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Chapter 1

Introduction

Genomic systems have become complex. Networks reconstruction are seen as an
attractive paradigm of genomic science. The thesis is concerned with estimating net-
works dynamics. We have proposed two models: graphical mixture models (GMM)
and state space models (SSM) and suggested two novel methods of inferences namely
penalized Gaussian graphical mixture models (PGGMM) and penalized state space
models (PSSM). Given the incompleteness nature of information, we propose the
Expectation-Maximization (EM) algorithm as solution to such incomplete data prob-
lems. The thesis describes in detail two of the most popular applications of EM al-
gorithm: estimating Gaussian graphical mixture models and estimating State Space
Models. In this introductory chapter we give an overview of these models as well as
the methods of estimation.

1.1 Graphical Model (GM)

Graphical models bring together graph theory and probability theory in a power-
ful formalism for multivariate statistical modeling. They are tools for formulating
statistical models and algorithms for computing basic statistical quantities such as
likelihoods and marginal probabilities.

In this thesis, a graph G = (V,E) is formed by a collection of (i) a finite set of
vertices V , where V = (1, 2, ..., p) represents the nodes in the graph and (ii) a set of
edges E corresponding to (conditional) dependencies, where E ⊆ V × V is a subset
of ordered pairs of distinct vertices (i, j). An edge is undirected if (i, j) ∈ E ⇒
(j, i) ∈ E. An ordered pair (j, i) ∈ E denotes a directed edge from node i to node
j and i is said to be a parent of j denoted Paj. A graph is undirected if all edges
are undirected as shown in Figure 1.1(a). A directed graph contains only directed
edges, see Figure 1.1(b).
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Figure 1.1. Two main kinds of graphical model, where (A,B,C,D) is inter-
preted as a vector of random variables.

In a graphical model, the vertices of a graph, i.e the set V corresponds to a
collection of random variables

X = (X1, X2, ..., Xp) ∼ P,

where P is the probability distribution of X. The pair (G,P) is referred to as a
graphical model. Graphical models represent the relationships between a set of
random variables through their joint distribution. They consist of a collection of
probability distributions that factorize according to the structure of an underlying
graph.

The study of graphical models has attracted a lot of attention in fields such as
communication theory, control theory and bioinformatics; see for instance the books
by Lauritzen (1996), Pearl (2000) and Whittaker (2009). Corresponding to directed
and undirected graphs, two important classes of GM are directed and undirected
GMs. Figure (1.1) depicts two main kinds of graphical models where nodes corres-
pond to random variables and edges represent statistical dependencies between the
variables. It is possible, though less common, to use a mixed directed and undir-
ected representation (see, for example, the work on chain graphs by Lauritzen and
Wermuth (1989) and Buntine (1995)).
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Figure 1.2. Linear dynamic system or hidden Markov models where Yi is
interpreted as vector of r.v representing gene expression levels at time ti.
The hidden factors are represented by Xi

1.1.1 Directed graphical models

In a directed graphical model, an arc from A to B can be informally interpreted
as indicating that A causes B. Each edge is directed from the parent node to the
child node. A directed acyclic graph is a directed graph with no directed cycles. It
is formed by a collection of vertices and directed edges, each edge connecting one
vertex to another, such that there is no way to start at some vertex i and follow a
sequence of edges that eventually loops back to i again.

A Bayesian network is a directed acyclic graph that encodes a joint probability
distribution over a set of random variables X1, ..., Xp.

Definition 1. A Bayesian network is a pair (G,PBN). The first component, G, is a
directed acyclic graph whose vertices correspond to the random variables X1, ..., Xp,
and whose edges represent direct dependencies between the variables. The graph
G encodes independence assumptions: each variable X1 is independent of its non-
descendants given its parents in G. The second component of the pair, namely PBN ,
factorizes over G and is given by

PBN(x1, ..., xp) =

p∏
i=1

P (xi|Paxi
) (1.1)

Directed graphical models are also called Bayesian networks, (Jensen, 1946). Dy-
namic Bayesian networks, (Fahrmeir and Kunstler, 2009) an extension of Bayesian
networks to the analysis of time course data, explicitly account for time dependen-
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(a) Low osmolarity response genes

. . .
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Figure 1.3. (a). A simple Bayesian subnetwork reported in Peer et al.
(2001) showing SLT2 as the parent gene responsible for the transcription
of several low osmolarity response genes. (b) A Bayesian network where
SLT2 through the enzyme MAP kinase triggers the translation process by
activating two transcription factors. These transcription factors in turn
initiate the transcription process by activating the expression level of low
osmolarity response genes.

cies. Dynamic Bayesian networks are often restricted to linear systems, state space
model (SSM). Figure (1.2) depicts a typical example of a linear dynamic system.

The Bayesian network depicted in Figure 1.1 (b) corresponds to a factorization
of the joint distribution function

P (A,B,C,D,E) = P (A)P (B)P (C|A,B)P (D|B,C)P (E|C,D),

whiles the linear dynamic system depicted in Figure (1.2) corresponds

P (X1,...,T , Y1,...,T ) = P (X1)P (Y1|X1)
T∏
t=2

[P (Xt|Xt−1)P (Yt|Xt)] .

Figure 1.3(a) indicates another example of Bayesian subnetworks modelling re-
ported in Peer et al. (2001) where several low osmolarity response genes are separated
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by their parent gene, STL2. This indicates that gene SLT2 triggers positively the
expression level of many low osmolarity response genes. In Figure 1.3(b), the gene
SLT2 is transcribed and translated into two protein transcription factors Rlm1p and
Swi4/6 through the enzyme MAP kinase. Both then activate the expression level of
the low osmolarity response genes. The Bayesian networks can be used to explain
the dependencies in the molecular system. Peer et al. (2001) used this framework to
discover a finer structure of interactions between genes. Husmeier (2003) has showed
how modelling with Bayesian networks can be used to assign novel putative functions
to yet unannotated genes.

1.1.2 Undirected graphical models

The second common class of probabilistic graphical models is called a Markov net-
work, which corresponds to undirected graphical model.

Definition 2. (Whittaker, 2009) Let X = (X1, X2, ..., Xp) be a p-dimensional ran-
dom vector and G a graph with nodes given by I where I = (i1, ..., ip). An undirected
graphical model for X is a family of probability distributions that satisfies the pairwise
conditional independence restrictions inherent in G, i.e,

(i, j) /∈ E ⇔ Xi ⊥⊥ Xj|XI\{i,j}.

In what follows we denote the set of neighbours of a node i with ne(i), that is the
set of j ∈ V such that (i, j) ∈ E and (j, i) ∈ E. The boundary of node i, bd(i) will be
defined as: bd(i) = pa(i)∪ne(i). The closure of node i is given by cl(i) = {i}∪ bd(i).
We also define separation as: two nodes, i and j are separated by a subset s if and
only if all paths connecting the two pass through at least one member of the subset.
This means all path from i to j intersect s.

Markov properties on undirected graph

Associated with an undirected graph G = (V,E) and a collection of random variables
(Xi)i∈V we have a range of Markov properties. A probability measure P on X is said
to obey:

(P) the pairwise Markov property, relative to G, if for all non-adjacent vertices i
and j,

Xi ⊥⊥ Xj|Xa where a = V \ {i, j}

Relating to example in Figure 1.1(a), we write A ⊥⊥ E|(B,C,D)
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(L) the local Markov property, relative to G, if for every vertex i, a = bd(i) is its
boundary set, and b the set of remaining vertices, i.e b = V \ cl(i), then

Xi ⊥⊥ Xb|Xa

Relating to example in Figure 1.1(a), we write A ⊥⊥ (B,D,E)|C
(G) the global Markov property, relative to G if for all disjoint subsets (a, b, c) of

V such that b and c are separated by a in the graph, then Xb and Xc are independent
given Xa and we write

Xb ⊥⊥ Xc|Xa

Relating to example in Figure 1.1(a), if we suppose that (A,C,D) are disjoint
subsets of V , we write A ⊥⊥ D|C

The relation between the Markov properties are described in proposition below.

Proposition 1. For any undirected graph G and any probability distribution on X
it holds that

(G)⇒ (L)⇒ (P ).

Proposition 2. If it holds that for all disjoint subsets a, b, c and d that

if a ⊥⊥ b|(c ∪ d) and a ⊥⊥ c|(b ∪ d) ⇒ a ⊥⊥ (b ∪ c)|d (1.2)

then the Markov properties are all equivalent

Theorem 1.1.1. Under the assumption (1.2), we have

(G)⇔ (L)⇔ (P )

Proof. From proposition (1), we will show that (P )⇒ (G) by assuming that (a, b, s)
are disjoints subsets and that s separates a from b in the graph G. Let the number
of vertices in s be n. We will conduct the proof by backward induction on n. If
n = |V | − 2, then both a and b have only one vertex and (P) holds.

Suppose |s| = n < |V | − 2 and assume that that V = a ∪ b ∪ s. This means that
a or b has more than one element. Let suppose it is a. If i ∈ a then s∪{i} separates
a \ {i} from b and also s∪ a \ {i} separates {i} from b. It follows by induction that:

a \ {i} ⊥⊥ b|s ∪ {i} and i ⊥⊥ b|s ∪ a \ {i}

and from (1.2), we have a ⊥⊥ b|s
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Also if a ∪ b ∪ s ⊂ V , we can choose i ∈ V \ (a ∪ b ∪ s), this implies that s ∪ {i}
separates a and b, meaning a ⊥⊥ b|s ∪ {i}. Further, we have either b ∪ s separates
a from {i} or a ∪ s separates b from {i}. In case we assume the first case, we then
have i ⊥⊥ a|b ∪ s and from (1.2) it follows that a ⊥⊥ b|s

Furthermore, a probability distribution P on X is said to satisfy the (F) factor-
ization property w.r.t graph G, if P has density

f(x1, ..., xp) =
∏
c∈C

Ψc(xc)

where C is a set of cliques of G, i.e subsets of vertices which induce a complete
subgraph but for which the addition of a further vertex renders the induced subgraph
incomplete, Ψc(xc) is a potential positive function of the variables xc = {xi}i∈C .

The undirected network depicted in Figure 1.1(a) corresponds to a factorization
of the joint distribution function

P (A,B,C,D,E) = ΨA,C(A,C)ΨB,C(B,C)ΨC,D,E(C,D,E)

Proposition 3. For any undirected graph G and any probability distribution on X
it holds that

(F )⇒ (G)⇒ (L)⇒ (P )

Theorem 1.1.2. (Hammersley and Clifford). A probability distribution with positive
and continuous pdf w.r.t to a product measure µ satisfies the pairwise Markov property
w.r.t to an undirected graph G if and only if it factorizes according to G

Proof. The proof requires the following lemma:

Lemma 1.1.3. Consider a finite set V . let M and N be functions defined over all
possible subsets of V . Then ∀a ⊆ V , the statement

M(a) =
∑
b:b⊆a

N(b) (1.3)

is equivalent to the statement

N(a) =
∑
b:b⊆a

(−1)|a\b|M(b) (1.4)

where |a| denotes the cardinality of the subset a.
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Proof. We substitute Equation 1.4 into Equation 1.3 and show that Equation 1.3
follows. ∑

b:b⊆a

N(b) =
∑
b:b⊆a

[∑
c:c⊆b

(−1)|b\c|M(c)

]
=

∑
c:c⊆a

∑
b:c⊆b,b⊆a

M(c)(−1)|b\c|

=
∑
c:c⊆a

M(c)
∑

b:c⊆b,b⊆a

(−1)|b\c|

=
∑
c:c⊆a

M(c)
∑

h:h⊆a\c

(−1)|h|

(1.5)

Note that ∑
h:h⊆a\c

(−1)|h|

is zero for all a \ c except for the case when a \ c = ∅. Also, a \ c = ∅ only when
a = c. This leads to ∑

c:c⊆a

M(c)
∑

h:h⊆a\c

(−1)|h| = M(a)

Now to prove theorem (1.1.2), it suffices to prove that (P ) =⇒ (F ). Consider
the joint density f(x) where x = {xα} such that xα takes values in some space. For
each element a ⊆ X, we define

Ha(x) = ln f(xa, x
∗
ac)

where (xa, x
∗
ac) has components xα for α ∈ a and x∗αc for α /∈ a. Thus Ha(x) depends

on x only through xa. Now define the following set of functions for all a ⊆ X.

na(x) =
∑
b:b⊆a

(−1)|a\b|Hb(x) (1.6)

This implies na(x) also depends on x only through xa. Using lemma (1.1.3), we
obtain:

Hx(x) =
∑
a:a⊆x

na(x) (1.7)
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Note also that ln f(x) = Ha(x). Defining ma(xa) = expna(xa) and taking exponen-
tial of both sides of (1.7), we obtain

expH(x) = exp

{∑
a:a⊆x

na(x)

}
This implies

exp ln f(x) = exp

{∑
a:a⊆x

na(x)

}
and finally

f(x) =
∏
a:a⊆x

na(x)

It now remains to show that na(x) vanishes unless the subset a is complete. To do
that we make use of assumption (P ). Let α, β ∈ a such that there is no direct link
between them. Let c = a \ {α, β}. If we let Ha = Ha(x). Then

na(x) =
∑
b:b⊆c

(−1)|c\b|
{
Hb −Hb∪α −Hb∪β +Hb∪{α,β}

}
(1.8)

Define d = x \ {α, β}, then by (P ), we have α ⊥⊥ β|d. Hence

Hb∪{α,β} −Hb∪α(x) = ln
f(xb, xα, xβ, x

∗
d\b)

f(xb, xα, x∗β, x
∗
d\b)

= ln
f(xα|xb, x∗d\b)f(xβ, xb, x∗d\b)
f(xα|xb, x∗d\b)f(x∗β, xb, x∗d\b)

= ln
f(x∗α|xb, x∗d\b)f(xβ, xb, x∗d\b)
f(x∗α|xb, x∗d\b)f(xβ, xb, x∗d\b)

= ln
f(xb, x

∗
α, xβ, x

∗
d\b)

f(xb, xα, x∗β, x
∗
d\b)

= Hb∪β −Hb(x) (1.9)

From (1.8), na(x) vanishes whenever there is no direct link between α and β, that
is, na(x) vanishes unless a is a complete set.

Undirected graphical models are useful in modelling a variety of phenomena where
one cannot naturally ascribe a directionality to the interactions between variables.
A special member of the family of UGM includes the undirected Gaussian graphical
model (GGM).
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1.1.3 Gaussian Graphical Models (GGM)

In this section we consider the case thatX = (X1, X2, ..., Xp)
′
is a continuous random

vector modelled by a multivariate normal or Gaussian distribution.

Definition 3. Multivariate Gaussian Distribution. A random vector X = (X1, X2, ..., Xp)
′

of continuous variables has a p variate multivariate normal distribution Np(µ,Σ) with
p×1 mean vector µ and p×p variance − covariance matrix Σ containing the entries
σij = Cov(Xi, Xj)

µ =

µ1
...
µp

 and Σ =

σ11 · · · σ1p
...

...
σp1 · · · σpp


where we assume that Σ has full rank (this implies that it is positive definite), if the
joint pdf has the form

f(x) = |2πΣ−1| exp
{
−(x− µ)′Σ−1(x− µ)/2

}
.

In the above, µ and Σ are called the moment parameters. Some of the following
theory is however better expressed through what are called the canonical parameters:
Θ := Σ−1 is called the precision or concentration matrix, and β = Σ−1µ. We can
easily see that the pdf in terms of these canonical parameters is given by

f(x) = exp
{
α + β

′
x− x

′
Θx/2

}
where α is a normalizing constant. The above shows that the multivariate normal
distributions form an exponential family. Writing out the matrix notation we see

f(x) = exp
{
α +

∑
βixi −

∑∑
θijxixj/2

}
from where we see, using the factorization property, that:

θij = 0 if and only if xi ⊥⊥ xj|xV \{i,j}.

Definition 4. Gaussian Graphical Model (GGM). The p variate multivariate normal
distribution Np(0,Σ) is graphical with respect to an undirected graph G = (V,E) if the
corresponding entries in the precision matrix, θij = 0 whenever {i, j} and {j, i} /∈ E.
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Figure 1.4. Graph of independence, where (1, 2, 3, 4) denotes nodes.

The graph G represents the model where Θ, the concentration matrix is a positive
definite matrix with θij = 0, whenever there are no edges between nodes i and j
in G. In undirected Gaussian graphical model, a missing edge implies conditional
independence, and thus the problem of estimating a GGM is equivalent to estimating
an inverse covariance matrix. For example, consider a four dimensional vector X as
shown in Figure (1.4). A GGM for X is given by the inverse covariance matrix Θ of
the form

Θ =


θ11 θ12 0 0
θ12 θ22 θ23 0
0 θ23 θ33 θ34
0 0 θ34 θ44

 ,

where the remaining θij are arbitrary, restrained only to ensure the matrix is sym-
metric and positive definite.

The corresponding Markov properties are listed as follows:

(P) X1 ⊥⊥ X3|(X2, X4), X1 ⊥⊥ X4|(X2, X3), X2 ⊥⊥ X4|(X1, X3);

(L) X1 ⊥⊥ X3|X2, X1 ⊥⊥ X4|(X2, X3), X2 ⊥⊥ X4|X3;

(G) X1 ⊥⊥ X3|X2, X2 ⊥⊥ X4|X3.

Figure(1.5) depicts an example of subnetworks of Arabidopsis thaliana clock
genes. It indicates no direct binding between genes CCA1 and TOC1. The two
genes interact through some hidden mechanism (latent variable), as we will describe
in chapter 3 and 4. In graphical model term, genes CCA1 and TOC1 are condi-
tionally independent given the latent variable and the local Markov property can be
translated as CCA1 ⊥⊥ TOC1|hidden variable. Also the graph indicates no direct in-
teraction between genes LHY and CCA1. However the two genes interact with each
other through the latent variable and the pairwise Markov property can be written
as
LHY ⊥⊥ CCA1|(latent variable).
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Figure 1.5. Example of undirected graph showing dependencies structure
in the Arabidopsis thaliana clock genes.

1.1.4 Likelihood: Gaussian Graphical Models

Suppose we have a sample of independent copiesX1, ...,XN ofX, withXi = (Xi1, ..., Xip)
′

and xi = (xi1, ..., xip)
′
. Then, the log-likelihood in terms of (Θ, µ) is given by

l(Θ, µ) =
N

2
ln |Θ| − N

2
tr(ΘS)− N

2
(x̄− µ)′Θ(x̄− µ),

where S = 1
N

∑
(xi − x̄)(xi − x̄)

′
. For fixed Θ this is maximized by µ̂ = x̄ which

makes the last term equal to zero. We are then left with the profile likelihood,

l(Θ) =
N

2
ln |Θ| − N

2
tr(ΘS),

where tr(ΘS) =
∑

i,j sijθi,j. We then conclude that the only elements si,j of S for
which θi,j ̸= 0 will contribute to the likelihood. This leads to the following:

Theorem 1.1.4 (Estimation for Gaussian Graphical Models). Given Xi and xi

above, it can be shown using exponential family theory that

1. S and x̄ are sufficient statistics for Θ and µ

2. For complete graph, the ML-estimator of Σ is Σ̂ = S, the ML-estimator for µ
in any graph is µ̂ = x̄

12



Graphical model in systems biology

In systems biology graphical models are employed to describe and to identify inter-
dependencies among genes and gene products, with the aim to better understand the
molecular mechanisms of the cell. GMs are promising tools for the analysis of gene
interactions because they allow the stochastic description of networks association
and dependency structures in complex highly structured data. They are perfectly
suited for modelling biological process in the cell such as biochemical interactions and
regulatory activities. As a result many graphical models, such as Bayesian networks
(Friedman, 2004), vector-autoregressive (VAR) models (Fujita et al., 2007), state
space models (Husmeier, 2003; Rangel et al., 2004) have already been applied to
genomic data and put to use in expression analysis.

Although graphical models are promising for the analysis of gene interaction, a
major practical problem encountered in their application in systems biology is the
high dimensionality of the data with respect to the sample size. As a result, it is
not trivial to apply Gaussian graphical models to high dimensional genomic data for
the parameters describing the GM quickly outnumber the data points. The reason
being that inferring a large scale precision matrix from relatively few data is an ill-
posed problem that requires care. Motivated by these challenges, some efforts are
now being undertaken to avoid the dimensionality problems stated above. These
approaches include dimension reduction prior to classic Gaussian graphical mod-
els analysis (Kishino and Waddell, 2000; Xintao et al., 2003), limited order partial
correlations (de la Fuente et al., 2004; Wille and Peter, 2006), and regularization
techniques (Nicolai et al., 2006). In subsequent chapters of this thesis, we apply an
L1 regularization technique to graphical models and state space models in order to
infer large networks.

1.1.5 State Space Model

State space models (SSM), (Fahrmeir and Kunstler, 2009) are examples of directed
graphical models. They relate observations {yt}t=1,2,...,T. on a response variable Y to
unobserved “states” {xt}t=1,2,...,T by an observation model for yt given xt. The model
assumes that the observation at time t was generated by some process whose state xt
is hidden from the observer. Second it assumes that the state of this hidden process
satisfies the Markov property: that is given the value of xt−1, the current state xt
is independent of all the states prior to t − 1. The output also satisfies a Markov
property with respect to the states: given xt, yt is independent of the states and the
observations at all other time indices.

From Equation (1.1), the joint distribution of the sequence of states and obser-
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vations can be factored in the following way:

Figure 1.6. Linear State-space model (SSM). The r.v. xt represent the
true unobserved states. They are assumed to be Gaussian distribution
with mean Fxt−1 and variance-covariance σ2

xI. Yt are the observation vari-
ables supposed to be Gaussian distribution with mean Zxt and variance-
covariance σ2

yI.

P (x1:T , y1:T ) = P (x1)P (y1|x1)
T∏
t=2

P (xt|xt−1)P (yt|xt) (1.10)

The state transition probability P (xt|xt−1) can be decomposed into deterministic
and stochastic components:

xt = gt (xt−1) + ηt,

where gt is the deterministic transition function determining the mean of xt given
xt−1. In a similar manner, the observation (yt) can be decomposed as

yt = ft (xt) + ξt,

where ηt and ξt are state and observation noise vectors respectively. In the case where
the transition and output functions are linear with i.i.d. sequences ηt ∼ N (0, σ2

xI),
ξt ∼ N

(
0, σ2

yI
)
with an independent initial value x0 ∼ N

(
a0, σ

2
x0

)
, the model is called

a linear Gaussian state-space model or linear dynamical systems (LDS) (Roweis and
Ghahramani, 1999), also known as a Kalman filter model (Brown and Hwang, 1997):

xt = Fxt−1 + ηt (1.11)
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and

yt = Zxt + ξt (1.12)

where F and Z represent the transition matrices and the design matrices respectively.
The graphical representation of the model is depicted in Figure (1.6).

