

 University of Groningen

Management and evolution of business process variants
Bulanov, Pavel

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2012

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Bulanov, P. (2012). Management and evolution of business process variants. s.n.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 03-06-2022

https://research.rug.nl/en/publications/81475bb0-c323-41ed-a6e1-373eefba4d01

Management and Evolution of
Business Process Variants

Pavel Bulanov

This research was supported by the Netherlands Organization for Scientific Re-
search (NWO) under project number 638.001.207 whithin the scope of the Jacquard
program.

RIJKSUNIVERSITEIT GRONINGEN

Management and Evolution of Business Process
Variants

Proefschrift

ter verkrijging van het doctoraat in de
Wiskunde en Natuurwetenschappen
aan de Rijksuniversiteit Groningen

op gezag van de
Rector Magnificus, dr. E. Sterken,
in het openbaar te verdedigen op

dinsdag 11 december 2012
om 11.00 uur

door

Pavel Bulanov

geboren op 2 augustus 1980
te Bobruysk, Wit-Rusland

Promotor: Prof. dr. M. Aiello

Copromotor: Dr. A. Lazovik

Beoordelingscommissie: Prof. dr. P.W.P.J. Grefen
Pror. dr. M. Aksit
Prof. dr. M. Mecella

ISBN: 978-90-367-5864-2
ISBN ELECTRONIC VERSION: 978-90-367-5966-3

Contents

Acknowledgements v

Samenvatting vii

1 Introduction 1
1.1 Case–Study: Variability in Local eGovernment 4

1.1.1 Business Process Variability . 5
1.1.2 Business Process Evolution . 5
1.1.3 Runtime reconfiguration . 7

1.2 Management of Business Process Variants 9

2 Related Work 13
2.1 Business Process Variability . 14

2.1.1 Declarative vs. imperative variability 15
2.1.2 Annotation–based Variability 18
2.1.3 Variability by Underspecification 22
2.1.4 Declarative Process Execution 24
2.1.5 Runtime Business Process Reconfiguration 27

2.2 Business Process Generation . 28
2.2.1 Process Merge . 28
2.2.2 Workflow Mining . 33
2.2.3 Other Approaches to Business Process Generation 35

3 The Case of Design Time 39
3.1 Basic Definitions . 41
3.2 Template Design . 43

i

Contents

3.2.1 Declarative Techniques . 44
3.2.2 Imperative Techniques . 50

3.3 Constraint Relations . 56
3.3.1 Prerequisite . 56
3.3.2 Exclusion . 57
3.3.3 Substitution . 57
3.3.4 Corequisite . 57
3.3.5 Exclusive–Choice . 58

3.4 Variant Design: An Example . 58
3.5 Process Healthiness . 61
3.6 Variant Validation . 61

3.6.1 Model Conversion . 62
3.6.2 Validation Algorithm . 62

3.7 Evaluation . 66
3.7.1 The Imperative Case . 66
3.7.2 The Declarative PVDI Case . 67
3.7.3 Expressive Power . 67
3.7.4 Ease of Use . 69

3.8 Implementation and Performance Results 74
3.9 Discussion . 75

4 Business Process Transformation 79
4.1 A Temporal Logic of Business Processes 80

4.1.1 Temporal Process Logic . 81
4.1.2 Discussion . 85

4.2 Process representation and transformation 86
4.2.1 Transformations . 91
4.2.2 Business Process Evolution through Transformation Functions 96
4.2.3 Implementation and Evaluation 97

4.3 Discussion . 97

5 The Case of Run Time 101
5.1 Runtime Variability using Dependency Scopes 102

5.1.1 Dependency Scopes within WMO Process Example 103
5.1.2 Required Intervention Processes 103
5.1.3 Automatic Intervention Process Generation 106

5.2 Architectural Overview . 107
5.3 Basic Concepts . 109

5.3.1 Business Process . 109

ii

Contents

5.3.2 Dependency scope . 112
5.3.3 The Planning Domain . 115

5.4 Automatic Intervention Process Generation 116
5.4.1 Generation of the Planning Domain 116
5.4.2 Composition of the initial planning state 118
5.4.3 Generating the IP . 118

5.5 The Prototype . 119
5.5.1 Process Modeller . 120
5.5.2 The Process Executor . 121
5.5.3 The planner . 124

5.6 Evaluation . 124
5.7 Discussion . 125

6 Conclusion 129

A Modal Logics in a Nutshell 133
A.1 Linear Temporal Logic (LTL) . 134
A.2 Computational Tree Logic (CTL) . 135

Bibliography 137

iii

Acknowledgments

First and foremost, I would like to thank my supervisor, Prof. Dr. Marco Aiello. Dur-
ing the whole study he has been encouraging me to dare the challenges of computer
science and not hesitate to try another way or look from a different perspective on
the same problem. Thanks to his razor-sharp feedback, I was constantly in a proper
shape and ready to describe and defend the results of my work with my bare hands.
It remains a mystery for me how did he manage to find time to deal with my ques-
tions and read the numerous revisions of my writings, even being overwhelmingly
busy with other projects and occupied by a dozen of knowledge–lusting students.

In the same spirit, I thank my co-supervisor, Dr. Alexander Lazovik, who showed
me that computer science is a bit more than typing Java code in Notepad. On those
not so infrequent occasions when Marco was quite busy, Alexander was always
ready to take the lead and to discuss any new ideas, no matter how crazy might
they look at a glance. Yet it did not stop him from telling the bitter truth should he
see a weak point in the middle of an ingenious proof.

I thank the members of the reading committee Prof. Dr. Massimo Mecella, Prof.
Dr. Mehmet Aksit, and Prof. Dr. Paul Grefen for careful examination of my thesis.
In addition, I would like to thank Prof. Dr. Wim Hesselink, who thoroughly revised
the formal part of the first two-thirds of this thesis.

I acknowledge the importance of cooperation and joint work with my colleagues
and members of SaS-LeG team, and I specially note Heerko Groefsema, my in-
evitable co-author and just a kind person who agreed to translate the summary of
this thesis into Dutch. I also thank Nick van Beest and Eirini Kaldeli, with whom
I spent countless hours discussing the different aspects of process variability and
who were also noticed in co-authoring with me. I thank Prof. Dr. Hans Wortmann
for his valuable feedback, Prof. Dr. Paris Avgeriou for the occasional inspirations
during my study, Dan Tofan for trying to make a common research despite the fact
that we never actually made it, and Dr. Matthias Galster for showing an example of
a productive researcher and fast writer.

v

I would also like to thank my colleagues from the Distributed Systems research
group who are at the same time competitors for a precious and limited resource:
time slots for meeting with Marco. Still, we have nice and friendly atmosphere in
our group, and here are the people responsible for that, in random order: Saleem
Anwar, Faris Nizamic, Ehsan Ullah Warriach, Viktoriya Degeler, Ilche Georgievski,
Ando Emerencia, Andrea Pagani, and Tuan Anh Nguyen. I would also like to men-
tion former colleagues and passers–by from the department, some of whom also
managed to graduate in the last couple of years and thus inspired me with positive
examples. Here they are: Dr. Aree Witoelar, Dr. Kerstin Bunte, Dr. Petra Schneider,
Elena Lazovik, Alexander Bograd, George Azzopardi, Ioannis Giotis, Mahir Can
Doganay, Elie El-Khoury, and Artemios Kontogogos.

It goes without saying that my family provided me with the best support and
encouragement, even being half a continent away. My mother wanted me to travel
around the world and stay home at the same time, which posed a challenge I had to
deal with somehow. Yet she actively encouraged me to start a PhD study and to cope
with the troubles in the middle, and it would not be possible to complete this thesis
without her constant support and patient waiting. My father always encouraged
my to reason in a scientific way and always to justify my yet unripe conclusions on
the nature of things. Thanks to him, I was immune to the call of fashion and chose
the way of computer science neglecting all the fancy trends. I deeply regret that he
did not live to see this thesis printed, but I am sure he would have been happy and
proud of me.

Finally and most specially, I thank my wife Olga for all the patience and support
she demonstrated over the years of waiting and wondering. We are together now in
spite of all the destructive efforts, which instigates me to ponder on the truth of the
following quotation: “Whatever may befall thee, it was preordained for thee from
everlasting” [Augustus 167 A.D.].

Pavel Bulanov
Groningen

November 14, 2012

Samenvatting

Bedrijfsprocesmanagementsystemen (BPMS) maken het mogelijk om processen bin-
nen bedrijven en organisaties te automatiseren, en vertegenwoordigen voor deze
entiteiten doorgaans de centrale doelstelling en toegevoegde waarde. Een grote ho-
eveelheid onderzoek is besteed aan het voorzien van intuı̈tieve en krachtige mod-
elleerhulpmiddelen en infrastructuren ter ondersteuning van het uitvoeren van bedri-
jfsprocessen. Met de uitgestrekte adoptie van deze hulpmiddelen en de groeiende
complexiteit van organisaties, is er echter meer ondersteuning nodig. Wanneer
een organisatie groot genoeg is om uit afdelingen en gelieerde ondernemingen te
bestaan, zou een situatie kunnen ontstaan waar afzonderlijke afdelingen vergelijk-
bare processen hebben geı̈mplementeerd op soortgelijke maar niet exact dezelfde
manier. Een dergelijke familie van soortgelijke processen kan gezien worden als een
reeks verschillende versies van hetzelfde generieke proces, maar blijven verschil-
lende entiteiten vanuit het perspectief van de BPMS. Hierdoor wordt het moeilijk
om alle versies tegelijk te onderhouden of om massamodificaties toe te passen wan-
neer bepaalde organisatiebrede regels veranderd zijn en deze veranderingen in veel
bedrijfsprocessen tot uiting komen. Een verandering in wetgeving zou bijvoorbeeld
veranderingen in alle gerelateerde bedrijfsprocessen kunnen impliceren.

In dit proefschrift wordt het probleem van het onderhouden van een reeks soort-
gelijke bedrijfsprocesversies geanalyseerd vanuit verschillende perspectieven. Eerst
wordt een raamwerk met declaratieve basis voor het modelleren van generieke pro-
cessen gepresenteerd. Met dit raamwerk bieden we een intuı̈tieve manier om bedri-
jfsprocessen, of families van bedrijfsprocessen, te beschrijven door middel van onze
nieuwe visuele modelleertaal die op Business Process Modeling Notation (BPMN)
gebaseerd is en is aangevuld met extra modelleerelementen. Deze extra elementen
variëren van simpele eenrichtingspijlen die een relatie tussen twee bedrijfsprocese-
lementen beschrijven tot gecompliceerde groepselementen die gehele sub-processen

viii Contents

omvatten. Voor elk van de visuele elementen is er een transformatieregel die voor-
schrijft hoe dat element in een reeks tijdslogicaformules wordt geconverteerd. Dit
maakt het mogelijk om een visuele modelleeromgeving te hebben die uitbreidbaar
is in de wijze waarop extra elementen toegevoegd kunnen worden zonder dat de
gehele architectuur schade wordt betrokken.

Daarna wordt het probleem van het doorzetten van veranderingen behandeld in
de vorm van geautomatiseerde bedrijfsprocestransformaties. Deze transformaties
zijn gebaseerd op het vergelijken van twee bedrijfsprocessen op basis van hun tem-
porale representaties. Als gevolg is de taak van het vergelijken van procesmod-
ellen gereduceerd tot de taak van het vergelijken van twee reeksen van formules.
Tevens utiliseren we, in plaats van bestaande tijdslogica, een nieuwe extensie die
het mogelijk maakt om het verschil tussen de begrippen “altijd gevolgd door” en
“soms gevolgd door” te onderscheiden. Dergelijk onderscheidend vermogen wordt
bereikt door het gebruik van verschillende types vertakkingen in een bedrijfspro-
cesmodel die het mogelijk maken om rekening te houden met niet alleen de anal-
yse van de paden in een graaf (zoals vele modale logica doen), maar ook de ver-
takkingspunten die zich in het pad bevinden samen met hun type (EN-splitsing of
OF-splitsing). Met behulp van deze logica (welke we TPL noemen, Temporal Pro-
cess Logic) hebben we een representatie die meer kan uitdrukken dan degenen die
gebaseerd zijn op klassieke tijdslogica.

En ten slotte wordt het probleem van het dynamisch repareren van processen be-
handeld met behulp van eenmalig automatisch gegenereerde bedrijfsprocessen. Het
feit dat een instantie van een bedrijfsproces incorrect is en gerepareerd moet wor-
den wordt geı̈dentificeerd door middel van speciale bewakingsregels die samen met
het bedrijfsproces gespecificeerd worden. In het geval van een verandering in de
uitvoeringsomgeving, zoals een modificatie in de data, worden de bewakingsregels
geverifieerd. In het geval dat één van deze regels overtreden wordt, moet tijdens
de uitvoering een reparatieproces gegenereerd worden met behulp van geautoma-
tiseerde planningstechnieken. De gehele lifecycle is ontwikkeld in de vorm van een
prototype voor een bedrijfsprocesexecutiesysteem die het luisteren naar data mod-
ificatie gebeurtenissen, het verifiëren van bewakingsregels en het aanroepen van
een Kunstmatige Intelligentie (KI) planner om een reparatieproces samen te stellen
ondersteunt.

Samenvattend: Het raamwerk beschreven in dit proefschrift ondersteunt bedri-
jfsprocesvariabiliteit tijdens zowel de ontwerp- als de uitvoeringsfase met aanvul-
lende ondersteuning voor bedrijfsprocesevolutie. Het denkbeeld is echter hetzelfde
voor alle facetten van bedrijfsprocesmanagement en is gebaseerd op de represen-
tatie van een bedrijfsproces als een reeks logicaformules die daarna verwerkt en
geanalyseerd worden met behulp van bestaande hulpmiddelen.

Contents ix

Het onderzoek dat in dit proefschrift gepresenteerd wordt is gedaan in samen-
werking met het SaS-LeG project dat het doel heeft de applicatie van het Software
als Services paradigma te analyseren voor het specifieke geval van de Nederlandse
elektronische overheid. De in dit proefschrift geanalyseerde casussen waren daad-
werkelijk verkregen ten gevolge van een aantal interviews verricht als deel van het
SaS-LeG project. Als concrete casus beschouwen we de WMO–wet, aangezien deze
in de praktijk veel moeilijkheden geeft door zijn complicaties en grote verschillen in
de verwezenlijking door verschillende gemeentes.

Chapter 1

Introduction

Business processes are widely used to specify the lifecycle of an organization or a
governmental institution. In a nutshell, a business process is a formal description
of one specific routine task (or a series of routine tasks). More specifically, such a
description comprises a set of actions, which must be executed in a certain order to
fulfill a given task. Additionally, a business process can contain conditions which
prescribe which actions must or must not be executed, depending on the current
situation and the output from the actions already been executed.

Given a formal description of a business process, one can automate that process
in such a way that, once each of the actions is implemented as a piece of software,
a special Business Process Management (BPM) system can take care of the proper
execution of the actions of the business process. Even if a certain action requires
human decision, from the BPM point of view, such action is just a piece of soft-
ware which has a user interface and whose invocation can take a long time, ranging
from minutes to months. Consequently, a formal description of a business process
is enough to execute that process in automated way, provided that the description
is understandable by the business process engine in use.

Nowadays, specifically designed visual languages are used in order to describe
a business process. One of these languages is called Business Process Modeling No-
tation (BPMN, [Object Management Group (OMG) 2009]) which has been released
by the Object Management Group. Other examples of business process modeling
languages include UML activity diagrams [(OMG) 2005] and Event–Driven Process
Chains (EPC, [Sarshar and Loos 2005]).

There is extensive tool support by commercial vendors for business modeling
that uses one of the languages mentioned above, such vendors as SAP, Oracle, Mi-
crosoft, and many other less well known. The positive result of using a visual busi-
ness process modeling language is that such a model is easily comprehensible to a
human user, and as a result there is a higher perceived level of abstraction.

However, such approaches do not include any explicit support for flexibility
and change management, mainly because of the nature of modern business process
modeling languages which are focused on fully defined and stable business pro-
cesses; as a result, business process modeling tools “enforce unnecessary constraints

2 1. Introduction

on the process logic” [van der Aalst, ter Hofstede and Weske 2003].
Variability in software engineering is defined as the ability of a software system

to change and to support multiple versions at the same time. Such versions are typ-
ically called variants to emphasize the fact that those versions do not appear as the
result of evolution but rather represent different customizations which may be used
at the same time by different users. The initial version is usually called a reference or
a template to reflect the fact that this version is used as a basis for later customiza-
tions.

The problem of variability is considered to be an important issue in the field of
software product lines [Sinnema, Deelstra, Nijhuis and Bosch 2006, Pohl, Böckle and
Linden 2005]. In the case of BPM, the problem becomes even more challenging, since
the industrial business process modeling languages are oriented in terms of simplic-
ity and ease of use and, as a result, lack the powerful features of general–purpose
programming languages, such as class inheritance in object–oriented programming.

Moreover, different variants of the same business process constitute different
entities from the Business Process Management system perspective, and a modifi-
cation of one of these variants does not affect any of the others. On the contrary, it
is often desirable to manage all the variants as a linked family, when: a change at
the top level is propagated through the links to the variants, and, additionally, any
change in a variant is verified for consistency with the rest of the family of busi-
ness process variants. Specific problems of BPM systems require special techniques
harmonized with visual business process modeling languages and the details of
business process engines.

In [Balko, ter Hofstede, Barros and La Rosa 2009], the authors define, among the
other things, the following research challenges in the field of business process vari-
ability: (i) Reference Process Conformance and (ii) Reference Process Patchability.
The first challenge refers to the ability to validate a variant process and to establish
whether it respects the important characteristics of the reference process. The sec-
ond challenge refers to the ability to amend the reference process and to propagate
the changes to its variants automatically or semi–automatically.

In this thesis, we will show how to overcome those challenges with the help of
temporal logic formalisms, including the extension of well–known temporal logics
which better suits our needs. Additionally, we will introduce a new approach to
represent a business process as a set of logical formulas, which precisely describe a
business process model while at the same time leaving room for later customization.

We will introduce the results of our research with the help of a case study taken
from the field of Dutch e–Government. In the next section, this case study is de-
scribed in detail, with the focus on the problem of variability in the case of business
process management.

3

Figure 1.1: A fragment of WMO process.

4 1. Introduction

1.1 Case–Study: Variability in Local eGovernment

The Netherlands consists of 418 municipalities which all differ greatly. Because of
this, each municipality is allowed to operate independently according to their local
requirements. However, all the municipalities have to provide the same services
and execute the same laws. An example of such a law which is greatly subject to
local needs is the WMO (Wet maatschappelijke ondersteuning, Social Support Act,
2006), a law providing needy citizens with support ranging from wheelchairs, help
at home, home improvement, and shelter for the homeless.

