,C =0 _
_ - proj
ds,C -R5,C =0 http
We see that the first two conditions correspond to the finiteedi
sional part of the plant sub-system where as the last twoieond
tions correspond to the transmission line.

(1]

5. Stability analysis

We discuss stabilization of systems by the control by irtterc
nection methodology. The aim is to generate Casimirs for the
controlled system such that the closed-loop energy candygesh [2]
in such a way that it has a minimum at the desired equilibrium.
We define stability for the mixed lumped and distributed paea
ter system in the sense of Lyapunov as follows. [3]
Definition 7 The equilibrium poinj.. of a distributed parameter
system is said to be stable in the sense of Lyapunov withaespe
to the norm|| - ||, if for everye > 0 there exists @ > 0 such that
Il x(0O)— x« lI< 6 = || x(t) — x. lI< e for all t > O, wherey(0) is
the initial condition.

Defining the candidate Lyapunov function on the basis of
the plant and controller Hamiltonians and the correspandin
Casimir functions as

V(x) = H(X¥) + He(€) + H(a(-. ) + Clx)
wherey = (x, &, q(-, -)), with H. to be defined.
Assigning equilibrium: The first-order conditions

%X:::d()(*)

7 Hal) | _
omHaly)|
oeHa(x.)
The second-order conditions
Introduce the nonlinear functional

N(Ax) = Halx- + Ax) = Ha(x.)

proportional to the second variation bify(y) in the sense
that its Taylor expansion abony is

1
EVZHd(X*)

and determine the convexity conditions (with respect to a
suitable norm) that the functional (10) must satisfy to essu
that it is definite, i.e.

¢ Il Ax IP< Haxs + Ay = Ho(v.) < G2 [1 Ax I
with @, ¢1, ¢, > 0. A suitable norm in our case would be
Il Ay II=

(1AXP +1 8¢ P + [ A 2. 0dz+ f; Ack (2. 0)1d2)’
(12)

VHq(x) £ 0

(10)

N(Ay) =

()

with | - | the standard Euclidean norm.
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