A straightforward and powerful extension of this model is to allow the dynamics
and observation models to include feedback from previous data points:

xt = Fxt−1 + Ayt−1 + ηt, where ηt ∼ N(0, σ2
x)

yt = Zxt +Byt−1 + ξt, where ξt ∼ N(0, σ2
y)

x0 = 0, y0 = 0

(1.13)

where A and B are the (k × p) input-to-state and (p × p) input-to-observation
matrices respectively. The dimension of the state variable x and the data y are k
and p respectively. We will consider this model thoroughly in chapter 3 and 4.

1.1.6 Connection between GGMs and SSMs

Let yO ∼ N(0,ΘO) where ΘO denotes the marginal precision matrix of the observed
variables. In addition, we consider the setting in which the hidden variables xH and
the observed variables yO are jointly Gaussian with covariance matrix Σ. The ques-
tion we address here is as follows: How is the precision matrix Θ = Σ−1 connected
to the SSM parameters? In another words, we want to recover the network of the
observed variables while still taking into account the uncertainty about the hidden
components.

Given our input dependent SSM above, and considering 2 different time points,
the dependencies between the variables are explained in table below

Variables
y1 x1 y2 x2

variables y1 ξ1 Z B A
x1 Z η1 0 F

variables y2 B 0 ξ2 Z
x2 A F Z η2

From the model, we can infer the following:

x1 ∼ N(0, σ2
xI)
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y1|x1 ∼ N(Zx1, σ
2
yIp)

and marginally
y1 ∼ N(0, Zσ2

xZ
′
+ σ2

yIp)︸ ︷︷ ︸
Σy1

Also
cov(x1, x2) = Fσ2

x

cov(x1, y1) = Zσ2
x

Next,
x2|(x1, y1) ∼ N(Fx1 + Ay1, σ

2
xI)

and marginally

x2 ∼ N

0, F 2x2σ + A[Zσ2
xZ

′
+ σ2

yIp]A
′
+ σ2

x + 2FZσ2
xA

′︸ ︷︷ ︸
Σx2


Futhermore

y2|(x2, y1) ∼ N(Zx2 +By1, σ
2
yIp)

and marginally

y2 ∼ N

0, ZΣx2Z
′
+BΣy1B

′
+ 2Z(FZ

′
σ2
x + Aσ2

y)B
′
+ σ2

yIp︸ ︷︷ ︸
Σy2


Also

cov(y1, y2) = BΣy1

cov(y2, x1) = (ZF + AZ +BZ)σ2
x︸ ︷︷ ︸

C

We can now write that


y1
y2
x1
x2

 ∼ N

0,


Σy1 BΣy1 Zσ2

x AΣy1

(BΣy1)
′

Σy2 Cσ2
x ZΣx2

(Zσ2
x)

′
(Cσ2

x)
′

σ2
x Fσ2

x

A(Σy1)
′

(ZΣx2)
′

(Fσ2
x)

′
Σx2


︸ ︷︷ ︸

Σ
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Derivation of the precision matrix

We write down the correlation matrices among the observed data yt and between the
observed data yt and the hidden states xt.

cor(yt, ys|rest) =


0, if |s− t| > 1

B, if |s− t| = 1

I, if |s− t| = 0

Next

cor(yt, xs|rest) =


0, if |s− t| > 1
σy

σx
A

′
, if (s− t) = 1

Z σx

σy
, if (s− t) = 0

0, if (s− t) = −1

Furthermore,

cor(xt, xs|rest) =


0, if |s− t| > 1

F, if |s− t| = 1

I, if |s− t| = 0

The precision matrix of the conditional statistics of the observed variables yO
given the latent variables is given by ΘO which is simply a submatrix of the full
precision matrix Θ. We now have



y1
y2
...
x1
x2
...


∼ N

0,

(
ΘO ΘOH

ΘHO ΘH

)
︸ ︷︷ ︸

Θ
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where the structure of Θ is of the form,

Obs. var. Hidden var.
y1 y2 y3 · · · x1 x2 x3 x4 · · ·

y1 Ip∗p B 0 · · · Z σx

σy

σy

σx
A

′
0 0

y2 I B
. . . 0 Z σx

σy

σy

σx
A

′
0 · · ·

...
. . .

x1 I F 0
x2 I F 0
...

. . . . . .

The marginal statistics of the observed variables yO are given by the marginal pre-
cision matrix Θ̂O, which according to Schur complement (Horn and Johnson, 1990),
is given by

Θ̂O = ΘO −ΘOHΘ
−1
H ΘHO (1.14)

where ΘO, ΘOH , ΘH are the corresponding submatrices of the full precision matrix.
The matrix ΘO specifies the concentration matrix of the conditional statistics of the
observed variables given the hidden components. It is usually sparse as compared
to the matrix ΘOHΘ

−1
H ΘHO; the latter is of low-rank. The reason being that the

conditional statistics are given by a sparse graphical model whiles the number of
hidden components is smaller than the number of observed variables. Equation
(1.14) can be viewed as a decomposition of the Θ̂O into a sparse and a low-rank
components. From above for simplicity, suppose F = 0 and let c = σy

σx
, we then have

ΘOHΘ
−1
H ΘHO =



(ZZ
′

c2
+ c2A

′
A) A

′
Z

′ · · · 0

ZA (ZZ
′

c2
+ c2A

′
A) A

′
Z

′ · · · 0
. . . . . . . . .

. . .

ZA (ZZ
′

c2
+ c2A

′
A)


(1.15)

and from Equation 1.14, we have
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Θ̂O =



(I − ZZ
′

c2
− c2A′

A) B − A′
Z

′ · · · 0

B
′ − ZA (I − ZZ

′

c2
− c2A′

A) B − A′
Z

′ · · · 0
. . . . . . . . .

. . .

B
′ − ZA (I − ZZ

′

c2
− c2A′

A)


(1.16)

1.1.7 Identifiability issues of SSMs

There is a fundamental problem for system identification using SSMs. By identi-
fiability, we mean a unique parametrization exists. Parameters of a model are not
identifiable if there exists infinite number of parametrization that yield the same
likelihood. In this case the statistical problem of estimating the parameters is ill-
posed. If we simply estimate parameters of the SSMs without any constraints on the
parameter space, it lacks identifiability. We explain here three important properties
in SSMs that relate to identifiability.

stability

Recall the state Equation (1.11), xt = Fxt−1 + ηt, recursively, we can show that

xt = F nxt−n + η∗t

If v is any eigen vector, then there exists Fv = λv where λ is an eigen value. Suppose
v1, ..., vn are basis of the eigen vectors such that

xt−1 = a1v1 + ...+ anvn

then

Fxt−1 =
n∑

i=1

aiFvi

=
n∑

i=1

aiλivi

where λi < 1 indicates shrinking and λi > 1 shows expansion in the direction of
vi. Therefore the model (1.11) and (1.12) will be stable if the matrix F has spectra
radius less than one. In other words, we require the eigen values of F to be less than
one in magnitude.
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controlability

Our SSM is said to be controllable if it can evolve from any arbitrary initial state,
say x0 to any desirable state, xk in a finite time period. Mathematically, we can
write the state equation (1.11) as

xk = F kx0 + F k−1η1 + F k−2η2 + ...+ Iηk

for any finite time k. This implies

xk − F kx0 =
[
F k−1, F k−2, ..., I

]

η1
η2
...
ηk


Therefore for any xk and x0 our system will be controllable provided we can choose
judiciously inputs η1, ...ηk such that we can move from x0 to xk. For that matter we
require the matrix

[
F k−1, F k−2, ..., I

]
to be of full rank.

observability

A SSM is said to be observable if, when the noise vectors were to be 0, every initial
state, x0 can be determined from observable sequence of yk over a finite number
of sampling period. This condition is satisfied if and only if the inverse of the
observability matrix is available. That is the matrix[

ZF k−1, . . . , ZF, Z
]

is of full rank.
In Chapter 3 and 4 we will apply SSM in order to infer network and further

constraints were imposed on the model to overcome the poor identifiability of the
SSM.

1.2 The Expectation-Maximization algorithm

The main method of inference used in this thesis is the Expectation- Maximization
(EM) algorithm. Frequentist estimation by and large relies on maximum likelihood
(ML) estimators. It consists of maximizing the likelihood across the parameter space.
Special cases of the EM algorithm were developed before it was formally introduced
by Dempster et al. (1977). The EM algorithm has become a popular method of
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inference in statistical estimation problems involving incomplete data, i.e, data with
some missing or latent or hidden observations or problems that can be posed in a
similar form, such as mixture models. Subsequent chapters will demonstrate how
the EM algorithm can be used in Graphical models involving mixture distributions
as well as in SSM .

The EM algorithm is an iterative tool to compute the maximum likelihood estim-
ate in data characterized by the presence of missing, or hidden or latent observations.
This optimization can be difficult especially if the data consist of missing or latent
parts. The intuition behind ML is to estimate the parameter(s) for which the ob-
served sample is most likely. It possesses some optimality properties as discussed in
George and Berger (1996). Each iteration of the EM algorithm consists of an ex-
pectation step (E-step) followed by a maximization step (M-step). In the E-step, the
hidden variables are “estimated” as conditional expectations given the observed data
and current estimates of the model parameters. In our SSM, the Kalman filtering
algorithm is precisely the E-step. The later is achieved by computing the conditional
expectation of the (log) likelihood of the “complete” data. The M-step maximizes
the complete likelihood function across the parameter space given the estimate of
the missing data from the E-step.

Let y be a random vector which results from a parametrized family. The EM
algorithm aims at finding a value of Ω which maximizes P (y|Ω). In most cases,
especially when differentiation is to be used, it is easier to work with the natural
logarithm, known as the log likelihood and denoted by l (Ω), defined as,

l (Ω) = lnP (y|Ω) . (1.17)

A ML estimate is the same regardless of whether we maximize the likelihood or the
log-likelihood function, since the logarithm is a monotone increasing transformation.
The EM algorithm is an iterative procedure for maximizing l (Ω). Assume that after
the kth iteration the current estimate for Ω is given by Ωk. Since the goal is to
maximize l (Ω), we wish to compute an updated estimate Ω such that:

l (Ω) > l (Ωk) . (1.18)

Stated differently, we may want to maximize the difference:

l (Ω)− l (Ωk) = lnP (y|Ω)− lnP (y|Ωk) . (1.19)

So far, we have not considered any missing or hidden variables. However in
many practical problems, such variables can be naturally constructed and the EM
algorithm offers a reliable framework for their inclusion. The idea behind the EM
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algorithm stems from the fact we observe data y; but if we had observed (y,x) with
x as the missing data, then estimation of parameter vector Ω through maximum
likelihood would have been much easier.

The likelihood P (y|Ω) may be written in terms of the hidden variables x as,

P (y|Ω) =
∫
x

P (y|x,Ω)P (x|Ω) dx. (1.20)

Therefore we may rewrite Equation (1.19) as,

l (Ω)− l (Ωk) = ln

∫
x

P (y|x,Ω)P (x|Ω)

 dx− lnP (y|Ωk)

= ln

∫
x

P (y|x,Ω)P (x|Ω) .P (x|y,Ωk)

P (x|y,Ωk)

 dx− lnP (y|Ωk)

= ln

∫
x

P (x|y,Ωk) .
P (y|x,Ω)P (x|Ω)

P (x|y,Ωk)

 dx− lnP (y|Ωk)

≥
∫
x

P (x|y,Ωk) ln

(
P (y|x,Ω)P (x|Ω)

P (x|y,Ωk)

)
dx− lnP (y|Ωk)

=

∫
x

P (x|y,Ωk) ln

(
P (y|x,Ω)P (x|Ω)

P (x|y,Ωk)

)
dx

−
∫
x

P (x|y,Ωk) lnP (y|Ωk)dx

=

∫
x

P (x|y,Ωk) ln

(
P (y|x,Ω)P (x|Ω)
P (x|y,Ωk)P (y|Ωk)

)
dx

:= δ (Ω|Ωk) (1.21)

We can now write that

l (Ω) ≥ l (Ωk) + δ (Ω|Ωk) := L (Ω|Ωk) . (1.22)

The function L (Ω|Ωk) is bounded from above by the likelihood function l (Ω).
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Next,

L (Ωk|Ωk) = l (Ωk) + δ (Ωk|Ωk)

= l (Ωk) +

∫
x

P (x|y,Ωk) ln

(
P (y|x,Ωk)P (x|Ωk)

P (x|y,Ωk)P (y|Ωk)

)
dx

= l (Ωk) +

∫
x

P (x|y,Ωk) ln
P (y,x|Ωk)

P (y,x|Ωk)
dx

= l (Ωk) (1.23)

Any Ω which maximizes L (Ω|Ωk) will also maximize l(Ω) and in order to attain the
highest increment in the value of l(Ω), the EM algorithm calls for selecting Ω such
that L (Ω|Ωk) is maximized. Let this updated value be Ωk+1. Then

Ωk+1 = argmaxΩ {L (Ω|Ωk)}
= argmaxΩ {l (Ωk) + δ (Ω|Ωk)}

= argmaxΩ

l (Ωk) +

∫
x

P (x|y,Ωk) ln

(
P (y|x,Ω)P (x|Ω)
P (x|y,Ωk)P (y|Ωk)

)
dx


= argmaxΩ


∫
x

P (x|y,Ωk) lnP (y|x,Ω)P (x|Ω) dx


= argmaxΩ


∫
x

P (x|y,Ωk) ln
P (y,x,Ω)

P (x,Ω)

P (x,Ω)

P (Ω)
dx


= argmaxΩ


∫
x

P (x|y,Ωk) lnP (y,x|Ω) dx


= argmaxΩ

{
Ex|y,Ωk

[lnP (y,x|Ω)]
}

(1.24)

From above, the two steps are now apparent and each iteration of the EM algorithm
involves the following:

1. E-step: “Estimate” the complete likelihood by computing the conditional ex-
pectation,

Ex|y,Ωk
[lnP (y,x|Ω)] .
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2. M-step: Maximize the expected complete likelihood with respect to Ω to obtain
the next estimates.

It is well known that the log-likelihood calculated with the (k + 1)th iterative
estimated parameters is larger than that of the kth iterative estimated parameters.
This is the ascent property of the EM algorithm giving reason why the EM-algorithm
works in general. It is also necessary to point out that the gain in maximizing
L (Ω|Ωk) instead of l (Ω) stems from the fact that the maximization of L (Ω|Ωk) is
tractable and easier as compared to a direct maximization of l (Ω).

The procedure to obtain the maximum likelihood estimator of the parameter
vector Ω is summarized below:

1. Select initial values of Ω̂0 that is, start with initial guess for the parameters Ω̂0

2. At the kth step, calculate the conditional expectation of the log likelihood in
Equation (1.24) (E-step)

3. Determine the next iterative estimated parameters (Ω̂k+1) that maximizes con-
ditional expectation of the log likelihood. (M-step) and compute the corres-
ponding log likelihood.

4. Iterate step 2 and 3 until the log likelihood (l(Ω̂|Y)) is converged

1.2.1 The Kalman-Filtering Algorithm

Preliminaries

The Kalman filter has been considered as one of the optimal solutions to many data
prediction, filtering and smoothing problems. In this context, it is used to estimate
the hidden or latent states in the E-step of the EM algorithm in chapter 3 and 4.
Here we describe the basic concepts that one needs to know to design and implement
a Kalman filter, and later introduce the Kalman filter algorithm. In the model
description Equations (1.11) and (1.12) we assume that the random variables ξt and
ηt that represent the measurements and process noise respectively are independent
and distributed according to the following:

ξt ∼ N(0, σ2
yIp) (1.25)

ηt ∼ N(0, σ2
xI) (1.26)
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η0 ∼ N(0, σ2
x0
) (1.27)

It is possible to rewrite our model Equations (1.11) and (1.12) in just one equation
called Final Form which, will be more convenient for easy derivations of moments of
states and observations. To do that, one needs to realize that we can write Equation
(1.11) recursively as

x1 = Fx0 + η1

x2 = F 2x0 + Fη1 + η2

and then we obtain

xt = F tx0 +
t−1∑
i=0

F iηt−i

and substituting this into Equation (1.12) we obtain

yt = Z

{
F tx0 +

t−1∑
i=0

F iηt−i

}
+ ξt

where the superscript F t indicates F raised to the power t. We shall refer to the
above equation as the Final form From which, the mean of the states xt and of the
observations yt are obtained directly as follows:

E(xt) = F tE(x0)

= F ta0, (1.28)

and

E(yt) = ZF tE(x0)

= ZF ta0. (1.29)

Next if we let Πt denote the unconditional covariances of the state vector, then

Πt = E
[
(xt − E(xt)) (xt − E(xt))

′
]
,

from which it follows that the covariances of y is

E
[
(yt − E(yt)) (yt − E(yt))

′
]
= ZΠtZ

′
+ σ2

yIp.
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Rewriting the model

The goal is to find the distribution of xt, conditional on yt. The SSM consists of a
hidden system xt with initial probability density p(x0) which evolves over time as an
indirect or partially observed first order Markov process according to the conditional
probability density p(xt|xt−1) whose distribution is:

xt|xt−1 ∼ N(Fxt−1, σ
2
xI) (1.30)

The observations yt are conditionally independent given the state and are gener-
ated according to the conditional probability density p(yt|xt) with distribution given
by:

yt|xt ∼ N(Zxt, σ
2
yIp). (1.31)

One also need to realize that: {xt} is Markovian, i.e.

p(xt|xt−1, η1, ..., ηt−1) = p(xt|xt−1), (1.32)

p(xt|xt−1, y1, ..., yt−1) = p(xt|xt−1). (1.33)

Next from from Bayes rule, it follows that

p(xt−1|xt) = p(xt|xt−1)
p(xt−1)

p(xt)
. (1.34)

Recall that as

xt = F tx0 +
t−1∑
i=0

F iηt−i,

it follows also that

xt ∼ N(F ta0,Πt). (1.35)

Note that the joint distribution of (yt, xt) is(
xt
yt

)
∼ N

([
F ta0
ZF ta0

]
,

[
Πt ΠtZ

(ΠtZ)
′
ZΠtZ

′
+ σ2

yIp

])
.
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The Kalman filter equations (KFE)

The Kalman filter equations (KFE) is a set of equations that provides an efficient
computational means to calculate the conditional expectation of the states of a pro-
cess, given the observations or measurements. Recall that the objective is to find

p(xt|Ys) (1.36)

where Ys = {y1, y2, ..., yT}, representing all available information up to time T . It
can also be viewed as the history of responses for an individual up to and including
time T . This gives rise to three different cases depending on the range of values of
s. That is, if s < t we talk of prediction, filtering if s = t and finally s > t refers to
smoothing. Here we discuss only the first two cases, i.e prediction and filtering.

The prediction equations

We begin by finding the density p(xt|Yt−1). The following lemma is also important
to the derivation of the prediction equations.

Lemma 1.2.1. Given that x and y are any random variable and if x ∼ N(υx, Sx)
and y|x ∼ N(Tx, Sy) with T an invertible square matrix then:∫ ∞

−∞
p(y|x)p(x)dx ∼ N(Tυx, TSxT

′
+ Sy) (1.37)

We also introduce the following notations

x̃t = E(xt|Yt−1) (1.38)

where x̃t denotes the predicted or prior state estimate variable at time t given know-
ledge of the process prior to time t.

P̃t = E
[
(xt − x̃t)(xt − x̃t)

′|Yt−1

]
= var(xt|Yt−1) (1.39)

therefore P̃t is the corresponding predicted or prior state estimate error covari-
ance.

The filtered parameters x̂t and P̂t are also defined by:

x̂t = E(xt|Yt) (1.40)
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and

P̂t = E
[
(xt − x̃t)(xt − x̃t)

′|Yt
]

= var(xt|Yt−1) (1.41)

Now the predictive conditional density p(xt|Yt−1) can be calculated as follows:

p(xt|Yt−1) =

∫ ∞

−∞
p(xt, xt−1|Yt−1)dxt−1

=

∫ ∞

−∞
p(xt|xt−1)p(xt−1|Yt−1)dxt−1 (1.42)

where p(xt|xt−1) was calculated from the model and was given in Equation (1.30);
and p(xt−1|Yt−1) represents the previous solution to the filtering problem. Equation
(1.42) represents the predictive density step from which we realize that the recursion
starts from p(xt−1|Yt−1). It is important to realize the following:

x0|Y0 ∼ N(a0, P0) (1.43)

and it follows that

xt−1|Yt−1 ∼ N(x̂t−1, P̂t−1) (1.44)

Applying the lemma to Equation (1.42), the predictive step density is distributed
according to:

xt|Yt−1 ∼ N
(
Fx̂t−1,

[
FP̂t−1F

′
+ σ2

xI
])

(1.45)

In combination with our notations in Equations (1.38) and (1.39), the predictive step
equations give:

x̃t = Fx̂t−1 (1.46)

P̃t = FP̂t−1F
′
+ σ2

xI (1.47)

Clearly, the predictive step equations is predicting xt using x̃t only on the basis of
x̂t−1. In the first predictive step, we can say that x̃1 predicts x̂1 on the basis of x̂0.
Therefore as a by-product of the predictive step, we quickly obtain the predictive
density p(yt|Yt−1); however, we also need to realize that conditional on {xt}, current
observations yt are independent of past states xt−1, xt−2, ..., x0, i.e.

p(yt|xt, xt−1, ..., x0) = p(yt|xt).
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Now

p(yt|Yt−1) =

∫ ∞

−∞
p(yt|xt, Yt−1)p(xt|Yt−1)dxt

=

∫ ∞

−∞
p(yt|xt)p(xt|Yt−1)dxt (1.48)

where p(yt|xt) is known from the model and was given in Equation (1.31) and
p(xt|Yt−1) comes from previous prediction step and xt|Yt−1 is distributed according

xt|Yt−1 ∼ N(x̃t, P̃t) (1.49)

Therefore combining Equations (1.31) and (1.49) coupled with the lemma, the ob-
servation prediction density p(yt|Yt−1) step has yt|Yt−1 whose distribution is given
by:

yt|Yt−1 ∼ N
(
Zx̃t,

[
ZP̃tZ

′
+ σ2

yIp

])
(1.50)

If we let

ỹt = E(yt|Yt−1) (1.51)

vt = yt − ỹt (1.52)

where vt is the measurement innovation or the residual and reflects the discrepancy
between the predicted measurement ỹt and the actual observation yt. Then the
observation prediction equation step becomes:

ỹt = Zx̃t (1.53)

Σt = ZP̃tZ
′
+ σ2

yIp (1.54)

where Σt represent the observation prediction covariance.
It can be seen that the predictor equations are responsible for projecting forward

the current state and error covariance estimates to obtain prior estimates for the
next time.

The filtered equations step
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Filtering means estimating the current state, given responses up to the present.
Now from t − 1 we want to project into t and ultimately finding an equation that
computes a posterior state estimate x̂t probably as a linear combination of the pre-
dictive state estimate or prior estimate x̂t and a weighted residual vt. This process is
referring to as filtering step or update step. We begin by finding the filtered density
p(xt|Yt)

p(xt|Yt) = p(xt|Yt−1, yt)

=
p(xt, yt|Yt−1)

p(yt|Yt−1)

=
p(yt|xt, Yt−1)p(xt|Yt−1)

p(yt|Yt−1)

=
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
(1.55)

This is the update or filtered density step and it is important to realize that p(yt|xt)
is determined by the model and was given in Equation (1.31), the second factor
p(xt|Yt−1) comes from the prediction density step and was given in Equation (1.45)
and the last factor p(yt|Yt−1) is the observation prediction density and was given
in Equation (1.50). The filtered density has the interpretation that the filtered
distribution p(xt−1|Yt−1) is propagated forwards by the dynamics for one time step
to reveal a new “prior” distribution at time t. This distribution is then modulated
by the observation yt, incorporating the new evidence into the filtered distribution;
this is also referred to as predictor-corrector method.