Figure 1.2: Variability options within the WMO process.
Figure 1.1 illustrates a simplified version of the general WMO process. The pro-

cess shown here was based upon the commonalities between processes obtained

1.1. Case–Study: Variability in Local eGovernment 5

through interviews with seven different municipalities located in the Northern re-
gion of the Netherlands [van Beest, Bulanov, Wortmann and Lazovik 2010, van
Beest, Kaldeli, Bulanov, Wortmann and Lazovik 2012]. Municipalities interviewed
ranged in size, population, and income, and as well as differing in terms of being
either urban or rural areas. The process starts with an application procedure which
determines whether the request made by a citizen falls under the WMO law. If this
is not the case, the citizen must be advised by the municipality employee as to what
steps to take next. When the request made by the citizen does fall under the WMO
law, the application is added to the system, an indication is written up, and a deci-
sion as to whether to approve requested and in what form, whether partially or in
full, is made based upon the indication. The decision is then checked by a colleague,
and reported back to the citizen. After this, the support is either arranged for the
citizen if the decision is positive, or the citizen may object should the decision be
negative.

1.1.1 Business Process Variability

Within the general WMO process as illustrated in Figure 1.1 we discovered a large
amount of variability through the careful examination of the differences in the WMO
processes found at the seven municipalities [van Beest, Bulanov, Wortmann and
Lazovik 2010, van Beest et al. 2012]. Most notable was the variability concerning
the information gathering activities illustrated in Figure 1.2, which ranged from all
three the activities being included to only a home visit being included, from be-
ing in serial order to being in a loop, etc. Other variabilities included background
checks on citizens, checks in the objection loop, different application mechanisms
for different requests, and a decision check by a supervisor. Figure 1.2 illustrates
a traditional imperative variability view concerning the information gathering ac-
tivities of the WMO process. Here two variants are shown which may or may not
be used within the general template. Variant 1 contains the information gathering
activities in a loop, whereas Variant 2 contains them in a sequence. However, not all
three information gathering activities are required to be included or, in the case of
the serial variant, are required to be traversed in the same order, leading to a large
number of sub–variants and increasing complexity.

1.1.2 Business Process Evolution

Another relevant problem for e–Government is the problem of business process evo-
lution. The source of the problem lies in the fact that all of the governmental pro-
cesses, despite being flexible and customizable, have to adhere to the rules imposed

6 1. Introduction

by the laws. If the laws change, then all of the variants of a particular business
process have to be revised and possibly modified in order to conform to the new
regulations. If the requirements of the laws are implemented in the form of a busi-
ness process, then all the specific implementations within local municipalities can
be treated as variations of such a global business process.

Figure 1.3: Business Process Evolution

This idea is illustrated in Figure 1.3, with a template process representing the
global requirements in the upper left corner, and a customized one representing a
variant of some local municipality in the upper right corner. The arrow “1” rep-
resents the customizations of the global template process. The number “400” in-
dicates that such customizations can be made many times, for example, up to 400
times, since there are more that 400 municipalities in the Netherlands. In this kind
of situation there is a potential danger of simultaneous modifications, when a tem-
plate is modified after it has been customized (for example, in order to fix an error
in the specification). This kind of modification is represented by the arrow “2” in

1.1. Case–Study: Variability in Local eGovernment 7

the figure. The problematic case in this situation arises when the customized pro-
cesses (there may be many of them) must be changed in order to take into account
the template modification. The arrows “3” and “4” represent two possible ways to
propagate the original modifications, but in both cases that propagation must be
repeated as many times as there are variants.

1.1.3 Runtime reconfiguration

Another important issue in the field of business process management is the han-
dling of possible variations happening at run–time. Those variations are mostly
occasional by their very nature, since the situations which happen frequently can be
handled in the business process description.

In the scope of the WMO process, the part which is specifically prone to such
runtime variations is the second part of the process, which is responsible for real-
ization of the decisions made at the earlier stages. This assumes the involvement of
third–party agents, such as suppliers and building companies.

The WMO process shown in Figure 1.4 (a fragment of this process was already
presented in Figure 1.1) starts with the submission of an application for a provision
by a citizen. The first part of the process concerns the procedure involved in making
a decision on whether the original application is eligible or not. In case of a nega-
tive decision (i.e. the application is rejected or the granted provision is less than the
citizen requested), the citizen has the option of lodging an appeal. In case of a legit-
imate appeal, the provision is either granted, or the process is restarted the appeal.
This part of the process has already been discussed in Section 1.1.1, but, in terms of
runtime reconfiguration, the second part of the process is more interesting.

The second part of WMO process starts once a decision has been made. When a
decision is positive, the appropriate activities are executed, depending on the pro-
vision requested. For domestic help, the citizen has the choice between “Personal
Budget” and “Care in Kind”. With the choice of a “Personal Budget,” the citizen
periodically receives a certain amount of money for the provision granted in order
to pay for workers or supervisors, and decides where the money is spent. With the
choice of “Care In Kind,” suppliers who can take care of the provision are contacted.
A home modification involves a tender procedure to select a supplier, prior to exe-
cution of the actual home modification. A wheelchair is usually provided using a
contracted supplier. After acquiring the detailed requirements, the order is sent to
the supplier selected, who delivers the provision. From that point on, the process
is identical for all the provisions. The order is sent to the selected supplier, who
delivers the provision and sends an invoice to the municipality. Finally, the invoice
is checked and paid.

8 1. Introduction

Figure 1.4: WMO process model (BPMN notation is used).

The request for a wheelchair or a home modification may take up to 6 weeks un-
til the delivery of the provision. Evidently, this process implicitly depends on other
stakeholders and their processes as well: The processes executed by the suppliers

1.2. Management of Business Process Variants 9

of the provisions or the citizens requesting the provision can affect the process as
executed by the municipalities, due to their mutual dependence on certain process
variables (e.g. the address or provision specifications). The WMO process depends
on the correctness of some process variables as well. However, these process vari-
ables may be changed by another process running in parallel, independent of the
WMO process, and are, therefore, volatile. Regardless of whether the WMO process
is designed to be proprietary to the municipality, a change in either of these volatile
process variables is entirely beyond the scope of control of the municipality and
may potentially have negative consequences for the WMO process. In other words,
due to its dependence on those variables, these changes may result in undesirable
business outcomes.

1.2 Management of Business Process Variants

The three examples discussed above are all derived from the same case study, namely,
the WMO process of Dutch e-Government. Although they call for different aspects
of business process management, the bottom line is nevertheless the same: it often
happens in practice that a predefined process has to be modified, and such a mod-
ification can be needed only once or it may need to by applied many times over a
long period.

Moreover, the processes which appear as a result of such modifications are not
separate artifacts but, rather, form a family or a hierarchy. Any attempt to support
such a hierarchy faces the problem of how to maintain the links between the generic
processes at the top of the hierarchy and their locally customized variants.

In general, there are two approaches to deal with business process variability:
imperative and declarative ones [Schonenberg, Mans, Russell, Mulyar and van der
Aalst 2008]. The former approach presumes the specification of the variations which
are admissible, whereas the latter one means that the boundaries on possible mod-
ifications are not specified explicitly but rather outlined by the means of additional
rules or constraints. Later in the thesis we will show how to construct a solution
which embraces the features of both aforementioned approaches, thus providing
more possibilities for the end user.

The main contribution of this thesis is in the analysis of how to apply the for-
malisms of propositional and temporal logic to describe a business process model
as a set of logical formulas, and in the introduction of a framework for business
process variability management as a result of that analysis. The advantages of such
business process representation are the following:

10 1. Introduction

1. Ability to describe a whole family of business processes via correction or
loosening of the formulas describing a business process. The idea is to treat any
given business process model also as a model for temporal logic (see Appendix A),
and also to represent a business process as a a set of temporal logic formulas. The
representation is made in such a way that the original process model becomes the
only one which satisfies all of those formulas. Any modification of the underlying
business process model would make one or more of those formulas invalid.

The main advantage of our novel way to encode a business process is the ability
to make simple modifications of the set of formulas which in turn lead to a loosening
of the initial constraints. As a result, instead of a single business process model,
there is a whole family of business process models which satisfy all of the formulas,
and which thus allow one to make some (but not just any kind of) modifications
to the original business process model. We will provide a set of simple modifica-
tions, such as making an activity optional, allowing an activity to be moved within
a model, and making a placeholder which can be later substituted using one of the
list of predefined activities. Each of those modifications has a formal definition on
how to correct the initial formulas in order to achieve the desired effect.

The possibilities of those modifications are comparable with the ones provided
by business process variability frameworks, such as Configurable Workflow Mod-
els [Gottschalk, van der Aalst, Jansen-Vullers and La Rosa 2008] or VxBPEL frame-
work [Sun and Aiello 2008]. On the other hand, due to the nature of formula–based
business process specification, additional constraints (which are often called rules,
e.g., [Müller, Greiner and Rahm 2004]) can be added on the top of the original model.
Such constraints describe the relationships between different activities in a business
process model, such as “Activities A and B are mutually exclusive” or “Activity A
must be executed after activity B.” This approach has some affinity with the one
presented in DecSerFlow tool [van der Aalst and Pesic 2006]; however, the promi-
nent added value of our approach is that we naturally link such constraints with the
traditional approach of utilizing a customizable reference model.

In Chapter 3, we will describe our framework for managing reference business
process models, which is based on the representation of a business process as a set of
formulas, and benefits from both traditional and novel constraint–based approaches
to business process variability.

2. Ability to analyze the difference between two or more business process
models and describe that difference in the form of transformational function.
Since each of the business processes is represented as a set of formulas, we need
to analyze the difference between those sets and abstract from the concrete business
process models. We will utilize a business process representation in matrix form,
where each row and column represents a single activity, and any cell represents the

1.2. Management of Business Process Variants 11

temporal relationship between the activities which represent the corresponding row
and column.

This way of representing a business process makes it possible to analyze the
difference between any two given business processes as a result of matrix transfor-
mation. We will analyze different types of manipulations with matrices and how
they affect the underlying business process model. In addition, we will analyze the
properties of the matrices which represent business processes, and will thus show
the correspondence between manipulation with matrices and the changes in busi-
ness process model inflicted by such manipulation. The principle of business pro-
cess representation in matrix form has some affinity with process graphs [La Rosa,
Dumas, Uba and Dijkman 2010] which are used as an intermediate structure for
merging of business process model. However, since we are aiming for a different
target, we will extract the difference between business process models instead of
making their composition.

Also, instead of existing temporal logics, we will utilize a novel extension which
is capable of resolving the difference between the notions of “always followed by”
and “sometimes followed by.” Such discerning power is achieved thanks to the use
of different types of branching points in a business process model, which allows
one to take into account not only the analysis on the paths in a graph (as does CTL
logic), but also the branching points which reside on a path together with their types
(AND– split or OR–split). With the help of such logic (which we call TPL, Temporal
Process Logic), we have a representation which is more descriptive than the one
which is used in the field of workflow mining [van der Aalst, van Dongen, Herbst,
Maruster, Schimm and Weijters 2003] and temporal planning [Ghallab, Nau and
Traverso 2004].

In Chapter 4, we will formally introduce Temporal Process Logic, and then will
show how this logic can be utilized to identify the difference between two business
process models.

3. Ability to execute a business process so that the actual sequence of actions is
decided at runtime on the basis of the context of execution. Examples of relevant
contextual data are the home address of the person who initiated the process or the
prices of a supplier who is chosen to fulfill the original customer’s request.

In some cases, such data is crucial for the business process, since, for example,
there is a difference if a request is funded by the government or not, depending on
the prices of the supplier. In the business process model this is reflected as a branch-
ing point below the label “Domestic Help” in Figure 1.4. However, the decision at
that point is based on the data which is provided by the supplier, and such data may
change over time.

Imagine the situation where the execution has followed the left branch and the

12 1. Introduction

activity “Send request to supplier” is in progress; and at that moment the situation
has changed, and the right branch should have been taken instead, according to the
new information. In practice, however, the execution of the business process will
continue following the wrong path, and the mistake will be discovered after the
process has finished.

This situation can be remedied if the business process execution engine has the
following features: (i) it listens to the data modification events, and (ii), if necessary,
stops the execution of the business process and starts a so–called repair process. Such
a repair process could contain the activities of the alternative branch of the business
process together with the activities which compensate for the result of the activities
which were already executed. Alternatively, such a repair process might not even
resemble the original process and might be used in very specific situations only.

Additionally, since a business process is specified as a set of formulas, they can
be used as input for the generation of a business process automatically, using au-
tomated planning techniques [Ghallab et al. 2004]. The additional feature of using
planning is the ability to generate a business process which is different from the
original one because of the changes in the original formulas. Such changes in the
formulas are driven by the modifications of the data a business process has relied
on.

In Chapter 5, we will describe the architecture of a business process execution
engine which possesses both of the features (i) and (ii) just discussed in the previous
paragraph, and which uses automated planning techniques in order to generate a
repair process. Also, we will show how to encode a business process and its execu-
tion context into a structure which is understandable by a planner, and conversely,
how to execute the outcome of the planner as a part of the business process.

The rest of the thesis is organized as follows. In Chapter 2, we will give an
overview of the state of the art research in the field of business process variability
and reconfiguration. In Chapter 3, we will introduce our framework for designing
business process templates with explicit support for variability. In Chapter 4, we
will introduce a new kind of modal logic which is capable of expressing the tempo-
ral relationships in a business process model, taking into account different types of
branching points. This logic will be used to analyze how to establish a link between
a generic process and its variants, which thus provides the options to maintain the
evolution of business processes. In Chapter 5 we will describe how to deal with
runtime business process reconfiguration with the help of automated planning tech-
niques [Ghallab et al. 2004]. Finally, in Chapter 6, we will provide a brief summary
of this thesis and outline a few directions for future research.

Partly published as:
M. Aiello and P. Bulanov and H. Groefsema – “Requirements and Tools for Variability Management,” IEEE
workshop on Requirement Engineering for Services (REFS 2010) at IEEE COMPSAC, pp. 245–250, 2010.

Chapter 2

Related Work

In software engineering, variability refers to the possibility of changes in software
products and models [Sinnema et al. 2006], and the concept of variability is con-
sidered to be important in the field of software product lines engineering [Pohl
et al. 2005, Clements 2006, Galvão, van den Broek and Akşit 2010].

In the context of BPM, variability indicates that parts of a business process re-
main variable or not fully defined in order to support different versions of the same
process, depending on the intended use or execution context. This kind of variabil-
ity is often included through the introduction of so-called variation points, that is,
elements of a business process where change may occur. A process in which vari-
ability is included is called a reference or generic process. Processes where choices
have been made that are derived from the reference process are called variants. The
strategies for arriving at a reference process can differ greatly and range from draft-
ing a simple template based on commonalities between variants to using a single
variant as a reference process. Variability management is the set of activities designed
to cover the creation and support of differences in versions of reference processes.

The advantage of explicit variability treatment for modeling and managing busi-
ness processes resides in the reuse of the reference processes and in the handling of
evolutions and customizations. Instead of creating entirely different processes for
each variant and thus introducing redundancy and the possibility of errors, variabil-
ity offers the introduction of these variants through explicit traversal choices, thus
eliminating duplication of work and a source of inconsistencies across versions. An-
other paramount advantage lies in the readability and maintainability of the pro-
cesses. Instead of using BP constructs within a process to model the variations in
circumstances explicitly, and thus introducing readability and maintainability prob-
lems, variability offers a clean solution through the introduction of variants.

Finally, we should note that variability is very closely related to flexibility. Flex-
ibility offers adaptation and change for a process, whereas variability deals with
different versions of a process. Of course, in order to support different versions,
a certain amount of flexibility and change management is required. Through the

14 2. Related Work

advantages that flexibility offers in BPM, the support for different versions of the
process can be offered by the variability tools. In other words, flexibility is the tool
that allows the different versions of the process to be created and managed.

2.1 Business Process Variability

Variability management is an extension of the typical activities involved in busi-
ness process management. We give a general depiction in Figure 2.1. On the left,
one can see how requirements drive the definition of the design processes. Once
the designer has a first design of the process, then they move on to the deploy-
ment and run-time phases. In case of errors, unpredictable situations and changes
in requirements, the whole procedure must be repeated, starting from the design
stage. During execution, information on normal and exceptional execution is col-
lected (Monitoring and Diagnostic phases), thus allowing for more flexible process
support and feedback for process evolution. Variability management complements
these general BPM phases by introducing a set of parallel stages, as seen on the
right in the figure. First, a decision is made as to the types of variability and at
which stage of the lifecycle they should be introduced. In this context, there are two
main categories: design-time and run-time variability.

Figure 2.1: Process lifecycle and variability management.

Design–time variability deals with the definition of variations in processes at design–
time. Similar processes are implemented using a reference process and applying

2.1. Business Process Variability 15

different variations in order to support all variants. Often this means finding the
commonalities between the similar processes being implemented and introducing
variations where differences occur. In addition, it may mean taking a process and
foreseeing all possible customization and changes that different contexts may re-
quire. The next step is designing the variations for the generic process in such a way
that they cover all variants identified in the requirements through the flexibility of-
fered by the variability. New variants are added by reusing of the existing reference
process or patching existing variants. The source of such changes might be either
changes in requirements or propagation of a change at a different level.

Run–time variability is responsible for managing variation of processes in execu-
tion. The major issue it addresses is handling redesigns of running processes. Such
redesigns can range from skipping/deleting a single activity to moving to a whole
different variant. The source of changes might be either changes in requirements, re-
sponding to an erroneous situation (via analyzing run–time data), or a propagation
of a change at a higher variability level (design–time or evolution).

A cross-cutting element of variability management is the evolution that generic
processes go through. Evolution variability management, in black on the right of
Figure 2.1, represents the changes introduced not by customization but rather by
changes occurring over time.

2.1.1 Declarative vs. imperative variability

Figure 2.2: An imperative template process.

When arriving at a particular technique to address the problem of variability,

16 2. Related Work

the task of specification of the template process and its admissible modifications
arises. In general, the way to address this problem is a core part of any BP variability
platform. Despite the fact that the solutions may vary greatly, a general taxonomy
may still be introduced. In [Schonenberg et al. 2008], the authors introduce two
major categories: imperative and declarative ones. In the following sections those
categories will be described and compared.

Imperative

The traditional way to describe a business process arises from imperative program-
ming languages, where the source code of a program is a formal computer–readable
representation of some predefined sequence of actions. Similarly, modern BP mod-
eling languages like BPMN are basically visual programming languages, suitable
for sketching a visual schematic representation of a given algorithm or a workflow.

Concerning the problem of change management, the solution is also inherited
from the area of software engineering [Sinnema et al. 2006, Bachmann, Goedicke,
Leite, Nord, Pohl, Ramesh and Vilbig 2004], which means that possible process mod-
ifications have to be anticipated in advance and specified in the form of variability
points. Those variability points are used later in order to customize the template and
obtain a customized process which is often called a variant. Typically imperative–
oriented variability can be represented as a template process with several variability
points specified in it. Figure 2.2 shows an example of an imperative–based template,
with the variability point in the form of a placeholder.

