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Abstract

Maximization of submodular functions on a ground set is a NP-hard combina-
torial optimization problem. Data correcting algorithms are among the several algo-
rithms suggested for solving this problem exactly and approximately. From the point
of view of Hasse diagrams data correcting algorithms use information belonging to
only one level in the Hasse diagram adjacent to the level of the solution at hand. In
this paper, we propose a data correcting approach that looks at multiple levels of the
Hasse diagram and hence makes the data correcting algorithm more efficient. Our
computations with quadratic cost partition problems show that this multilevel search
effects a eight to ten fold reduction in computation times, so that some of the dense
quadratic partition problem instances of size 500, currently considered as some of the
most difficult problems and far beyond the capabilities of current exact methods, are
solvable on a personal computer working at 300 MHz within ten minutes.
Keywords: Data Correcting, Hasse Diagram, Multilevel Search, Quadratic Cost Parti-
tion Problem
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1 Introduction

Let N = {1, 2, . . . , n} and 2N denote the set of all subsets of N. A function z : 2N → �

is called submodular if for each I, J ∈ 2N, z(I) + z(J) ≥ z(I ∪ J) + z(I ∩ J). The solution
process of many classical combinatorial optimization problems, like the simple plant lo-
cation problem, the generalized transportation problem, the quadratic cost partition (QCP)
problem with nonnegative edge weights, and set covering, involve the maximization of a
submodular (or, equivalently, minimization of a supermodular) function, i.e. the problem:
max{z(I)|I ⊆ N}.

Although the general problem of the maximization of a submodular function is known
to be NP-hard, there has been a sustained research effort aimed at developing practical pro-
cedures for solving medium and large-scale problems in this class. Often the approach taken
has been problem specific, and submodularity of the underlying objective function has been
only implicit to the analysis. For example, [2] addressed the max-cut problem and devel-
oped a branch and cut algorithm, [1] applied Lagrangean heuristics to several classes of lo-
cation problems including SPL problems, [12] studied the quadratic cost partition problem
(QCP) of which max-cut with nonnegative edge weights is a special case, and [6] reported
their computational experiments for binary quadratic programs (BQP) with adaptive mem-
ory tabu search procedures. [4] and [9] applied a data correcting algorithm to the problem
of minimization (maximization) a supermodular (submodular) function by which we can
solve to optimality, uncapacitated competitive location problem instances of size 50, and
QCP instances on dense graphs up to 100 vertices, respectively.

The purpose of this paper is to improve on the data correcting algorithm proposed in
[9]. Data correcting algorithms work by “correcting” the data of a given problem instance
to obtain a new problem instance which is polynomially solvable. In case such an instance
is not available, the algorithm uses a branching rule to decompose the problem into subprob-
lems and then looks at each of the subproblems individually. The choice of the branching
variable in the algorithm in [9] is based on an examination of solutions that are one level
deeper in the Hasse diagram from the current solution. The algorithm that we propose here
searches more than one level deep in the Hasse diagram. The tradeoff of course is between
the effort of searching deeper in the Hasse diagram and the number of nodes pruned by the
algorithm as a result of searching deeper in the Hasse diagram.

In the next section in this paper, we describe the data correcting algorithm that we
propose in this paper. We first introduce an algorithm called the preliminary preservation
algorithm of order r. This is an extension of the PP algorithm presented in [9], which
looks at r levels of the Hasse diagram instead of only one level. This algorithm is used to
define the class of polynomially solvable instances, i.e. instances for which our algorithm
returns either an optimal solution or its approximation bounded by the prescribed value
of an accuracy parameter. Section 3 reports our computational experience with our data
correcting algorithm for Quadratic Cost Partition Problems. Section 4 concludes the paper.
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2 The data correcting algorithm based on multilevel search

In this section we first describe a class of algorithmically defined polynomially solvable
instances for submodular function maximization problems. We then describe a data cor-
recting algorithm that uses the class of polynomially solvable instances to solve a general
submodular function maximization problem.

The class of polynomially solvable instances that we describe here is an algorithmic
class, i.e. they are defined using a polynomial time algorithm called the Preliminary Preser-
vation Algorithm of order r (PPAr). Normally this algorithm terminates with a subgraph
of the Hasse diagram of the original instance which is guaranteed to contain the maximum.
However, for instances where PPAr returns a subgraph with a single node, that node is the
maximum, and the instance is solved in polynomial time. Instances such as these make up
the class of polynomially solvable instances that we consider here.