Now substituting Equations (1.31), (1.45) and (1.50) into Equation (1.55) gives:

p(xt|Yt) = C exp−1

2
[(yt − Zxt)

′
R−1(yt − Zxt)

+ (xt − x̃t)
′
P̃−1
t (xt − x̃t)− (yt − ỹt)

′
Σ−1

t (yt − ỹt)] (1.56)

where C is a constant, R = σ2
yIp. Re-arranging Equation (1.56) gives

p(xt|Yt) = C exp

{
−1

2
(xt − x̂t)

′
P̂−1
t (xt − x̂t)

}
(1.57)

where x̂t and P̂t represent posterior state estimate at step t given the observation yt
or filtered state variables, and posterior estimate error covariance respectively and
are given by:
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x̂t = x̃t +Ktvt (1.58)

P̂t = P̃t −KtΣtK
′

t (1.59)

and

Kt = P̃tZ
′
Σ−1

t (1.60)

is the Kalman gain and is chosen to be the gain or blending factor that minimizes
the posterior error covariance in Equation (1.59). We provide a full derivation of the
Kalman gain K using an alternative Minimization of Mean Square Error (MMSE)
approach.

Derivation of Kalman gain

The filter can be constructed as a mean square error minimizer and for the optimal
filter, it must be possible to correctly model the system errors using Gaussian distri-
butions. Let the covariances of the two noises models be

Q = E(ηtη
′

t) (1.61)

and

R = E(ξtξ
′

t) (1.62)

Given the model described in Equations (1.11) and (1.12) let

P̂t =MSE = E(ete
′

t)

where

et = xt − x̂t
then P̂t becomes

P̂t = E
[
(xt − x̂t)(xt − x̂t)

′
]

Given that x̃t is the prior estimate of x; then

x̂t = x̃t +Kt(yt − Zx̃t)

therefore P̂t becomes
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P̂t = E[(xt − x̃t −Kt(yt − Zx̃t))(xt − x̃t −Kt(yt − Zx̃t))
′
]

= E[(xt − x̃t −KtZxt −Ktξt +KtZx̃t)

× (xt − x̃t −KtZxt −Ktξt +KtZx̃t)
′
]

= E[((xt − x̃t)−KtZ(xt − x̃t)−Ktξt)

× ((xt − x̃t)−KtZ(xt − x̃t)−Ktξt)
′
]

= E[((I −KtZ)(xt − x̃t)−Ktξt)((I −KtZ)

× (xt − x̃t)−Ktξt)
′
]

= (I −KtZ)E
[
(xt − x̃t)(xt − x̃t)

′
]

︸ ︷︷ ︸
P̃t

(I −KtZ)
′
+KtE

[
ξξ

′

t

]
︸ ︷︷ ︸

R

K
′

t

= (I −KtZ)P̃
′
t (I −KtZ)

′
+KtRK

′

t (1.63)

Now the MSE error may be minimized by minimizing the trace of P̂t. The trace
of P̂t is first differentiated with respect to Kt and the result set to zero to find the
condition of this minimum. That is

d(Tr[P̂t])

d(Kt)
= 0

Expanding Equation (1.63) gives

P̂t = P̃t −KtZP̃t − P̃tZK
′

t +Kt(ZP̃tZ
′
+R)K

′

t (1.64)

and taking the trace gives

Tr(P̂t) = Tr(P̃t)− 2Tr(KtZP̃t) + Tr(Kt(ZP̃tZ
′
+R)K

′

t) (1.65)

differentiating with respect to Kt, we have

d(Tr[P̂t])

d(Kt)
= −2(ZP̃t)

′
+ 2Kt(ZP̃tZ

′
+R) = 0 (1.66)

This implies

(ZP̃t)
′
= Kt(ZP̃tZ

′
+R) (1.67)

and

Kt = P̃tZ
′
(ZP̃tZ

′
+R)−1

= P̃tZ
′
Σ−1

t (1.68)
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It can be shown that the Hessian of Tr(P̂t) w.r.t Kt is positive semi-definite and
thus the Kalman gain in (1.68) is indeed a minimum. Therefore we write that the
filtered density or the posterior distribution p(xt|Yt) is distributed according to

xt|Yt ∼ N(E[xt], E[(x− x̂t)(x− x̂t)
′
]

∼ N(x̂t, P̂t) (1.69)
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Figure 1.7. Kalman Filter Algorithm

The filtered or the update equations are responsible for the feedback; that is
incorporating a new observation into prior estimate to obtain an improved posterior
estimate. This completes the recursive filter. The recursive algorithm is summarized
below.
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Kalman filter algorithm

Given the data y1, y2,..., yt−1, yt
Step1: Initial estimates for x̂t−1 and P̂t−1

Step2: Prediction density or time update equations

xt|Yt−1 ∼ N
(
Fx̂t−1,

[
FP̂t−1F

′
+Q

])
and projecting the state ahead

x̃t = Ftx̂t−1

and projecting the error covariance ahead

P̃t = FtP̂t−1F
′

t +Q.

Step3: Observation and variance prediction

ỹt = Zx̃t

Σt = ZP̃tZ
′
+R.

Step4: Residuals and Kalman gain

vt = yt − ỹt

Kt = P̃tZ
′
Σ−1

t .

Step5: Filtered density or observation update equations

xt|Yt ∼ N(x̂t, P̂t)

with update estimate
x̂t = x̃t +Ktvt

and update error covariance

P̂t = P̃t −KtΣtK
′

t .

We summarize the algorithm in Figure (1.7). The dynamics of the Kalman filter is
indicated in Figure (1.8). The latter indicates that x0 predicts x1 using the predicted
estimate x̃1 without the observation y1; but since we know y1 the filter quickly update

34



x̃1 with the help of y1 to get the new posterior estimates x̂1. Hence after each time
and measurement update pair, the process is repeated with the previous posterior
estimates used to project or predict the new prior estimates. Therefore it is clear
that recursively x̂1 is a function of the data y1, x̂2 a function of the data y1 and
y2 and ultimately x̂n a function of the data y1, y2,..., yn. This recursive nature
defines a probabilistic generative model of how the system evolves over time and of
how we observe this hidden state evolution; this can also be interpreted as a special
case of the more general framework of Bayesian networks which we shall explore in
subsequent chapters.
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Figure 1.8. Kalman filter dynamics

The solution to the smoothing problem is slightly different as we now need to
proceed backwards and evaluate the influence of future observation on our estimate
of states in the past. The recursion is summarized below:
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xt|T = x̂t|T +K∗
t|T
[
xt+1|T − x̃t+1|t

]
(1.70)

and

Pt|T = P̂t −K∗
t

[
Pt+1|T − Pt+1|t

]
(K∗

t )
′

(1.71)

where x̂t|T and Pt|T denote the smoothed values of x and corresponding variance
covariance matrix respectively. Also K∗

t is the gain matrix playing a role similar to
the Kalman gain and is computed backwards recursively.

In chapter 3 and 4 we implement the Kalman filter algorithm in the E-step of the
EM algorithm. This enables us to calculate the hidden components from the model.
The corresponding M-step is based on the LASSO/LARS regularization technique
through an L1 penalized inference.

1.2.2 The LASSO

The LASSO is an L1 penalized regression technique introduced by Tibshirani (1996).
It is a popular tool for sparse linear regression, especially for problems in which the
number of variables p exceeds the number of observations. In Chapters (2) and (4)
we make use of the LASSO technique in the M-step of the EM-algorithm as the
inference method. We give a brief summary of the theory underlying LASSO.

Suppose we have a linear regression problem Y = Xb + e, where Y ∈ Rn is
the response, X ∈ Rn×p is the design matrix, b ∈ Rp is the vector of unknown
coefficients and e ∈ Rn is the noise vector. The goal is to find an estimate of the
regression vector b̂ with good predictive performance and at the same time sparse.

Tibshirani (1996), introduced the concept of Least Absolute Shrinkage and Se-
lection Operator known as LASSO. This method uses an L1 norm constraint for
regression estimation. Suppose for the moment that p < n and X has full rank p.
The unbiased ordinary least square (OLS) solution for our problem satisfies:

arg min
b

(||Y −Xb||2),

where, ||.||2 refers to the sum of square elements of the vector, i.e. ||X||2 =
∑n

i=1 x
2
i .

The solution is given by b̂ = bOLS = (X
′
X)−1X

′
Y. In high dimensions, the OLS

solution produces a relatively complex model in the sense that it usually becomes
unstable. To overcome this problem, the LASSO constraints the solution, and its
formulation is as follows:

arg min
b

(||Y −Xb||2) subject to ||b||1 ≤ c (1.72)
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Figure 1.9. Two dimensional regression problem with estimates b̂1 and b̂2,
b̂OLS is the OLS estimates. The L1 and the L2 constraints are represented
by an L1 ball ( rotated square) and L2 ball (disc) respectively.

where c is the tuning parameter. For an appropriate bound c, this returns a sparse
solution. Note that in Equation (1.72), as c increases the constraint ||b||1 ≤ c
relaxes and the solution gets closer to the OLS solution. However for small c such
that c << ||bOLS||1, there exist a unique solution and that the solution tends to be
sparse. This is the essence of LASSO method.

To illustrate the LASSO method further, consider a two dimensional regression
problems with regression coefficients represented by (b = [b1, b2]). We want to com-
pare the L1 norm solution to the L2 norm given by

arg min
b

(||Y −Xb||2) subject to ||b||2 ≤ c (1.73)

The feasible solution for this problem is a disk. Figure (1.9) indicates the geometric
representation of the parameter space where we show the L2 norm constraint by the
disc. From Figure (1.9), the optimal solution to Equation (1.73) occurs at points
where the loss contour touches the feasible set of solution. Clearly this solution is
not sparse.

However turning to L1 norm constraint, the L1 constraint is an area within the
rotated square (L1 ball) around the origin. The solution to this constrained optim-
ization problem is the first point where the loss contour touches the rotated square.
The L1 ball has corners on the coordinates axes where at least one parameter, b1,
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is exactly zero. Hence the L1 constraint always leads to some regression coefficients
being exactly zero. Thus the LASSO solution is always sparse and enhances model
interpretability.

1.2.3 Least Angle Regression “LARS”

We write LAR for least angle regression and LARS to include LAR as well as LASSO.
We implement LARS by (Efron et al., 2004) or optimization with L1-regularization
constraint in chapter (4) in the M-step as an inference method. It turns out to be
helpful and computationally feasible approach for finding sparse solutions in high
dimension and by so rendering model interpretation easier. Here we give briefly the
theory behind the LARS method.

Suppose we have available a large collection of possible covariatesX = (X1,X2, ...,Xp)
with corresponding predictors b = (b1, b2, ..., bp) from which we hope to select a parsi-
monious set for the efficient prediction of a response variableY. As before the LASSO
chooses b̂ by minimizing arg min

b
(||Y −Xb||22) such that

∑p
k=1 |b̂k| ≤ c.

The LARS algorithm exploits the special structure of the LASSO problem, and
provides an efficient way to compute the solutions simultaneously for all values of
the tuning parameter c. The LARS algorithm starts with b̂k = 0 ∀ k, and find
the predictor most correlated with the output variable, say xj. LARS takes the
largest step possible in the direction of this predictor until some other predictor,
say xm, has as much correlation with the current residual. Then LARS instead
of continuing along the direction of xj, proceeds rather in a direction equiangular
between the two predictors until another third covariate xl enters its way into the
“most correlated” set. LARS further proceeds in the direction equiangular between
the variables (xj,xm,xl), that is along the “least Angle direction” until the next
predictor enters, and so on.

In essence, LARS builds up estimate µ̂ = Xb̂ successively, each step one variable
is added to the model. Starting with µ̂0, with only 2 covariates and let q(µ̂) denote
the vector of current correlations,

q(µ̂) = X
′
(y − µ̂).

From Figure (1.10), (ȳ2− µ̂0) has a smaller angle with x1 than with x2, this implies
q1(µ̂0) > q2(µ̂0). LARS augments µ̂0 in the direction of x1, that is

µ̂1 = µ̂0 + γ̂1x1.

LARS chooses γ̂1 in such a way that (ȳ2 − µ̂1) bisects the angle between x1 and x2.
The next LARS estimate is

µ̂2 = µ̂1 + γ̂2u2,
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where γ̂2 is chosen to make µ̂2 = ȳ2. Figure (1.10) explains the algorithm for p = 2
variables. The LARS procedure works as follows:

Figure 1.10. Geometrical representation of the LARS algorithm. ȳ2 is the
projection of y into linear space spanned by x1 and x2. We start with
µ̂0 = 0. Given that ȳ2− µ̂0 has a smaller angle with x1 than with x2, LARS
then augments µ̂0 in the direction of x1 i.e. µ̂1 = µ̂0 + γ̂1x1. The choice of
γ̂1 is critical here. LARS chooses γ̂1 such that ȳ2 − µ̂1 bisects the angle
between x1 and x2. The next LARS estimate now is µ̂2 = µ̂1 + γ̂2µ2.

1. Start with all the coefficients in our model b̂1, b̂2, ..., b̂p equal to zero.

2. Find the predictor xj most correlated with y i.e making the smallest angle with
our response y.

3. Increase the coefficient bj in the direction of the sign of its correlation with y.
Compute the residuals r = y − ŷ. Stop when some other predictor xm has as
much correlation with r as xj has. At that point LARS switches to a direction
that is “equiangularly” between the two predictors xj and xm.

4. We continue in this way until a third variable xl joins the“most correlated” set
and we move “equiangularly” between xj,xm,xl. If we had p original predictors
we continue in this way for p− 1 steps and take as our last move a jump to the
OLS fit using all p predictors.

5. suppose we have completed k − 1 steps of the LARS algorithm, then the kth

step will see us introduce a new variable xk say. It can be shown that the
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LARS estimate for the kth step µ̂k lies along the line between µ̂k−1 and ŷk, the
OLS fit to the response using x1, ...,xk. See Figure (1.10) for a geometrical
interpretation.

We summarize the LARS algorithm below:

1. Set µ̂0 = 0 and k = 0.

2. repeat

3. Calculate q̂ = X
′
(y − µ̂k) and set Q̂ = maxi {|q̂i|}.

4. Let A =
{
i : |q̂i| = Q̂

}
.

5. SetXA = (...xi...)i∈A for calculating ȳk+1 =
(
X

′

AXA
)−1

X
′
Ay and a = X

′

A(ȳk+1−
µ̂k).

6. Set

µ̂k+1 = µ̂k + γ̂ (ŷk+1 − µ̂k) ,

where, if Ac ̸= ⊘,

γ̂ = min+
i∈Ac

{
Q̂− q̂i
Q̂− âi

,
Q̂+ q̂i

Q̂+ âi

}
,

otherwise set γ̂ = 1.

7. k ← k + 1.

8. Until Ac = ⊘.

It can be shown that, with one modification, this procedure gives the entire path
of LASSO solutions, as the penalty is varied from 0 to infinity. The modification
needed is: if a coefficient crosses zero, stop. Drop that predictor, recompute the best
direction and continue. This gives the LASSO path.

1.3 Our Work and Contribution

In this section, we give a short motivation and the used methods and obtained results
for each of the chapters.
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1. Sparse Gaussian Graphical Mixture Models

Motivation. Biologists are interested in the dependency structure among large
network of genes. This is often done without taking into consideration the het-
erogeneity nature of the sample. By heterogeneity, we mean that networks may
be different for different samples of observations. Stated differently, individuals
in the population are rarely homogenous and may come from several distinct
subpopulations each with their own underlying dependency structure. How-
ever, typically little information is known about an individual’s subpopulation
membership. The question now is how to model such heterogeneity and recover
the underlying networks from which the clusters of samples originate from?

Methods and Results. Statistical methods for analyzing such data are sub-
ject to active research currently (Agakov et al., 2012). In this chapter we
propose Gaussian graphical mixture models (GGMM) to model such data. In
this particular context, it is well known that parameter estimation is challen-
ging due to large number of variables coupled with the degenerate nature of
the likelihood function. We propose as a solution a penalized Gaussian graph-
ical mixture model by imposing an L1 penalty on the precision matrix. Our
approach shrinks the covariance matrices thereby resulting in better identifi-
ability and variable selection. We adopt an Expectation Maximization (EM)
algorithm which involves the graphical least absolute shrinkage and selection
operator (GLASSO) to estimate the networks. We show that under certain
regularity conditions the Penalized Maximum Likelihood (PML) estimates are
consistent. The corresponding R- package is included in appendix A.

Examples. We demonstrate the performance of the PML estimator through
simulations and we show the utility of our method for real data analysis. Two
different schemes based on the choice of the regularization parameters are in-
vestigated at the simulation stage to demonstrate the consistency property of
our PMLE. Our method has also been applied to 2 real data sets.

2. State space modelling of dynamic genetic networks

Motivation. The genomic reality is highly complex and dynamic. The re-
cent development of high-throughput technologies has enabled researchers to
measure the abundance of thousands genes through time. The challenge is to
unravel from such measurements, gene-protein or gene-gene or protein-protein
interactions and key biological features of cellular systems. We devise a method
for inferring transcriptional or gene regulatory networks from high-throughput
data sources such as gene expression microarrays with potentially hidden states,
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such as unmeasured transcription factors (TFs), which satisfies certain Markov
properties.

Methods and Results. In an attempt to account for the effects of such
hidden states, we build a mathematical model, able to capture the stochastic
nature of the biological process as well as their dynamics behavior. We assume
the observations are noisy measurements of gene expression in the form mRNAs
whose dynamics can be described by some hidden process and build a dynamic
state space representation from these hidden states. Our method is based on
an EM algorithm with an incorporated Kalman smoothing algorithm in the
E-step to calculate the hidden states. We obtain an explicit formulation of the
parameters defining our state space model, and provide means for constructing
reliable gene regulatory networks based on bootstrap statistical analysis. We
adopt Akaike Information Criterion (AIC) for model selection. The state space
model is an approach with proven effectiveness to reverse engineer transcrip-
tional networks.

Examples. The proposed method is applied to time course microarray data
obtained from a well-established T-cell experiment. Our results support inter-
esting biological properties in the family of Jun genes. Regulatory genes in-
clude JUND proto-oncogene, the cell division cycle 2 (CDC2), the FYN-binding
protein gene (FYB). We found an interaction between JUNB and SMN1 and
discovered that JUND activates CDC2.

3. SSM with L1 regularization constraint

Motivation. Microarray technologies and related methods coupled with ap-
propriate mathematical or statistical models have made it possible to identify
dynamic regulatory networks by measuring time course expression levels of
many genes simultaneously. However one of the challenges relate to the high-
dimensional nature of such data in addition to the fact that these gene expres-
sion data are known to exclude some hidden process.

Methods and Results. We build an input-dependent penalized linear state
space model from these hidden states and propose an L1 penalized inference
approach. We demonstrate how an incorporated L1 regularization constraint in
an Expectation-Maximization (EM) algorithm can be used to reverse engineer
transcriptional networks from gene expression profiling data. Penalized max-
imum likelihood estimates were obtained for the penalized state space model
through a simple modification of the Least Angle Regression (LARS) algorithm.
Parameters become identifiable as a result of the L1 penalty. This allows useful
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interpretations of the model.

Examples. We perform in silico experiment using Arabidopsis thaliana clock
data to validate our method. The proposed method is also illustrated on time-
course microarray data obtained from a well established T-cell experiment.
At the optimum tuning parameters we found genes TRAF5, JUND, CDK4,
CASP4, CD69, and C3X1 to have higher number of inward directed connec-
tions and FYB, CCNA2, AKT1 and CASP8 to be genes with higher number
of outwards directed connections. Caspase 4 is also found to activate the ex-
pression of JUND which in turn represses the cell cycle regulator CDC2.

1.4 Organization of the Chapters

After this introduction which was aimed at outlining the core of the contributions of
this thesis, outlining networks estimating models as well as the statistical inference
methods which will be employed. The rest of the dissertation is organized as follows:

Chapter 2 describes sparse Gaussian graphical mixture models for networks re-
construction. The latter is supported by an R package glassomix developed for
multiple networks discovery. (See appendix A).

A gene regulatory network (GRN) is a complex system, which is appropriately
modeled in a dynamic way. Chapter 3 gives an in-depth discussion of the linear
state space model, introduces some mathematical interpretations, and extend it
in modelling and inferring gene regulation through estimation of state parameters
and state dynamics. We explicitly estimate the parameters from the model via an
expectation-maximization algorithm. Classical statistical inferences were performed
through bootstrap statistical analysis and edge selection or deletion is done through
hypothesis testing at some level α.

However, many current gene expression data sets include a large number of genes,
but only few samples (large p, small n). This problem demands care in the estimation
of model parameters in the SSM. Parameter identifiability is also another complic-
ation. In chapter 4, we carry on with the SSMs and give it a precise biological
interpretation. We then introduce a regularization technique through L1 penalized
inference. This gives rise to penalized state space models (PSSM). The proposed
method in the maximization step of the EM-algorithm is the L1 penalty through
a simple modification of the LARS algorithm by Efron et al. (2004), (Least Angle
Regression). LARS is an efficient algorithm for computing the entire regularization
path for the Lasso.
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Chapter 2

Sparse Gaussian Graphical Mixture Model

2.1 Introduction

Biologists aim to describe the dependency structure among large number of genes.
This is often done without taking into consideration the heterogeneity nature of
the samples. By heterogeneity, we mean networks may be different for different
subgroups of samples. Our population of individuals may come from several distinct
subpopulations each with their own underlying dependency structure. However,
typically little information is known about an individual’s group membership. In this
setting, parameters may change for different subgroups of observations. We want
to model such heterogeneity and recover the underlying networks from such data
with some sparsity constraint. The problem becomes more complex if the number
of components that made up the population is unknown. Statistical methods for
analyzing such data are subject to active research currently (Agakov et al., 2012).
Gaussian graphical mixture models (GGMM) are ways to model such data.

A Gaussian graphical model (GGM) for a random vector Y = (Y1, ..., Yp) is a
pair (G,P) where G is an undirected graph and P = {N(µ,Θ−1)} is the model
comprising all multivariate normal distributions whose inverse covariance matrix or
precision matrix entries satisfies (u, v) ∈ G⇐⇒ Θuv ̸= 0. The conditional independ-
ence relationship among nodes are captured in the precision matrix Θ. Consequently,
the problem of selecting the graph is equivalent to estimating the off-diagonal zero-
pattern of the concentration matrix. Further details on these models as well inter-
pretation of the conditional independency on the graph can be found in (Lauritzen,
1996).