This placeholder indicates the place in the business process model which is left
unspecified. As a result, it becomes possible to create several variants based on the
same template by choosing an appropriate activity to be put in place of the place-
holder. In Figure 2.2, the process at the bottom illustrates one of the possible vari-
ants, which is made by selecting the activity “Home Visit” to fill the placeholder.
However, when using this approach, a highly flexible business process either con-
tains a lot of variability points over the same template or requires a combination
with other variability techniques.

Nevertheless, this approach has several important advantages. First of all, it is
intuitively close to the well–known standards of business process modeling, such
as BPMN [Object Management Group (OMG) 2009]. Second, it is usually easy to
implement on top of existing business process engines. And, finally, the validity
of customized processes can be guaranteed as long as the template is verified. The
verification of a template in that case means the testing of all the combinations of
all variability points in order to check whether the corresponding process variant is
acceptable or not. However, the need to specify variation points implies unneces-

2.1. Business Process Variability 17

sary restrictions imposed on the business processes [van der Aalst, ter Hofstede and
Weske 2003].

Declarative

The main idea of the declarative approach to business process variability is to spec-
ify the boundaries which confine the possible modifications instead of focusing on
the process model itself. Such boundaries are usually represented as a set of formu-
las of propositional or modal temporal logic which are typically called rules or con-
straints. The validity of a particular process variant means that all of the constraints
are valid for that variant. As a result, a set of possible valid variants is implicitly
defined by a set of constraints, with no need to specify them one by one.

In a declarative process management framework, a generic process usually con-
sists of a reference business process and a set of constraints on top of it [Momotko
and Subieta 2004, Charfi and Mezini 2004], thus providing a starting point for pro-
cess customizations. In some cases, however, the generic process is not specified at
all, and a variant must be built on the fly by a process designer or even by an end–
user during the actual process execution [Pesic, Schonenberg, Sidorova and van der
Aalst 2007, Lu, Sadiq and Governatori 2009]. In the latter case, the precise structure
of a business process remains undefined until the very last moment, which can be
considered being a guided process execution.

The constraints can be roughly divided into two categories: selection and execu-
tion ones. Constraints of the first category prescribe which of the activities must or
must not be selected to be the part of a particular process variant. Such constraints
are usually expressed as formulas of propositional logic, which makes it possbile
not only to specify which activities to select but also to define their interdependen-
cies [Sun and Aiello 2008].

The second category is used to specify the execution order (at run–time). Con-
straints of this category utilize temporal logic, typically LTL or CTL1. The former
type of formulas allow the order of the execution to be bounded, for example, to
disallow the execution of the activity “X” unless the activity “X1” has been exe-
cuted. This is utilized, for instance, in DECLARE tool [Pesic et al. 2007]. The latter
type of formulas deals with branching time flow, which means taking into account
alternative execution paths. In practice, that means the ability to control the design–
time customization of business process models, where it is important to distinguish
between the paths which will always be followed at run–time and the paths which
are optional but still can be taken.

1See appendix A

18 2. Related Work

Discussion/Comparison

Comparing both of the previously discussed approaches, the declarative one in gen-
eral provides more flexibility for business process designers, since some parts of the
process may be left either undecided or with minor restrictions only, thus leaving
the final decision to the end user. At the same time, other parts of the same pro-
cess may be covered by constraints, thus leaving only small margins for possible
modifications.

One of the disadvantages of the declarative approach lies in the fact that con-
straints may contradict each other or restrict some options which would be other-
wise acceptable. To solve this issue, the set of formulas can be formally verified in
order to identify whether there is at least one business process model which satisfies
all of the formulas. More complicated solutions involve the generation of possible
valid business process models. In any case, the underlying task is the problem of
boolean satisfiability, which is known to be NP–complete [Cook 1971]. Therefore,
such verifications are problematic in practice unless some restrictions are introduced
in order to simplify the problem [Dijkman, La Rosa and Reijers 2012].

Another disadvantage of declarative approaches lies in the semantic gap be-
tween a business process model and declarative constraints. The logical formulas
are introduced by means of various declarative techniques and must be attached
in some way to the business process which is under consideration. But the prob-
lem is that business processes are typically specified using one of the traditional
imperative business process notations which typically provide no means to specify
any additional constraints. The task of connecting such logical formulas with the
process model is therefore transferred to business process designers.

There are, however, several attempts to overcome this issue by virtue of the in-
troduction of additional visual elements along with the translation of those elements
into low–level formulas. These elements may range from simple arrows to compli-
cated grouping elements embracing whole areas in a business process model. For
example, an ordering constraint can be represented visually as an arrow connecting
the two activities it embraces, and a selection constraint can be represented as an ad-
ditional property or as a tick box [Gottschalk et al. 2008, Pesic et al. 2007, van der
Aalst and Pesic 2006, Lu et al. 2009, Groefsema, Bulanov and Aiello 2011].

2.1.2 Annotation–based Variability

In many cases business processes inside of an organization are well established and
driven by laws or strict policies, and therefore only minor and predictable modifica-
tions are allowed. In such cases it becomes feasible to describe admissible variations
such as these and store them along with the original business process model. This

2.1. Business Process Variability 19

provides total control over the possible modifications, and also makes it possible to
perform an automated business process customization.

Configurable Workflow Models

An example of such a variability is presented in [Gottschalk et al. 2008] in the form
of configurable workflow models. Such models involve a generic business process
model together with a set of formally defined requirements and guidelines which can
be used in order to generate a particular business process variant. In Figure 2.3,
in the top section, an example of such a configurable model is represented. Here,
along with the generic business process model, there is one guideline and two require-
ments. The guideline specifies that the activity “Home Visit” must not be included
if the population of the city exceeds 5000 people (this information is presumed to
be known as a part of general domain knowledge). One of the two requirements
states that the absence of the “Home Visit” activity means that the “Self Indication”
activity must not be in the process. The second requirement states that the activi-
ties “Self Indication” and “Indication” are mutually exclusive and cannot both be
included in the same business process. The second requirement also means that the
generic process itself is not valid and therefore cannot be used as is without prior
customization.

In Figure 2.3, bottom section, one of the possible variants is displayed. Here the
activity “Home Visit” is omitted, possibly because of the size of the city. This choice
implies the exclusion of the “Self Indication” activity; the activity “Refer to CIZ” is
not touched, since there are no guidelines or requirements concerning this activity.

A similar idea of utilization of annotation–based variability is explored in [Becker,
Delfmann and Knackstedt 2007, Delfmann and Knackstedt 2007]. The authors intro-
duce the idea of model projection, where a template model is enhanced with a set of
annotations, and a concrete business process variant is derived via so–called model
projection step. At this step, a transformation function decides which pieces of the
original template must or must not be included in the final variant basing on the
annotations in the template process.

A further exploration of annotation–based variability lies in the ability to build
a business process model on the fly using a query language. In [Momotko and
Subieta 2004], the authors introduce BPQL language (Business Process Query Lan-
guage), which allows a user to build a query in order to specify the characteristics
of the desired business process variant, and the system will build one besed on the
annotations in business process templates in a process repository.

Another extension to this approach is to attach the requirements and guidelines
to the list of the features [Kang, Cohen, Hess, Novak and Peterson 1990, Kang, Lee

20 2. Related Work

and Donohoe 2002, Czarnecki and Eisenecker 2000] of the system. An end–user
may therefore select a set of desired features instead of working with low–level re-
quirements attached to the template business process model [Lapouchnian, Yu and
Mylopoulos 2007, La Rosa, van der Aalst, Dumas and ter Hofstede 2009, La Rosa,
Lux, Seidel, Dumas and ter Hofstede 2007, Schnieders and Puhlmann 2007].

Figure 2.3: A configurable workflow model example.

Flexibility based on Variability Points

An example of traditional imperative approach based on variability points is VxBPEL
[Sun and Aiello 2008]. A single variability point is an area in a business process
model plus a list of options available for that variability point. For example, a vari-
ability point may embrace a single activity, and the list of options in that case would
be a list of substitute activities, possibly including an “empty one” (which would
mean the removal of the underlying activity).

In Figure 2.4 a business process model with two variability points is illustrated.

2.1. Business Process Variability 21

The first one (VP1) encloses a single placeholder and offers three possible options to
be chosen (shown in the lower–left part of the figure). Of those three options, op-
tions 1 and 3 represent single activities, while Option 2 contains a whole sub–process
built of two sequential activities. The second variability point (VP2) is responsible
for the particular choice condition in the only choice point in the process (which is
usually called gateway). Of the two possible options, Option 1 is also declared to be
mutually exclusive with the Option 3 of the VP1, which is illustrated as a two–way
arrow with a cross in the middle.

Also, a notable example of a framework based on explicit variability points is
PROVOP [Hallerbach, Bauer and Reichert 2008]. A business process in PROVOP is
enhanced with a list of options, and each option is associated with a list of necessary
process changes. Each of such changes is in turn linked with a particular place in
the business process model (such places are called adjustment points). The four types
of changes supported by PROVOP are: insert a fragment, remove a fragment, move
a fragment, and modify an attribute. In result, in order to obtain a concrete business
process variant one needs to chose one or more of the options to be applied, and the
system will perform the process changes specified behind those chosen options.

Figure 2.4: Variability points using VxBPEL.

22 2. Related Work

2.1.3 Variability by Underspecification

In the case of business process modeling, underspecification means that some parts of
a process model are left undefined. According to [Weber, Reichert and Rinderle-
Ma 2008], there are three major classes of variability by underspecification: late
binding, late modeling, and late composition. A simple example of the first class
is illustrated in Figure 2.2, where the grey unnamed rectangle indicates the place
where some activity might be inserted. Once all placeholders are filled, the ap-
propriate business process model is ready to be consumed. The concept of late
binding has been utilized in many business process management system, includ-
ing Worklets [Adams, ter Hofstede, Edmond and van der Aalst 2006] and MOBILE
[Jablonski 1994].

Figure 2.5: A business process with a pocket of variability in it.

Business Process Constraint Framework (BPCN, [Lu et al. 2009]) is an example
of the second class (late modeling). In Figure 2.5, an example of a not fully defined
business process is presented. The grayed rectangle in the left part of the process
is a pocket of variability [Sadiq, Orlowska and Sadiq 2005] with its content left
undefined. On the contrary, the rest of the process is fixed and not supposed to be
changed. The activities displayed inside of this pocket of variability are the ones
which can be used to build a customized process, but the exact structure of the final
process is also restricted by the means of constraints.

There are two types of constraints in BPCN: selection and scheduling ones. Con-
straints of the former type restrict which activities can (or must) be selected and
which cannot, depending also on which activities were already chosen. Examples
of selection constraints are mandatory (self–descriptive), cardinality (specifies how
many occurences of a given activity are allowed), or substitution (if an activity “A”
was not selected, then some activity “B” must be selected instead).

Constraints of the latter type restrict the execution order of the activities in the
customized business process. The execution of a single activity is considered as a
temporal interval, and scheduling constraints are essentially possible interrelations

2.1. Business Process Variability 23

between those temporal intervals [Allen 1983]. Examples of scheduling constraints
are before or parallel (both are self–descriptive).

Figure 2.6: Sets of constraints.

An example of a possible set of constraints for the generic process of Figure 2.5
is illustrated in Figure 2.6. The constraints are divided into selection (left side) and
scheduling ones. Looking at the scheduling constraints line by line, the first line con-
tains two mandatory activities, “Request Registration” and “Decision,” each bearing
a tick in the upper–right corner to illustrate mandatory constraints. The second line
illustrates a bilateral substitution constraint between the activities “Indication” and
“Self Indication,” which implies that at least one of those activities must be selected.
The third line illustrates a mutual exclusion constraint stating that if the activity
“Indication” is selected then the “Self Indication” one must not be selected, and vice
versa. And finally, the fourth line illustrates an inclusion constraint, which states
that if “Self Indication” is included, then “Home Visit” must be included as well.

But the selection constraints alone cannot describe the possible relative order of
the activities in the final process. For that purpose, scheduling constraints have to
be considered. In Figure 2.6, right, those constraints are represented. They are all
of type “Before,” which prescribes a simple ordering of the two activities it bounds.
In result, the activity “Request Registration” must go before the “Indication” and
“Home Visit” ones, and so on.

In Figure 2.7 three possible business process fragments are represented, and each
of them satisfies all of the constraints displayed in Figure 2.6.

24 2. Related Work

Figure 2.7: Possible business process variants satisfying the constraints of Figure 2.6.

2.1.4 Declarative Process Execution

When one needs to specify a business process, there is an implicit convention that
one of the state of the art business process modeling languages (like BPMN [Object
Management Group (OMG) 2009] or UML Activity Diagrams [(OMG) 2005]) should
be used. However, in that case a process model becomes strictly defined, and any
deviation from the original flow of events would be problematic, because there is
no simple way to specify all the possible deviations in advance using the languages
mentioned above. A declarative approach to business process modeling offers more
flexibility, but on the other hand the need to specify the rules in the formal way poses
an additional burden to the people responsible for business process modeling.

The DECLARE tool offers a way to make a declarative–based business process
model visually [Pesic et al. 2007]. This is achieved via an open set of constraints,
with a visual interpretation for each of them. Each constraint is a formula of lin-
ear temporal logic (LTL2). For each activity in a process a dedicated propositional
variable is introduced, and for simplicity the name of this variable is the same as
the name of its corresponding activity. Such a simplification is unambiguous, since
there is a one–to–one mapping between the set of activities and the set of proposi-
tional variables.

Internally a business process is represented in the form of an automaton
[Giannakopoulou and Havelund 2001], where each transition corresponds to the
execution of a particular activity, and each state represents the state of the process
between the executions, including the initial state. At each state, all the variables are
equal to FALSE, apart from the variable which corresponds to the activity which has
just been executed. In other words, the activity whose execution led to the current
state has its corresponding variable equal to TRUE, and all other variables are equal
to FALSE. It follows from this definition that all the variables are equal to FALSE at
the initial state.

2See Appendix A

2.1. Business Process Variability 25

Figure 2.8: A flexible business process definition using DECLARE tool.

Such automaton can be used as a frame for LTL (e.g., [Blackburn, Rijke and
Venema 2001]), and at each state all of the constraints are evaluated in order to de-
cide if that state is valid or not. If any of the constraints is violated, then the state
is marked as temporarily violated. If all of the states which are reachable from the
current state are violated, then the state is marked as permanently violated. A tran-
sition from one state to another is allowed only if the target state is not permanently
violated, which makes it possible to filter the list of activities which are allowed to
be executed at the current state, thus providing a kind of guided business process
execution from the user’s point of view. A sequence of valid transitions forms an
execution trace of a particular business process. Generally, there may be more than
one execution traces available for a given process, and none of them must be finite.
It must be noted that a business process execution can be stopped at any time at a
valid state, therefore, the final goal of any execution is to reach a valid state.

Name Visual Element Formal meaning
EXACTLY 1 �A ∧�(A⇒ �¬A)

PRECEDENCE �B ⇒ (¬B ∪A)

RESPONSE �(A⇒ �B)

SUCCESSION Combination of PRECEDENCE
and RESPONSE

Table 2.1: Constraints used in Figure 2.8.

26 2. Related Work

Figure 2.8 shows an example of a constraint–based business process model. All
of the constraint used to describe the business process are listed in Table 2.1. The
first constraint is called EXACTLY 1, and it means that the corresponding activity
must be executed exactly once. In the model, it is illustrated as a label “1” above the
activity box, and in Figure 2.8 the activity “Decision” is marked with this constraint.
In practice, it means that the goal of the whole process is to get the “Decision” ac-
tivity executed, and it must not be executed for the second time. However, before
this activity can be executed, some pre–requisites must be fulfilled, and the rest of
the model describes how to attain this.

The second line in Table 2.1 describes the PRECEDENCE constraint, which for
the pair of activities “A” and “B” means that the activity “A” must be executed
before the activity “B,” but if the activity “B” is never executed then the activity “A”
is not required.

The third line describes the RESPONSE constraint, which for a pair of activi-
ties “A” and “B” means that if the activity “A” is executed, then the activity “B”
must also be executed at some point (but after the activity “A”). And the final line
describes the SUCCESSION constraint, which is basically the combination of the
former two constraints.

In Figure 2.8, the activities “Request Registration” and “Decision” are linked
with a SUCCESSION constraint, which means that the activity “Request Registra-
tion” is a pre–requisite for the activity “Decision.” Since there is a constraint that the
activity “Decision” must be executed exactly once, it implies that the activity “Re-
quest Registration” must also be executed at some point. Next, there are constraints
of type PRECEDENCE between “Request Registration” and each of the other ac-
tivities, which means it must be executed before any of the others. Next, there is a
constraint of type SUCCESSION between “Home Visit” and “Self Indication,” thus
making those two activities “mutual friends”, since there must be either both or
none of them executed, and “Home Visit” must be executed first. And finally, there
is a forked arrow of type SUCCESSION linking the triple of activities (“Indication,”
“Self Indication,” “Refer to CIZ”) and the activity “Decision.” It means that any of
the former three activities must be eventually followed by the “Decision” one, and
the “Decision” must be preceded by at least one of those three.

Figure 2.9 displays one of the possible execution traces for the business process
model in Figure 2.8. Since the activity “Request Registration” is constrained to be ex-
ecuted before any other, it is the only one candidate to be executed at the initial state.
Then, for example, the “Indication” one can be executed. At that moment, the “De-
cision” activity must be available for execution, which would lead to a valid state
followed by the termination of the process execution. But since this is not compul-
sory, a user can choose to execute the “Home Visit” instead, followed by the “Refer

2.1. Business Process Variability 27

to CIZ” one. But now the activity “Self Indication” becomes mandatory because of
the SUCCESSION constraint between the “Home Visit” and “Self Indication.” And
finally, once the “Self Indication” activity has been executed, it becomes possible to
execute the “Decision” one and to terminate the process.

A further extension to the idea of declarative process execution is presented
in [van der Aalst and Pesic 2006], where the authors introduce the DecSerFlow tool,
which has an extended set of constraints as well as a set of interrelations between
the constraints. Those interrelations give the ability to make particular constraints
mandatory or optional depending on the current state and which activities had been
executed that far.

Figure 2.9: One of the possible execution traces for the process in Figure 2.8.

2.1.5 Runtime Business Process Reconfiguration

In addition to the task of managing possible run–time deviations, there is a task of
migration of an already running business process instance to a new business pro-
cess model. This task is a difficult problem per se, since the state of a running in-
stance may be completely incompatible with the new business process model to
be applied [Rinderle, Reichert and Dadam 2004]. The ADEPTFLEX [Reichert and
Dadam 1998, Dadam and Reichert 2009] framework provides a comprehensive so-
lution for dealing with run–time reconfiguration. This is achieved via considera-
tion of different change patterns which may occur during the process reconfigura-
tion, taking into account the implicit dependencies which arise from the flow of the
data. Another way to address the problem of runtime reconfiguration is to specify
a business process model in such a way that certain fragments of the process be-
come available or not available depending on the execution environment and user’s
decisions [van der Aalst, Weske and Grünbauer 2005].