Let z be a real-valued function defined on the power set 2N of N = {1, 2, . . . , n}; n ≥ 1.
For each S, T ∈ 2N with S ⊆ T , we define

[S, T ] = {I ∈ 2N | S ⊆ I ⊆ T }.

Note that [∅,N] = 2N. Any interval [S, T ] is a subinterval of [∅,N] if ∅ ⊆ S ⊆ T ⊆ N.
We denote this using the notation [S, T ] ⊆ [∅,N]. In this paper an interval is always a
subinterval of [∅,N]. Throughout this paper, it is assumed that z attains a finite maximum
value on [∅,N] which is denoted by z∗[∅,N], and z∗[S, T ] = max{z(I) : I ∈ [S, T ]} for any
[S, T ] ⊆ [∅,N] . We also define

d+
k(I) = z(I + k) − z(I), and

d−
k(I) = z(I − k) − z(I).

The following theorem and corollaries from [9] act as a basis for the Preliminary Preser-
vation (PP) algorithm described therein.

Theorem 1 Let z be a submodular function on [S, T ] ⊆ [∅,N] and let k ∈ T\S. Then the
following assertions hold.

(a) z∗[S + k, T ] − z∗[S, T − k] ≤ z(S + k) − z(S)) = d+
k(S) = d+

k ,

(b) z∗[S, T − k] − z∗[S + k, T ] ≤ z(T − k) − z(T) = d−
k(T) = d−

k .

Corollary 2 (Preservation rules of order zero). Let z be a submodular function on [S, T ] ⊆
[∅,N] and let k ∈ T\S. Then the following assertions hold.

(a) First Preservation Rule: If d+
k (S) ≤ 0, then z∗[S, T ] = z∗[S, T − k] ≥ z∗[S + k, T ].
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(b) Second Preservation Rule: If d−
k(T) ≤ 0, then z∗[S, T ] = z∗[S + k, T ] ≥ z∗[S, T − k].

The PP algorithm accepts an interval [S, T ], S ⊆ T and tries to apply Corollary 2 repeat-
edly. It returns an interval [X, Y], S ⊆ X ⊆ Y ⊆ T , such that z∗[S, T ] = z∗[X, Y]. In this
paper we describe a call to the PP algorithm by PP([S, T ]).

The preservation rules mentioned in Corollary 2 look at a level which is exactly one
level deeper in the Hasse diagram than the levels of S and T . However, instead of looking
one level deep we may look r levels deep in order to determine whether we can include or
exclude an element. Let

M+
r [S, T ] = {I ∈ [S, T ] : |I\S| ≤ r},

M−
r [S, T ] = {I ∈ [S, T ] : |T\I| ≤ r}.

The set M+
r [S, T ] is a collection of all sets representing solutions containing more el-

ements than S, and which are no more than r levels deeper than S in the Hasse diagram.
Similarly, the set M−

r [S, T ] is a collection of all sets representing solutions containing less
elements than T , and which are no more than r levels deeper than T in the Hasse diagram.
Let us further define the collections of sets

N+
r [S, T ] = M+

r [S, T ]\M+
r−1[S, T ],

N−
r [S, T ] = M−

r [S, T ]\M−
r−1[S, T ].

The sets N+
r [S, T ] and N−

r [S, T ] are the collection of sets which are located exactly r

levels above S and below T in the Hasse diagram, respectively.
Further, let v+

r [S, T ] = max{z(I) : I ∈ M+
r [S, T ]}, v−

r [S, T ] = max{z(I) : I ∈
M−

r [S, T ]}, w+
rk[S, T ] = max{d+

t (I) : I ∈ N+
r [S + k, T ]} and w−

rk[S, T ] = max{d−
t (I) :

I ∈ N−
r [S, T − k]}.

Theorem 3 Let z be a submodular function on [S, T ] ⊆ [∅,N] with k ∈ T\S and let r be a
positive integer. Then the following assertions hold.

(a) If |N+
r [S+k, T ]| > 0, then z∗[S+k, T ]−max{z∗[S, T−k], v+

r [S, T ]} ≤ max{w+
rk[S, T ], 0}.