Mixture distributions are often used to model heterogeneous data or observations
supposed to have come from one of K different networks or components. Under
Gaussian mixtures, each component is suitably modelled by a family of Gaussian
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probability density. This chapter deals with the problem of structural learning in
reconstructing the underlying graphical networks (using a graphical Gaussian model)
from a data supposed to have come from a mixture of Gaussian distributions.

We consider model-based clustering (McLachlan et al., 2002) and assume that
the data come from a finite mixture model where each component represents a net-
work. A large literature exists in normal mixture models; (Lo et al., 2001; Bozdogan,
1983). Our focus here is on a high dimensional data setting where we present an
algorithm based on a regularized expectation maximization using Gaussian mixture
model (GMM). We assume that our data Yi = (Yi1, ..., Yip)

′
is generated through

K ≥ 1 latent generative mixture components. We aim to group the data into a few
K networks and identify which observations are from which Gaussian components.

A natural way for parameter estimation in GMMs is via a maximum likelihood
estimation. However some performance degradation is encountered owing to the
identifiability of the likelihood and the high dimensional setting. To overcome these
problems, Banfield and Raftery (1993) proposed a parameter reduction technique
by re-parameterizing the covariance matrix through eigenvalue decomposition. In
doing so, some parameters are shared across clusters. As a result of a continuous
increasing number of dimensions, this approach can not totally alleviate the (n << p)
phenomena. Recently proposals to overcome the high dimensionality problem involve
estimating sparse precision matrix. Among these proposals is the penalized log
likelihood technique of Friedman et al. (2008a), an L1 regularization approach which
encourages many of the entries of the precision matrix to be 0. Our method is based
on this idea. The L1 penalty promotes sparsity. We provide sufficient conditions for
consistency of the penalized MLE.

Closely related to our work is that of Pan and Shen (2007) where variable selection
is considered in model-based clustering. They considered GMM and penalize only
the mean vectors and seeking to estimate sparse mean vectors. They assumed a
common diagonal covariance matrix for all clusters. This work was later extended to
(Zhou et al., 2009) where a new approach to penalized model-based clustering was
considered but this time with unconstrained covariance matrices. However not much
has been said about the consistency of the resulting estimators. Another recent work
in this field is the work by Agakov et al. (2012) that learn structures of sparse high
dimension latent variables with application to mixtures.

In this chapter we propose a penalized likelihood approach in the context of
Gaussian graphical mixture model, which constraints the networks to be sparse.
The parameters in the networks are estimated by incorporating an existing Graph-
ical LASSO (GLASSO) method for covariance estimation into an EM algorithm. In
effect, we view each network as an instance of a particular GGM. Therefore we aim at
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recovering the underlining various networks from which the data originate from. Ad-
ditionally, we assess how well the resultant graphs obtained through GLASSO relate
to the true graphs and we provide consistency results of the estimates. Throughout
this chapter we assume K, the number of components of mixture models is known.

The reminder of this chapter is organized as follows. We introduce the model, set
up the Penalized Maximum Likelihood Estimate (PMLE) approach and summarize
the main result in connection with the consistency of the estimates obtained from
the mixture model in section 2.2. We then proceed with the inference procedure
through a penalized version of the EM algorithm in section 2.3. In section 2.4 we
present some simulations and an example of applications to illustrate our results.
We conclude with a brief discussion and future works in section 2.5.

2.2 Penalized maximum likelihood estimation

In this section we introduce the Gaussian Graphical Mixture Model, then we de-
rive the penalized likelihood upon which statistical inference via the EM algorithm
is based and prove consistency of the Penalized Maximum Likelihood Estimates
(PMLE).

2.2.1 The Mixture model

Mixture models are very popular for the analysis of complex data. A mixture model
represents the given data as a mixture of K networks or components, each of which
has different characteristics. We introduce our model in Figure (2.1), where we
assume a genetic population. We suppose sample of expression level of these genes
comes from two different networks after observing their metabolism structure. We
then fit two Gaussian distribution N(µ1,Θ1) and N(µ2,Θ2) for these clusters. Figure
(2.1) represents the above via a mixture model. The question now is how can we
infer the underlying networks from which the data come from?

Suppose we are given a training data set {Y1, ...,Yn}, assumed to be a ran-
dom sample from K mixture components. Our model consists of assuming that the
variable Zi, describing which network an individual originates, is a multinomial ran-
dom variable with parameters, πk, denoting the mixture proportions or the mixing
coefficients with (0 < πk < 1),

∑K
k=1 πk = 1, and K is known. In essence

P (Zi = k) = πk.

We wish to model the data by specifying a joint distribution

P (Yi, Zi) = P (Yi|Zi)p(Zi).
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Figure 2.1. Mixture models: we assume the data is composed of 2 separate
mixtures of Gaussian (MOG), each with a corresponding graphical model
or network.

We model each subpopulation separately by assuming a GGM where (Yi|Zi = k) ∼
N (µk,Σk). Our model posits that each Yi was generated by randomly choosing Zi

from {1, ...K}, or Yi was drawn from one of the k Gaussian depending on Zi.
In this work we assume that ∀ k, µk = 0 . In practice, this means that the data is

assumed to be normalized by subtracting the mean. Since Yi is dependent on Zi, we
say that Zi represents the class that produced Yi and we know Yi fully if we know
which class Zi falls. Also note that the Zi’s are latent random variables, meaning
that they are hidden or unobserved. The density of each Yi can be written as

fγ(yi) =
K∑
k=1

πkφk(yi|Zi = k)

fγ(yi) =
K∑
k=1

πkφk(yi|Θk)

(2.1)

where φ(yi|Θk) denotes the density of Gaussian distribution with mean 0 and inverse
covariance covariance matrix Θk; fγ represents the “incomplete” mixture data density
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of the sample i.e y ∼ fγ. We introduce the parameter set of mixture namely

Ω =
{
{Θk}Kk=1 |Θk ≻ 0, k = 1, ..., K

}
,

Θ ≻ 0 indicates that Θ is positive-definite matrix, and

J =
{
{πk}Kk=1 |πk > 0, k = 1, ..., K

}
and

Γ = Ω× J (2.2)

denotes the parameter space with the true parameter defined as γ0 = (Θ0, π0) ∈ Γ.
In order to characterize the mixture model and estimate its parameters thereby

recovering the underlying graphical structure from the data (seen as mixture of mul-
tivariate densities), several approaches may be considered. These approaches include
graphical methods, methods of moments, minimum-distance methods, maximum
likelihood (Ruan et al., 2011; Zhou et al., 2009) and Bayesian methods (Bernardo,
2003; Biernacki et al., 2000). In our case we adopt the penalized maximum likelihood
method in a graphical model set up.

2.2.2 The penalized model-based likelihood

We can now write the likelihood of the incomplete data density as

Ly(γ) =
n∏

i=1

[
K∑
k=1

πkφk(yi|Θ−1
k )

]
,

whose log-likelihood function is given by

ly(γ) =
n∑

i=1

log fγ(yi) (2.3)

The goal is to maximize the log-likelihood in (2.3) with respect to γ. Unfortu-
nately, a unique global maximum likelihood estimate does not exist because of the
permutation symmetries of the mixture subpopulation; (Day, 1969; Surajit and Lind-
say, 2005). Also the likelihood function of normal mixture models is not a bounded
function on γ as was put forward by Kiefer and Wolfowitz (1956). On the question
of consistency of the MLE, Chanda (1954), Cramer (1946) focus on local ML estim-
ation and mathematically investigate the existence of a consistent sequence of local
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maximizers. These results are mainly based on Wald’s technique (Wald, 1949). Red-
ner (1981) later extended these results to establish the consistency of the MLE for
mixture distributions with restrained or compact parameter spaces. It was proved
that the MLE exists and it is globally consistent in a compact subset Γ̂ of Γ that
contains γ0; i.e

given γ̂n|ly(γ̂n) = max
γ∈Γ

ly(γ), γ̂n → γ0 in probability, for n→∞

In addition to the degenerate nature of the likelihood (Kiefer and Wolfowitz,
1956) on the set Γ, the “high dimensional, low sample size setting”- where the num-
ber of observations n is smaller that the number of nodes or features p- is another
complication. Estimating the parameters in the GGMM by maximizing criterion
(2.3) is a complex one. The penalized likelihood-based method (Friedman et al.,
2008a; Yuan and Lin, 2007) is a promising approach to counter the degeneracy of
ly(γ) while keeping the parameter space Γ unaltered. However, to make the PMLE
work, one has to solve the problem of what kind of penalty functions are eligible.
We opt for a penalty function that prevents the likelihood from degenerating under
the multivariate mixture model. We assume that the penalty function P : Γ → R+

0

given by
P (Θ) = exp(−λ||Θ||1),

satisfies:

lim
|Θk|→∞

P (Θk)|Θk|n = 0 ∀k ∈ {1, 2, ..., K} ∀n (2.4)

where λ > 0 is a user-defined tuning parameter that regulates the sparsity level, |Θ|
denotes determinant of Θ, and ||.||1 is the L1 norm or the sum of absolute values of
the entries of a matrix or a vector i.e ||X||1 =

∑n
i=1 |Xi|.

This results in placing an L1 penalty on the entries of the concentration matrices
so that the resulting estimates are sparse and zeroes in these matrices correspond to
conditional independency between the nodes similar to (Nicolai et al., 2006). Numer-
ous advantages result from this approach. First of all, the corresponding penalized
likelihood is bounded and the penalized likelihood function does not degenerate in
any point of the closure of parameter space Γ and therefore the existence of the pen-
alized maximum likelihood estimator is guaranteed. Next, in the context of GGM,
penalizing the precision matrix results in better estimates and sparse models are
more interpretable and often preferred in application.

We define the L1 penalized log-likelihood as:
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lpy(γ) = ly(γ)− λn
K∑
k=1

||Θk||1 (2.5)

where λn ∝ λ√
n
, ||Θ||1 =

∑
i,j |θij|, K is the number of mixing components assumed

fixed. The hyperparameters K and λ determine the complexity of the model. The
corresponding PMLE are defined as

γ̂λn = arg max
γ

lpy(γ) (2.6)

Our method penalizes all the entries of the precision matrix including the diag-
onal elements. We do this in order to avoid the likelihood to degenerate. To see
this, consider a special case of a model consisting of two univariate normal mixtures
π1φ(y|σ1)+π2φ(y|σ2). By letting σ1 → 0 with other parameters remaining constant,
the log-likelihood tends to infinity for values of y = 0, i.e the log-likelihood degen-
erates due to mixture formulation whereby a single observation mixture component
with a decreasing variance on top of the observation explodes the likelihood. For
that matter an L1 penalty which does not penalize the diagonal elements tend to
result in a degenerate ML estimator especially when n→∞.

2.2.3 Consistency

At this stage we want to characterize the solution obtained in Equation (2.6). The
general theorem concerning the consistency of the MLE (Redner, 1980; Wald, 1949)
can be extended to cover our type of penalized MLE. This is because if a likelihood
function which yields a strong consistent estimate over a compact set is given, then
our L1 penalty would not alter the consistency properties. Consistency of the PMLE
is given in theorem 2.2.3. The latter uses results in (Wald, 1949) under the classical
MLE over a compact set.

Before we present our result relating to the consistency of our PMLE, we sum-
marize the corresponding MLE version in the following lemmas. First the following
assumptions will be needed.

A1: There is a neighborhood ρ of γ0 such that for all γ ∈ ρ; for almost all y ∈ Rn;
and for for l, j and s = 1, ..., υ; ∂f

∂γl
, ∂2f
∂γl∂γj

, ∂3f
∂γl∂γj∂γs

exist and satisfy∣∣∣∣ ∂f∂γl
∣∣∣∣ < gl(y);

∣∣∣∣ ∂2f

∂γl∂γj

∣∣∣∣ < glj(y);

∣∣∣∣ ∂3f

∂γl∂γj∂γs

∣∣∣∣ < gljs(y),
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where gl, and glj are integrable and gljs(y) satisfies∫
Rn

gljs(y)fγ0(y)dy <∞.

A2: The matrix δ(γ) =
(∫

Rn
∂ ln f
∂γl

∂ ln f
∂γj

fdy
)
is positive definite at γ0.

Lemma 2.2.1. If conditions A1 and A2 are satisfied, then, given any sufficiently
small neighborhood ρ0 of γ0 with probability equals 1 as the sample size n approaches
infinity, there is a unique solution to the likelihood equations in ρ0 and this solution
is an MLE.

The proof of lemma 2.2.1 is provided in appendix B. Lemma 2.2.1 indicates
that, by restricting attention to a fixed neighborhood of γ0, we have a unique and
consistent solution to the likelihood equations.

The next lemma considers a situation where the likelihood is an unbounded func-
tion. For that one must assume a compact (closed and bounded) parameter space.
It will be assumed that there is a σ- finite measure µ such that for each γ ∈ Γ the
probability measure µγ is absolutely continuous w.r.t. µ. We let fγ(y) denote any
representative of the density of µγ w.r.t µ. The following assumptions are made in
addition:

C1: The parameter space Γ is a closed and bounded subset of Rl for some positive
number l. In particular, T = {(Θ1, ...,ΘK)} | s.t. ||Θk||1 ≤M∗ and ||Θk||2 ≥
ϵ∗, k = 1, ..., K, for some positive number M∗ and ϵ∗.

C2: Let Br (γ) be the closed ball of radius r about γ. Then for any positive real
number r, let:

fγ(y, r) = sup
η∈Br(γ)

fγ(y, η); f ∗
γ (y, r) = max [1, fγ(y, r)] .

Then for each γ and for sufficiently small r∫
ln f ∗

γ (y, r)dµγ0 <∞.

C3: ∫
|ln fγ0(y)| dµγ0 <∞.
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C4: if γl → γ, then fγl(y)→ fγ(y).

Lemma 2.2.2. Given assumptions (C1-C4), and let
C = {γ ∈ Γ|fγ(y) = fγ0(y) almost everywhere}. If S is any open neighborhood
containing C, then with probability equals 1, the MLE is eventually in S.

The 2 lemmas show that the MLE converges to the set C. Since C is the set of
all parameters for which the density is the true density, it may be said that the MLE
converges strongly to the true set of parameters.

We then define 2 further conditions upon which our theorem 2.2.3 holds.

C5: Let Γ̄ denotes the quotient topological space obtained from Γ and suppose that
Γ̄ is any compact subset containing γ0.

C6: ∫
|ln fl(y, γl)| dµγj <∞ for γl ∈ Γl and γj ∈ Γj.

Theorem 2.2.3. Suppose that the mixing distributions satisfy conditions (C1-C6).
Define |γ0| = ||π0||2 + ||Θ0||F . Suppose that πk is bounded away from zero, and the
penalty is set as λn ∝ (1/

√
n). It follows that for a fixed p, the penalized likelihood

solution γ̂λn is consistent in the quotient topological space Γ̄, i.e ∀ϵ > 0

lim
n→∞

P (|γ̂λn − γ0| > ϵ) = 0.

Proof. Let the PMLE γ̂λn and MLE γ̂n be defined by

γ̂λn = arg max
γ

lpn(γ),

and

γ̂n = arg max l(γ),

where

lpn(γ) = l(γ)− λn
K∑
k=1

||Θk||1, ∀ k ∈ {1, ..., K} .

Then
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∀ϵ > 0 we have

P (|γ̂λn − γ0| > ϵ) = P (|γ̂λn − γ̂n + γ̂n − γ0| > ϵ)

≤ P (|γ̂λn − γ̂n| > ϵ/2) + P (|γ̂n − γ0| > ϵ/2) (2.7)

Considering the second inequality on the right hand side of Equation (2.7), we
have, from the consistency of the MLE, that

lim
n→∞

P (|γ̂n − γ0| > ϵ/2) = 0.

Therefore it is sufficient to prove that

lim
n→∞

P (|γ̂λn − γ̂n| > ϵ/2) = 0.

Suppose lpn(γ) is bounded from below by a function lpn,L(γ) given as

lpn,L(γ) = l(γ)− λ∗n||Θ||2, where λ∗n = λn
M∗

ϵ∗
,

M∗ and ϵ∗ are given in C1. Then

1. There exists a neighborhood γ0 of Γ such that lpn,L(γ) is continuously differen-
tiable with respect to parameters in γ

2. lpn,L(γ) converges (pointwise) to l(γ) as n→∞.

We define

γ̂λn,L
= arg max

γ
lpn,L(γ).

Then the following holds:

∀δ > 0 ∃ n1 ∈ N s.t. ∀n > n1, |γ̂λn,L
− γ̂n| < δ.

For the MLE, we have ∂2l
∂γ2 (γ̂n) = Op(nM) is negative definite, whereM is a constant

matrix that depends on γ0. So for a fixed n0, and ∀n > n0 we have

|l(γ)− lpn0,L
(γ)| > |l(γ)− lpn,L(γ)| ∀ γ.

Therefore

∃ n2 ∈ N s.t. ∀n > n2, and ∀γ ∈ B ϵ
4
(γ̂n),
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l(γ)− lpn,L(γ̂λn,L
) ≥ 0.

In particular, as n→∞ and for λn ∝ (1/
√
n). we have

lpn(γ̂λn)− l(γ) = lpn,L(γ̂λn,L
)− l(γ)→ 0,

then ∀ϵ > 0, we have

P (|γ̂λn − γ̂n| >
ϵ

2
) ≤ P (|γ̂λn − γ̂λn,L

| > ϵ

4
) + P (|γ̂λn,L

− γ̂n| >
ϵ

4
)

(2.8)

But
lim
n→∞

P
(
|γ̂λn − γ̂λn,L

| > ϵ

4

)
= 0.

2.3 Penalized EM algorithm

In order to maximize the penalized likelihood function (2.5) we consider a penalized
version of the EM algorithm of Dempster et al. (1977). To do that we first aug-
ment our data Yi with Zi so that the complete data associated with our model now
becomes Ci = (Yi,Zi) and an EM algorithm iteratively maximizes, instead of the
penalized observed log-likelihood lpy in (2.5), the conditional expectation of the pen-

alized log-likelihood of the augmented data and Ω(t) is the current value at iteration
t.

Suppose ci ∼ hci(γ), i.e hci(γ) is the density of the augmented data ci. Now the
penalized log-likelihood of the augmented data can be written as

lpc(γ) = ln [hci(γ)]− λ
K∑
k=1

||Θk||l1

lpc(γ) =
n∑

i=1

(
ln πk + lnφk(yi|Θ−1

k )
)
− λ

K∑
k=1

||Θk||l1

=
n∑

i=1

K∑
k=1

1{Zi=k}
[
lnπk + lnφk(yi|Θ−1

k )
]
− λ

K∑
k=1

||Θk||l1 (2.9)

The indicator function 1{Zi=k} simply says that if you knew which component the
observation i came from, we would simply use its corresponding Θk for the likelihood.
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For illustration purpose, and suppose we have 3 observations and we are certain that
the first two were generated by the Gaussian density N(0,Θ2), and the last came
from N(0,Θ1). Then we write the full log-likelihood as follows:

lc(Θ) = ly1(Θ2) + ly2(Θ2) + ly3(Θ1) (2.10)

2.3.1 The E-step

From Equation (2.9) we compute the quantity Q(γ|γ(t)) as follows

Q(γ|γ(t)) = EZi

[
lc(γ)− λ||Θ||1|y; γ(t)

]
=

n∑
i=1

K∑
k=1

[
lnφk(yi|Θ−1

k ) + lnπk
]
EZi

[
1{Zi=k}|yi; γ

(t)
]
− λ||Θk||1

=
n∑

i=1

K∑
k=1

[
lnφk(yi|Θ−1

k ) + lnπk
]
P
(
Zi = k|yi; γ

(t)
)
− λ||Θk||1

=
n∑

i=1

K∑
k=1

[
lnφk(yi|Θ−1

k ) + lnπk
]
ω
(t)
ik − λ||Θk||1 (2.11)

The E-step actually consists of calculating ωik, the probabilities (conditional on
the data and γ(t)) that Yi’s originate from component k. It can also be seen as the
responsibility that component k takes for explaining the observation Yi and it tells
us for which group an individual actually belongs. Using Bayes theorem, we have:

ω
(t)
ik = P

(
Zi = k|yi, γ

(t)
)

=
P (yi|Zi = k; γ(t))P (Zi = k, γ(t))∑K
l=1 P (yi|Zi = l; γ(t))P (Zi = l, γ(t))

=
φ
(t)
k (y|Θ−1

k )π
(t)
k∑K

l=1 φ
(t)
l (yi|Θ−1

k )π
(t)
l

(2.12)

2.3.2 The M-step

The M-step for our mixture model can be split in to two parts, the maximization
related to πk and the maximization related to Θk.
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1. M-step for πk:

For the maximization over πk we make use of the constraint that
∑K

k=1 πk = 1

i.e πK = 1 −
∑K−1

k=1 πk and πk > 0. It turns out that there is an explicit form
for πk. Let k0 ∈ {1, ..., K − 1}. Then

∂Q

∂πk0
=

n∑
i=1

[
ω
(t)
ik0

πk0
− ω

(t)
iK

1−
∑K−1

k=1 πk

]
(2.13)

Setting ∂Q
∂πk0

= 0, yields the following:

ω
(t)
.k0

K−1∑
k=1

πk + πk0ω
(t)
.K = ω

(t)
.k0

(2.14)

It can be shown that a unique solution to Equation (2.14) is

π
(t+1)
k0

= ω
(t)
.k0
/n

=
n∑

i=1

ω
(t)
ik0
/n (2.15)

2. M-step for Θk:

Next, to maximize (2.11) over Θk, we only need the term that depends on Θk.
The first thing we do here is to try to formulate the maximization problem for
a mixture component to be similar to that for Gaussian graphical modeling
with the aim of applying graphical LASSO method. The latter applies LASSO
penalty to the inverse covariance matrix Θ with the aim of estimating sparse
graphs.

The Graphical Lasso penalty

The graphical LASSO of Friedman et al. (2008a) is a regularization framework
for estimating the covariance matrix. It is a sparse precision matrix estimation
and is employed to discover which variables are affecting each other. The
LASSO reduces the complexity of the model by forcing less influential variables
to have no influence on the model. We now introduce the Graphical LASSO
idea.
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In what follow we let W = Θ−1 denote the covariance matrix. The graphical
LASSO problem minimizes an L1− regularized negative log-likelihood:

minimize
Θ≻0

f(Θ) := − ln det(Θ) + tr(SΘ) + λ
∑
l

∑
s

|θls| (2.16)

where S = 1
n

∑n
i=1(yi − µ)(yi − µ)

′
. The subgardient is set to zero and the

solution of (2.16) satisfies

−Θ−1 + S+ λG = 0 (2.17)

where gls is the sub-gradient of the function |θls|, or a matrix of component
wise signs of Θ:

gls = sign(θls) if θls ̸= 0

gls ∈ [−1, 1] if θls = 0

From the global stationary conditions of (2.17) we require that θss > 0, and
this lead to

Wss = Sss + λ s = 1, ..., p.