To cover for process execution inconsistencies, a number of techniques have been
proposed. AGENTWORK is a workflow management system which supports au-
tomated business process adaptations in a comprehensive way, when possible ex-
ceptions and necessary workflow adaptations are specified through a rule-based
approach. Using this approach, the system is able to react to process-failures like un-
available resources or data [Müller et al. 2004]. Similarly, existing runtime solutions
for process interference are based on failing processes as well, e.g. [Garcia-Molina

28 2. Related Work

and Salem 1987, Xiao and Urban 2008, Gajewski, Meyer, Momotko, Schuschel and
Weske 2005].

A more elaborate solution for process interference in Service-Oriented Comput-
ing is provided by [Urban, Gao, Shrestha and Courter 2011]. Predefined (design-
time) rules are used to specify the required compensation actions in case of interfer-
ence. In addition to failing processes, this approach incorporates events like excep-
tional conditions or unavailable activities.

2.2 Business Process Generation

When some real–world business process is being automated, somebody has to de-
scribe that process formally and create a business process model. But in some cases
such a model can be created automatically basing on some additional information,
like existing business process models made for solving similar tasks, or statistical
data taken from system logs. Later in this section, several approaches for automated
business process generation are discussed.

2.2.1 Process Merge

One way of creating a new business process is by the combination of two exist-
ing ones which naturally should retain the behavioral features of both original pro-
cesses. Examples of such process merge span from the merging of two companies
which effectively leads to the merging of their workflows to the task of coordinating
of multiple business process versions spread over different municipalities.

Figure 2.10: Two examples of business processes to be merged.

Merging using Supplementary Structures

One of the ways to make such a merge is described in [La Rosa et al. 2010], with
the application for the processes represented in the form of EPC [Sarshar and Loos
2005]. The main principle is to derive a so–called function graph for each of the

2.2. Business Process Generation 29

input processes, and then make a combination of those graphs. A function graph is
essentially a simplified representation of a business process, with one–to–one map-
ping between activities of the input process and nodes of the result graph. The
gateways of the original process are not translated into the function graph. Instead,
each arc of the graph, apart from the fact that it represents the existence of appropri-
ate path in the original business process, also bears two labels. The labels represent
the type of splitting and type of joining, respectively. The rules how to make those
labels are described in [La Rosa et al. 2010], but in general they are determined by
the gateways lying between the activities and their types.

In Figure 2.10, there are two business process models which need to be merged.
They can represent, for example, two different implementations of the same generic
business process which were taken from different municipalities, and the task is
to obtain a combined business process comprising the features of both implemen-
tations. First, a function graph has to be built for each of the original processes.
Since both of them do not contain gateways, the resulting function graphs actually
repeat the structure of their original business process model and therefore are not
displayed.

The next step is to make a united function graph as a combination of the original
ones. The rules of the merging are the following:

1. the set of activities of the result graph is the union of the appropriate sets of
the original graphs;

2. the set of arcs is the union of the appropriate sets of the original graphs;

3. the split– and join– labels are computed according to the algorithm described
in [La Rosa et al. 2010].

The result of the merging is illustrated in Figure 2.11, (A), there a split–labels
is attached to the beginning of each arc, and a join–label is attached to the head
of each arc. The arcs with no labels actually have simple labels: both split– and
join– labels are of type “AND.” However, a function graph is not a proper business
process, and it must be transformed into a business process model. Authors use
EPC for that purpose, although BPMN notation can by utilized as well. The trans-
formation itself is divided into two steps. First, a function graph is transformed
into an EPC model via adding the gateways, and the types of those gateways are
driven by the types of corresponding split–labels. If the types of split–labels of all
arcs leading from some activity are the same, then a gateway of that type is added,
otherwise, an OR–gateway is added instead (this is considered to be a default gate-
way type). The same applies for the join gateways, but join–labels are considered
instead. The result of such transformation is illustrated in Figure 2.11, (B). Since the

30 2. Related Work

Figure 2.11: The steps of business process merging.

result may contain redundant gateways (and does contain, since the gateway be-
tween the “Home Visit” and “Request Indication” activities is redundant), the final
step of making a well–formed business process specification is required. The object
of this step is to remove the redundancies and obtain a business process which is
ready to be consumed. The final result is represented in Figure 2.11, (C).

The final business process actually comprises the details of both original pro-
cesses, since by the means of OR–gate it becomes possible to follow either of the
original processes. However, due to the nature of OR–gates, it becomes possible
to follow both original processes simultaneously, which may be considered as an
undesired side effect. Nevertheless, the implications of such side effects must be
treated individually in each case and may be even beneficial since they may provide

2.2. Business Process Generation 31

additional opportunities.

Merging Based on a Change Set

Another approach to merge business process models is based on extraction of a
hierarchical change log, which contains a set of atomic modifications which are
needed in order to converts a business process A into a process B [Küster, Gerth,
Förster and Engels 2008]. Such a representation makes it possible to perform an
interactive business process merging, where a user picks one or more modifications
from the list in order to apply them on one (or both) of the original processes.

Figure 2.12: Two business process models with SESE blocks highlighted.

The principle of the extraction of a change log is the following. First, both orig-
inal business process models are divided into so–called SESE blocks (single entry
single exit, [Vanhatalo, Völzer and Leymann 2007]). In Figure 2.12, two business
processes are illustrated, and for each of them dashed rectangles represent SESE
blocks. Each of those block has its unique number (a number in the upper–left cor-
ner of each SESE block), and a one–to–one correspondence between SESE blocks
of both processes is identified. In this example it is illustrated by the fact that the
corresponding blocks bear the same cross–model number, and also note that the
block number “2.2.” of the process “A” has no counterpart in the process “B”. In the

32 2. Related Work

same way, a correspondence is established between the activities, in the example it
is illustrated by the means of activity names, and the activity “Indication” has no
counterpart.

Second, once the correspondence has been established, the atomic operations
can be extracted. There are three kinds of modifications: (i) remove an element
(an activity or a block), (ii) add an element, and (iii) move an element. In the last
case, there are two sub–options: move within a block or move outside of the block.
In the latter case, both source and target blocks must be mentioned. The list of
modifications which lead from the process “A” into the process “B” is shown in
Figure 2.13. The list is hierarchical, which means that some actions are independent
and therefore can be made independently or in parallel. In the example above, there
are two independent operations: move the activity “Home Visit” and remove the
activity “Indication,” while the latter operation consists of two steps. The order of
removal steps is important, therefore they are listed sequentially.

Figure 2.13: The hierarchical change log.

The way such operations are defined has a side effect that each of them is re-
versible, which means they can be either applied to the process “A” in order to
make it equal to the process “B,” or their mirror reflections can be applied to the
process “B” in order to make it equal to the process “A.” Also, a user may choose
to apply selected change operations only, thus making possible to make a partial
user–controlled merge of two business processes.

Theoretical Business Process Merging

A theoretical approach to business process merging is presented in [Sun, Kumar
and Yen 2006]. A business process model (or a workflow, in the terms used by the
authors) is formally represented in the form of Petri Nets. Then, for a fixed list of
workflow patterns [van der Aalst, ter Hofstede, Kiepuszewski and Barros 2003], the
authors derive a list of workflow merge patterns. The list of merge patterns is the
following:

2.2. Business Process Generation 33

1. Sequential Merge. A pair of merging points is required in each of two work-
flows to be merged. For example, points p1 and p2 are in the first workflow,
and p′1 and p′2 are in the second workflow. Then, there are two options. In the
case of replacement merge, the part of the first workflow between the points
p1 and p2 is replaced with the part of the second workflow between the points
p′1 and p′2. The second case of insertion merge happens when p1 = p2, so the
corresponding part of the second workflow is actually inserted into the first
workflow in the place of point p1.

2. Parallel merge. The situation is similar to the case of replacement sequen-
tial merge, but instead of replacing the corresponding part of the first work-
low, and AND–split and corresponding AND–join are inserted into the first
worklow model, and both of the original workflow parts co–exist in the result
workflow as parallel branches of an AND–split.

3. Conditional merge. The situation is the same as the previous one, but instead
of an AND–split an OR–split is used, thus providing a conditional split in the
resulting workflow.

4. Complex merge happens in the case when there are more than one pair of
merging points. In that case, each of such pairs is treated individually as de-
scribed in the previous three options.

To conclude, in [Sun et al. 2006] the authors provide a theoretical foundation for
the merging of business processes. However, the task of choosing the merge points
is entirely up to the end user or the application framework which could possibly
pick those merge points automatically, and that is the reason why this approach is
mainly of theoretical interest.

2.2.2 Workflow Mining

An enterprise–level (CRM) system could in general be traced at the level of atomic
events. Such events include invocations of some (Web–)services, sending notifica-
tions to the users, storing the information in a storage or in the Cloud and so on.
The history of such events is called a transaction log and it essentially reflects the
real lifecycle of a particular enterprise system. In the case of a Business Process
Management System the information about the actual business process execution is
stored and analysed as a part of a monitoring and diagnose stage, as illustrated in
Figure 2.1.

Such information can be used in order to create a new business process based on
the actual flow of events or to amend an existing business process model. The latter

34 2. Related Work

situation happens when an existing business process model does not suit the actual
customer’s needs and therefore has to be deviated at run time.

A transaction log can be seen as a set or execution traces, and each of those
traces consists of totally ordered set of individual events. It is presumed that there
is a possibility to distinguish the individual events by their affiliation to a separate
business process instance. Each execution trace in that case is a container of all
events associated with an individual business process instance.

The task of workflow mining is the following: given a set of execution traces,
create a model of a workflow which, being executed, would leave the same traces
as contained in the original transaction log. The task of workflow mining has the
affinity with the tasks of Business Intelligence (BI) and Data Mining (DM), and the
solutions are provided in similar ways.

A theoretical approach to workflow mining was introduced in [van der Aalst and
Dongen 2002]. There, each event in a transaction log considered to be a candidate
for a single workflow task, and the name of the task is equal to the name of its
corresponding event. Then, given a transaction log L is a set of execution traces
l1, . . . lN ∈ L, there are four types of interrelations between the activities a and b:

• a > b iff there is a trace l ∈ L, such that for this trace the event a is located at
ith place and the event b is located at (i+ 1)th place, for some i;

• a→ b iff a > b and b 6> a;

• a#b iff a 6> b and b 6> a;

• a ‖ b iff a > b and b > a.

To summarise, the first type means that in some cases a is immediately followed
by b, the second type means that a is always followed by b, the third type means that
a and b never appear together, and the fourth type means that a and b can appear in
arbitrary order. The second type indicates that probably a is followed by b in some
workflow model, while the third type might indicate that a and b are located on
different branches of a XOR–split. The fourth type allows a and b to be located on
parallel branches of an AND–split.

Having discovered the interrelations described above, a workflow model can be
build, using the α–algorithm proposed in [van der Aalst and Dongen 2002]. The
resulting workflow, though, may not cover the rare cases which were not appearing
in the transaction log, and is not resilient to the noise which is a common issue in
real–world systems.

In Table 2.2 (A), a few possible execution traces are listed in three separated
columns. The order of events corresponds their temporal ordering, but the times-
tamps were omitted for the simplicity. In Table 2.2 (B), the interrelations between

2.2. Business Process Generation 35

different events are presented. Only the upper triangle is filled, because for any two
given events their reverse relationship can be easily recovered. The final workflow
in Petri–Net notation is illustrated in Figure 2.14.

A comprehensive survey of workflow mining is presented in [van der Aalst, van
Dongen, Herbst, Maruster, Schimm and Weijters 2003].

Trace 1 Trace 2 Trace 3
1. RR 1. RR 1. RR
2. HV 2. CIZ 2. HV
3. SI 3. OR 3. SI
4. OR 4. DE 4. OR

HV CIZ SI OR DE
RR → → # # #
HV — # → # #
CIZ — — # → #
SI — — — → #

OR — — — — →

(A) (B)

Table 2.2: Three possible execution traces (A) and the interrelations implied by those traces
(B).

Figure 2.14: The result of workflow mining.

2.2.3 Other Approaches to Business Process Generation

The area of service–oriented computing provides with another option to build a
business process via the usage of service composition techniques. A composition
of services is generally a guideline on which services must be executed in order to
fulfil a certain task.

Such a composition, once prepared, can be potentially reused several times,
therefore, it can be treated as a business process. Consequently, the existing tech-
niques for automated or semi–automated service compositions can be considered
for the case of business process variability.

In general, a business process can be built of individual services basing on their
implicit dependencies, which are driven by the input and output information of

36 2. Related Work

each of the services [Eshuis and Grefen 2009, Brogi and Popescu 2006, Liang, Chakara-
pani, Su, Chikkamagalur and Lam 2004]. In result, the composition of services
can be made in semi–automated way, because it may require the intervention of
an end–user in order to build a concrete composition, as mentioned in [Eshuis and
Grefen 2009].

Additionally, the advantages of integrating AI planning techniques for several
applications in the field of Business Process Management have long been acknowl-
edged. For instance, [Rodrı́guez-Moreno and Kearney 2002, Rodrı́guez-Moreno,
Borrajo, Cesta and Oddi 2007, Madhusudan, Zhao and Marshall 2004] focus on how
different planning approaches can assist at the business process definition phase,
while the work presented in [Jarvis, Moore, Stader, Macintosh, Casson-du Mont
and Chung 1999] investigates how planning can be used in case of domain state
changes. In order to facilitate (semi-)automatic adaptation at runtime, AI planning
techniques have been used from different viewpoints in the literature. In [Beckstein
and Klausner 1999] the use of an intelligent assistant based on AI planning tech-
niques is discussed, which can suggest compensation workflows or the re-execution
of activities as a response to execution failures, with the help of meta-level knowl-
edge incorporated in the workflow semantics.

In [Ferreira and Ferreira 2006] the use of machine learning is proposed in order
to infer the preconditions and effects of activities provided the availability of a set of
training examples, and then generate a partially ordered plan that complies to these
rules. The framework aims at providing a candidate process that is able of achieving
some business goals. At execution time, if an activity fails, an alternative candidate
plan is provided.

The work closest to the problem of business process variability is the approach to
BP adaptation through planning presented successively in [de Leoni, Mecella and
De Giacomo 2007, de Leoni, De Giacomo, Lespèrance and Mecella 2009, Marrella
and Mecella 2011]. This work uses several versions of Golog [Levesque, Reiter,
Lespérance, Lin and Scherl 1997], which is based on planning by means of the situ-
ation calculus [Reiter 2001], to adapt a running process in case mismatches between
the environment and the internal system representation are detected. In Golog the
goal to be achieved has to be specified in a procedural way, as a non-deterministic
program, as opposed to the use of high–level declarative goals, as the ones used by
domain-independent planners, like the one presented herein. This implies that the
adaptation process has to be pre–specified in an action-centric way, which requires
domain-specific knowledge of the available services and hand–coding by a human
expert. One advantage of the approach proposed in [Marrella and Mecella 2011]
is that it can manage any unforeseen event, by continually comparing the environ-
ment with the expected outcomes according to the BP specification at each step of

2.2. Business Process Generation 37

execution.
The task of combining some actions in a dynamic way was studied in the field

of semantic service composition by adopting AI planning techniques [Sohrabi and
McIlraith 2010, Kaldeli, Lazovik and Aiello 2011, Au, Kuter and Nau 2005]. The
common premise underlying these approaches is that services come along with se-
mantic annotations that describe their behaviour in some convenient format, usually
in terms of preconditions and effects. Many of the approaches proposed for service
composition via automated planning, however, require that the set of supported so-
lutions is pre–defined in some form of procedural templates, like in [Sohrabi and
McIlraith 2010, Au et al. 2005].

Published as:
H. Groefsema and P. Bulanov and M. Aiello – “Declarative Enhancement Framework for Business Processes,”
Int. Conference on Service-Oriented Computing (ICSOC–2011), LNCS 7084, pp. 495–504, 2011.
P. Bulanov and H. Groefsema and M. Aiello – “Business Process Variability: A Tool for Declarative Template
Design,” Int. Conference on Service-Oriented Computing - Demo Track (ICSOC–2011), LNCS 7221, pp.
241–242, 2011.
H. Groefsema and P. Bulanov and M. Aiello – “Imperative versus Declarative Process Variability: Why
Choose?” Submitted to IEEE Transactions on Software Engineering, 2012.

Chapter 3

The Case of Design Time

Among the different ways to address the problem of business process variability, the
declarative one is the most promising in the terms of its flexibility and expressive-
ness [van der Aalst, ter Hofstede and Weske 2003, Schonenberg et al. 2008]. How-
ever, the introduction of declarative constraints poses additional difficulties while
modeling a business process. Herein we introduce the Process Variability through
Declarative and Imperative techniques (PVDI) framework which aims at allowing
a high degree of process variability while preserving the main business goal of a
process. PVDI accomplishes this goal through the combination of blueprinting and
constraint techniques [Aiello, Bulanov and Groefsema 2010]. The hard to under-
stand constraints are hidden from the end–user through easy to recognize graphical
elements introduced to the blueprints or templates. Because of this, PVDI allows to
benefit from both declarative and imperative variability modeling techniques.

Figure 3.1 describes the engineering process of PVDI. The process design part is
shown on the left side and the template evolution part is shown on the right side.
The dark activities represent the well-known BPM engineering steps, whereas the
light activities are the ones which are specific to PVDI. Template design is driven
by requirements, business goals, laws, regulations, etc. The template modeler uses
this knowledge to model a template using traditional BPM techniques in combina-
tion with the graphical elements provided by PVDI. Once completed, constraints
are generated from the PVDI graphical elements and embedded within the tem-
plate. The template is then offered to process modelers as a resource. A process
modeler may use this template to model a variant of the process using traditional
BPM techniques, with the aid of the graphical PVDI elements which visually point
the modeler to what is and what is not allowed. The resulting process is validated
using the constraints specified within the template. If the validation returns faults,

40 3. The Case of Design Time

Figure 3.1: PVDI Engineering Process.

the graphical PVDI elements related to the faults are highlighted for easy reference.
Once the modeler completes a valid variant, the variant may be deployed, executed,
and monitored as a usual business process.

Whenever requirements drive towards template updates, the evolutionary cycle
is entered. The template is updated, new constraints are generated, and the tem-
plate is published again. At this point, whenever an existing variant based upon
the previous version is run, a version check makes sure that the variant is up to
date. If it is not, the variant is reevaluated with regards to the updated template. If
this process returns faults, the variant must be adapted to adhere to the new ver-

3.1. Basic Definitions 41

sion of the template either automatically or manually. Once found correct, it may be
redeployed, run, and monitored as before.

3.1 Basic Definitions

Before going into details of PVDI constraints specification, several basic concepts
have to be defined. They include the formal definitions of processes, templates,
variants, and other important aspects of PVDI.