(b) If |N−
r [S, T−k]| > 0, then z∗[S, T−k]−max{z∗[S+k, T ], v−

r [S, T ]} ≤ max{w−
rk[S, T ], 0}.

Proof: We prove only part (a) since the proof of the part (b) is similar. We may represent
the partition of interval [S, T ] as follows:

[S, T ] = M+
r [S, T ] ∪

⋃

I∈N+
r [S,T]

[I, T ].
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Using this representation on the interval [S+k, T ], we have z∗[S+k, T ] = max{v+
r [S+

k, T ], max{z∗[I + k, T ] : I ∈ N+
r [S, T ]}}. Let I(k) ∈ arg max{z∗[I + k, T ] : I ∈ N+

r [S, T ]}.
There are two cases to consider: z∗[I(k) + k, T ] ≥ v+

r [S + k, T ], and z∗[I(k) + k, T ] <

v+
r [S + k, T ].

In the first case z∗[S + k, T ] = z∗[I(k) + k, T ]. For I(k) ∈ N+
r [S, T ] we can apply

Theorem 1(a) on the interval [I(k), T ] to obtain z∗[I(k)+k, T ]−z∗[I(k), T −k] ≤ d+
k (I(k)),

so that in this case z∗[S + k, T ] − z∗[I(k), T − k] ≤ d+
k (I(k)). Note that for [I(k), T − k] ⊆

[S, T −k] we have z∗[S, T −k] ≥ z∗[I(k), T −k], which implies that z∗[S+k, T ]−z∗[S, T −

k] ≤ d+
k(I(k)). Adding two maximum operations we get

z∗[S + k, T ] − max{z∗[S, T − k], v+
r [S + k, T ]} ≤ max{d+

k(I(k)), 0}.

Since w+
rk[S, T ] is the maximum of d+

k(I) for I ∈ N+
r [S + k, T ], we have the required

result.
In the second case z∗[S+k, T ] = v+

r [S+k, T ] which implies that z∗[S+k, T ]− v+
r [S+

k, T ]} = 0 or z∗[S + k, T ] − max{z∗[S, T − k], v+
r [S + k, T ]} ≤ 0. Adding a maximum

operation with w+
rk[S, T ] completes the proof of case (a). �

Corollary 4 (Preservation rules of order r). Let z be a submodular function on [S, T ] ⊆
[∅,N] and let k ∈ T\S. Then the following assertions hold.

(a) First Preservation Rule of Order r: If w+
rk[S, T ] ≤ 0, then z∗[S, T ] = max{z∗[S, T −

k], v+
r [S + k, T ]} ≥ z∗[S + k, T ].

(b) Second Preservation Rule of Order r: If w−
rk[S, T ] ≤ 0, then z∗[S, T ] = max{z∗[S +

k, T ], v−
r [S, T − k]} ≥ z∗[S, T − k]

Notice that when we apply Corollary 2 to an interval, we get a reduced interval, however,
when we apply Corollary 4, we get a value vr in addition to a reduced interval.

It can be proved by induction that the portion of the Hasse diagram eliminated by preser-
vation rules of order r − 1 while searching for a maximum of the submodular function will
certainly be eliminated by preservation rules of order r. In this sense, preservation rules of
order r are not weaker than preservation rules of order r−1. (A detailed proof for the result
that preservation rules of order 1 are not weaker than preservation rules of order 0, refer to
[10]).

In order to apply Corollary 4, we need functions that compute the values of w+
rk[S, T ],

w−
rk[S, T ] v+

r [S + k, T ], and v−
r [S, T − k]. To that end, we define two recursive functions,

PPArplus to compute w+
rk[S, T ] and v+

r [S + k, T ], and PPArminus to compute w−
rk[S, T ]

and v−
r [S, T − k]. The pseudocode for PPArplus is shown below. Its output is a 3-tuple,

containing, in order, w+
rk[S, T ] and v+

r [S + k, T ], and a solution in M+
r [S + k, T ] whose
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objective function value is v+
r [S+k, T ]. The pseudocode for PPArminus can be constructed

in a similar manner.