GLASSO uses a block-coordinate method for solving (2.17). Consider a parti-
tioning of Θ and G:

Θ =

(
Θ11 θ12
θ21 θ22

)
, G =

(
G11 g12

g21 g22

)
where Θ11 is (p − 1) × (p − 1), θ12 is (p − 1) × 1 and θ22 is scalar. W and
S are also partitioned in the same manner. Using properties of inverses of
block-partitioned matrices, we have

(
W11 w12

w21 w22

)
=

W̃11 −W11
θ12
θ22

. θ−1
22 − θ21W11θ12

θ222

 (2.18)

=

(
W̃11 − Θ−1

11 θ12

θ22−θ21Θ
−1
11 θ12

. W̃22

)
(2.19)
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where W̃11 = Θ−1
11 +

Θ−1
11 θ12θ21Θ

−1
11

(θ22−θ21Θ
−1
11 θ12)

and W̃22 = (θ22 − θ21Θ−1
11 θ12)

−1. We also

note from (2.18) that
θ12 = −W11w12θ

−1
22 (2.20)

Equation (2.17) implies:

−w12 + s12 + λg12 = 0 (2.21)

and plugging (2.20) into (2.21), we have:

W11θ12θ
−1
22 + s12 + λg12 = 0 (2.22)

GLASSO operates on the above gradient equation. The algorithm solves (2.22)
for b = θ12θ

−1
22 , that is

W11b+ s12 + λg12 = 0 (2.23)

Equation (2.23) is the stationary equation for the following L1 regularized
quadratic program:

minimize
b∈Rp−1

{
1

2
b

′
W11b+ b

′
s12 + λ||b||1

}
(2.24)

This is a traditional LASSO regression problem for b.

Now from Equation (2.11), for a specific cluster k0, the term that depends on
the cluster specific covariance matrix Θk0 is given by

Q (Θk0) =
n∑

i=1

ω
(t)
ik0

lnφk0(yi|Θ−1
k0
)− λ||Θk0 ||1

=
n∑

i=1

ω
(t)
ik0

[
1

2
ln |Θk0 | −

1

2
y

′

iΘk0yi

]
− λ||Θk0 ||1

=
n∑

i=1

ω
(t)
ik0

2
ln |Θk0 | −

1

2
tr

(
n∑

i=1

ω
(t)
ik0
(yiy

′

i)Θk0

)
− λ||Θk0 ||1

=
ω
(t)
.k0

2

[
ln |Θk0 | − tr

(
S̃k0Θk0

)
− 2λ

ω
(t)
.k0

||Θk0 ||1

]

=
ω
(t)
.k0

2

[
ln |Θk0 | − tr

(
S̃k0Θk0

)
− λn||Θk0 ||1

]
(2.25)
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where

ω
(t)
.k0

=
n∑

i=1

ω
(t)
ik0

S̃k0 =

∑n
i=1 ω

(t)
ik0
(yiy

′
i)

ω
(t)
.k0

(2.26)

is the weighted empirical covariance matrix, and

Θ̂k0 = arg max
Θ

{
ln |Θk0 | − tr(S̃k0Θk0)− λn||Θk0 ||1

}
(2.27)

subject to the constraint that Θk0 is positive definite with λn = 2λ

ω
(t)
.k0

.

Therefore the maximization of Θk consists of running the graphical LASSO proced-
ure (Friedman et al., 2008a) for each cluster where each observation Yi for Θk gets a
weight and the sampling covariance matrix Sk is transformed to a weighted sampling
covariance. This is a major innovation in our work where we formulate the Gaussian
mixture modelling problem in a Gaussian graphical modelling framework. We sum-
marize the algorithm below:

Initialize π1, ..., πKmax, Θ1, ...,ΘKmax

repeat
for λ ∈ (λ1, ..., λK)
Compute:

1. E-step: ωik =
φk(y|Θ−1

k )πk∑K
l=1 φl(yi|Θ−1

k )πl

2. M-step:

• π̂k =
∑n

i=1 ωik/n

• Θ̂k = arg max
Θ

{
ln |Θk| − tr(S̃kΘk)− λn||Θk||1

}
, where

S̃k =

∑n
i=1 ωik(yiy

′
i)

ω.k

and

λn =
2λ

ω.k

.
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2.4 Simulation and Real-data Example

We generate data from two component mixtures and consider two different schemes
based on λ. We study the consistency properties of the PMLE by allowing the sample
size to grow. We subsequently applied our method to two real data “Mathematics
scores” and “CellSignal” data.

cluster 1
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3
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7
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cluster 2
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4
5

6

7

8

9
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Figure 2.2. True graphical model of the 2 clusters

2.4.1 Simulation

We investigate the consistency properties of the PMLE using our penalized EM
algorithm described in section 2.2. We simulate data Y1, ...,Yn from two-component
multivariate normal mixture models each with probability (true mixture proportion)
equals 0.5 and inverse covariance matrix Θk built according to the following schemes.

Θ1(i, j) =


1 if i = j
−0.4, if |i− j| = 1
0, elsewhere

(2.28)

Θ2(i, j) =


1 if i = j
−0.4, if |i− j| = 2
0, elsewhere

(2.29)
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Model Bias(AD)/Frobenuis F1 score TP FP Precison

n=100
π AD=0.1125
Θ1 F=1.7280 0.555 5 5 0.5
Θ2 F=1.6221 0.529 9 15 0.375

n=300
π AD=0.067
Θ1 F= 0.9702 0.5333 8 14 0.3636
Θ2 F= 0.8432 0.5882 10 14 0.4167

n=800
π AD=0.0625
Θ1 F=0.9279 0.5882 10 14 0.4166
Θ2 F=0.4804 0.4705 8 18 0.3076

n=2000
π AD=0.0263
Θ1 F=0.4170 0.5925 8 11 0.4210
Θ2 F=0.4465 0.625 10 12 0.4545

n=5000
π AD=0.002
Θ1 F=0.3529 0.6153 8 10 0.444
Θ2 F=0.2883 0.6060 10 13 0.4347

Table I. The Absolute Deviation (AD), Frobenuis norm (F), the F1 score,
the True Positive (TP), the False Positive (FP) and the Precision of the
PMLE for two-component mixture with λ ∝

√
n log p.

The corresponding graphical model structures are depicted in Figure (2.2). For
a fixed p, we consider two schemes one with λ ∝

√
n log p where λn ∝ 1√

n
and

the other with λ ∝
√
log p, where λn ∝ 1

n
each with increasing sample sizes,

n = (100, 300, 800, 2000, 5000) to examine the consistency of the PMLEs. In all
cases, parameter estimation is achieved by maximizing the likelihood function via
our penalized EM-algorithm. The results of our penalized EM-algorithm approach
are compared based on the two different schemes corresponding to different values
of λ.

Due to the effect of label switching, we are not able to assign correctly each
parameter estimate to the right class. As a result, the estimates
{(π1,Θ1), (π2,Θ2)} will be interchangeably represented. We compute the Absolute
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Deviation (AD) of the mixture proportions, and compare the Frobenuis norm of the
difference between the true and estimated precision matrices for each cluster. In
addition we compute the F1 score, True positive (TP), False positive (FP), Precision
and Recall for the PMLE.

Example 1. We considered the simulated two-component multivariate normal
mixture models above and choose sequence of values of λ such that c1

√
n log p ≤ λ ≤

c2
√
n log p. On experimental basis we set (c1, c2) = (0.1, 0.25). The performances of

the penalized EM-algorithm corresponding to different sample sizes are presented in
Table I.

The results show that as the sample size increases, the AD (for the mixture
proportions) and the Frobenuis norms (for the precision matrices) decrease indicating
the consistency of the PMLEs. At n = 5000, the AD for the mixture proportion
is almost 0, indicating that our method has recovered precisely the true mixture
distribution. We reported also the F1 score, the True Positive (TP), the False Positive
(FP), the Precision and the Recall of the PMLE. We recorded an overall improvement
in the F1 score as n increases.

Example 2. In this example, we again choose the same two-component mul-
tivariate Gaussian mixture models. In contrast to the model used in example 1, we
have fixed the tuning parameter λ such that c1

√
log p ≤ λ ≤ c2

√
log p and (c1, c2)

remain unchanged. The performances of the penalized EM-algorithm corresponding
to different sample sizes are presented in Table II. We again observe a decrease in
both the Frobenuis norm and the AD as n increases even though we suffer from a
deficiency in the AD of π for the case n = 800. However the AD is almost 0 at
n = 5000. We note that this penalty decreases to 0 faster and as result tends to
produce full graph as can be seen in the higher value recorded for false positive.

Comparing the 2 examples, we observe that the choice of λ plays a strong role in
parameter and graph selection consistency of the resultant networks. The consistency
properties of the PMLEs was achieved in both cases but our results indicate that the
overall performance of the asymptotic behavior of λ ∝

√
n log p is more satisfactory.

Even though both penalty decrease to 0 as n increases, λ ∝
√
n log p decreases slower

resulting in a relatively sparser networks as compared to λ ∝
√
log p.

2.4.2 Real-data Examples

Mathematics Scores Data

As a simple example of a data set to which mixture models may be applied, we
consider the data set on marks in five mathematics exams score. This data set can
be found in (Whittaker, 2009) and consists of 88 students who took examinations in
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Figure 2.3. Graphical model of the 2 group of students

5 subjects namely mechanics, vectors, algebra, analysis, statistics. Some were with
open book and others with closed book. Mechanics and vectors were with closed
book.

We fit a two-mixture components to the data with a strong indication that there
are two groups of students each with similar subjects interest. We applied our PMLE
algorithm to the data with λ based on scheme 1. The pattern of interactions among
the two groups were depicted in Figure (2.3). The network differences as well as
similarities are also shown. The results indicate that 61% of students have similar
subjects interest while 39% falls in other group of interest. In one group, we observe
no interactions between mechanics and analysis nor statistics and vectors while in
the other group such interactions do exist.
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Figure 2.4. Graphical models of the CellSignal data with two mixtures of
Gaussian distributions

Analysis of cell signalling data

We consider the application of our method on the flow cytometry dataset (cell sig-
nalling data) of Sachs et al. (2005). The data set contains flow cytometry of p = 11
proteins measured on n = 7466 cells. The CellSignal data were collected after a
series of stimulatory cues and inhibitory interventions with cell reactions stopped at
15 minutes after stimulation by fixation, to profile the effects of each condition on the
intracellular signaling networks. Each independent sample in the data set is made up
of quantitative amounts of each of the 11 phosphorylated molecules, simultaneously
measured from single cells.

We again fit a two-mixture component to the data. The result of applying our
PMLE algorithm to the data set using the first scheme is shown Figure (2.4). The
result indicates that 90% of the observation falls in one component whiles 10% falls
in the other cluster. We also display the differences and similarities in the two
components. The following proteins interaction were seen to be present in each of the
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Model Bias(AD)/Frobenuis F1 score TP FP Precison

n=100
π AD=0.0307
Θ1 F= 3.4081 0.3446 10 32 0.2380
Θ2 F= 3.4018 0.3181 7 29 0.1944

n=300
π AD=0.0356
Θ1 F=1.0539 0.3703 10 34 0.2272
Θ2 F=0.8657 0.3137 8 35 0.1860

n=800
π AD=0.0669
Θ1 F=0.6419 0.3703 10 34 0.2272
Θ2 F=0.7605 0.3018 8 37 0.1777

n=2000
π AD=0.0312
Θ1 F=0.5081 0.3168 8 34 0.1882
Θ2 F=0.4150 0.3636 10 35 0.2222

n=5000
π AD=0.0065
Θ1 F=0.2771 0.3703 10 34 0.2272
Θ2 F=0.2857 0.2692 7 37 0.1590

Table II. The Bias(AD), Frobenuis norm (F), F1 score, True Positive (TP),
False Positive (FP) and the Precision of the PMLE for two-component
mixture with λ ∝

√
log p.

two components: (pakts473, P IP2), (PKC,PIP2), (PKA, pjnk), (pmek, PKA) to
mention but few. Differences in the interaction occur among the following proteins:
(pakts473, praf), (PIP2, p44.42), (PKC, plog); see Figure (2.4) for details.

2.5 Conclusion

We have developed a penalized likelihood estimator for Gaussian graphical mixture
models. We have imposed an L1 penalty on the precision matrix with extra condition
preventing the likelihood not to degenerate. The estimates were efficiently computed
through a penalized version of the EM-algorithm. By taking advantage of the recent
development in Gaussian graphical models, we have implemented our method with
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the use of the graphical lasso algorithm. We have provided consistency properties for
the penalized maximum likelihood estimator in Gaussian graphical mixture model.
Our results indicate a better performance in parameter consistency as well as in graph
selection consistency for λ = O(

√
n log p) or λn ∝ 1√

n
. Our method is suitable for

large networks recovering from non homogeneous data. Another interesting situation
is when K, the number of mixture components in the model is unknown. This is
a more practical problem than the one we have discussed and probably involves
simultaneous model selection. This was implemented in our package glassomix as
shown in the appendix.
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Chapter 3

SSM of dynamic genetic networks

3.1 Introduction

Since the turn of the century a new scientific field has started to emerge: system
biology has been brought to the fore front of life-science based research and develop-
ment, (Bernhard, 2011). It is a biology-based, but inter-disciplinary field that focuses
on the systematic study of complex interactions in biological systems. The aim of
this holistic approach is to discover new emergent properties that may arise from the
systemic view, which would not arise from reductionist approaches. The concept of
gene networks is central in system biology. We view networks as comprising of nodes
(the genes) and the links (chemical reactions) between them. They describe the idea
of the stability and interconnectedness of molecular reactions. The challenge is to
give these a precise statistical interpretation. In recent times, expression level of
many of genes can be measured simultaneously through many techniques including
DNA hybridization arrays (Wen et al., 1998; Derisi et al., 1997). A major challenge
in system biology is to uncover, from such measurements, gene-protein interactions
and key biological features of cellular systems.

We present a statistical method that infers the complexity, the dependence struc-
ture of the networks topology and the functional relationship between the genes; we
also deduce the kinetic structure of the network. Our approach is based on the lin-
ear Gaussian state space models (SSM) of Fahrmeir and Kunstler (2009); Fahrmeir
and Wagenpfeil (1997) or by Zoubin (2001); Yamaguchi et al. (2007) applied to real
experimental data obtained from a well established model of T-cell activation, where
relevant genes are monitored across various time points. Most publications only con-
sider static Bayesian networks (Nir et al., 2000), that model discretized data but
incorporate hidden variables. However there has been an increasing need for dy-
namic modelling that assumes the observed gene expression in the form of mRNA

69



to be continuous time series gene expression data and at the same time incorporate
unknown factors such as hidden variables. We build a dynamic model of observed
variables (RNA transcripts) and unobserved quantities commonly unmeasured pro-
tein regulators, and the relationships between the hidden state variables and the
observed RNA transcripts. We infer the model structure as a biological network
by estimating model interactions parameters through the EM algorithm (Dempster
et al., 1977; Beal et al., 2005; Ghahramani and Hinton, 1996) combined with the Kal-
man smoothing algorithm (Shumway and Stoffer, 2005; Meinhold and Singpurwalla,
1983) in the context of maximum likelihood estimation. We use the bootstrap ap-
proach in (Efron, 1979) to infer the complex transcriptional response of the networks
and to reveal interactions between components.

Choosing SSM to model networks kinetics has a number of advantages. Most
importantly, it allows the inclusion of hidden regulators which can either be un-
observed gene expression values or transcription factors (TFs). It can be used to
model gene-gene and gene-protein interactions, represented by the matrices B and
A respectively from Equation (1.13) . The hidden variables also allow us to handle
noisy continuous measurements which represent the observed gene expression level at
each time point. Next, the parameter estimates obtained through the EM algorithm
and the state estimates from the Kalman filter have been shown to be consistent
and asymptotically normal under some general conditions; (Ljung and Caines, 1979;
Dent and Min, 1978). The EM algorithm itself guarantees at least a monotonically
increasing likelihood.

Model selection or determining a suitable dimension of the hidden state is an
additional complication. Rangel et al. (2004) approached the problem of deciding on
a suitable dimension of the hidden state through cross validation. In their approach,
they continuously increased the dimension of the hidden states and monitored the
predictive likelihood using the test data; one major drawback of this approach is that
it is very slow.

Several authors have exploited Kalman filtering and SSM of gene expression and
used them to reverse engineer transcriptional networks. To this effect, Fang-Xiang
et al. (2004), in modelling gene regulatory networks, used a two-step approach. In
the first step, factor analysis is employed to estimate the state vector and the design
matrix; the optimum dimension of the state vector k was determined by minimum
BIC. In the second step, the matrix representing protein-protein translation is estim-
ated using least squares regression. Rangel et al. (2004) have applied SSM to T-cell
activation data in which a bootstrap procedure was used to derive a classical confid-
ence interval for parameters representing gene-gene interaction through a re-sampling
technique. Beal et al. (2005) approached the problem of inferring the model struc-
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tures of the SSM using variational approximations in the Bayesian context through
which a variational Bayesian treatment provides a novel way to learn model structure
and to identify optimal dimensionality of the model. Recently, Bremer and Doerge
(2009) used SSM to rank observed genes in gene expression time series experiments
according to their degree of regulation in a biological process. Their technique is
based on Kalman smoothing and maximum likelihood estimation techniques to de-
rive optimal estimates of the model parameters; however, little attention has been
paid to the dimension of the hidden state.

In this chapter we demonstrate how the EM algorithm with the Kalman smooth-
ing algorithm is used in the maximum likelihood set-up to reverse engineer transcrip-
tional networks from gene expression profiling data. By so doing we are able to add
some useful interpretations to the model. We use the minimum AIC to determine
the hidden state’s optimal dimension.

The rest of the chapter is organized as follows. In section 3.2, we introduce
the model, and give it a precise mathematical interpretation. Section 3.3 describes
the inference method including the model selection procedure. Identifiability is also
discussed briefly and we point out that if we simply estimate parameters of SSM
without further constraints on parameter space, the parameters are not identifiable
and the EM algorithm may get stuck to a local maximum. We assess in section
3.4 via simulation the performance of our method extensively in terms of F1-score
and false positive rates under various scenarios. Section 3.5 is the application of our
model to real data (T-cell data) where we identify the network kinetics, by identifying
genetic regulatory networks. We also summarize our results, analyze their statistical
significance and their biological plausibility. We conclude with a discussion of the
method used, possible extension, and a summary of related work in section 3.6.

3.2 State space model

Linear Gaussian state space models, also known as linear dynamical systems or
Kalman filter models (Brown and Hwang, 1997; Dewey and Galas, 2000), are a class
of dynamic Bayesian networks that relate temporary observation measurements yt to
some hidden state variable θt. We consider a sequence (y1, ..., yT ) of p-dimensional
real-valued observation vectors through time, which we shall simply denote by y1:T ,
representing a gene expression data matrix with p rows and T columns, where p
and T are the number of genes and the measuring time points, respectively. The
model assumes that the evolution of the hidden variables θt is governed by the state
dynamics, which follows a first-order Markov process and is further corrupted by
a Gaussian intrinsic biological noise ηt. However, these hidden variables are not
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directly accessible but rather can be inferred through the observed data vector, yt,
namely the quantity of mRNA produced by the gene at time t. The observation yt
is a possibly time-dependent linear transformation of a k dimensional real-valued θt
with observational Gaussian noise ξt. The model is given by assuming nR biological
replicates as follows: {

θtr = Fxt−1,r + Ayt−1,r + ηtr
ytr = Zxt,r +Byt−1,r + ξtr

(3.1)

where r = {1, 2, ..., nR}, F , A, Z and B represent the model interactions parameters
of dimensions compatible with the matrix operations required in Equation(3.1). The
terms ηt and ξt are zero-mean independent system noise and measurement noise,
respectively with

E(ηtη
′

t) = Q, E(ξtξ
′

t) = R (3.2)

Both Q and R are assumed to be diagonal in many practical applications. The
initial state x0 is independently Gaussian distributed with mean a0 = 0 and covari-
ance Q0. This model is more complex and represents an extension of the standard
SSM described in chapter (1) as it includes various forms of feedback and can also
be extended to include additional covariates.

A mathematical representation of the model is depicted in Figure (3.1) indicating
two dynamics, the state and the observed, across 3 consecutive time points, where we
assumed k = p = 2. We now collect the model interaction parameters into a single

vector φ i.e φ = {G,Q,R,Q0} where G =

[
B Z
A F

]
is interpreted as a directed

and weighted adjacency matrix of the graph of interactions.

3.3 Inference

3.3.1 Identifiability issues

Briefly speaking, a parameter of a dynamic system is said to be identifiable given
some data if only one value of this parameter maximizes the observed likelihood. The
identifiability property is important because it guarantees that the model parameter
can be determined uniquely from the available data. Poor identifiability issues of the
SSM stems from the fact that given the original model (Equation 3.1), and with the
linear transformation of the state vector x∗t = Txt, where T is a non-singular square
matrix, we can find a different set of parameter vectors
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Figure 3.1. Two genes network representing an input-dependent SSM for
Gene regulation with the vector of observed gene expression (yt) and the
hidden regulators of gene expression (xt) at 3 different time points, where
F, A, Z, and B correspond to the matrices in Equation (3.1).

φ̂∗ =
{
Ĝ∗, Q̂∗, R̂∗

}
that give rise to the same observation sequence {yt, t = 1, 2, ..., T} having the same
likelihood as the one generated by the parameter vector φ. Hence, if we place no
constraints on F , A, Z, B and possibly Q and R, there exist an infinite space of
equivalent solutions φ̂ all with the same likelihood value. To overcome such identi-
fiability issues, further restrictions have to be imposed on the model. In our work,
we assume Q and Q0 to be identity matrices and R is set to be diagonal matrix.
Subjecting Q to be identity only affects the scale of x and matrices A and Z.

We further assume that the errors {ηt, t = 1, ..., T} and {ξt, t = 1, ..., T} are jointly
normal and uncorrelated. Also the number of time points or biological observations
in microarray data are typically much smaller than the number of genes. This fun-
damental problem of high-dimensional statistical modelling of micro array data de-
mands some care in the estimation of model parameters in the state space model.
This problem is avoided by making sure that the number of observations exceed the
total number of parameters to be estimated.

pTnR > p2 + 2kp+ k2. (3.3)
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This further puts the following bound on the dimension of the hidden states as given
in Equation (3.4)

0 ≤ k < −p+
√
pTnR. (3.4)

3.3.2 The likelihood function

We now restrict the model interaction parameters into the single vector φ={F,A, Z,B,R}.
As can be seen from Figure (3.1), the observations at time t, ytr are conditioned on
the past observations, y(t−1)r and on the regulators xtr and also to infer for instance
xtr, we need x(t−1)r and y(t−1)r. To that effect, under the Gaussian assumption we
have the following:

x0r ∼ ψk(0, I)

xtr|x(t−1)r, y(t−1)r ∼ ψk(x̃tr, I)

ytr|xtr, y(t−1)r ∼ ψp(ỹtr, R).

where
x̃t = Fxt−1 + Ayt−1,

ỹt = Zxt +Byt−1,

and ψ(µ,Σ) is the normal density with mean µ and variance covariance Σ.
We now write the marginal likelihood function lmy (φ) of the data y. This is given

by

lmy (φ) =

∫ T∏
t=1

P (xt|F,A, xt−1, yt−1)× P (yt|B,Z, xt, yt−1)dx

=

∫ T∏
t=1

ψ(xt|x̃t, σ2
ηI)ψ(yt|ỹt, σ2

ξI)dx. (3.5)

The full log-likelihood function of the complete data (ytr, xtr) denoted by ly,x(φ) is
for simplicity given by

ly,x(F,A, Z,B) =

nR∑
r=1

lryrxr
(F,A, Z,B) (3.6)
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where lryrxr
(F,A, Z,B) is the complete log-likelihood of the rth replicate and is given

by

lryrxr
(F,A, Z,B) =

T∑
t=1

lyt|xt,y(t−1)
(Z,B) +

T∑
t=1

lxt|x(t−1),y(t−1)
(F,A)

= − 1

2σ2
ξ

T∑
t=1

(yt − ỹt)
′
(yt − ỹt)−

T

2
log(σ2

ξ )

− 1

2σ2
η

T∑
t=1

(xt − x̃t)
′
(xt − x̃t)−

T − 1

2
log(σ2

η)

(3.7)

ignoring constant term.