A process is defined as a directed graph consisting of activities, gates, and events.
Every activity contains multiple incoming and exactly one outgoing transition. The
events, consisting of a single start and end event, contain exactly zero and multiple
incoming, and one and zero outgoing transitions respectively. Gates on the other
hand may contain multiple incoming and outgoing transitions. Since a process is
defined as a directed graph, it can serve as a framework for a modal logic of pro-
cesses, including computational tree logic+(CTL+) (See Appendix A). Consider for
example the process depicted in Figure 3.2. This process P consists of four activities
A through D, a start event, an end event, and a gate.

Definition 3.1 (Process). A process P is a tuple 〈S, T 〉 where:

• S = (A ∪G ∪ E) is the set of activities, gates, and events;

• A = {A1 . . . An} is a finite set of activities;

• G = Ga ∪ Gx is a set of gateways, consisting of and– and xor–gates as defined by
BPMN [Object Management Group (OMG) 2009];

• G = Ga ∪Gx is a finite set of gateways;

• E is a set of events, containing a unique start � and end ⊗ event;

• T ⊆ S × S is a binary relation on S;

• ∀s ∈ S : (s,�), (⊗, s) /∈ T ;

• ∀a ∈ A ∪ E there is at most one s ∈ S with (a, s) ∈ T ;

• ∀s ∈ S \ {⊗} there is at least one s′ ∈ S with (s, s′) ∈ T .

Constraints are used by PVDI to capture restrictions on the variability offered within
a PVDI template. These restrictions include, but are not limited to, process critical
node and path information. A constraint in PVDI is a Computational Tree Logic+

(CTL+) formula. In order to use a process as a model for the CTL+ constraints, we

42 3. The Case of Design Time

Figure 3.2: An abstract process.

introduce a set of variables and a valuation function. We use the natural valuation,
that is, for each node s ∈ S of a process we introduce a dedicated variable. The
labeling function L is then built in such a way that each such dedicated variable
is valuated to true for its corresponding node only. Additionally, under the natural
valuation we can use the same letter to represent both activity and its corresponding
variable. When evaluated, every constraint must valuate to true at every node s ∈ S
of a process.

Definition 3.2 (Constraint). A constraint φ over a process P is a computation tree logic+

(CTL+) formula whose propositional variables are in L(S) of P , where L is a labeling
function using the natural valuation.

From a notation point of view, we use Φ to denote the set of constraints related to
process P . A constraint is valid for a process P iff it is evaluated to true in every
node of the process under the natural valuation. More formally,

Definition 3.3 (Constraint validity). Let φ be a constraint, M be a model built on the
process P using the natural valuation, and S be the set of nodes of the process P . Then φ is
valid iff ∀s ∈ S : M, s |= φ.

Templates are used in PVDI as the basis for forming variants. Informally, a template
is a process including constraints. Taking advantage of these formulations, we note
that is possible to define underspecified processes. That is, a template may range
from being a fully specified process as defined in Definition 4.1 to a set of nodes
S with T = ∅. Since a template is not a process, any constraints φ ∈ Φ within a
template do not have to valuate to true for that template but only for its variants.

3.2. Template Design 43

Definition 3.4 (Template). A template R is a tuple 〈S, T,Φ〉

• S as in definition 4.1;

• T ⊆ S × S is a binary relation on S;

• ∀s ∈ S : (s,�), (⊗, s) /∈ T ;

• ∀a ∈ A ∪ E there is at most one s ∈ S with (a, s) ∈ T .

Variants in PVDI are processes which are based on a template and for which all
constraints φ ∈ Φ of that template are valid. A process based on a template for
which not every constraint φ ∈ Φ is evaluated to true at every node s ∈ S of the
process is therefore considered not to be a variant. Note that the sets of states and
transitions of a template and its variant require no direct relation. This relation,
instead, is implied through the constraints contained in the template and how they
are required to valuate to true at every node of the variant. When adding additional
constraints to define templates, the set of possible variants is reduced.

Definition 3.5 (Variant). A variant V of a template R = 〈SR, TR,ΦR〉 is a process P =

〈SV , TV 〉 such that ΦR is valid for the process P .

To ease the definition of constraints, we introduce the notion of a group in PVDI.
That is a shorthand to describe a constraint spanning over a set of related nodes, in
other words, to quantify a constraint over several nodes with different names.

Definition 3.6 (Group). A group G in the process P = 〈SP , TP 〉 is a nonempty subset
of the set of nodes SP of the process P . When a group sg is used as input for a constraint
instead of a single node s, then all occurrences of that single node s in the CTL+ formula of
that constraint are replaced by (s1 ∨ . . . ∨ sn) where s1 . . . sn are elements of the group sg .

3.2 Template Design

In order to support template design, PVDI expands the graphical language of the
Business Process Modeling Notation (BPMN) [Object Management Group (OMG)
2009] with PVDI template elements. Each element consists of two parts: a graph-
ical element which extends BPMN and a constructive definition which explains how
to translate the graphical element into a constraint described in CTL+. Template
design in PVDI consists of several steps, illustrated in Figure 3.3. The dark steps
are mandatory, and the light step is optional. Template design is naturally driven
by requirements, such as those on the selection of activities, the order of activities,

44 3. The Case of Design Time

the importance of an entire sub-process, etcetera. Using this information, the tem-
plate modeler selects a set of activities for the template. Then, any transition may
be added to the template. These transitions are largely optional, and may be used
to guide the modeling of variants. At the same time, PVDI elements are added
to the template. These elements can be seen as being graphical representations of
constraints and include, but are not limited to, mandatory selection and ordering
between activities. Next, the actual CTL+ constraints are generated from the PVDI
elements introduced in the previous step and embedded in the template. Finally,
the template is published for use as a source for variants.

Figure 3.3: Template creation.

Let us consider these PVDI graphical elements and their translation into CTL+

constraints one by one. The elements described here are not a final set and may
by extended according to modeling needs. Since PVDI is in its design a declarative
approach, first a number of elements using declarative techniques are discussed.
Then, a number of elements more familiar to imperative techniques are introduced
using PVDI’s declarative approach.

3.2.1 Declarative Techniques

Declarative techniques are process flexibility techniques which focus on what tasks
are performed [Schonenberg et al. 2008]. One inherent property of declarative tech-
niques is that every variation is allowed, except for what is specifically disallowed.
Because of this, declarative techniques are considered the more flexible of the ap-
proaches, but less strictly defined. Here we define four declarative PVDI elements,
their graphical representations, and their translation to CTL+ constraints. The ele-

3.2. Template Design 45

ments discussed here are Mandatory Selection, Mandatory Execution, Ordered Ex-
ecution, and Parallel/Exclusive Execution.

Figure 3.4: PVDI Graphical Elements.

Mandatory Between

The mandatory between constraint gives the option of marking nodes within a tem-
plate in such a way that they must occur between two other nodes. Since mandatory
between is used solely as a building block for other constraints, it does not have a
corresponding graphical element. Mandatory between constrains the process using
the CTL+ formula b ⇒ E([¬e U s] ∧ Fe), meaning that at the begin node (b) there
exists (E) a path for which we do not (¬) encounter the end node (e) until (U) we
encounter the marked node (s) and (∧) where we finally (F) encounter the end node
(e). In other words, at b there is a path for which s comes before e. When a group
is used instead of a single node, one of the nodes in the group must be encountered
between b and e instead.

Definition 3.7 (Mandatory Between). The mandatory between is a constraintα(b, e, s) =

(b⇒ E([¬e U s] ∧ Fe)).

Example 3.1 (Mandatory Between). In the figure below an example of a mandatory
between constraint is illustrated. This constraint states that the node “b” must lie between
the nodes “�” and “c,” and this is indeed true, since there is a path from “�” to “c” which
contains the node “b.”

46 3. The Case of Design Time

� - a - b �
��3

Q
QQs

c -

e -

d

f �
��3

Q
QQs
⊗

α(�, c, b) ≡ � ⇒ E([¬c U b] ∧ Fc).

Always Between

The always between constraint gives the option of marking nodes within a template
in such a way that they must always occur in every path between two other nodes.
Just like mandatory between, always between is used solely as a building block for
other constraints, and therefore does not have a corresponding graphical element.
Always between constrains the process using the CTL+ formula b ⇒ A([¬e U s] ∧
Fe), meaning that at the begin node (b) for all (A) paths we do not (¬) encounter
the end node (e) until (U) we encounter the marked node (s) and (∧) we finally (F)
encounter the end node (e). In other words, for all paths from b, s comes before e.
When a group is used instead of a single node, one of the nodes in the group must
always be encountered between b and e instead.

Definition 3.8 (Always Between). The always between is a constraint β(b, e, s) =

(b⇒ A([¬e U s] ∧ Fe)).

Example 3.2 (Always Between). In the figure below an example of an always between
constraint is illustrated. This constraint states that the node “a” must always lie between
the nodes “�” and “b,” and this is indeed true, since there is only one path from “�” to “b,”
and this path contains the node “a.” On the contrary, the constraint β(�, c, b) is not valid,
since not all paths starting from � go through the node “c.”

� - a - b �
��3

Q
QQs

c -

e -

d

f �
��3

Q
QQs
⊗

β(�, b, a) ≡ � ⇒ A([¬b U a] ∧ Fb).

Not Between

The not between constraint gives the option of marking nodes within a template in
such a way that they must never occur in any path between two other nodes. Just
like the others, not between is used solely as a building block for other constraints,
and therefore does not have a corresponding graphical element. Not between con-
strains the process using the CTL+ formula b ⇒ A[¬s U e], meaning that at the

3.2. Template Design 47

begin node (b) for all (A) paths we do not (¬) encounter the marked node (s) until
(U) we encounter the end node (e). In other words, for all paths from b, we do not
encounter s before e. When a group is used instead of a single node, none of the
nodes in the group may be encountered between b and e instead.

Definition 3.9 (Not Between). The not between is a constraint γ(b, e, s) = (b ⇒
A([¬s U e] ∨G¬e)).

Example 3.3 (Not Between). In the figure below an example of a not between constraint
is illustrated. This constraint states that the node “f” must not lie between the nodes “�”
and “b,” and this is indeed true, since the node “f” lies after the node “b.”

� - a - b �
��3

Q
QQs

c -

e -

d

f �
��3

Q
QQs
⊗

γ(�, b, f) ≡ � ⇒ A([¬f U b] ∨G¬b).

Mandatory Selection

The mandatory selection constraint gives the option of marking nodes within a tem-
plate in such a way that they must be selected for use in a variant. Any node which
is not marked as mandatory is therefore considered to be optional.

Definition 3.10 (Mandatory Selection). A mandatory selection is a constraint φ(s)

such that φ(s) = α(�,⊗, s), as described in Definition 3.7.

A mandatory selection consists of the mandatory between where the start� and
end ⊗ events are used as the begin and end nodes of the mandatory between. As
a result, the marked node must at least occur in one path between start and end
events. In case a group is used instead of a single node, a disjunction is formed
between the nodes within the group as defined in Definition 3.6, resulting in at
least one of these nodes to occur within a path between the start and end events.
The graphical representation of the mandatory selection element can be seen in Fig-
ure 3.4 as B, E, and the activities within group G.

Example 3.4 (Mandatory Selection). In the figure below an example of a mandatory
selection constraint is illustrated. This constraint states that the node “a” must always be
selected, or, in other words, must lie on at least one of the paths from � to ⊗.

48 3. The Case of Design Time

� - a - b �
��3

Q
QQs

c -

e -

d

f �
��3

Q
QQs
⊗

φ(a) ≡ α(�,⊗, a).

Mandatory Inclusion

The mandatory inclusion element allows us to mark a node within a template as
mandatory for execution path in every run–time instance of every variant. In other
words, every path must contain the marked node such that any execution path taken
in a run–time instance of the variant encounters the marked node.

Definition 3.11 (Mandatory Inclusion). The mandatory inclusion is a constraint φ(s)

such that φ(s) = β(�,⊗, s), as described in Definition 3.8.

A mandatory inclusion consists of the always between where the start � and
end ⊗ events are used as the begin and end nodes of the always between. As a
result, all paths between the start and end events must include the marked node.
When a group is used instead of a single node, at least one of the nodes in the
group must occur in each path. Mandatory inclusion can thus be seen as a stricter
version of mandatory selection (Definition 3.10). The graphical representation of the
mandatory execution element can be seen in Figure 3.4 as A.

Example 3.5 (Mandatory Inclusion). In the figure below an example of a mandatory
inclusion constraint is illustrated. This constraint states that the node “a” must always
be executed, or, in other words, must lie on each of the paths from � to ⊗. Note that the
constraint φ(c) is not valid, since the only one of two possible paths from � to ⊗ contains
the node “c.”

� - a - b �
��3

Q
QQs

c -

e -

d

f �
��3

Q
QQs
⊗

φ(a) ≡ β(�,⊗, a).

Ordered Execution

The ordered execution element allows to define the order of nodes in the template
when used in the paths of the variants. An ordered execution is a relation between
two nodes p ∈ S and q ∈ S stating the relative order of these two nodes in one

3.2. Template Design 49

or all execution paths. Groups of nodes may be used for both p and q, in which
case every element within p must, or must not, be followed by any element within
q. Note that neither p nor q becomes mandatory through the ordered execution.
However, when p is included q could become mandatory as a result. The graphical
representation of the ordered execution elements can be seen as flows at the bottom
of Figure 3.4. Here, ordered execution is described over two dimensions; path and
distance. The rows relate to the temporal dimensions; F (Finally) and X (neXt),
which require the linked elements to either follow each other eventually or imme-
diately. The first two columns relate to the paths; E (there Exists a path) and A (for
All paths), which require the linked elements to follow each other in either a path or
all paths respectively. The third column represents a negation of two of these flows.
Note that the negation of an ordered execution representing F results in the use
of a G (Globally) instead for desired result. In Table 3.1, the corresponding CTL+

formulas are displayed for each of the mentioned constraints. Here, the rows cor-
respond to the CTL path quantifiers, and the columns to the CTL state quantifiers
plus the optional negation. The formulas in the first row define a relation between
p and q where q should Finally follow p in all paths, a path, no path, and not a path
respectively. The second row defines the same relations but only for the neXt node
instead.

Definition 3.12 (Ordered Execution). An ordered execution is a constraint φ(p, q,Ω,Π) =

(p⇒ ΩΠq), with:

• p, q are nodes s ∈ S or non-overlapping groups;

• Ω ∈ {A,E} is a state quantifier;

• Π ∈ {X,¬X,F,¬F} is a path quantifier.

Ω\Π X ¬X F ¬F
A p⇒ AXq p⇒ AX¬q p⇒ AFq p⇒ AG¬q
E p⇒ EXq p⇒ EX¬q p⇒ EFq p⇒ EG¬q

Table 3.1: Possible Ordered Executions

Example 3.6 (Mandatory Inclusion). In the figure below several examples of different
options of ordered execution are illustrated.

50 3. The Case of Design Time

� - a - b �
��3

Q
QQs

c -

e -

d

f �
��3

Q
QQs
⊗

a⇒ AXb;

a⇒ AF⊗;

a⇒ EFf.

Parallel/Exclusive Execution

The parallel/exclusive execution element allows to enforce the non occurrence of
a given two nodes in the same path . Parallel/exclusive execution constrains the
process in such a way that from two nodes p ∈ S and q ∈ S all paths (A) globally (G)
may not encounter the other node. The result is that the only one of the nodes p and
q may be selected to be used within a variant, or that they both must be preceded
by a XOR– or AND–gate.

Definition 3.13 (Parallel/Exclusive execution). A parallel/exclusive execution is a
constraint φ(p, q) = (p ⇒ AG¬q) ∧ (q ⇒ AG¬p), where p, q are distinct nodes s ∈ S or
non-overlapping groups.

Note that any required precedence of a specific gate type should be constrained
by the other means (ordered execution). When groups are used for p and/or q in-
stead of a single node, every node within pmust not be followed by any node within
q, and vice versa. The graphical representation of the parallel/exclusive execution
element can be seen as a flow at the bottom right of Figure 3.4.

3.2.2 Imperative Techniques

Imperative techniques differ from declarative techniques by allowing no variations
except for those which are specified beforehand. Because of this, imperative tech-
niques are considered less flexible, but allow for an easy to use straightforward de-
sign process for variants. Given the nature of these techniques, we provide first
two “areas” representing imperative specifications and then present several modi-
fications, which change the flexibility of these areas in order to allow for variation
points, that is, elements of a business process where change may occur to support
imperative variability [Aiello et al. 2010].

Closed Area

A closed area constrains the selected area in such a way that every node becomes
mandatory to select (Definition 3.10) and no nodes other than those already in the
area may be introduced to it. Closed areas allow exactly one incoming and exactly
one outgoing flow to and from it.

3.2. Template Design 51

Definition 3.14 (Closed Area). A closed area C over a group G is a set of constraints
built over the set of activities GA = {a1, a2, . . . an} of the group G and two dedicated start
�C and end ⊗C nodes of the group. The set of constraints consists of the following:

• Mandatory between constraints α(�C ,⊗C , ai) (Definition 3.7) for each activity
ai ∈ GA;

• For the group G−1
A = S \GA :

– G−1
A ⇒ EX¬(a1 ∨ a2 ∨ . . . ∨ an ∨ ⊗C);

– (a1 ∨ a2 ∨ . . . ∨ an ∨ �C)⇒ EX¬G−1
A ;

• A closed constraint described by the CTL+ formula �C ⇒ A[(� ∨ a1 ∨ a2 ∨ . . . ∨
an) W ⊗C], where a1, a2, . . . an are members of the set GA.

Frozen Area

Frozen areas specify areas in a template which may not be altered when designing
variants unless specifically allowed. A frozen area constrains a part of a template
in such a way that every node becomes mandatory to select (Definition 3.10) and
that every path from every node allows for no variation until the exit of the area.
Effectively, every path between its start and end is “frozen” and may not be changed.
A frozen area is defined over a group (Definition 3.6) which may be used as such
with regard to any other techniques described herein. The graphical representation
of the frozen area can be seen in Figure 3.4 as D.

Definition 3.15 (Frozen area). A frozen area F over a group G is a set of constraints
built over the set of activities GA = {a1, a2, . . . an} of the group G and two dedicated start
�F and end ⊗F events of the group. The set of constraints consists of the following:

• Mandatory between constraints α(�F ,⊗F , ai) (Definition 3.7) for each activity
ai ∈ GA;

• For the group G−1
A = S \GA :

– G−1
A ⇒ EX¬(a1 ∨ a2 ∨ . . . ∨ an ∨ ⊗F);

– (a1 ∨ a2 ∨ . . . ∨ an ∨ �F)⇒ EX¬G−1
A ;

• Path constraints described by the CTL+ formula ai ⇒ A(π1
i ∨ . . . ∨ πT1) for each

activity ai ∈ GA
⋃
{�F }, where:

– each of the sub–formulas πji corresponds to a single path pji leading from the
activity ai to the end of the group ⊗F . There are as many sub–formulas πji as
there are distinct paths leading from ai to the end;

52 3. The Case of Design Time

– for each of such paths pji = {ai, pj1, . . . p
j
k,⊗F }, the corresponding sub–formula

πji is described by: πji = [(ai ∨ pj1 ∨ . . . ∨ p
j
k) W ⊗F] ∧ [F pj1] ∧ . . . ∧ [F pjk];

– for the case of a simple path pji = {ai,⊗F }, the sub–formula πji is reduced to
πji = X ⊗F .