function PPArplus([S, T ], r, k)

begin
w← −∞; v← −∞; vset← ∅;
(w, v, vset) ← IntPPArPlus([S + k, T ], r,w, v, vset);
return (w, v, vset);

end;

function IntPPArplus([X, Y], r,w, v, vset)

begin
for each t ∈ Y \ X do begin

if z(X + t) > v then begin
v← z(X + t);
vset← (X + t);

end;
if d+

t (X + t) > w then w← d+
t (X + t);

if d+
t (X + t) > 0 and r > 1 then

(w, v, vset)← IntPPArPlus([X + t, Y], r − 1,w, v, vset);
end;
return (w, v, vset);

end;

Note that PPArplus and PPArminus are both O(n
(n

r

)
), i.e. polynomial for a fixed value

of r. However, in general, they are not polynomial in r.
We now use PPArplus and PPArminus to describe the Preliminary Preservation Al-

gorithm of order r (PPAr). Note that if r = 0 we obtain the PP algorithm which is
the Preliminary Preservation Algorithm of order 0. Given a submodular function z on
[X, Y] ⊆ [∅,N], PPAr outputs a subinterval [S, T ] of [X, Y] and a set B such that z∗[X, Y] =

max{z∗[S, T ], z(B)} and min{w+
rk[S, T ], w−

rk[S, T ]} > 0 for all k ∈ T\S. At iteration i, the
algorithm, when the search has been restricted to [Si, Ti], starts by applying the PP algo-
rithm (from [9]) to this interval and reducing it to [S

′
i, T

′
i ]. If |T

′
i \ S

′
i| > 0, an element

k ∈ T
′
i \ S

′
i is chosen, and the algorithm tries to apply Corollary 4(a) to decide whether

it belongs to the set that maximizes z(·) over [Si, Ti] or not. If it does, then the search is
restricted to the interval [S

′
i + k, T

′
i ]. Otherwise, the search tries to apply Corollary 4(b) to

decide whether the interval can be reduced to [S
′
i, T

′
i − k].
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Algorithm PPAr([S, T ], r)

begin
X← S, Y ← T ; B← arg max{z(S), z(T)};
while Y �= X do begin

[Si, Ti]← PP([X, Y]);
d+← min{d+

k (S)|k ∈ T\S};
d−← min{d−

k (T)|k ∈ T\S};
if d+ > d− then begin

k+← arg min{d+
t (S)|t ∈ T\S};

(w, v, vset)← PPArplus([Si, Ti], r, k
+);

if v > z(B) then B← vset;
if w ≤ 0 then Y ← Ti − k+;
else return ([Si, Ti], B);

else begin
k−← arg min{d−

t (S)|t ∈ T\S};
(w, v, vset)← PPArminus([Si, Ti], r, k

−);
if v > z(B) then B← vset;
if w ≤ 0 then X← Si + k−;
else return ([Si, Ti], {w

+
ri[Si, Ti]}, {w

−
ri[Si, Ti]}, B);

end;
end;

end;

It is clear that if r = |T \ S|, PPAr will always find an optimal solution to our problem.
However, PPAr is not polynomial in r, and so PPAr with large values of r is not practically
useful.

We can embed PPAr in a branch and bound framework to describe DCAr, a data cor-
recting algorithm based on PPAr. It is similar to the DCA proposed in [9]. For DCAr we
are given a submodular function z to be maximized over an interval [S, T ], and an accuracy
parameter εo, and we need to find a solution such that the difference between the objective
function values of the solution output by DCAr and the optimal solution will not exceed εo.

Notice that for a submodular function z, PPAr with a fixed r may terminate with T �= S

and min{w+
ri[S, T ],w−

ri[S, T ] | i ∈ T\S} = ω > 0. The basic idea behind DCAr is that if
this situation occurs, then the data of the current problem is corrected in such a way that ω

is non-positive for the corrected function and PPAr can continue. Moreover, each correction
of z needs to be carried out in such a way that the corrected function remains submodular.
The attempted correction is carried out implicitly, in a manner similar to the one in [9] but
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using Corollary 4 instead of Corollary 2. Thus, for example, if w+
rj[S, T ] = ω ≤ εo, then

PPAr is allowed to continue, but the accuracy parameter reduced to εo − max{0,ω}.
If such a correction is not possible, i.e. if ω exceeds the accuracy parameter, then we

branch on a variable k ∈ arg max{d+
i (S), d−

i (T)|i ∈ T \ S} to partition the interval [S, T ]

into two intervals [S + k, T ] and [S, T − k]. This branching rule was proposed in [7]. An
upper bound for the value of z for each of the two intervals is then computed to see if either
of the two can be pruned. We use an upper bound from [11], described as follows. Let
d+(S, T) = {d+

i (S) : d+
i (S) > 0, i ∈ T\S} and d−(S, T) = {d−

i (T) : d−
i (T) > 0, i ∈ T\S}.