3.3.3 Joint parameter estimation via EM algorithm

Our aim is to estimate the model parameter φ which (excluding R) indicates con-
nectivity matrix of the directed genomic graph that maximizes the marginal like-
lihood function lmy (φ) given in Equation (3.5). The integral in Equation (3.5) is
difficult because of the presence of the hidden variables x. For that matter we use
the EM algorithm to learn the parameters of the model. The idea stems from the
fact that if we did have the complete data (yt, xt) it will be straight forward to ob-
tain MLEs of φ using multivariate normal theory. In this case, we do not have the
complete data and the EM algorithm gives us an iterative method for finding the
MLE of φ using the observed data yt, by successively maximizing the conditional
expectation of the complete data likelihood given the observed values. It is only
when we are able to estimate the parameter φ that we can expect to obtain some
useful interpretations of the biological system networks.

The EM-algorithm for SSM was formulated by Shumway and Stoffer (1982) and
Shumway (2000). To this effect the algorithm requires the computation of the condi-
tional expectation of the log-likelihood given the complete data. The algorithm is a
two-stage procedure in which we begin with a set of trial initial values for the model
parameter to calculate the Kalman smoother. The Kalman smoother is then input
into the M-step to update parameter estimates. The algorithm alternates recursively
between an expectation step followed by a maximization step.
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The expected log-likelihood function: The E-step

This step of the EM algorithm involves the calculation of the first two moments xt
of the hidden states. Let Q denote the expected log-likelihood. Then from Equation
3.6, Q becomes

Q(φ|φ∗) = Ex [ly,x(φ)|y, φ∗]

=

nR∑
r=1

Ex

[
lryr,xr

(φ)|φ∗, y
]

=

nR∑
r=1

Ex

[
lryr,xr

(Z,B)|y, φ∗]+ nR∑
r=1

Ex

[
lryr,xr

(F,A)|φ∗, y
]
.

= Q(Z,B) +Q(A,F ).

(3.8)

φ∗ = (Z∗, B∗, F ∗, A∗) is the estimate obtained from the previous M-step
The calculation of Q(φ|φ∗) in Equation (3.8) involves finding E(x) and E(x

′
x)

for each replicate r; these forms are supplied by the Kalman smoothing algorithm.
The above implies that for each replicate we run the Kalman smoothing algorithm to
find the expected hidden states and their variance-covariance components and these
are joined together to get Q(φ|φ∗). In essence the hidden state is estimated every
time the algorithm visits the E-step through the Kalman filter and smoother.

The update equations: The M-step.

We then move to the M-step where given the already estimated hidden state, we
update the model interaction parameters. A new parameter set φi+1 is computed by
estimating the parameters that maximize Equation (3.8); the expected log-likelihood
function that is

φ̂ = arg max
φ

{Q(φ|φ∗)} (3.9)

These can be solved in closed form in the following manner.

∂

∂φ
Q = 0

and then solve for the parameter value that sets the partial derivative to zero. It is
also important to note that the partial derivatives are taken with respect to matrices
F , A, Z and B.
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The update estimates for matrix Z and B.
Take the derivative of Q with respect to Z and B and equating them to 0. We write
Q(Z,B) as

Q(Z,B) =

nR∑
r=1

Ex,φ∗
[
lryr,xr

(Z,B)
]

= −
nR∑
r=1

T∑
t=1

y
′

trytr + 2

nR∑
r=1

∑
t

E(x
′

trZytr)

+2

nR∑
r=1

∑
t

y
′

(t−1)rB
′
ytr −

nR∑
r=1

T∑
t

ZE(x
′

trxtrZ
′
)

−2
nR∑
r=1

T∑
t

E(x
′

trZ
′
By(t−1)r)−

nR∑
r=1

T∑
t

B
′
y

′

(t−1)ry(t−1)rB

Setting ∂
∂Z

Q(Z,B) and ∂
∂B

Q(Z,B) equal 0 result in two linear systems of equations
in the form:

0 = − 1

2σ2
ξtr

nR∑
r=1

T∑
t=1

[−2ytrE(x
′

tr)

+2ẐE(xtrx
′

tr) + 2B̂y(t−1)rE(x
′

tr)] (3.10)

and

0 = − 1

2σ2
ξtr

nR∑
r=1

T∑
t=1

[−2y(t−1)ry
′

tr + 2y(t−1)rE(x
′

tr)Ẑ
′

+2(y(t−1)ry
′

(t−1)rB̂
′
)] (3.11)

Equations (3.10) and (3.11) could also be re-written as

−Myx + ẐMxx + B̂ML(y)x = 0 (3.12)

−ML(y)y +ML(y)xẐ
′
+ML(y)L(y)B̂

′
= 0 (3.13)

where
Myx =

∑
rt

ytrE(x
′

tr)
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Mxx =
∑
rt

E(xtrx
′

tr)

ML(y)x =
∑
rt

y(t−1)rE(x
′

tr)

ML(y)y =
∑
rt

y(t−1)ry
′

tr

ML(y)L(y) =
∑
rt

y(t−1)ry
′

(t−1)r

and L(y) in Equations (3.12) and (3.13) is the shift operator on matrix y.
From Equation (3.12),

Ẑ =MyxM
−1
xx − B̂ML(y)xM

−1
xx (3.14)

Substitute Equation (3.14) into Equation (3.13), gives

B̂ML(y)L(y) = MyL(y) −MyxM
−1
xx MxL(y)

+ B̂ML(y)xM
−1
xx MxL(y) (3.15)

Therefore

B̂ =
[
MyL(y) −MyxM

−1
xx MxL(y)

]
×

[
ML(y)L(y) −ML(y)xM

−1
xx MxL(y)

]−1
(3.16)

From Equation (3.13)

B̂ML(y)L(y) =MyL(y) − ẐMxL(y) (3.17)

This implies

B̂ =MyL(y)M
−1
yL(y) − ẐMxL(y)M

−1
yL(y) (3.18)

Substitute Equation (3.18) into Equation (3.12), gives

ẐMxx = Myx −MyL(y)M
−1
L(y)L(y)ML(y)x

+ ẐMxL(y)M
−1
L(y)L(y)ML(y)x (3.19)
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Rearranging Equation (3.19), we have

Ẑ =
[
Myx −MyL(y)M

−1
L(y)L(y)ML(y)x

]
×

[
Mxx −MxL(y)M

−1
L(y)L(y)ML(y)x

]−1

(3.20)

Equations (3.16) and (3.20) are the update equations in the maximization step
used to infer the parameters in the observation dynamics.

In the same manner we derive the updates equations for A and F for the model
interaction parameters in the state dynamics model.

We write Q(A,F ) as

Q(A,F ) =

nR∑
r=1

Ex,φ∗
[
lryr,xr

(F,A)
]

= C2 + 2
T∑
t=1

y
′

t−1A
′
E(xt) + 2

T∑
t−1

E(x
′

t)FE(xt−1)

−
T∑
t=1

F
′
Ex

′

t−1xt−1F − 2
T∑
t=1

y
′

t−1A
′
FExt−1

−
T∑
t=1

A
′
y

′

t−1yt−1A

where C2 is a constant.
Setting ∂

∂F
Q(F,A) and ∂

∂A
Q(F,A) equal 0 result in two linear system of equations

in the form:∑
rt

E(x
′

t−1x
′

t)−
∑
rt

E(xt−1x
′

t−1)F̂
′ −
∑
rt

E(xt−1y
′

t−1)Â
′
= 0 (3.21)

and ∑
rt

yt−1E(x
′

t)−
∑
rt

yt−1E(x
′

t−1)F̂
′ −
∑
rt

yt−1y
′

t−1Â
′
= 0 (3.22)

Equations (3.21) and (3.22) could also be re-written as

ML(x)x −ML(x)L(x)F̂
′ −ML(x)L(y)Â

′
= 0 (3.23)

ML(y)x −ML(y)L(x)F̂
′ −ML(y)L(y)Â

′
= 0 (3.24)
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From Equation (3.23), we have

F̂ =MxL(x)M
−1
L(x)L(x) − ÂML(y)L(x)M

−1
L(x)L(x) (3.25)

Substitute Equation (3.25) into Equation (3.24), gives

ÂML(y)L(y) = MxL(y) −MxL(x)M
−1
L(x)L(x)ML(x)L(y)

+ ÂML(y)L(x)M
−1
L(x)L(x)ML(x)L(y) (3.26)

Therefore

Â =
[
MxL(y) −MxL(x)M

−1
L(x)L(x)ML(x)L(y)

]
×

[
ML(y)L(y) −ML(y)L(x)M

−1
L(x)L(x)ML(x)L(y)

]−1

(3.27)

Next, from Equation (3.24), we have

Â =MxL(y)M
−1
L(y)L(y) − F̂ML(x)L(y)M

−1
L(y)L(y) (3.28)

Substitute Equation (3.28) into Equation (3.23), gives

F̂ML(x)L(x) = MxL(x) −MxL(y)M
−1
L(y)L(y)ML(y)L(x)

+ F̂ML(x)L(y)M
−1
L(y)L(y)ML(y)L(x) (3.29)

Rearranging Equation (3.29) gives

F̂ =
[
MxL(x) −MxL(y)M

−1
L(y)L(y)ML(y)L(x)

]
×

[
ML(x)L(x) −ML(x)L(y)M

−1
L(y)L(y)ML(y)L(x)

]−1

(3.30)

Equations (3.27) and (3.30) are the update equations in the maximization step
used to infer the parameters in the state dynamics.

The entire EM algorithm can be regarded as alternating between Kalman filtering
and smoothing recursions and the normal maximum likelihood estimators as given
in the update equations.
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3.3.4 Choice of hidden state dimension: AICc

Model selection or the determination of the optimum dimension of the hidden state k
is important to the application of SSM to network reconstruction. Popular model se-
lection criteria include Akaike’s Information Criterion (AIC) (Akaike, 1974) and the
Bayesian Information Criterion (BIC) (Schwarz, 1978). We apply Akaike’s Inform-
ation Criterion (AIC) method for our model selection. AIC is aimed at finding the
best approximating model to the unknown data generating process via minimizing
the estimated expected K-L divergence, i.e. AIC’s try to find the best approximation
among the models we actually look at. Given the log-likelihood function l, AIC for
a model with k-dimensional state vector is given by:

AIC(k) = −2l(yt|φ̂k) + 2P (3.31)

with P the number of estimated parameters, and l(yt|φ̂k) the log-likelihood of the
observed data. As recommended by Burnham and Anderson (2002), we have applied
AICc (AIC with a correction for finite sample size) for our model selection procedure.
The reason being that AICc estimates the expected discrepancy with less bias than
AIC. 1 The AICc is given by

AICc(k) = −2l(yt) + 2P

[
N

N − P − 1

]
(3.32)

where N = pTnR represents total number of observations and P = p2+2kp+k2 is the
total number of estimated parameters and we settle on the hidden state dimension
that has the minimum AICc, i.e we find k such that

k̂ = arg min
k

{AICc(k)} . (3.33)

In this case, we successively increase the number of hidden states and monitor the
behavior of AICc i.e., for each run of the EM algorithm, we increase k.

3.3.5 Network Reconstruction by Bootstrapping

In our procedure, we use a bootstrap approach to find confidence intervals for the
parameters defining our model. By so doing we compute the bootstrap distribution
of the estimator of φ.

1In the framework of normal linear regression models (both univariate and multivariate), the
penalty term of AICc provides an exact expression for the bias adjustment. .

81



Let φ̂ denote the MLE of the parameters defining our model; φ̂ are estim-
ated using the EM algorithm described in previous section. Suppose that for all
r ∈ {1, ..., nR}, yr where yr ∈ RP×T represents the data. The bootstrap procedure
adopted is outlined below:

1. Obtained ỹ1, ...ỹnR
. This is the model fit, an output of the Kalman filter.

2. Calculate, for all r in {1, ..., nR}, the innovation errors ξr = yr − ỹr.

3. Sample with replacement from ξr to obtain ξ∗r .

4. For all r in {1, ..., nR}, make new data y∗r through y∗r = yr + ξ∗r .

Given each new data we estimate among other things, the bootstrap set of para-

meters
{
φ̂∗
b ; b = 1, ..., Nb

}
through the EM algorithm. Stated differently for each

bootstrap data, the parameters that maximize the likelihood of the bootstrap data
are found, and then obtain the sampling distributions of the estimators of the ele-
ments of φ. The results of the bootstrapping are the distribution of the parameters
and we proceed to make statistical inferences about those underlying parameters by
computing confidence interval for each of them; (Wild et al., 2004; Shumway and
Stoffer, 2005)

3.4 Simulation studies

In order to evaluate the performance of our method for analyzing gene expression
data, we simulate artificial data and applied our proposed method to the simulated
data according to the model described in Equation (3.1) with 10 time points, p = 3
as number of genes, and k = 2 TFs. The true newtork is depicted in Figure (3.2)
(left).

In applying the EM- algorithm, parameters were initialized as follows: Z and
F are assumed to be identity matrices whiles we initialize A to be zero. For B we
perform a simple linear regression where we regress current genes on its previous
ones and R assumes the usual variance estimate from the regression. We applied the
bootstrap procedure to the data and identified the significant and non-significant
parameters defining our model or identifying the dynamics of the networks. We
achieved this by computing bootstrap confidence intervals on element φl of φ; it is
clear that the confidence intervals will enable us to decide which elements φl will be
set to zero and which will not. The analysis now turn to a decision problem where
we formulate two hypotheses, namely,
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Figure 3.2. The true network G (left) and recovered network (right) Ĝ

H0 : φ̂l = 0

H1 : φ̂l ̸= 0

where rejecting H0 indicates the presence of connection among the genes, meaning
that the particular interaction in the matrix is considered to be statistically signi-
ficant. With k equals 2, we obtained the upper and lower bounds of the confidence
interval of the vectorized elements of the bootstrap estimated parameters, in the
order of Fij, Aij, Zij, Bij. The recovered network is shown in Figure (3.2) (right)

To provide a baseline through which we could evaluate the performance of the
proposed method for gene regulatory network, we calculate the True Positive Rate
(TPR), False Positive Rate (FPR) and the F1 score of the matrix G representing the
entire genomic interaction. Table (I) shows the simulation result at varying number
of replicates. Perfectly recovering the network corresponds to a TPR of 1. According
to Table (I), as the number of replicates nR increases from 10 to 50, the TPR is as
high as 75% whiles the FPR is as small as 19% with F1 score of about 54%. This
demonstrates the efficiency of our method.

nR 10 25 40 50
TPR 0.75 0.75 0.75 0.75
FPR 0 0.19 0.19 0.19

F-score 0.85 0.54 0.54 0.54

Table I. Simulation result for TPR and FPR as the number of replicates
nR increases from 10 to 50.
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3.5 Application

k 2 3 4 5 6 8
AICc 3386201 2537048 2524402 2849645 2800490 2884533

Table II. Estimates of AICc as a function of k.

For this study, to demonstrate the application of our reverse engineering method,
we used publicly available data, the results of two experiments used to investigate
the expression response of human T-cells to PMA and ionomicin treatment. The
data is a combination of two data set namely tcell.34 and tcell.10. The first data
set (tcell.34) contains the temporal expression levels of 58 genes for 10 unequally
spaced time points. At each time point there are 34 separate measurements. The
second data set (tcell.10) comes from a related experiment considering the same
genes and identical time points, and contains 10 further measurements per time
point. At each time point there are 44 separate measurements or replicates. It was
assumed that the 44 replicates have a similar underlying distribution. Given that
the t-cell experiment is a time course gene expression data with technical replicates
we expect more reliable estimation and inference results by applying our method.
Corresponding to each gene expression ytr, we also generated technical replicates for
the hidden variables xtr. With p = 58 genes, R = 44 as replicates and T = 10,
the constraint represented by Equation (3.3) is satisfied, indicating that we have
enough data to estimate our parameters. The dimension of the hidden variables was
determined using AICc as explained in section (3.3.4). Table (II) shows the behavior
of AICc with corresponding k’s. It turns out that k = 4 is the optimum number of
the hidden states as compared to Rangel et al. (2004) and Beal et al. (2005) who
obtained 9, 14 respectively under different criteria.

In essence, we treated the data as a time series measurement ytr , t = 1, 2, ..., 10
and r = 1, 2, ..., 44. For each replicate, yt and xt consist of 58 genes and 4 tran-
scriptions factors respectively, each, measured at 10 different time points, i.e for each
replicate r, y and x are of dimension (58× 10), (4× 10) respectively. Some of these
genes include RB1, CCNG1, TRAF5, CLU.... The parameters Q and Q0 were fixed.

We then applied the EM algorithm to the data and Figure (3.3) shows the es-
timated values of the hidden variables x i.e the expression pattern of the 4 latent
variables across time. Based on the test, with 95% confidence level, we plot the con-
nectivity matrix of the directed genomic network Ĝ. The output is a directed graph
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Figure 3.3. EM algorithm on the T-cell data showing the expression level
of the latent variables across time

showing connections from one gene expression variable at a given time point t to an-
other gene expression variable whose expression it influences at the next time point,
t+1. The arrows indicate the direction of the regulation. The entire directed graph
Ĝ gives 350 genomic interactions. Figure (3.4) represents a portion of the interaction
network φ̂ where we indicate genes that have at least 3 outwards connections. These
genes include the FYN-binding protein gene FYB, the JUND proto-oncogene, the
CD69 antigen p60, early T-cell activation antigen to mention but few. Figure (3.5)
is the sub-network produced at 95% confidence level and it represents the interac-
tion between, two Jun proteins family namely JUNB and JUND and various genes
involved in programmed cell death. Our method through Figure (3.5) supports the
anti-proliferation and anti-apoptotic role of JUND. We also recover the topology of
the genes FYB through Figure (3.6). The structure of the network is visualized using
the R package for Network analysis and visualization igraph.

According to our method, the following genes were mostly seen as regulatory
genes. These genes includes the JUND proto-oncogene, the CLU gene, the cell
division cycle 2 CDC2, the FYN-binding protein gene FYB, TRAF5, the CD69, and
the GATA-binding protein 3. The latent variables were also seen to regulate the
expression level of most genes as could be seen in Figure (3.4).
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Connectivity matrix of the directed genomic graph

RB1

CCNG1TRAF5

CLU

MAPK9CD69

ZNFN1A1

IL4R

MAP2K4

JUND

LCK

SCYA2

RPS6KA1

ITGAM

CTNNB1

SMN1

CASP8

E2F4

PCNA

CCNC

PDE4B

IL16

APC

ID3

SLA

CDK4

TCF12

MCL1

CDC2

SOD1

IRAK1

SKIIP

MYD88

API2

RBL2

C3X1

IFNAR1
FYB

IL2RG

CSF2RA

MPO

CYP19

CIR

CASP7

MAP3K8

JUNB

IL3RA

NFKBIA

LAT

AKT1

Figure 3.4. Sub-network found representing the genomic interactions Ĝ, of
genes with at least 3 outwards connections, nodes refer to gene expressions
in the form of proteins or RNAs; empty nodes refer to latent variables

Our approach has revealed interesting features in the family of Jun genes. The
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network in Figure (3.5) provides support for interesting biological properties some
of which also confirmed in (Rangel et al., 2004) and (Beal et al., 2005); but we
also found new connections. In our work, we found interactions between the proto-
oncogene JUNB, the apoptosis-related cysteine protease genes CASP4 and CASP8.
The implication is that JUNB is clearly modelled as a pro-apoptotic gene by activ-
ating CASP4 and CASP8. This interaction was also was recovered by Beal et al.
(2005). We however found no interaction between JUNB and MAP3K8. Also Figure
(3.5) reveals that the proto-oncogene JUND activates the GATA-binding protein 3
but represses the expression level of the cell division cycle 2 (CDC2). This further
supports the anti-proliferative JUND. Furthermore, in our model, the survival of
motor neuron 1 gene SMN1 and the cell division cycle CDC2 influence the expres-
sion level of JUNB and MAPK8 respectively. JUNB activates the expression level
of CDC2. A critical comparison of our Figure (3.5) to that of similar sub-networks
found in the work of Andrea et al. (2010) and Beal et al. (2005) shows that in all
the 3 sub-networks, JUND regulates the expression level of CDC2. JUNB activ-
ates CASP8 in the sub-network found by Beal et al. (2005) and indirectly regulates
CASP8 through CASP4 in the sub-networks found by Andrea et al. (2010). However
we found interaction between JUNB and both CASP8 and CASP4.

 Subnetwork of the Jun proteins family and apotostic genes 

CD69

JUND

SMN1CASP8

CDC2

CASP4

GATA3

CASP7 MAP3K8

JUNB

Figure 3.5. Sub-network found representing the interactions between Jun
proteins family and apotostic genes
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The gene FYN-binding protein FYB found to occupy one of the most crucial
positions in the network recovered by Rangel et al. (2004) also has a high degree of
connectivity in our work; and Figure (3.6) reveals some crucial genes that are found
to be directly connected to FYB. Most importantly, in our model, FYB influences the
expression level of genes such as the early T-cell activation marker CD69, the JUNB
proto-oncogen. FYB is also seen to be connected to genes such as APC, API2, and
CIR. Clearly, these results support the fact that FYB mRNA levels are predictive of
the expression level of a number of genes.

The hidden state dimensionality was found to be 4, a result similar to the work
of Andrea et al. (2010) in which they developed an iterative empirical Bayesian
procedure with a Kalman filter to estimate the posterior distributions of network
parameters. Rangel et al. (2004) found the dimension of the hidden state to be
9 through cross validation technique while Beal et al. (2005) through a variational
Bayesian approach obtained 14. At 95% confidence level, we found no significant
interactions among the hidden variables or transcription factors. However their role
in the transcription process can not be ignored as the inferred matrix Z repres-
enting instantaneous protein-RNA transcription was not sparse signifying that the
transcription factors regulate the expression level of most mRNAs.