Example 3.7 (Frozen Area).

�F- a - b �
��3

Q
QQs

c -

e -

d

f �
��3

Q
QQs
⊗F

a⇒ A([(a ∨ b ∨ c ∨ d) W⊗]∧
[Fb] ∧ [Fc] ∧ [Fd])∨
([(a ∨ b ∨ e ∨ f) W⊗]∧
[Fb] ∧ [Fe] ∧ [Ff]).

Assume the process illustrated above is encoded as a set ofCTL+ formulas. The formulas
for �, a, b are the longest because there exist two possible paths from them to ⊗. Therefore,
according to Definition 3.15, the formula splits into two pieces, one for each path. Consider
the upper branch of the process, and the path p1

a = {a, b, c, d,⊗F }. The formula π1
a for that

path is therefore the following: [(a∨b∨c∨d) W ⊗F]∧ [Fb]∧ [Fc]∧ [Fd]. The same applies
to the bottom branch. The resulting path–preserving formula for the node “a” is illustrated
in the figure above.

Optional Nodes

Allowing nodes to be optional is a modification of the definition of a frozen (Def-
inition 3.15) area which allows for the removal of otherwise mandatory (Defini-
tion 3.10) nodes constrained by an area. Allowing for optional nodes modifies the
constraints of the area in such a way that the affected nodes are no longer mandatory
to select or may be bypassed within the area and thus become optional. The graph-
ical representation of the optional nodes within a area can be seen in Figure 3.4 at H
and I.
Modification 1 (Allow for Optional Node). Allowing for an optional node s is accom-
plished through the following modifications on the constraints:

• The mandatory selection constraint φ(�F ,⊗F , s) corresponding to the activity
s is removed;

• All of the path sub–formulas πji are modified in the following way: if the
clause [F s] is a part of the formula πji , then that clause is removed from the
formula πji .

3.2. Template Design 53

Example 3.8 (Frozen Area — Node Removal).

�F- a - b�
�

-

QQs e -

d

f �
�3

QQs ⊗F

a⇒ A([(a ∨ b ∨ c ∨ d) W ⊗F]∧
[Fb] ∧ [Fd])∨
([(a ∨ b ∨ e ∨ f) W ⊗F]∧
[Fb] ∧ [Fe] ∧ [Ff]).

Consider the same process as illustrated in Example 3.7, and allow the node “c” to be
optional. It implies the removal of appropriate “mandatory” constraint, and the structure–
preserving formulas are modified to reflect the optional nature of the node “c.” Namely, the
clause [Fc] is removed, as it is show in the figure above.

To illustrate how optional nodes work in practice, we removed the node “c” from the
process, leaving the rest of the process intact. To check the corresponding formula, consider
the path sub–formula [(a ∨ b ∨ c ∨ d) W ⊗F]. It will be valid for the upper path of the
process, since the lack of the node “c” does not violate the “until” formula. Also, the rest of
the formula is also valid because of the absence of the clause [Fc].

Inserting Nodes

Allow node insertion is a modification of the constraints of a frozen area (Defini-
tion 3.15) which allows for the insertion of nodes at specific spots within a path
constrained by a frozen area. The graphical representation of the option to insert
nodes at spots within a frozen area can be seen in Figure 3.4 as the arrow at F.
Modification 2 (Allow Node Insertion). Allowing for the insertion of a node in a
certain spot which lies between the activities at and at+1 is accomplished with the
following modifications:

• for all paths pji = {ai, ai+1 . . . at, at+1, . . .⊗F } which contain both at and at+1,
the corresponding path formula πji is modified in the following way:

• πji = [(ai ∨ ai+1 ∨ . . . ∨ at) U AF ψ] ∧ [Fai+1] . . . ∧ [Fat], where ψ is the path–
preserving formula for the activity at+1 according to the definition of frozen
area (Definition 3.15);

• note that the formula ψ may be in turn modified because of the existence of
more places which allow for node insertion.

54 3. The Case of Design Time

Example 3.9 (Frozen Area — Insert a Node).

�F- a - b�
�3
QQs

c

e -

d

f �
�3

QQs ⊗F

a⇒ A([(a ∨ b ∨ c) W (AF ψ)]∧
[Fb] ∧ [Fc] ∧ [Fd])∨ . . .)
ψ = A[(d W ⊗F)].

Consider the same process as illustrated in Example 3.7, and allow an insertion point
between the nodes “c” and “d,” which is illustrated with a dashed line. For the simplicity,
we show only the first part of the formula which covers the upper branch of the process, since
the second part of the formula remains intact.

In the figure below, one of the possible process modification is shown, with a new node
“G” inserted between the nodes “c” and “d.”

�F- a - b�
�3
QQs

c -

e -

G - d

f �
�3

QQs⊗F

Moving Nodes

Allow node movement is a modification of the constraints of a frozen area (Defini-
tion 3.15) which allows a node to be moved within that area. Note that allowing a
node to be moved does not automatically mean that it has a place to be moved to.
Nor does it make the node optional. The graphical representation of the option to
move nodes within a frozen area can be seen in Figure 3.4 at H.
Modification 3 (Allow Node Movement). Allowing for the moving of a node s is
accomplished with the following modifications:

• the path–preserving formula for the node s of the type s⇒ φ is removed;

• all of the other path sub–formulas πji are modified in the following way: if the
clause [F s] is a part of the formula πji , then that clause is removed from the
formula πji .

Example 3.10 (Frozen Area — Move a Node).

�F- a - b�
�3
QQs

c

e -

d

f �
�3

QQs ⊗F

a⇒ A([(a ∨ b ∨ c) W (AF ψ)]∧
[Fb] ∧ [Fc] ∧ [Fd])∨
([(a ∨ b ∨ e ∨ f) W⊗] ∧ [Fb] ∧ [Ff]);

ψ = A[(d W ⊗F)].

3.2. Template Design 55

Consider the same process as illustrated in Example 3.7, and let us allow the activity
“e” to be moved. However, just making a node “movable” does not help, since there is
no potential target place for such a traveling node, therefore, we will also allow for node
insertion between the nodes “c” and “d,” as already described in Example 3.9. In result, the
figure above shows

In the figure below, we explored the possibility to move the node “e,”, and we moved it
into the only admissible place (apart from its original home place), which is the place between
the nodes “c” and “d.”

�F- a - b�
�3
QQ

c -

-

e - d

f �
�3

QQs⊗F

Replacing Nodes

Allow node replacement is a modification of the constraints of a frozen area (Defini-
tion 3.15) which allows the choice to include one of several nodes at a certain point
in a path of a frozen area. The graphical representation of the option to replace
nodes within a frozen area can be seen in Figure 3.4 at G.

Modification 4 (Allow Node Replacement). Allowing for the replacement of node s0
j

with nodes s1
j , . . . , s

i
j in a path is accomplished through the following modification

of mandatory and path–preserving constraints:

• Replace every occurrence of s0
j in every constraint with the following clause:

(s0
j ∨ s1

j ∨ . . . ∨ sij).

Example 3.11 (Frozen Area — Replate a Node).

�F- a - b�
�3
QQs

c -

e -

d

f �
�3

QQs ⊗F

a⇒ A([(a ∨ b ∨ (c ∨ c1 ∨ c2) ∨ d) W⊗]∧
[Fb] ∧ [F (c ∨ c1 ∨ c2)] ∧ [Fd])∨
([(a ∨ b ∨ e ∨ f) W⊗]∧
[Fb] ∧ [Fe] ∧ [Ff]).

Consider the same process as illustrated in Example 3.7, and let us allow to replace the
activity “c” with either “c1” or “c2.” The figure above illustrate the necessary modifications
in the path–preserving formula. In result, the process which contains the activity “c2” in
place of the activity “c” is still valid.

56 3. The Case of Design Time

�F- a - b�
�3
QQs

c2 -

e -

d

f �
�3

QQs ⊗F

3.3 Constraint Relations

So far we have introduced constraints as CTL+ implications. Although these offer a
considerable amount of expressivity for variability, we need more complex construc-
tions to capture other important variability functionality. COVAMOF for example
allows relations between different variation points at different levels of abstraction.
These so called realization relations “specify rules that determine which variants or val-
ues at variation points at lower levels should be selected in order to realize the choice at
variation points at higher levels” [Sinnema et al. 2006]. Although PVDI does not fea-
ture variation points, a similar mechanism is supported in the form of Constraint
Relations. A constraint relation is a constraint which forms a zeroth–order logic for-
mula over two other constraints, that is, a formula without quantifiers. Next, we
introduce a number of constraint relations.

Figure 3.5: PVDI Graphical Elements for Variation Relations.

3.3.1 Prerequisite

The prerequisite constraint relation defines an affiliation between two nodes regard-
ing their inclusion, but without any restrictions on ordering. The prerequisite rela-
tion constrains the process in such a way that if p is included then q must be included
as well. When a group is used for p or q, then when at least one node from the set
p is included, then at least one node from the set q must be included as well. The
graphical representation of the prerequisite relation can be seen in Figure 3.5 at the
top left.

Definition 3.16 (Prerequisite). A prerequisite constraint φ(p, q) = (α(�,⊗, p) ⇒
α(�,⊗, q)), as described in Definition 3.7, with p, q being different nodes s ∈ S or non
overlapping groups.

3.3. Constraint Relations 57

3.3.2 Exclusion

The exclusion constraint relation defines an affiliation between two nodes regarding
the exclusion of one of them. The exclusion relation constrains the process in such
a way that if p is included then q must not be included. When a group is used for p
or q, then when at least one node from the set p is included, then no node from the
set q may be included. The graphical representation of the exclusion relation can be
seen in Figure 3.5 at the bottom left.

Definition 3.17 (Exclusion). An exclusion constraint φ(p, q) = (α(�,⊗, p)⇒ γ(�,⊗, q)),
as described in Definition 3.7 and Definition 3.9, with p, q being different nodes s ∈ S or
non overlapping groups.

3.3.3 Substitution

The substitution constraint relation defines an affiliation between two nodes regard-
ing their substitution. The substitution relation constrains the process in such a way
that if p is not included then q must be included instead. When a group is used for
p or q, then when no node from the set p is included, then at least one node from the
set q must be included. The graphical representation of the substitution relation can
be seen in Figure 3.5 at the bottom in the middle.

Definition 3.18 (Substitution). A substitution constraint φ(p, q) = (γ(�,⊗, p) ⇒
α(�,⊗, q)), as described in Definition 3.7 and Definition 3.9, with p, q being different nodes
s ∈ S or non overlapping groups.

3.3.4 Corequisite

The corequisite constraint relation defines an affiliation between two nodes regard-
ing their inclusion. The corequisite relation constrains the process in such a way that
if p is included q then must be included as well, and vice versa. When a group is
used for p or q, then when at least one node from the set p is included, then at least
one node from the set q must be included as well, and vice versa. The graphical
representation of the corequisite relation can be seen in Figure 3.5 at the top right.

Definition 3.19 (Corequisite). A corequisite constraint φ(p, q) = ψ(p, q) ∧ ψ(q, p),
where ψ is the prerequisite constraint (Definition 3.16) and p, q are different nodes s ∈ S
or non overlapping groups.

58 3. The Case of Design Time

3.3.5 Exclusive–Choice

The exclusive–choice constraint relation defines an affiliation between two nodes
regarding their inclusion and exclusion. The exclusive–choice relation constrains
the process in such a way that if p is included then q must not be included, and vice
versa. When a group is used for p or q, then when at least one node from the set
p is included, then no node from the set q may be included, and vice versa. The
graphical representation of the exclusive–choice relation can be seen in Figure 3.5 at
the bottom right.

Definition 3.20 (Exclusive–Choice). An exclusive–choice constraint φ(p, q) = ψ(p, q)∧
ψ(q, p), where ψ is the exclusion constraint (Definition 3.17) and p, q are different nodes
s ∈ S or non overlapping groups.

3.4 Variant Design: An Example

The design of variants in PVDI is naturally eased by the PVDI graphical elements.
Every element introduced in the previous sections guides the design towards a set
of possible variants. Take for example the PVDI template depicted in Figure 3.6.
This template specifies a simple room reservation process including three different
rooms: practical labs, classrooms, and meeting rooms. Because the three rooms are
grouped, and an ordered execution constraint specifies that the start element must
be followed by the group, at least one of those three room types must be included,
and more than one room may be included. The group is then followed by a frozen
area comprising of four activities: “Lock table,” “View rooms,” “Reserve room,”
and “Error.” Of these, two activities are mandatory to select, and two (“Lock table”
and “Error”) are allowed to be removed. However, by using an exclusive–choice
constraint relation we specify that at least one of the two optional activities must be
included. In this way, we force either a lock table before reserving mechanism, or a
first come first serve mechanism including a success/error report in case of failure
when the room was already reserved by somebody else.

Activity Variable Activity Variable
Start s Group end eg
End e Lock lo
Practical Lab pr View Rooms vr
Classroom cr Reserve Rooms rr
Meeting room mr Check Error ce
Group start sg

Table 3.2: PVDI Room Reservation Elements.

3.4. Variant Design: An Example 59

Figure 3.6: PVDI Room Reservation Template.

Figure 3.7: A Valid Variant of Room Reservation Process.

Once a template is created, its PVDI elements are automatically converted by the
tool to a set of CTL+ constraints as described in sections 3.2 and 3.3. The follow-
ing constraints are generated from the PVDI template depicted in Figure 3.6. We
use shorthand notations for each element, the meaning of which can be found in
Table 3.2.

In the equation below, each line represents a single constraint generated on the
basis of the visual constraints in Figure 3.6. Lines 1 and 2 represent the flow con-
straints leading to and from the group, respectively. Lines 3 to 7 represent the path–
preserving constraints for the frozen area. Lines 8 and 9 include the mandatory
constraints for the two mandatory nodes in the area, and lines 10 and 11 list the
restrictions on entering and exiting the area through its start and end nodes only.
Finally, line 12 lists the exclusive–choice constraint.

Next, variants are designed using the template. An example of a valid busi-

60 3. The Case of Design Time

Figure 3.8: An Example of Invalid Variant for Room Reservation Process.

ness process variant is shown in Figure 3.7. There a practical lab is chosen and an
exclusive–lock mechanism is used to avoid any collisions.

Figure 3.8 shows an erroneous example. Two PVDI elements are being high-
lighted by the tool, which indicates that their related formulas are being violated.
First, none of three predefined room types is used, resulting in a violation of the
constraint in line 1. Second, the frozen area structure is corrupted since the activity
“Check Error” is placed before the activity “View Rooms”, resulting in a violation
of the constraint in line 7.

s⇒ AF (pr ∨ cr ∨mr) (3.1)

(pr ∨ cr ∨mr)⇒ AF (sg ∨ lo ∨ vr ∨ rr ∨ rr ∨ ce ∨ eg) (3.2)

sg ⇒ A([(sg ∨ lo ∨ vr ∨ rr ∨ ce)Weg] ∧ Fvr ∧ Frr) (3.3)

lo⇒ A([(lo ∨ vr ∨ rr ∨ ce)Weg] ∧ Fvr ∧ Frr) (3.4)

vr ⇒ A([(vr ∨ rr ∨ ce)Weg] ∧ Frr) (3.5)

rr ⇒ A[(rr ∨ cc)Weg] (3.6)

ce⇒ A[(ce)Weg] (3.7)

sg ⇒ E([¬egUvr] ∧ Feg) (3.8)

sg ⇒ E([¬egUrr] ∧ Feg) (3.9)

[s ∨ e ∨ pr ∨ cr ∨mr]⇒ ¬EX[lo ∨ vr ∨ rr ∨ ce ∨ eg] (3.10)

[sg ∨ lo ∨ vr ∨ rr ∨ ce]⇒ ¬EX[s ∨ e ∨ pr ∨ cr ∨mr] (3.11)

[α(s, e, lo)⇒ γ(s, e, ce)] ∧ [α(s, e, ce)⇒ γ(s, e, lo)] (3.12)

3.5. Process Healthiness 61

3.5 Process Healthiness

There is a number of possible metrics to verify if a business process model is healthy
or not. In [Wynn, Verbeek, van der Aalst, ter Hofstede and Edmond 2009] three main
characteristics of a healthy, or sound, processes are mentioned. Namely, the (weak)
option to complete, proper completion , and the absence of “dead” transitions. In
PVDI, those characteristics are ensured through the help of a healthiness constraint.

Definition 3.21 (Healthiness). The healthiness is a constraint φ(s) = α(�,⊗, s), as
described in Definition 3.7.

The healthiness constraint disallows dead–ends and ensures that all nodes are
reachable at the same time (Definition 3.21). It consists of a mandatory between
where the start � and end ⊗ events are used as the begin and end nodes of the
mandatory between. In contrast with the constraints discussed in previous sections,
which are generated from the template before modeling a variant, the constraints
described in this section are generated after modeling a variant and directly prior
to validation. Although the constraint seems equal to the mandatory selection (Def-
inition 3.10), the the difference in the time of generation allows for different uses.
A process (Definition 4.1) is considered correct when all correctness requirements
have been evaluated to true at all nodes of the process.

Definition 3.22 (Healthy Process). A process P is healthy iff ∀s ∈ Sp the healthiness
constraint φ(s) is valid at every node s ∈ SP of the process.

3.6 Variant Validation

Processes are required to be validated after their derivation from a template. A
process is valid with respect to a template if it is healthy (Definition 3.22) and if it is
a variant (Definition 3.5) of this template.

Definition 3.23 (Valid Process). A process P is valid with respect to a template R iff it is
a variant of R and is healthy.

As specified in definition 3.5, a process P is a variant of a template R if the set
of constraints ΦR is valid for P . The same is true for healthiness (Definition 3.22), P
is healthy if the set of healthiness constraints ΦH is valid for P . In turn, according
to Definition 3.3, these constraints are valid if ∀s ∈ SP :M, s |= ΦR ∪ ΦH . As such,
validation entails that the process is evaluated against these sets of constraints. We
therefore propose an algorithm which valuates every constraint at every node for
every path emerging from that node.