Further let d+[i] (respectively d−[i]) denote the ith largest element of d+(S, T) (respectively
d−(S, T)). Then ub described below is an upper bound to z∗[S, T ].

ub[S, T ] = max{ min
i=1,...,|T\S|

{z(S) +

i∑
j=1

d+[j], z(T) +

i∑
j=1

d−[j]}}.

The following pseudocode describes DCAr formally.

Algorithm DCAr([S, T ], ε, r)

begin
best set← arg max{z(S), z(T)};
best← z(best set);
(best set, best)← IntDCAr([S, T ], ε, r, best set, best);
return best set;

end.

function IntDCAr([S, T ], ε, r, best set, best)

begin
([S, T ], {w+

rk}, {w−
rk}, B]←PPAr([S, T ], r);

if z(B) > best then begin
best set← B;
best← z(B);

end;
if S = T return (best set, best);
ω+← max{w+

rk[S, T ]|k ∈ T \ S};
choose k+ from min{k|w+

rk[S, T ]| = ω+, k ∈ T \ S};
ω−← max{w−

rk[S, T ]|k ∈ T \ S};
choose k− from min{k|w−

rk[S, T ]| = ω−, k ∈ T \ S};
if ω+ ≤ ε then (* Correction *)

IntDCAr([S + k+, T ], ε − max{0,ω+}, r, best set, best);
else if ω− ≤ ε then (* Correction *)

IntDCAr([S, T − k−], ε − max{0,ω−}, r, best set, best);
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else begin (* Branching [S, T ]→ [S + k, T ], [S, T − k] *)
choose k from arg max{d+

i (S), d−
i (T)|i ∈ T \ S};

if ub[S + k, T ] > best then begin (* Bounding *)
(bs1, b1)←IntDCAr([S + k, T ], ε, r, best set, best);
if b1 > best then begin

best set← bs1;
best← b1;

end;
end;
if ub[S, T − k] > best then begin (* Bounding *)

(bs2, b2)←IntDCAr([S, T − k], ε, r, best set, best);
if b2 > best then begin

best set← bs2;
best← b2;

end;
end;

end;
end;

3 Computational experience

In this section we report our computational experience with DCAr. We choose the quadratic
cost partition problem as a test bed, since this problem has been earlier used to test the
performance of the DCA algorithm in [9]. The quadratic cost partition problem (QCP)
can be described as follows (see e.g., [12]). Given nonnegative real numbers qij and real
numbers pi with i, j ∈ N = {1, 2, . . . , n}, the QCP is the problem of finding a subset S ⊆ N

such that the function z(S) =
∑

j∈S pi − 1
2

∑
i,j∈S qij will be maximized. The density d of

a QCP instance is the ratio of the number of finite qij values to n(n−1)/2, and is expressed
as a percentage. It is proved in Theorem 2.2 of [12] that z(·) is submodular.

In [9] computational experiments with QCP have been restricted to instances of size not
more than 80, because of comparison purposes with results from [12]. For these instances,
it was shown that the average calculation times grow exponentially when the number of
vertices increases and reduce exponentially with increasing density.

In this paper we report the performance of DCAr on QCP instances of varying size
and densities. The maximum time that we allow for an instance is 10 CPU minutes on an
personal computer running on a 300MHz Pentium processor with 64 MB memory. The
algorithms have been implemented in Delphi 3.
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Figure 1: Average number of subproblems generated against r for QCP instances with
n = 100 and varying d values

The instances we test our algorithms on are statistically similar to the instances in [12].
Instances of size n and density d% are generated as follows. A graph with n nodes and
d

100 × n(n−1)
2 random edges is generated. The edges are assigned costs from a U [1, 100]

distribution. n edges connect each node to itself, and these edges are assigned costs from a
U [0, 100] distribution. The distance matrix of this graph forms a QCP instance.