CD69

APC

SLA

CDC2

API2

FYB

IL2RG

CIR

JUNB

Figure 3.6. Sub-network found representing the topology of gene FYB in
connection with other genes
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3.6 Conclusion

In this chapter, we have developed a novel state space model in inferring regulatory
networks from (high) dimensional data (e.g., gene expression) using linear Gaussian
state space models. The EM algorithm was used to estimate the parameters be-
cause of hidden states and AICc criteria was used to select the number of hidden
states. Parametric bootstrap was used to determine the selection of parameters.
The proposed method offers significant advantages over other methods that have re-
cently appeared in the literature. For example, Beal et al. (2005) used a variational
Bayesian methodology which is an approximation of the posterior distribution of the
parameters, while we did exact inference of the parameters. Rangel et al. (2004)
used cross validation as model selection technique which is quite slow as compared
to AIC. Bremer and Doerge (2009) used an ad hoc method for selecting the hid-
den state dimensionality k, while our method uses a data-driven approach. Also our
model allows for dynamic correlation over time, as each observation and hidden state
depend explicitly on some function of previous observations as opposed to the model
described by Yamaguchi and Higuchi (2006); Perrin et al. (2003); Fang-Xiang et al.
(2004). Their model does not allow for RNA-protein translation and RNA-RNA
interactions through the matrix A and B respectively in our model.

One fundamental assumption in our proposed model is the first-order linear dy-
namics in the state and observation equations of the SSM. This assumption can only
be an approximation to the true nature of a complex biological system since more
realistic models of gene regulatory interactions surely include complex interactions
or nonlinear relationships. Our linear dynamics assumption is a stepping stone upon
which a future model with non-linear dynamics will be explored. With application to
the t-cell data, We have discovered new interactions that do not find support in the
current literature; as as part of our future work we will investigate these interactions
further and possibly redefine our model.

Furthermore ML approach is prone to over-fitting, especially in high-dimensional
statistical modelling. A natural way to avoid this over-fitting is through regulariza-
tion. Also gene regulation tends to be sparse. In the next chapter we plan to employ
a penalized maximum likelihood strategy in the context of the EM algorithm in the
state space model.
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Chapter 4

SSM with L1 regularization constraint

4.1 Introduction

Reverse engineering transcriptional networks or modelling differential gene expres-
sions as a function of time is providing a new insight for biological research. Tech-
nology is now available to track the expression pattern of thousands of genes in a
cell in a regulated fashion and to trace the interactions of many of the products of
these genes (Bower and Bolouri, 2001). However, the sheer dimensionality of all pos-
sible networks combined with the noisy nature of the observations and the complex
structure of genomic regulation and signaling have meant that simply reading off
a network from the data turned out somewhat optimistic. Instead, only statistical
models of sufficient biological relevance are capable of discovering direct and indirect
interactions between genes, proteins and metabolites. The last decade has seen an
explosion of techniques to infer networks structure from microarray data. Models
have now been developed to capture how information is stored in DNA, transcribed
to mRNA, translated to proteins and then from protein structure to function. These
models include Boolean networks based on Boolean logic (Kauffman, 1993; Patrik
et al., 2000) where each gene is assumed to be in one of two states“expressed” or
“not expressed”, graphical Gaussian models (Schfer and Strimmer, 2005), Dynamic
Bayesian Networks (Perrin et al., 2003), vector autoregressive models -VAR- (Fujita
et al., 2007), ordinary differential equation models (Quach et al., 2007; Cao and
Zhao, 2008) in which the state is a list of the concentrations of each chemical species
and the concentrations are assumed to be continuous, stochastic differential equation
models (Chen et al., 2005) and finally state space models (Rangel et al., 2004; Beal
et al., 2005).

Integrating these models in mainstream statistics is an exciting challenge from
a theoretical, computational, and applied perspective. Among the above mentioned
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networks modelling techniques, ordinary differential equations -ODEs- have been
established in recent years to model, gene regulatory or more generally, biochemical-
networks, since they provide a detailed quantitative description of transcription regu-
latory networks. On the downside, they contain a large number of model parameters
and are not well suited to deal with noisy data. Current methods for estimating
parameters in ODEs from noisy data are very computationally intensive (Ramsay
et al., 2007). Clearly, not all systems can be modeled with differential equations.
Specifically, differential equations assume that changes of states are continuous and
deterministic. Stochastic differential equations -SDE- is an alternative framework for
genetic interactions inference where one writes the system of differential equations
as before, then adds a noise term to each, but practically SDE is difficult to handle
from both theoretically and computationally. It is especially difficult to infer the
structure in high dimensional settings in both frameworks.

In this work, we consider a penalized state space model framework, a framework
which consists of two different spaces, i.e a latent “protein” space and an observed
“mRNA” space. The assumption of incompleteness of our data is quite realistic in
the sense that in a microarray experiment, we usually do not observe protein concen-
trations together with mRNA concentrations due to the technical difficulty involved
in performing such experiments. Thus we see the data as just noisy measurement
of mRNA concentrations, whose dynamics can be described by some hidden process
which involves protein transcription factors and mRNA concentrations. Another ad-
vantage of fitting SSM to the data stems from the fact that the variables of interest in
the form of gene expression such as mRNA and protein transcription factors are seen
as random variables, allowing the representation of some stochasticity, which could
arise from either the measurement process or the nature of the biological process.

In microarray analysis, the number of predictors in the form of genes to be ana-
lyzed far exceeds the number of observations (p >> n). Faced with such explosion
of data, regularization has become an important ingredient and is fundamental to
high-dimensional statistical modeling. The Lasso (Tibshirani, 1996) is one of the
few methods for shrinkage and selection in regression analysis that incorporates an
L1 regularization constraint to yield a sparse solution. A considerable amount of
literature has been published on regularization methods in areas with large data sets
such as genomics. These studies include the followings:

1. The regularization paths for the support-vector machine (Hastie et al., 2004).

2. The elastic net (Zou and Hastie, 2005) for applications with unknown groups
of predictors and useful for situations where variables operate in correlated
groups.
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3. L1 regularization paths for generalized linear models (Park and Hastie, 2007)
and

4. The graphical lasso (Friedman et al., 2008b) for sparse covariance estimation
and undirected graphs.

Gene regulatory networks are usually sparse. Also, molecular ontologies suggest few
connections among the many thousands of genes i.e, each gene may only be regulated
by a few number of other genes or transcriptions factors . For that reasons, we will
expect many of the parameters to be zero leading to a sparse solution. It is in
this context that we employ a regularization approach for the estimation of the
parameters. This, form the basis for the L1 penalization. The proposed method
in the maximization step of the EM-algorithm is the L1 penalty through a simple
modification of the LARS algorithm by Efron et al. (2004), (Least Angle Regression).
LARS is an efficient algorithm for computing the entire regularization path for the
Lasso.

State space models are good robust candidates to represent interactions between
biological components in the form of mRNA concentrations and protein transcrip-
tion factors. We present a statistical method that infers the complexity, the depend-
ence structure of the networks topology and the functional relationships between
the genes, and deduce the kinetic structure of the networks. We estimate all model
interaction parameters in order to clarify and describe the complex transcriptional
response of a biological system and to clarify interactions between components. By
so doing, we are able to add some useful interpretations to the model. We use the
minimum AICc to determine the optimum level of sparsity.

The rest of this chapter is organized as follows. In section 4.2, we recall our
genomic SSM introduced in chapter 2 , and give it a precise biological interpretation.
Section 4.3 describes the inference method and the model selection technique. We
perform a simulation study and “in silico” validation experiment in order to evaluate
the performance of our method in section 4.4. Section 4.5 is the application of our
model to a real data (T-cell data) and summary of our results. We conclude with a
discussion of the method used, possible extension, and a summary of related work
in section 4.6.

4.2 Genomic State Space Model

As previous our model is defined through the following dynamics.
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Firstly the state dynamics or the state of the network satisfies an input dependent
first-order Markov process

xtr = Fxt−1,r + Ayt−1,r + ηtr. (4.1)

where F is a regulatory matrix that quantifies the effect of the latent variables at
consecutive time points and is of dimension k × k. The quantity A represents the
input-to-state matrix whose dimension is k×p, r = {1, 2, ..., nR} denotes the number
of biological replicates and ηtr is the Gaussian noise with mean 0 and variance-
covariance matrix Q. The initial state x0 is Gaussian distributed with mean a0 = 0
and variance-covariance Q0

Secondly the p observation dynamics yt is a possibly time-dependent linear trans-
formation of a k dimensional real-valued xt with observational Gaussian noise ξt and
is given by

ytr = Zxt,r +Byt−1,r + ξtr. (4.2)

where Z describes how the latent variables in the form of transcription factors reg-
ulate the transcription of genes and is of dimension k × p. The matrix B repres-
ents either degradation or production matrix of mRNAs also known as input-to-
observation matrix whose dimension is p × p and ξtr is the measurement Gaussian
noise with mean 0 and variance-covariance matrix R.

The framework captures the stochastic nature of our biological process and their
dynamics. The model assumes that the evolution of the hidden variables xt is gov-
erned by the state dynamics which follows an input dependent first-order Markov
process. In essence we build a dynamic model that connects the observed variables
yt (RNA transcripts) to the k dimensional real valued unobserved quantities xt such
as unmeasured typically protein regulators.

The model indicates two space networks, the protein space and the mRNAs space,
across consecutive time points. It assumes RNA-protein translation at two consecut-
ive time points through the matrix A, and instantaneous protein-RNA transcription
through Z.

A biological interpretation of the model network is also represented in Figure (4.1)
which describes two fundamental stages in gene regulation which are in conformity
with the central dogma which states that DNA does not code for protein directly
but rather acts through 2 stages, namely, transcription and translation. The latent
variables x in this model can be interpreted as TFs and interaction between them
are modeled by Equation (4.1). We limit our work to linear interactions. A possible
alternative is to assume nonlinear interactions but it substantially complicates the
analysis. The input-to-state matrix A also known as observation-to-state matrix
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Figure 4.1. Biological interpretation of the input SSM.

models the influence or the effects of the gene expression values from previous time
steps on the hidden states. The matrix B indicates the direct gene-gene interactions.
The state dynamic matrix F describes the temporal development of the regulators
or the evolution of the latent variables from previous time step t− 1 on the current
time step t. It provides key information on the influences of the hidden regulators
on each other. As before we collect the model interaction parameters into a single
vector φ i.e φ = {G,Q,R,Q0} where G is interpreted as a directed and weighted
adjacency matrix of the graph of interactions.

4.3 Learning States and Parameters

4.3.1 The likelihood function

We now write the marginal likelihood function lmy (φ) of the data y. This is given by

lmy (φ) =

∫ T∏
t=1

P (xt|F,A, xt−1, yt−1)P (yt|B,Z, xt, yt−1)dx

=

∫ T∏
t=1

ψ(xt|x̃t, σ2
ηI)ψ(yt|ỹt, σ2

ξI)dx. (4.3)

where ψ(µ,Σ) is the pdf of N(µ,Σ).
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From now onwards for a given replicate and for simplicity, we will write the
unpenalized complete log-likelihood as:

ly,x(F,A, Z,B) =

nR∑
r=1

lryrxr
(F,A) +

nR∑
r=1

lryrxr
(Z,B) (4.4)

Learning the parameters of a state space model including the hidden variable can be
tackled from different approaches. Beal et al. (2005) inferred the parameters in the
SSM using a Bayesian approach through a Variational Bayes Method (VBM) that ap-
proximates the posterior quantities required for Bayesian learning. As a probabilistic
model, Wild et al. (2004) estimated the parameters through a frequentist approach
using maximum likelihood inference in the context of EM algorithm. In our context,
the number of parameters to be estimated P = k2+2kp+ p2 far exceeds the number
of observations. Thus we want to shrink unnecessary coefficients to zero. This will
make interpretation of results easier and reflects the true underlying situation by
introducing some level of sparsity. The formulation of our problem becomes:

φ̂ = arg max
φ

(lmy ) (4.5)

subject to the constraints

||Z||1 ≤ s1, ||B||1 ≤ s2, ||A||1 ≤ s3, ||F ||1 ≤ s4 (4.6)

where si represents the regularization parameters or penalty parameters and we
allow different penalty parameters for different coefficients. Equations (4.5) and
(4.6) are called constrained regression problem viewed in this context as penalized
state space models. Our L1 constraint not only promotes sparsity but also minimizes
the identifiability problems.

To find the solution to the above problem, many well developed procedures can
be used. For example, quadratic programming (Tibshirani, 1996), the shooting al-
gorithm (Fu, 1998), local quadratic approximation (Fan and Li, 2001) and most
recently, the LARS method by Efron et al. (2004) can all be employed. Our pro-
posed method adapt the later procedure; optimization under L1 constraint, where a
penalty term is added to the likelihood function giving rise to a penalized likelihood
criterion. LARS or optimization with L1-regularization constraint turns out to be
helpful and computationally feasible approach for finding sparse solutions in high
dimension and by so rendering model interpretation easier.
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4.3.2 The EM algorithm

As the true state variable is hidden, the integral in Equation (4.3) is difficult. We
then applied the EM algorithm described in previous chapters with penalty con-
straint to obtain Penalized Maximum Likelihood Estimators (PMLEs) of φ using
multivariate normal theory. The EM algorithm is an iterative method for finding
the Maximum Likelihood Estimation (MLE) of φ using the observed data yt, by
successively maximizing the conditional expectation of the complete data likelihood
given the observed values.

The expected log-likelihood function: The E-step.

Let Q denote the expected log-likelihood. Then from Equation (4.4), dropping the
replicate index, Q becomes

Q(φ|φ∗) = Ex,φ∗ [lyt,xt(φ)|φ∗y]

=
T∑
t=1

Ex,φ∗ [lyt,xt(φ)|φ∗y]

=
T∑
t=1

Ex,φ∗ [lyt(Z,B)|y] +
T∑
t=1

Ex,φ∗ [lxt(F,A)|y]

= Q1(Z,B) +Q2(F,A) (4.7)

where φ∗ = (Z∗, B∗, F ∗, A∗) is the estimate obtained from the previous M-step,

Q1(Z,B) = C1 + 2
T∑
t=1

E(x
′

t)Zyt + 2
T∑
t−1

y
′

t−1B
′
yt

−
∑

Z
′
E(x

′

txt)Z − 2
T∑
t=1

E(x
′

t)ZByt−1

−
T∑
t=1

B
′
y

′

t−1yt−1B (4.8)
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and

Q2(F,A) = C2 + 2
T∑
t=1

y
′

t−1A
′
E(xt) + 2

T∑
t−1

E(x
′

t)FE(xt−1)

−
T∑
t=1

F
′
E(x

′

t−1xt−1)F − 2
T∑
t=1

y
′

t−1A
′
FE(xt−1)

−
T∑
t=1

A
′
y

′

t−1yt−1A (4.9)

C1 and C2 are known constants. The first two moments needed in the E-step are
supplied by the Kalman smoothing algorithm through a forward filtering pass and
a backward smoothing pass. The above implies that for each replicate we run the
Kalman smoothing algorithm to find the expected hidden states and their variance-
covariance components and these are joined together to get Q(φ|φ∗). Now Equation
(4.7) is the sum of two quadratic functions Q1 and Q2 that do not depend on x but
rather depend on the parameters and the data y in a quadratic way. We maximize
these two functions during the maximization step.

The update equations: The M-step.

At this stage we solve for

φ̂ = arg max
φ

Q(φ|φ∗) (4.10)

subject to the constraints defined in Equation (4.6).
In essence we maximize iteratively the quadratic function Q given in Equation

(4.7) across φ using LARS algorithm, where each coefficient is assigned a tuning
parameter s. This breaks down to two maximization problems, one for Q1 across
(Z,B) and the other for Q2 across (F,A). The iterative maximization process is
similar in both cases.

We now show the maximization process for Q1. To do that, the following lemma
is needed.

Lemma 4.3.1. The solution that maximizes the quadratic function

Q(X ) = 2d
′X − X ′

SX subject to ||X ||1 ≤ s (4.11)

is given by the lasso solution
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(y −Cβ)
′
(y −Cβ) subject to ||X ||1 ≤ s (4.12)

where

C
′
C = S, β = V ec(X ), y = CS−1d. (4.13)

and the LARS solution of (4.12) is a function of S and d = C′y

Proof. Properties of Gaussian distribution and Gaussian processes suggest that the
quadratic Q(X ) corresponds to a Gaussian N(S−1d, S−1). Therefore

Q(β) = (β − S−1d)
′
Σ−1(β − S−1d)

= (β − S−1d)
′
S(β − S−1d)

= (β − S−1d)
′
C

′
C(β − S−1d)

= (CS−1d−Cβ)
′
(CS−1d−Cβ)

= (y −Cβ)
′
(y −Cβ). (4.14)

Suppose we have a set of linearly independent covariates (c1, ..., ck) and we define
the matrix

C = (..., sici, ...)i∈A (4.15)

where A is the subset of the indices {1, ..., k} of the active set and si are the signs
and equal ±1. Suppose

GA = (C
′

ACA)
−1 and AA =

[
1
′

AGA1A

]− 1
2

(4.16)

where 1A is a vector of 1’s of length equals the size of A.
The unit vector making equal angles, less than 900, with the active columns of

CA is given by

wA = AAGA (4.17)

Let

γ̂ = min+

i∈Ac

{
(Q̂max − q̂i)
AA − ai

,
(Q̂max + q̂i)

AA + ai

}
(4.18)

where q = C
′
y, representing vector of current correlations, Qmax is the maximum

absolute value from the set q, a = (CAc)
′
CAwA being the inner product vector.

Now the next step of LARS algorithm updates the coefficient β̂k−1, say to
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β̂k = β̂k−1 + γ̂wA (4.19)

We need to show that β̂k is a function of C
′
C and C

′
y

The above definitions of q and a indicate that γ̂ is a function of C
′
C and C

′
y.

Therefore β̂k is also a function of C
′
C and C

′
y

Now from Equation (4.8), given B we carry out the maximization process of Q1

across Z. Therefore, we can write Q1(Z,B) as

Q1(Z) = c1 + 2b
′

1Z − Z
′
S1Z (4.20)

subject to
kp∑
j=1

|zj| ≤ s2 (4.21)

where S1 = E(x
′
txt), b1 is just a function of (y,B, x), and c1 is a constant.

Applying lemma 4.3.1, the update maximum likelihood estimates Ẑ from Equa-
tion (4.20) are just a function of S1 and b1. Therefore, we obtained the updates
estimates Ẑ by supplying the LARS function, the quantities S1 and b1 with a given
tuning parameter where b1 becomes the new data and S1 the data matrix.

Next, given Ẑ, we maximize the quadratic function

Q1(B) = c2 + 2b
′

2B −B
′
S2B (4.22)

subject to
p2∑
j=1

|bj| ≤ s1 (4.23)

where S2 =
∑T

t=1 y
′
t−1yt−1, b2 is just a function of (y, Z, x), c2 is a constant. With

the same analysis, the updates estimates B̂ are obtained by supplying the LARS
function, the quantities S2 and b2 with a given tuning parameter. Similar analysis is
conducted for the estimation of F and A).

The advantage of this approach is that we see the LARS updates as functions
not of the raw data, but instead as functions of S and b. This enables us to avoid
first, the Cholesky decomposition of S and second, computing S−1 which are both
time consuming and computationally inefficient.
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1. Iterate across penalty parameters s ∈ S
a. Start with initial values of φ
i. Do the E-step by calculating the Kalman smoother
ii. Perform the M-step via LARS algorithm

b. Repeat (i) and (ii) until convergence
2. Across S select model with minimum AICc

Table I. Summary of the EM for Penalized Likelihood inference method

4.3.3 Model selection: Choice of regularization parameter s

Determining the optimal SSM tuning parameter s is an important issue. We apply
Akaike’s Information Criterion (AIC) method for our model selection. We generate
a vector of values for the tuning parameters si,(i=1,...,4). For each combination of the
values of the tuning parameters we run the EM algorithm and obtain

φ̂(s) = arg max
φ

[Q(φ)]

subject to constraints in Equation(4.6).

AICc(φ̂(s)) = −2l(yt) + 2P

[
N

N − P − 1

]
(4.24)

where N = pTnR represents total number of observations and P = p2+2kp+k2 is the
total number of estimated parameters. Then for each model, the AICc is computed
and the model with the minimum AICc is selected. In essence, minimizing AICc, we
obtained the optimal tuning parameter which is given by

ŝ = arg min
s

[AICc(φ̂(s))]

and the selected model parameters are given by φ̂(ŝ). Table (I) summarizes the
general formulation of the EM-L1 penalized inference method:

4.4 Validation of Method

4.4.1 simulated data

In this section we evaluate our method on a simulated data based on the model
described in Equations (4.1) and (4.2) with 10 different time points, p = 3 as number
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Figure 4.2. The full true network G (left) and the full recovered network
Ĝ (right)

Figure 4.3. Gene-gene interactions ZA + B. The true network(left) and
the estimated network(right)

of genes and k = 2 hidden variables. In applying our algorithm, parameters were
initialized as follows: Z and F are assumed to be identity matrices whiles we initialize
A to be zero. For B we perform a simple linear regression where we regress current
genes on its previous ones and R assumes the usual variance estimate from the
regression.

The true (left) and the recovered (right) networks are depicted in Figure (4.2).
The efficiency of our method is seen from the number of true links recovered. We
also reported the gene-gene interactions matrix ẐÂ+ B̂ in Figure (4.3). The matrix
ẐÂ + B̂ captures all information related to gene-gene interactions for consecutive
time points. It relevance stems from the fact it is identifiable.

Table II depicts the performance of our method as the network increases. For
a fixed k, we increase p and monitor how best the network is recovered through
TPR, FPR, and F1 score. We experience a relatively stable F1 score and TPR but
a decrease in FPR as the number of nodes increase. To this, our method performs
quite well even on a large network.

102



p 10 15 25 30
TPR 0.63 0.50 0.43 0.50
FPR 0.05 0.04 0.02 0.02

F-score 0.56 0.47 0.43 0.47

Table II. Simulation result for TPR, FPR and F-score as p, the number of
nodes increase

Figure 4.4. The Arabidopsis thaliana clock network.

4.4.2 In silico experiment: Arabidopsis thaliana clock

The question we address here is to check whether the links recovered by our method
are actually reproducible. To do that we want to validate the model of the Ara-
bidopsis thaliana oscillator by Salome and McClung (2004). The Arabidopsis is a
model plant system that results from a combination of forward and reverse genetic
approaches together with transcriptome-scale gene expression analyses. We consider
a simple model of Arabidopsis clock made up of 9 genes namely, CCA1, LHY, TOC1,
ELF4, ELF3, GI, PRR9, PRR5 PRR3 with 3 replicates. Most importantly Salome
and McClung (2004) focus on the interaction between 4 out the 9 genes, namely
LHY, CCA1, TOC1, and GI. The gene CCA1 has its corresponding protein named
CIRCADIAN CLOCK ASSOCIATED 1. The gene LHY encodes a single Myb do-
main protein and is closely related to CCA1, both are important for proper clock
function. Figure (4.4) depicts the genomic interaction in the Arabidopsis thaliana
clock recovered by Salome and McClung (2004). It reveals a regulation activities
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Figure 4.5. Reverse genetic appraoch on Arabidopsis thaliana clock. Nodes
refers to genes expression whiles empty nodes indicates latent variables
in the form TFs.

between CCA1 and LHY, this link came about with the analysis of the TOC1 pro-
moter and closed the loop of the Arabidopsis clock. The model from Salome and
McClung (2004) reveals that TOC1 acts as a positive regulator of the expression
levels of CCA1 and LHY. The model also posits the repressive activity of CCA1 and
LHY on TOC1. The gene GI is also necessary for high-level expression from the
CCA1 and LHY.