62 3. The Case of Design Time

3.6.1 Model Conversion

Model checking is a technique used to automatically verify models against a given
specification. In classical model checking (e.g., [Clarke, Grumberg and Peled 2000]),
a model is defined as a finite state machine, and is checked against a set of formulas
of propositional or modal logic. In case of PVDI, a process, which is defined as a
directed graph (Definition 4.1), is validated against a set of constraints expressed as
CTL+ logic formulas. We therefore employ model checking techniques when ver-
ifying variants [Clarke, Emerson and Sistla 1986]. A variant is defined as a process
P = 〈S, T 〉 for which all constraints are valid. A CTL modelM = 〈S, T, L〉 consists
of a set of states S, a set of transitions T , and a valuation function L [Emerson and
Halpern 1985, Clarke et al. 1986]. In order to get the corresponding modelM of P ,
we map S and T such that loops are mapped only once, but infinite traversals of
loops are avoided. Since we evaluate business processes which at most might be
long living, but never infinite, any path, being a sequence (s0, s1, . . .) of states such
that (si, si+1) ∈ T , can therefore only be of finite length. And finally, to define the
labeling function L we use the natural valuation, that is, for each node s ∈ S of the
process we define a dedicated variable which is equal to true at that node only. For
ease of reference, we name this variable the exact same as the node itself. Individual
CTL+ constraints are evaluated on the model M using state space enumeration.
Then, a constraint φ is valid for the process P iff ∀s ∈ S : M, s |= φ, whereM is the
corresponding model of P (see Definition 3.3).

3.6.2 Validation Algorithm

Although many model checkers exist, we specified a simple search algorithm using
state space enumeration to test the feasibility of model checking business processes.
In doing so, we did tailored the algorithm for the specific use of business processes
with finite paths. But, although the results are positive, we are certain that great
advances in computation time can be achieved through the introduction of a more
efficient algorithm.

The validation algorithm is implemented through a package containing classes
with a one-to-one mapping of the CTL+ symbols described in Appendix A. As
a result, any correct CTL+ formula is supported by the algorithm, enabling easy
extensibility of the set of constraints described earlier. The core algorithm consists
of
• StateQuantifiers;

– All, Exists;

– Implies, Proposition;

3.6. Variant Validation 63

– Or, And, Negation.

• PathQuantifiers;

– Next, Finally, Globally, Until, Unless;

– Or, And, Negation.

The StateQuantifiers All and Exists take a single PathQuantifier as argument. Im-
plies takes two StateQuantifiers as arguments, and Proposition — which resembles
an atomic formula — takes a node or node type as an argument. The PathQuanti-
fiers Next, Finally, and Globally take a single StateQuantifier as an argument, whereas
Until and Unless take two. The quantifiers Or, And, and Negation take only their own
type as input. Through these specific interactions, a set of tree-like constructions rep-
resenting only correctCTL+ formulas can be formed. As an example, theCTL+ for-
mula p⇒ A[qUr] will be constructed in the following way: Implies(Proposition(p)

, All(Until (Proposition(q), P roposition(r)))).
Both StateQuantifiers and PathQuantifiers implement the validate method, which

moves through a process tree employing the validate methods of the quantifiers
which are nested into the current quantifier until a correctness decision is reached.
We discuss the validate methods of the non-trivial core elements. To increase read-
ability, these methods lack those lines and arguments that are used for the purpose
of optimization and a number of safeguard checks, but remain the same in their
essence.

Listing 3.1: Validate Method of the StateQuantifier All

public boolean v a l i d a t e (CTLNode e){
I t e r a t o r<Lis t<CTLNode>> paths =

CTLUtil . getAllPathsFromNode (e) . i t e r a t o r () ;
boolean r e t = paths . hasNext () ;

while (paths . hasNext () && r e t)
r e t = q . v a l i d a t e (paths . next ()) ;

return r e t ;
}

Listing 3.1 illustrates the validate method for the All StateQuantifier. The vali-
date method takes a node e of the process tree as input. It then requests all paths
from this node e and initializes its variables. In case there are no paths returned the
method returns false. However, in practice the paths returned will always include
the CTLNode e as its first element and therefore should never be empty. For each
of those paths, the validate method of the nested PathQuantifier q is called until one

64 3. The Case of Design Time

returns false. When all paths return positively, then the method returns true, and
false value is returned otherwise.

Listing 3.2: Validate Method of the StateQuantifier Exists

public boolean v a l i d a t e (CTLNode e){
I t e r a t o r<Lis t<CTLNode>> paths =

CTLUtil . getAllPathsFromNode (e) . i t e r a t o r () ;
boolean r e t = f a l s e ;

while (paths . hasNext () && ! r e t)
r e t = q . v a l i d a t e (paths . next ()) ;

return r e t ;
}

Listing 3.2 illustrates the validate method for the Exists StateQuantifier. The vali-
date method operates in the same manner as its counterpart of the All StateQuanti-
fier, but returns true as soon as one path returns true.

Listing 3.3: Validate Method of the PathQuantifier Next

public boolean v a l i d a t e (L i s t<CTLNode> path){
return path . s i z e () > 1 && p . v a l i d a t e (path . get (1)) ;

}

Listing 3.3 illustrates the validate method for the Next PathQuantifier. The validate
method receives a path as input, checks if a next element exists, calls the validate
method of its nested quantifier p for that next element, and returns the result.

Listing 3.4: Validate Method of the PathQuantifier Finally

public boolean v a l i d a t e (L i s t<CTLNode> path){
boolean r e t = f a l s e ;
I t e r a t o r<CTLNode> p a t h I t = path . i t e r a t o r () ;

while (p a t h I t . hasNext () && ! r e t)
r e t = p . v a l i d a t e (p a t h I t . next ()) ;

return r e t ;
}

Listing 3.5: Validate Method of the PathQuantifier Globally

public boolean v a l i d a t e (L i s t<CTLNode> path){
I t e r a t o r<CTLNode> p a t h I t = path . i t e r a t o r () ;
CTLNode n = null ;
boolean r e t = p a t h I t . hasNext () ;

3.6. Variant Validation 65

while (p a t h I t . hasNext () && r e t){
n = p a t h I t . next () ;
i f (! (n instanceof CTLLoopNode))

r e t = p . v a l i d a t e (n) ;
}
return r e t ;

}

Listing 3.4 illustrates the validate method for the Finally PathQuantifier. The val-
idate method receives a path as input, and initializes its variables. It then loops
through the path and calls the validate method of its nested quantifier p for each of
the elements of the path until a positive result has returned. In this case the loop is
interrupted and true is returned immediately. In case the end of the path is reached
without a positive result then false is returned. The validate method for the Glob-
ally PathQuantifier is depicted in Listing 3.5. It operates in almost the same way as
its counterpart of the Finally PathQuantifier, except that it requires a positive result
along the entire path in order to return a true value. In cases where a loop is de-
tected at the end of a path, p holds globally for the infinite loop and a true value is
returned.

Listing 3.6 illustrates the validate method for the Until PathQuantifier. Only the
Until’s PathQuantifier is discussed here as the Unless’s PathQuantifier is very sim-
ilar. The validate method of the Until requires the quantifier p (which is the first
of the nested quantifiers) to hold in the path until the moment when the second
nested quantifier q holds. After initializing its variables, the validate method loops
through the path and calls the validate methods of both p and q. While the validate
method of p returns positively, it continues looping through the path. When the
validate methods of both p and q do not return positively, the loop is interrupted
and false is returned. In case the validate method of q returns positively, and the
validate method of p has returned positively so far, the loop is interrupted and true
is returned. In all other cases false is returned.

Listing 3.6: Validate Method of the PathQuantifier Until

public boolean v a l i d a t e (L i s t<CTLNode> path){
I t e r a t o r<CTLNode> p a t h I t = path . i t e r a t o r () ;
CTLNode n = null ;
boolean r e t = f a l s e ;
boolean ok = p a t h I t . hasNext () ;

while (p a t h I t . hasNext () && ! r e t && ok){
n = p a t h I t . next () ;
i f (! (n instanceof CTLLoopNode)){

ok = p . v a l i d a t e (n) ;

66 3. The Case of Design Time

r e t = q . v a l i d a t e (n) ;
}

}
return r e t ;

}

Finally, the proposition StateQuantifier is an abstract entity and therefore is not
listed here. Instead, several child elements of this quantifier exist. The most com-
mon of these is the one which checks if a particular element in the process tree is
actually the current node in the path. One of the others, for example, checks if the
current node in the path is a start� or an end⊗ event. Using different combinations
of the elements discussed here, any correct CTL+ formula can be represented and
validated. And, as a result, the set of constraints and formulas discussed above can
be easily extended due to the modular design of the validation algorithm.

3.7 Evaluation

To evaluate the proposed PVDI, we compare it with the more common imperative
techniques on the grounds of their expressive power and the complexity of design.
Given that there are no metrics or benchmarks available, we therefore begin by pro-
viding a framework for the evaluation. For defining the boundaries of the compari-
son, we give a definition of both the imperative variability and the declarative PVDI
variability. We then define several basic properties which we use to identify expres-
sive power features. And finally, we explore the difference in complexity, intended
as the number of variants that can be described compactly with a given approach.

3.7.1 The Imperative Case

Imperative process specifications focus on a specific process definition by using
transitions to prescribe the order of node traversal [Balko et al. 2009]. These struc-
tural variations adapt a process by applying a list of atomic operations in a specific
order to the business process. Such operations for example include the replacement
of an activity by another one, the addition of a flow, or the removal of a process
fragment [Aiello et al. 2010, Weber et al. 2008]. Since different structural variations
can contradict each other, it is necessary to specify which structural variations may
or may not be applied together using variation relations. We call the combination of
these two mechanisms the approach of variation points.

An example of a variation point is illustrated in Figure 3.11d. The upper branch
contains two hexagonal tokens signifying a variation point where either activity “C”
or activity “D” may be included.

3.7. Evaluation 67

Definition 3.24 (Imperative Template). An imperative template R is a tuple 〈P, V P 〉
where P is a process and V P is a set of variation points.

When one or more structural variations are selected from the template, the re-
sulting process is called a variant. A variant may only contain structural variations
as allowed by the variation relations between the different variation points in the
template. A process containing combinations of structural variations which are not
allowed by the variation relations is therefore not a variant. Imperative variability
is the ability to produce a variant V by selecting a set of structural variations from a
template.

3.7.2 The Declarative PVDI Case

Declarative process specifications define relationships between tasks in the form of
constraints, allowing any paths as long as these constraints are not violated [Balko
et al. 2009]. PVDI is based on this approach, but with one important difference.
Instead of interpreting constraints on the state space of the process graph, PVDI
evaluates them on the graph itself. We use the PVDI definitions for constraints,
templates, and variants as provided in Section 3.2 to evaluate the declarative ex-
pressive power of PVDI and then to compare it with the imperative case. Declar-
ative variability as used by PVDI is the ability to produce multiple non-bisimilar
variants from a template R for which every constraint φ ∈ RΦ evaluates to true at
every node si ∈ vS of every variant v. Non-bisimilar variants consist of those vari-
ants which do not effectively simulate each others behavior and thus offer unique
process flows [Milner 1989].

3.7.3 Expressive Power

Templates are used in both variability techniques to capture a process plus the avail-
able variability. Given that we are interested in comparing of the two approaches
mentioned above, we preliminary define the properties of a template to be finite and
closed.

Definition 3.25 (Finite and Closed Templates). A template R is finite iff it has only
finitely many variants. It is closed iff the set of nodes of every variant of R is contained in
the set of nodes of R.

The second property describes closed templates. A template is closed if and only
if for all possible variants based on that template, the set of nodes is a subset of the
set of nodes in the template. In other words, no new node can be introduced to

68 3. The Case of Design Time

variants. This entails that any template which is closed is also finite, and thus offers
only a limited and very specific set of variants as stated in the following theorem.

Theorem 3.1. Any template R that is closed is also finite.

Proof. A closed template R produces a set of variants V such that ∀v ∈ V : vS ⊆ RS .
Since |RS | ∈ N , disregarding constraints, only a limited number of transitions VT
can be drawn between the nodes in RS . Meaning |VT | ∈ N . It follows that |V | ∈ N ,
and from the definition that R is finite.

Imperative variability is expressed through templates which include variation
points. The expressive power of imperative variability is therefore directly con-
nected to the template itself and the available set of atomic operations [Aiello et al.
2010, Weber et al. 2008]. Theorem 3.2 shows that imperative templates are both
closed and finite. As a result, all variability offered through imperative templates
must be specifically designed and prescribed within the template.

Theorem 3.2. All imperative templates are closed and finite.

Proof. An imperative template R consist of a set of nodes RS , transitions RT , and
a set of variation points RV P . An imperative variant V consists of an imperative
template VR and a subset of structural variations SV ⊆ V PSV chosen from those in
the variation points of the template VRV P

. Therefore, all nodes in variants VS ⊆ RS .
From the definition it follows that R is closed, and from Theorem 3.1 it follows that
R is finite. QED.

Imperative variability frameworks however do sometimes include techniques
which increase the expressive power of the framework, allowing for non-closed and
non-finite templates. A common example is a so–called placeholder node. A place-
holder is a place in a template which may or may not be used to include a new
node. In PVDI terms it may be described as p⇒ (AXq∨AXAXq), where the place-
holder is preceded by p and followed by q. As a result, a template including such
placeholders becomes not closed, nor finite, and therefore is more expressive. Other
frameworks allow structural variations within structural variations, a powerful con-
struct that can easily lead to inconsistent and unmanageable variants. Allowing this,
does break the finite property of imperative templates, while the closed property
does remain valid since all activities in the variant remain a subset of those included
in the template.

Contrary to imperative variability, variability in PVDI is not defined explicitly
within templates. Instead, the variability is offered through the underspecification
of the process. Those variability options which are not allowed are specifically dis-
allowed through constraints. The expressive power of PVDI is therefore directly

3.7. Evaluation 69

related to the ability to disallow one thing and to allow others. In other words, to
disallow exactly enough without allowing unwanted possibilities. Because of the
approach of underspecification we know from Theorem 3.3 that PVDI templates
have the option of specifying templates in such a way that they are neither closed
nor finite.

Theorem 3.3. There exist PVDI templates that are neither closed nor finite.

Proof. Consider a PVDI template R, which consists of a set of nodes RS = {p, q}, a
set of transitionsRT = ∅, and a set of constraintsRΦ = {p⇒ AFq}. Variant V based
on this template consists of the template VR = R a set of nodes VS = {p, q, r}, and a
set of transitions VT = {p→ r, r → q}. All constraintsRΦ valuate to true at all nodes
si ∈ VS . Because V is a variant and VS * RS we conclude that R is not closed. Since
we may replace r ∈ VS with any node and produce a variant, we also conclude R is
not finite.

Declarative frameworks sometimes include imperative techniques. This does
not increase their theoretical expressiveness, but rather helps to improve their ex-
pressiveness in practice. For example, in [Lu et al. 2009, Sadiq et al. 2005] the au-
thors use an imperative process structure with pockets of declarative variability, and
in [Groefsema et al. 2011] we propose to capture imperative operations with the help
of the sets of constraints. We extended our proposal in Section 3.2.2.

3.7.4 Ease of Use

It is difficult to make a clear comparison between imperative and declarative ap-
proaches regarding practical use in terms of their complexity. This is mainly due
to the fact that their usability varies depending on each particular case and the par-
ticular variability tool or framework in use. In practice, imperative approaches are
useful when dealing with templates with limited flexibility. On the other hand,
declarative templates offer a great deal of flexibility, which is useful in the case of
highly variable business processes but turns out to give large overheads when deal-
ing with templates with limited flexibility. Next, we define a framework for the com-
parison and we quantitatively compare the relative complexities of both approaches
regarding their ease of use.

To give an impression of how this happens in practice consider the example
in Figure 3.9 illustrating the issue arising when implementing a highly variable
template utilizing imperative techniques. All the combinations shown in the fig-
ure must be implemented explicitly as nine variants, and each of those variants is
made of variation points (shown as pairs of hexagons with dashed connector be-
tween them). In result, a process modeler should choose one of the nine predefined

70 3. The Case of Design Time

Figure 3.9: High variable imperative solution.

variants, and then choose how to fill the placeholders with a variant of choice. The
template includes more than 50 possible variations in total, which must be provided
at the template level either explicitly or by allowing to fill the placeholders by dif-
ferent activities. The difficulty of the task even increases in situations where some of
the combinations are not allowed. Such restrictions should be reflected in the tem-
plate, for example, by linking a list of possible options to particular placeholders. In
the worst case, each of the more than 50 possible options should be visited at the
stage of template modeling in order to decide if it is allowed or not. On the other
hand, the same task can be easily solved using PVDI techniques. Only two formu-
las are required in order to make the specification: start ⇒ AF (A ∨ B ∨ C) and
(A ∨ B ∨ C) ⇒ AFend. The PVDI equivalent of this can be seen in Figure 3.10. In
order to disallow some combinations, additional constraints can be added in order
to reflect the rules which restrict the possible customizations.

Figure 3.10: High variable declarative solution.

The situation changes when dealing with low–variable cases. Consider for in-
stance two possible variants shown in Figures 3.11a and 3.11b. They only differ in

3.7. Evaluation 71

(a) Variant 1. (b) Variant 2.

(c) Declarative Solution. (d) Imperative Solution.

Figure 3.11: Two variants (a) and (b) and their declarative (c) and imperative (d) solutions.

one activity: either C or D is included in the upper branch following the activity B.
An imperative template is simple, as illustrated in Figure 3.11d, but the things be-
come different when one tries to convert this template into a set of formulas. The set
of formulas in Figure 3.11c shows just one of the possible options which comprises
nine formulas. Solutions will obviously become rapidly more complicated for larger
processes. These low– and high–variable cases offer valuable insights into the com-
plexity of both the imperative variability and the declarative variability offered by
PVDI. In order to explore their complexity further, let us first define a task of vari-
ability management as a non-empty set of possible variants VA = {v0, . . . }, each
being a process made of activities of some finite set of activities A. Every variant
represents a single legal modification of some business process, which is typically
referred to as template process. We can then define the complexity of a given vari-
ability approach regarding a variability task VA as the number of different structural
variations or the number of constraints needed to describe this task as a function of
the cardinality of the set A.

While considering imperative variability approaches, the complexity is directly
related to the amount of structural variations needed in a template in order to ex-
press all of the possible variants. Thus, each variant v ∈ VA is the result of applying
of one or more structural variations. Therefore, the minimal number of structural
variations is greater than or equal to the number of possible variants. Since the
complexity equals the amount of structural variations, the complexity itself is also

72 3. The Case of Design Time

greater than or equal to the number of possible variants. Therefore, the minimal
theoretical complexity equals to 1 in the case of only one possible variant. The max-
imum theoretical complexity can be considered when there are no restrictions at all,
that is, the set VA contains all possible business processes which can be built based
on the activities of the set A. To estimate that number, consider Theorem 3.4.

Theorem 3.4 (Theoretical complexity of imperative variability). The number of imper-
ative structured variations for a business process build of N distinct activities and a finite
number of gateways is at least O(5N).

Proof. The maximal number of structured variations which do not involve the adding
of removing of activities is equal to the number of non–equivalent business pro-
cesses build of the same activities. This number we can use as a lower bound to
estimate the number of possible structural variations.