We first report the effect of varying the value of r on the performance of DCAr(r). It is
intuitive that DCAr(r) will require more execution times when the value of r increases. Our
computation experience with 10 QCP instances of size 100 and different densities is shown
in Figures 1-3. Figure 1 shows the number of subproblems generated when r is increased
from a value of 0 (the DCA in [9]) to 5. As is intuitive, the number of subproblems reduce
with increasing r for all density values. Figure 2 shows the execution times of DCAr(r)
with varying d and r values. Recall that when the value of r increases, the time required at
each subproblem increases, since PPAr requires more computations for larger r values. The
decrease in the number of subproblems approximately balance the increase in the time at
each subproblem for r values in the range 0 through 4. When r = 5, the computation times
for DCAr(r) increase significantly for all densities. From Figure 2 it seems that for dense
graphs, r values of 3 or 4 are most favorable. This effect also holds for larger instances —
Figure 3 shows the execution times for instances of size n = 200 and density d = 100%.

We next report the results of our experiments to solve large sized QCP instances with
DCAr(r). Using results obtained from the previous part of our study, we choose to use
DCAr(3) as our algorithm of choice. We consider instances of the QCP with size n ranging
from 100 to 500 and densities varying between 10% and 100%. We try to solve these
instances exactly (εo = 0%), and with a prescribed accuracy εo = 5% within 10 minutes.
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Figure 3: Average execution time (in seconds) against r for QCP instances with n = 200
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We report in Table 1 the average execution times in seconds for exact and approximate
solutions with DCA(PPA3). The figures in parenthesis report the average execution times
for these instances with the DCA from [9]. The entries marked ‘*’ could not be solved
within 10 minutes. From the table, we note that the execution times increase exponentially
with increasing problem size and decreasing problem densities. Therefore QCP instances
with 500 vertices and densities between 90% and 100% are the largest instances which can
be solved by the DCAr(3) within 10 minutes on a standard personal computer. We also
see that on an average DCAr(3) takes roughly 11% of the time taken by DCA for the exact
solutions, and roughly 13% of the time taken by DCA for the approximate solutions. The
reduction in time is more pronounced for problems with higher size and higher densities.

————————————–
Table 1 here

————————————–

4 Concluding remarks

In this paper we propose a data correcting algorithm DCAr for the class of submodular func-
tions, which extends the DCA algorithm proposed in [9]. It does this by using a preliminary
preservation algorithm that looks at multiple levels of the Hasse diagram. Theorem 3, being
a generalization of Theorem 1, forms the basis of the DCAr(r) algorithm. Theorem 3a states
that if an interval [S, T ] is split into [S, T − k] and [S + k, T ], then the maximum value of all
differences between the submodular function values z at levels r+1 and r is an upper bound
to the difference between the unknown optimal value on the discarded subinterval and the
maximum of the unknown value of the preserved subinterval and the maximum value of
z(I) on r levels of the Hasse diagram. Theorem 3b can be explained in a similar manner.
These upper bounds are used to implicitly “correct” the value of z by correcting the value
of the current accuracy.

We have tested the DCAr(r) on the QCP instances which are statistically similar to the
instances in [12]. In all the instances tested, the average calculation time increases expo-
nentially with decreasing density values for all prescribed accuracy values. This behavior
differs from the results of the branch and cut algorithm in [12], in which calculation times
increase when densities increase. This effect is also demonstrated for all algorithms based
on linear programming (see, e.g., [3], [14], and [15]). This behavior makes the DCA an
algorithm of choice for QCP instances with high densities. Our experiments with different
values of r in the PPAr show that for the QCP instances from [12], the best r values are 3 and
4. This effect becomes more pronounced when the density of the corresponding instances
approach 100%.

We have used the DCAr(3) to solve QCP instances with up to 500 vertices on dense
graphs within 10 minutes using a personal computer with 64 MB RAM operating at 300

12



MHz. These show an eight to ten-fold improvement on the performance of the DCA in [9].
Since the data-correcting approach is efficient for solving large QCP instances defined on
the dense graphs, while branch-and-cut algorithms are efficient for solving large instances
on sparse graphs, it will be interesting to investigate hybrids of the two for solving large
instances of the QCP for all densities. We plan to implement these in a follow-up to this
work. We think that in addition to good hybrid algorithms, each of these algorithms will
benefit by using ideas from one into other one.

Acknowledgements The authors would like to thank Gregory Gutin and Marius de Vink
for their help in the preparation of this paper.
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