In an attempt to recover the model of Arabidopsis thaliana clock by Salome and
McClung (2004), we applied our method to the data with 2 hidden or latent variables
in the form of transcription factors. Our recovered network is shown in Figure
(4.5). For easy comparison purpose, we also focus on the interaction between two
subnetworks representing the interaction between CCA1, TOC1, GI, LHY. The two
subnetworks are subnetworks from Figure (4.4) and Figure (4.5). Both subnetworks
supports the hypothesis that TOC1 is a positive regulator of the expression level of
CCA1. Our result also confirms the interaction between CCA1 and LHY. However
our method has failed to recover the negative regulatory activity of CCA1 and LHY
on TOC1. Table (III) compares the two networks in terms of how many correct links
we have recovered.
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True network
Links No Links Total

Estimated network Links 6 2 8
No Links 2 2 4
Total 8 4 12

Table III. Comparison of a model of the Arabidopsis thaliana oscillator sub-
network (True subnetwork) and the subnetwork recovered by our method
(Estimated subnetwork). The true subnetwork comprises of 8 links out
of which our method recovered 6 correctly.

4.5 Application

Following from chapter (3), section (3.3.4), we have assumed the dimension of the
hidden state k to be 4 and we applied our L1 penalized inference method to the t-
cell time course gene expression data introduced in section (3.5) of chapter (3). For
each replicate, yt and xt consist of 45 genes and 4 transcriptions factors respectively,
each, measured at 10 different time points, i.e for each replicate r, yt and xt are of
dimension (45×10), (4×10) respectively. Some of these genes include RB1, CCNG1,
TRAF5, CLU.... We estimated a total number of 2401 parameters consisting of B,
A, Z and F . To do that, we iterate across the penalty parameters namely 4 differ-
ent sequence of tuning parameters sB, sA, sZ and sF . While LARS produces the
entire path of solutions, we make prediction or extract coefficients from the fitted
LARS model using the predict function in LARS. The predict function allows one
to extract a prediction at a particular point along the path. This procedure is re-
peated until convergence. We then have different set of estimated model parameters
corresponding to each set of tuning parameters. At this stage, we applied model
selection technique via minimum AICc described in section 4.3.3 to select the op-
timum parameters. At the end, we obtained the connectivity matrix of the directed
genomic graph. The estimated optimum tuning parameters has given rise to fairly
sparse networks.

The outputs are graph showing connections from one gene expression variable at
a given time point t to another gene expression variable whose expression it influences
at the next time point, t + 1. The output depicted in Figure (4.6) is a sub-network
that shows the topology of gene FYB. We found that the genes such as CCNA2, FYB,
and CASP8 are mostly activation genes. Specifically, FYB activates the expression
level of genes such as GATA3, CCNA2, CD69, IL3RA while CASP8 activates genes
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such as: JUND, CDC2, CD69. Figure (4.7) recovers the interactions between the
Jun proteins family and other genes. It identifies JUND to have significant number
of connections in the form of activation and inhibitions. The structure of the network
is visualized using the R package for Network analysis and visualization igraph.

TRAF5

CD69

IL4RCASP8

CCNA2

GATA3

FYB

IL2RG MAP3K8

IL3RA

Figure 4.6. Subnetwork found representing the topology of gene FYB in
connection with some selected genes

Our method has resulted in relatively sparse networks as compared to the ap-
proach in chapter (3). In all, the following genes were found to have the highest
number of interactions in terms of inwards directed connections: TRAF5, C3X1,
CASP4, CDK4 and IL3RA. In addition, from a topological point of view genes such
as JUND, AKT1, FYB, and CCNA2 occupy a crucial position in the recovered net-
works. We recommend these genes to be object of further study by biologist. These
results support the works of Rangel et al. (2004); Wild et al. (2004). Both found gene
FYB to occupy an important position in their respective graphs. At the optimum
turning parameter, we found JUNB interacting directly with CASP4 through JUND;
a result also supported by Beal et al. (2005). The unpenalized inference approach
from chapter (3) has indicated that JUNB activates directly CDC2. This work also
supports the same interaction. A portion of the sub-network found by Beal et al.
(2005) and Andrea et al. (2010) representing the interactions between CASP4 and
JUND is also found in our network through Figure (4.7). Another interesting inter-
actions that was supported by previous literature were interactions between JUND
and CASP7 on one hand and interactions between JUND and CDC2 both in the
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form of inhibitions. JUND is predicted to repress the expression level of the cell
cycle regulator CDC2. This clearly supports the hypothesis that JUND negatively
regulates cell growth and acts as anti-proliferative and anti-apoptotic signal genes.

Our work reveals that genes such as AKT1 and MLC1 also occupy a crucial
position. AKT1 is found to influence the expression level of many genes. Of these,
include the JUN proteins JUNB , one interleukin receptor gene IL3RA, one apoptosis-
related cysteine protease CASP4, the cell division cycle CDC2. AKT1 is also seen
to activate the expression level of a transcription factor. In our model, MLC1 is
found to regulate positively the expression level of one of the transcription factors.
Also MLC1 represses several genes including CASP7, CDK4, C3X1 to mention but
few. Andrea et al. (2010) found that CAPS4 inhibits the expression level of CAPS8.
This interaction was supported by our work. Beal et al. (2005) did not recover such
interaction. Also some findings, through Figure (4.7) of our current study do not
support the work of Beal et al. (2005) in the sense that we found no interactions
between JUND and Caspase-7 and also between JUNB and MAPK8. Thus, the
results based on our methodology suggest some findings that are supported by the
current literature and are biologically interpretable, while some other findings have
not been documented yet in biological literature and we hope these new findings will
be confirmed in the near future.

 Subnetwork of the Jun proteins family and apotostic genes 

JUND

SMN1

CASP8

CDC2

CASP4

CASP7

MAP3K8

JUNB

Figure 4.7. Subnetwork found representing the interactions between Jun
proteins family and other genes
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4.6 Conclusion

In this chapter, we have inferred a sparse dynamic network by using an input depend-
ent penalized linear state space model. We have assumed that the true biological
process is not fully observed and the hidden variables were first calculated using a
Kalman filtering and smoothing algorithm via an E-step. We then proceed to update
the model parameters through an L1 regularization constraint via LARS algorithm
in the maximization step. We used AICc to determine the optimum combination of
tuning parameters and hence the model parameters.

The method we have presented in this chapter can be viewed as an Expectation-
Regularization-Maximization approach which produces sparse high-dimensional gene
dynamic regulatory networks. Most importantly, the LARS algorithm adopted guar-
antees us interpretable model, and accurate predictors. The advantages of using
linear SSM stems from the fact that the linearity assumption has resulted in a more
stable network and has enabled us to recover the dynamics of the network easily
as compared to the nonlinear relationships. The inference method via LARS is po-
tentially revolutionary, offering interpretable models, relative stability, accurate pre-
dictions, unbiased inferences, and a nice graphical display of coefficient paths that
indicates the key tradeoff in model complexity. We used the R package for Network
analysis and visualization igraph to display simple, and easy to understand graph
through which the whole system under study can be ascertained quite easily.

Gene regulatory interactions surely include complex interactions which nonlinear
SSM may capture well. To recover networks from nonlinear models is however com-
plicated in both theory and computationally, especially in high dimensional setting.
Future works will encompass extending the linear SSM into a Non Linear State Space
Model whose hidden process will be defined through an integration of an Ordinary
Differential Equation and estimate both parameters and hidden variables through the
same inference technique. We also plan to overcome the ODE limitations namely
ability to handle noisy data and the high number of model parameters by integrating
a sparse ODE model into a graphical model framework, thus taking noisy measure-
ment into account, and the resulting model will then be embedded into a penalized
maximum likelihood learning set-up.
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Appendix A

R-package: glassomix

A.1 Descrption

The software glassomix provides a general framework for networks recovering through
a model-based soft clustering. It provides functions for parameter estimation via the
Penalized EM algorithm for Gaussian graphical mixture models in high dimensional
setting. The main function is glasso.mix upon which a model selection is per-
formed. The package estimates the optimum number of mixture components K and
the tuning parameter (lambda) based on the Extended Bayesian Information Cri-
teria -EBIC- via select.gm function. The graphical structural of the K networks
are also plotted through the function gm.plot

A.2 glassomix-package

A package for high dimensional Undirected Graphical Mixture Models selection.
This package provides an implementation of the procedures described in chapter
(2). The main function is glasso.mix. This function performs the graph estimation
using glasso and a model selction is performed based on Extended Bayesian Inform-
ation Criterion through the function select.gm. The graphical structural of the
K subgroups of population of individuals is estimated and plotted via the function
gm.plot.
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A.3 The functions

A.3.1 glasso.mix: sparse Gaussian undirected graphical mixture model estimation

This is the main function that performs the inference via EM algorithm. This func-
tion for each value of K, estimates the responsibility matrices (n×K) at the E-step
and then given these probabilities, estimates the precision matrices at the M-step
via glasso.

Usage

glasso.mix(data,K=NULL,lambda=NULL,em.iter,n.lambda,

penalize.diagonal=TRUE, ebic.gamma=0.5,Kmax)

Arguments

• data: n× p; rows = n, number of observation, columns = p, number of graph
nodes/variables.

• K: A sequence of integers denoting the number of mixture components (clusters).

• lambda: (Non-negative) regularization parameter for glasso. lambda=0 means
no regularization. It could be a scalar or a vector.

• em.iter: The maximum number of EM iteration.

• n.lambda: The length of the tuning parameter lambda.

• penalize.diagonal: Should diagonal of precision matrix be penalized? De-
fault is FALSE.

• ebic.gamma: The Extended Bayesian Information Criteria parameter, usually
ebic.gamma is between 0 and 1.

• Kmax: The maximum number of K.

Value

The details of the output components are as follows:

1. res: A list with the following components:
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• loglik: A vector value of un-penalized log-likelihood for each value of K.

• naiveloglik: A vector value of naive log-likelihood extracted from glasso
for each value of K.

• n.par: Total number of estimated parameters in each of the precision
matrices corresponding to each value of K at the various regularization
parameters.

• bestlambda.ebic: Optimal tuning parameter corresponding to K.

• besttheta.ebic: The penalized precision matrix corresponding to the
optimal EBIC for each value of K.

• bestpi.ebic: The mixture proportion corresponding to the optimal EBIC
for each value of K.

• Theta.Pen: Penalized precision matrices corresponding to each value of
K at the various regularization parameters.

• Theta.NonPen: Non-penalized precision matrices corresponding to each
value of K at the various regularization parameters.

• pi.ind: Responsibility matrices (n ×K) corresponding to each value of
K for the various regularization parameters. It can also be seen as vector
of probabilities (wi1, ..., wiK) of individual i belonging to the k classes at
penalty λ.

• pi: K Mixing coefficients for the various regularization parameters.

• EBIC: All EBIC values for each value of K at the various regularization
parameters.

2. lambda: The sequence of regularization parameters used.

3. Kmax: The maximum number of mixture components.

4. n.lambda: The length of the tuning parameter lambda.

5. data: The data matrix.

A.3.2 gm.plot: Graphical plot of the K networks

Plots the optimum K precision matrices corresponding to the optimum EBIC.

Usage

gm.plot(output)
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Arguments

output: It is a list which is the result of select.gm function. It shows the graphical
representation (dependencies ) of the p-variables in each cluster.

A.3.3 select.gm: High dimensional sparse Gaussian graphical mixture model
selection

This function selects the optimal model according to Extended Bayesian Informa-
tion Criterion (EBIC) for EM- algorithm for parameterized High dimensional sparse
Gaussian graphical mixture models. The function estimates the optimum number of
mixture components and the regularization parameter lambda.

Usage

select.gm(ret)

Arguments

ret: It is a list which is the result of glasso.mix function. It Implements the model
selection clustering through a model selection based on the EBIC for a parametrized
Gaussian graphical mixture model acrossK for each of the regularization parameters.

Value

The details of the output components are as follows:

• n.cluster: Optimal number of clusters or mixture components.

• eBIC: All EBIC values.

• lambda.eBIC: Optimum lambda value based on minimum EBIC.

• Th.Pen: n.cluster precision matrices.

• Th.NPen:n.cluster non-penalized precision matrices.

• Pi.ind: Optimum responsibility matrices (n×n.cluster) corresponding to the
soft-K-means clustering.

• Pi: Optimum mixture proportions based on EBIC criterion.
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• clusters: (n × 1) vector containing the indices of the clusters where the data
points are assigned to.

• Pen.LogLik : The un-penalized log-likelihood corresponding to the optimal
EBIC.

• NPen.LogLik: The naive un-penalized loglikelihood corresponding to the op-
timal EBIC.

• lambda: The sequence of regularization parameters used.

A.3.4 summary.glasso.mix: Summary of results

Reduced summary of the result according to glasso.mix.

Usage

summary(object,...)

Arguments

object: an object with S3 class glasso.mix. A list of the result from the function
glasso.mix.

value

The details of the output components are as follows:

• lambda: The sequence of regularization parameters.

• pi: Mixture proportions for each K across lambda.

• bestlambda.ebic: Optimum lambda value based on EBIC for each K.

• besttheta.ebic: The penalized precision matrix corresponding to the optimal
EBIC for each value of K.

• n.par: Total number of estimated parameters in each of the precision matrices
corresponding to each value of K at the various regularization parameters.
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A.3.5 summary.select.gm: Summary according to the model selection function
select.gm

Usage

summary(object,...)

Arguments

object: an object with S3 class select.gm. A list of the result from the function
select.gm function.

value

The details of the output components are as follows:

• mix.comp: Optimal number of clusters.

• lambda.eBIC: Optimum lambda value based on EBIC.

• clustering: (n × 1) vector containing the indices of the clusters where the
data points are assigned to.

• mix.prop: Optimum mixture proportions.
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Appendix B

Proof of lemma 2.2.1

We give a proof of the existence and uniqueness of the strongly consistent MLE.
Let fγ(y) be a probability density function of a vector variable y ∈ Rn and

a vector parameter γ ∈ Rυ. If {yi}ni=1 is an independent sample of observations
on a random variable y ∈ Rn whose probability density function is fγ0(y) for some
γ0 ∈ Rυ, then an MLE of γ0 is a choice of γ which locally maximizes the log likelihood
function ly(γ).

If f is a differentiable function of γ, a necessary condition for an MLE is that,
for the likelihood equations,

∂l

∂γl
= 0; l = 1, ..., υ

be satisfied, where γl is the lth component of γ. In the following, the objective
is to show that, if f satisfies certain conditions, then given any sufficiently small
neighborhood of γ0, there is, with probability, 1 as the sample size n approaches
infinity, a unique solution of the likelihood equation in that neighborhood, and this
solution is a MLE of γ0.

Assume that fγ(y) satisfies assumptions A1-A2: Let

H(γ) =


1
n

∂l
∂γ1
...

1
n

∂l
∂γυ


Clearly if the likelihood equations are satisfied, H(γ) = 0 and by the law of large

numbers, H(γ0) converges to 0 with probability, 1. Next, it follows from conditions
A1-A2 that there exists a neighborhood ρ0 of γ0 (contained in ρ and, for convenience,
convex) and a positive ϵ such that, with probability, 1 as n approaches infinity,
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∇H(γ) < −ϵI for all γ ∈ ρ0,where ∇H denotes the vector of partial derivatives of H
with respect to the coordinates of γ . Denoting the spherical neighborhood of radius
δ about γ0 by ρδ, we establish the following:

Lemma B.0.1. With probability 1 as n approaches infinity

1. H is one to one on ρ0,

2. H(ρδ) contains the ball of radius ϵδ about (γ0) whenever ρδ ⊆ ρ0

Proof. We may assume that ∇H(γ) < −ϵI for all γ ∈ ρ0, since the probability that
this is the case is 1 as n approaches infinity. To prove lemma B.0.1 (1), suppose that
H(γ1) = H(γ2) for γ1 and γ2 ∈ ρ0. Then

0 = (γ1 − γ2)
′
[H(γ1)−H(γ2)]

= (γ1 − γ2)
′
{∫ 1

0

∇H [γ2 + t(γ1 − γ2)] dt
}
(γ1 − γ2)

(B.1)

The negative-definite aspect of ∇H implies that γ1 = γ2, and lemma B.0.1 (1) is
proved.

To prove lemma B.0.1 (2), suppose that ρδ ⊆ ρ0, and let γ1 be a boundary point
of ρδ. Then,

H(γ1)−H(γ0) =

{∫ 1

0

∇H [γ0 + t(γ1 − γ0)] dt
}
(γ1 − γ0)

After left-multiplying this equation by (γ1−γ)
′
, one verifies using Schwarz’s inequality

and the negative-definite aspect of ∇H that

||H(γ1)−H(γ0)|| > ϵ||γ1 − γ0|| = ϵρ

where || || denotes the usual Euclidean norm on Rυ. Since all boundary points of
H(ρδ) are images under H of boundary points of ρδ, the proof of lemma B.0.1 (2) is
complete.
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Summary

This thesis is concerned with the problem of genomic networks modelling and in-
ference from non-homogenous data or from high-throughput data sources such as
microarray gene expression data. We have derived a statistical method that infers
the complexity and the conditional independence structure of the network topology,
the functional relationships between the genes and deduce the kinetic structure of
the network. The diverse nature of biological systems will increasingly require mod-
elling tools that can be used to properly design and interpret biological networks.
We have proposed two novel networks inference methods, namely penalized Gaussian
graphical mixture model and a penalized state space model.

Gaussian graphical models explore dependency relationships between random
variables by estimating the corresponding precision matrix. We have considered the
problem of large networks reconstruction from heterogeneous data using a Gaussian
graphical mixture model (GGMM). Parameters were learned through a penalized
maximum likelihood technique by imposing an L1 penalty constraint on the precision
matrix. We have provided general consistency results for the penalized maximum
likelihood estimator in the Gaussian graphical mixture model. Our results indicate a
better performance in parameter consistency as well as in graph selection consistency
with penalty rates λn proportional to n−1/2. Our method is suitable for recovering
large networks from non-homogeneous data.

Next, to incorporate a temporal dependency structure in the model and to ac-
count for latent or hidden variables in the process we introduced a state space model.
Inferring dynamic networks involving hidden or latent variable is an important chal-
lenge. Using a dynamic state space representation, we devised a method for inferring
regulatory networks from high-dimensional data using linear Gaussian state space
models. Our method is based on an EM algorithm with an incorporated Kalman
smoothing algorithm in the E-step to calculate the hidden states. We obtained an
explicit formulation of the parameters defining our state space model. Parametric
bootstrap was used to determine the selection of parameters and edge selection or
deletion is done through hypothesis testing at a particular significance level α. We



have used the AIC to determine the hidden state’s optimal dimension.
Because of the high-dimensional nature of such data coupled with a sparsity

assumption, the maximum likelihood approach for parameter learning is prone to
be noisy. Also, parameter identifiability can be an issue. A natural way to avoid
the above problems is through regularization. We have built an input dependent
SSM and employed a penalized maximum likelihood inference in the context of the
EM algorithm. This is achieved via a modified version of the LARS algorithm. As
a result, we are able to add some useful biological interpretation to the obtained
estimates.
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Samenvatting

Dit proefschrift gaat over het modelleren en de inferentiële analyse van genetische
netwerken met behulp van niet-homogene data van typisch automatisch meetmeth-
odes, zoals gen expressie microarray technieken. Wij presenteren een statistische
methode die de complexiteit en de afhankelijkheidsstructuur van een netwerktopolo-
gie, die de functionele relaties tussen genen weergeeft, kan vaststellen en we leiden de
kinetische structuur van dit netwerk af. De vraag naar gepast gereedschap om biolo-
gische netwerken te ontwerpen en te interpreteren neemt toe. En door de ontwikkeling
hiervan kan een steeds grotere verscheidenheid aan biologische systemen bestudeerd
worden. Wij stellen twee nieuwe methoden voor netwerkinferentie voor: gepenal-
iseerde Gaussische grafische samengestelde modellen and state-space modellen.

Met behulp van Gaussische grafische modellen kunnen afhankelijkheidsrelaties
tussen stochasten onderzocht worden door de bijbehorende precisiematrix te schat-
ten. Het probleem van netwerkenreconstructie op basis van heterogene data hebben
we aangepakt door een Gaussische grafisch samengesteld model (GGSM) te introdu-
ceren. De parameters in dit model worden geschat met behulp van een gepenaliseerde
maximum likelihood techniek, waarbij een L1-penalisatie op de precisiematrix wordt
uitgevoerd. Dit is een belangrijke vernieuwing op dit gebied; we formuleren het
Gaussische samengestelde modelleerprobleem in de context van Gaussisch grafisch
modelleren. Het GGSM is in staat clusters van individuele componenten te identi-
ficeren. We bewijzen ook de consistentie van het gepenalizeerde meest waarschijnlijke
schatter.

Om rekening te houden met tijdsafhankelijkheid en latente variabelen hebben
we het state-space model (SSM) gëıntroduceerd. Het analyseren van dynamische
netwerken, waarin latente variabelen een rol spelen, is een uitdaging. Door gebruik te
maken van een dynamische state-space representatie in de vorm van lineaire Gauss-
ische state space modellen, hebben we een methode ontworpen om netwerken te
bepalen op basis van hoog-dimensionale data. De schatttingsmethode hierbij is ge-
baseerd op een EM-algoritm met een Kalman smoother algoritme in de E-stap om de
latente toestand te berekenen. We verkrijgen vervolgens een expliciete formulering



van de parameters, die ons state space model definiëren. Tot slot gebruiken we para-
metrische bootstrap om de parameters te selecteren en voegen relaties in het grafische
model in of verwijderen deze op basis van het testen van hypotheses bij een bepaald
significantie niveau α. We gebruiken de het AIC criteria om het optimale aantal
latente variabelen te bepalen.

Vanwege het hoog-dimensionale karakter van de data die we bestuderen, is de
maximum likelihood benadering gevoelig voor ruis. Bovendien, de identificeerbaar-
heid van de parameters is in deze situatie ook niet vanzelfsprekend. Een natuurlijke
manier om deze problemen te vermijden is door middel van regularisatie. We definiëren
daarom een input-afhankelijk SSM en gebruiken een gepenaliseerde maximum like-
lihood strategie in de context van het EM algoritme. Hierbij maken we gebruik
van een aangepaste versie van het LARS algoritme. Tot slot presenteren we nuttige
interpretaties van het model in specifieke gevallen.
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