For a given business process, built of activities a1, a2, . . . aN , pick an arbitrary
activity, for example, let it be a1. Then, for each pair of activities a1, ak (where 2 ≤
k ≤ N), the following options are possible:

1. Activity a1 is always followed by activity ak;

2. Activity a1 is followed by activity ak, but not always;

3. Activity ak is always followed by activity a1;

4. Activity ak is followed by activity a1, but not always;

5. Neither of the above statements is true, meaning that activities a1 and ak are
parallel.

In total this results in N −1 pairs with 5 options per pair, and thus 5N−1 possible
combinations. It must be noted that the number 5N−1 gives only the lower bound
since we left out of consideration the possible relations between the other activities.
As a result, the lower bound of the number of distinct business processes is ofO(5N).

Let us consider the declarative-based variability used by PVDI. In this case, the
complexity equals to the number of constraints included in a template in order to
restrict the number of possible variants. In the extreme case of high variability, when
there are no restrictions at all, a PVDI template is quite simply a process. Which
gives us a constant complexity of 0. The other extreme occurs when no changes
are allowed. Because it captures the complete process structure instead of single
transitions, we use the frozen area Definition 3.15. A frozen area requires 2N + 1

formulas, each of length N , which gives in result O(N2) atomic formulas. Note that

3.7. Evaluation 73

other low–variable cases can also be represented as a set of frozen or semi–frozen
areas, which again results in a complexity of O(N2).

(a) Low variable case with constant (1) impera-
tive and N2 declarative complexity

(b) High variable case with constant (0) declara-
tive and 5N imperative complexity

(c) Both figures plotted against each other

Figure 3.12: Imperative versus declarative complexity.

To summarize, in our proposed framework of comparison between imperative
and declarative approaches, the relative complexity is constant versus O(N2) for
the case of a fixed process (Figure 3.12a) and O(5N) versus constant for the case of a
highly flexible process (Figure 3.12b). The immediate conclusion is that employing
the PVDI approach significantly reduces the upper bound of the complexity, because
this approach always results in a polynomial complexity whereas imperative ones
range widely from constant to exponential complexity. Figure 3.12c illustrates this
fact by depicting an indication of how the complexity of a template increases on
the average for both variability techniques when capturing a low to high amount of
variability.

74 3. The Case of Design Time

3.8 Implementation and Performance Results

PVDI tooling is supported with the development of VxBPMN (Figure 3.13). VxBPMN
is developed using the Java programming language. It supports both the modeling
of templates and variants using the Business Process Modeling Notation (BPMN)
[Object Management Group (OMG) 2009] extended with the PVDI graphical ele-
ments (Figures 3.4-3.5). Business process models are saved in XML Process Defini-
tion Language (XPDL) format [van der Aalst 2003] which was extended in order to
support PVDI flows and groups. The tool generates the CTL+ formulas from the
PVDI elements using the definitions provided earlier in this chapter. These formulas
can then be used to model check the process model during and after its design.

Figure 3.13: VxBPMN PVDI tool.

A performance test of the validation algorithm was conducted using a machine
with an Intel R© CoreTM i7 950 at 3.07GHz, 6GB RAM (3×2GB Triple Channel), and
an Intel SSD SA2M080G2GC running Windows 7 SP1 (64-bit) and Java 6 update 23
(64-bit). The performance test consisted of the evaluation of three different busi-
ness processes consisting of 13 to 20 nodes, 15 to 21 transitions, and up to 1 frozen
area. Each evaluation consists of the valuation of the business process embedded
constraints, including soundness constraints, at every node. The number of con-

3.9. Discussion 75

Time (ms) Model Constraints
Runs Total Avg Nodes Transitions Frozen Number Violations

1 1000 3525 3.5 13 15 0 18 0
2 1000 1511 1.5 18 21 1 28 0
3 1000 599 0.6 20 20 1 26 2

Table 3.3: Constraint valuation performance

straints ranged from 18 to 28, where each frozen area counts as one constraint. Since
frozen areas consist of a large number of constraints, the number of constraints for
the two processes containing a frozen group was actually much higher. Table 3.3
contains the results of the constraint valuation performance test conducted with the
VxBPMN tool. Every valuation was run one thousand times in order to get a fair av-
erage result and took between 599 and 3525 milliseconds for all thousand runs. On
average, each individual process valuation took 3.5 milliseconds for the test No. 1,
1.5 milliseconds for the test No. 2, and 0.6 milliseconds for the test No. 3. Although
on the first sight tests No. 2 and 3 seem quite similar, except for the two constraint
violations, the difference of 1 millisecond can actually be explained by the difference
in the complexity of the processes, which included a number of loops, and therefore
included a much higher number of paths.

3.9 Discussion

Managing many variants of the same sort of processes is becoming a growing in-
dustrial need, especially to achieve mass customization and adaptation to several
execution contexts. This has prompted for models and frameworks to deal with
variability in an explicit manner in the field of business process management. Two
techniques have emerged: imperative and declarative ones. Both are expressive and
offer advantages for the trade of business processes engineering. Imperative tech-
niques are well suited for the situations when variations are simple and there are
not many of them. Also, it is usually to control the customizations when the imper-
ative approach is employed. However, since possible variations must be modeled
explicitly in advance, the situation becomes difficult when the number of variations
grows.

Declarative approaches, on the other hand, excel in the case of a very flexible
business process design, but usually face difficulties in expressing a straightforward
enumeration of fixed variants. A natural conclusion is thus to choose the right ap-
proach which unites the best of the former two approaches. Though, this would re-
quire tool support for both techniques and possibly the necessity of migration from

76 3. The Case of Design Time

one tool to another, with all the implied drawbacks. A better option is to combine
both techniques while limiting the practical, but not theoretical complexity. As dis-
cussed above, imperative techniques have a complexity ranging between 1 for low
variable templates to O(5N) for high variable templates. Declarative techniques, on
the other, hand have a complexity ranging from O(N2) for low variable templates
to 0 for high variable ones.

When comparing one approach with another, the one which has the lowest com-
plexity is definitely more attractive. Unfortunately, the exact complexity of each of
the two approaches seriously depends on the particular case under consideration.
Our frameworks effectively solves this dilemma by employing a declarative ap-
proach together with the support for imperative methods. These imperative meth-
ods are internally encoded in as a set of declarative formulas, but from the user’s
point of view those formulas are hidden beneath visual modeling elements. By em-
ploying a graphical approach, PVDI allows a template designer to use a mix of both
techniques while while staying away from the complexity issues of both techniques.

With PVDI we ameliorate a number of common BPM issues such as reusabil-
ity and flexibility, as well as common BPM variability issues relating to complexity
and usability. We do so by offering a graphical design extension to BPMN which
internally transposes the designer’s wishes into constraints which are then auto-
matically processed by the model checker. Through the addition of the graphical
layer the complexity of the declarative formalism is completely hidden from the
business process modeler. Additional graphical notations describing new behavior
can be added easily to the extensible PVDI framework, offering an even larger range
of options than described in this chapter. The foundation of PVDI is rooted from a
declarative base, which we proved to be the less complex choice.

In Chapter 2, some of the state of the art design–time frameworks were de-
scribed, including Configurable Workflow Models [Gottschalk et al. 2008] and busi-
ness process modeling with explicit variability support [Reichert and Dadam 1998,
Sun and Aiello 2008]. Unlike those frameworks, PVDI offers both declarative and
imperative variability techniques. Because of its declarative foundation, its expres-
sive power is bound by the lower bound in complexity, whereas most other frame-
works are bound by the higher imperative complexity. At the same time, declarative
usability issues are ameliorated through a straightforward to use visual modeling
extension from which the declarative constraint formulas can be generated directly.

Imperative business process variability techniques adopted in PVDI by the means
of Frozen Area (Section 3.2.2) and its modifications allow PDVI to provide the possi-
bilities similar to those provided by the state of the art annotation–based variability
frameworks. At the same time, the usage of pure declarative features, such as or-
dering relations, allows to build a highly flexible business process definition, which

3.9. Discussion 77

is provided by the constraint–based business process management tools. To con-
clude, PVDI covers both imperative and declarative branches of business process
variability, thus allowing an end–user to benefit from the features of both sides.

The visual modeling paradigm of PVDI has some affinity with DECLARE and
DecSerFlow frameworks, and in all cases the set of visual elements and their cor-
responding constraints is extendable. Nevertheless, in the case of PVDI the model
is reaches because of the grouping elements which bring the traits of imperative
variability which cannot be easily reached using the frameworks mentioned above.

Partly published as:
P. Bulanov and A. Lazovik and M. Aiello – “Business Process Customization using Process Merging
Techniques,” Int. Conference on Service-Oriented Computing and Applications (SOCA–2011), pp. 1–4,
2011.

Chapter 4

Business Process Transformation

The issue of business process evolution arises when an organization is large enough
to have many departments or affiliates which work in their specific ways. In result,
there may be several business process specifications of the same task over differ-
ent departments, where the variations in the specifications are driven by the local
requirements of those particular departments. In such situation, the number of busi-
ness process models grows because of the introduction of different variants, which
makes the task of change management more difficult.

One of the typical ways to address the issue is to make a special business process,
also known as a template or reference process, which holds the general outline of the
process along with some overall recommendations. Then, such template can be
used either as it is or it can be customized in order to fulfil the specific requirements
of a particular department. However, this approach does not help when one needs
to make some global amendments to be applied across the whole organization.

As shown in Figure 4.1, the arrows “1” and “2” reflect the fact that the process on
the right side (or the bottom side, accordingly) of the arrow is made by a customiza-
tion of the template process. If such a customization can be represented as a trans-
formation function, then it can be repeated automatically without human effort. In
Figure 4.1, function f represents the transformation from the template process into
one of its variants, and function g represents the transformation from the template
process into the new template. The arrows “3” and “4” represent the application of
combinations of the functions f and g in different order.

If the transformations are represented in some formal way, then they may be
applied automatically for each of the possible variants. A process modeler who is
going to modify the template process could immediately modify all of the variants
or receive a feedback if such a propagation is not possible, including the list of vari-
ants which failed to be transformed.

In this chapter, we introduce a novel language to facilitate a representation of a
business process as a set of formal logic formulas. Then, we analyze how different

80 4. Business Process Transformation

Figure 4.1: Business Process Evolution

manipulations with business process model can be reflected in its formal represen-
tation, which in turns gives a key to represent a modification of a business process
model as a function which transforms a set of formulas into another set of formulas.
And finally, we show how such function can be extracted from two business process
models – original and target ones, and provide performance evaluation on a test set
of realistic business processes.

4.1 A Temporal Logic of Business Processes

Formal languages have often been the foundations for BPM automation. Much
researched examples include Petri-Nets [Petri 1962, Murata 1989], Process calculi
[Milner 1999] and Temporal Logic1. Our approach uses the latter as the basis for

1See Appendix A

4.1. A Temporal Logic of Business Processes 81

defining a language suitable to represent a business process. We achieve this via
taking into account the specifics of business process models, namely, the presence
of different types of branching points (which are usually called gateways). We be-
gin by defining the formal language for processes, then we provide a semantics for
the language, identify basic properties and move onto its application for business
process representation and transformation.

4.1.1 Temporal Process Logic

The Temporal Process Logic (TPL)2 is a modal propositional language that can talk
about the truth of propositions in future states, but also unlike LTL and CTL lan-
guages can take into account the differences between possible execution runs. It was
initially introduced in [Bulanov, Lazovik and Aiello 2011], and herein we reuse it for
the case of business process transformations. The underlying processes are consid-
ered to have AND and OR gates in addition to simple branching from one state to
another one. Its syntax is quite straightforward: we have a set of proposition sym-
bols AP , propositional unary and binary operators ¬,∧,∨, plus three unary modal
operators→, ,⇒. The intuitive meaning of the last operators is the following.

 a means there is a state satisfying a in the process, and this state can be reached
from the current state following the process model.

→ a means there is a state satisfying a in the process and that this state can always
be reached from the current state following the process model. In case of par-
allel splitting with an AND-gate, at least one of the parallel branches must lead
to the state satisfying a.

⇒ a is the same as → a, but in case of any parallel splitting, all of the parallel
branches must lead to a state satisfying a.

The following statements are true of TPL formulas for any proposition a:
→ a⇒ a ⇒ a⇒→ a

→ (→ a)⇒→ a ⇒ (⇒ a)⇒⇒ a

→ (a)⇒ a ⇒ (→ a)⇒→ a

 (a)⇒ a ⇒ (a)⇒ a

2The term Temporal Process Logic has been used before in the context of concurrency [Cleaveland
1999]. Here by TPL we define a new language which is unrelated to the previous work that goes by the
same name.

82 4. Business Process Transformation

Process runs as TPL semantics

The idea is to evaluate TPL formulas over processes and to use them to describe the
salient behaviors of the processes. We begin by providing a formal definition of a
process with AND and OR gates. This definition actually reflects a formalization of
a business process specified in terms of BPMN–like notation [Object Management
Group (OMG) 2009], and it is in line with the definition of a process from Chapter 3.

Definition 4.1 (Process). A process P is a tuple 〈A,G, T 〉 where:

• A is a finite set of activities, including start activity � and final activity ⊗;

• G is a finite set of gateways, each of type {AND, OR};

• S = A ∪G is a set of states;

• T = Ta ∪ Tg , where:

• Ta : (A\{⊗})→ S is a function which assign a next state for each activity;

• Tg : G → 2S is a function which assign a nonempty set of next states for each
gateway;

• The graph G = 〈S, T 〉 contains no cycles.

When talking about a process P we refer to its set of activities as PA, its set of
gateways as PG, and its set of transitions as PT .

When a business process is executed by some process engine, at each point a
decision has to be made which activity should be executed next. Such a choice is
trivial for a linear business process, but becomes more complicated in the case of
“branched” process. Formally, such a choice can be represented as a choice func-
tion.

Definition 4.2 (Choice function). For a given business process P = 〈A,G, T 〉, a choice
function D : S → 2S is defined as follows:

• D(⊗) = ∅;

• ∀e ∈ S\{⊗}:

– If e ∈ A, then D(e) = {T (e)};

– If e ∈ G, then, depending on the type of the gateway e:

∗ AND: D(e) = T (e);
∗ OR: D(e) ⊆ T (e), D(e) 6= ∅.

4.1. A Temporal Logic of Business Processes 83

For a given business process there can be one or more different choice functions.
Given a choice functionD, for each state awe can formally define the set of reachable
states reach(a,D) as a smallest set R ⊆ S, such that a ∈ R and ∀x ∈ R : D(x) ⊆ R.

A choice function represents a set choices made by an execution engine during
invocation of a business process. With such set of choices it is possible to build its
corresponding execution graph:

Definition 4.3 (Execution). An execution σ for a process P w.r.t. a choice function D is
a directed graph 〈Ã, T̃ 〉, where

• Ã =reach(�, D), and

• T̃ ⊆ Ã× Ã, built such as (a, b) ∈ T̃ ⇔ b ∈ D(a).

The choice function D is called a basis of the execution σ.

Figure 4.2: Two process models

In other words, an execution represents a single execution of an abstract business
process engine such that for each OR–gate a different path is taken while for each
AND–gate all subsequent sub–paths are included. The set of all possible executions
of a process P is denoted as ΩP or just Ω.

In Figure 4.2, we present examples of two simple processes, each of them con-
tains a start activity, an end activity, and activities X, Y, and Z. The only difference
between them is in the gateway type. Then, Figure 4.3 shows all the execution paths
for these processes. There is only one execution for the left process with the AND–
gate, and there are three different executions for the other process.

We say that an activity a is followed by an activity b w.r.t. the execution σ and
denote that as a <σ b when b ∈ reach(a, σD), where σD is a basis of the execution
σ. In other words, it means that there is a route in the graph σ leading from a to b.
We say that an activity a is included into an execution σ and denote it as a ∈ σ if
� <σ a.

We say that an activity a is strongly followed by an activity b w.r.t. execution σ
and denote it as a �σ b when all possible routes in the graph σ which start in the
activity a lead to b. Formally, the relation�σ is defined as smallest subset of A×A,
such that:

84 4. Business Process Transformation

• (a, a) ∈�σ ∀a ∈ σ;

• ∀x, z ∈ σ : x 6= ⊗ ∧ (∀y : y ∈ σD(x)⇒ (y, z) ∈�σ)⇒ (x, z) ∈�σ .

In Figure 4.3 we have that X < Y,X < Z for the left process, but it is not true
that X � Y (since there is a route which leads from X to Z and ⊗ and does not
contain Y). As for the execution in the upper right part of the figure, both X < Y

and X � Y are true; and the activity Z is not included into that execution.
Note that according to the definition of the process, each activity apart from the

final one has the next step. Therefore, ∀σ ∈ Ω ∀x ∈ PA\{⊗} : x ∈ σ ⇒ ∃y ∈ PA :

x <σ y.

Simplified TPL

Consider a business process P , and any two activities a and b of that process. With
the help of the formalisms of the previous sections, it is possible to describe relative
ordering of those two activities in the following way:

a b⇔ ∃σ ∈ ΩP : (a ∈ σ ∧ b ∈ σ ∧ a <σ b)
a→ b⇔ ∀σ ∈ ΩP : a ∈ σ ⇒ (b ∈ σ ∧ a <σ b)
a⇒ b⇔ ∀σ ∈ ΩP : a ∈ σ ⇒ (b ∈ σ ∧ a�σ b)

(4.1)

TPL Truth definition

We can now establish the link between TPL formulas and the process models. Let
AP be a set of propositional variables, and a labeling function ν : PA → 2AP which
assigns each variable in AP with a set of activities where that variable holds true.
Now we can introduce the model M = 〈P, ν〉, where P is a process and ν is a
valuation function. Now we can define the truth of a TPL formula in a model, note
that the truth is local to activities of the process.

M, x |= a⇔ x ∈ ν(a)

M, x |= ¬a⇔M, x not |= a

M, x |= a ∨ b⇔M, x |= a orM, x |= b

M, x |= b⇔ ∃σ ∈ ΩP : x ∈ σ ∧ ∃y ∈ σ : x <σ y ∧M, y |= b

M, x |=→ b⇔ ∀σ ∈ ΩP : x ∈ σ ⇒ ∃y ∈ σ : x <σ y ∧M, y |= b

M, x |=⇒ b⇔ ∀σ ∈ ΩP : x ∈ σ ⇒ ∃y ∈ σ : x�σ y ∧M, y |= b

(4.2)

The temporal unary TPL operators can be lifted to binary ones in the following
way.

4.1. A Temporal Logic of Business Processes 85

Figure 4.3: Possible process executions

M, x |= a→ b⇔ (M, x |= a⇒M, x |=→ b)

M, x |= a b⇔ (M,x |= a⇒M, x |= b)

M, x |= a⇒ b⇔ (M, x |= a⇒M, x |=⇒ b)

(4.3)

4.1.2 Discussion

We have provided a language and a definition of its models, we have also given the
truth definition. The natural next step is to consider the completeness of TPL with
respect to the process models and identify the axiomatics and model properties. We
consider this an important step that is beyond though the current treatment and we
leave it for future investigation.

Having a more practical research agenda, we decide to focus on its practical use
for variability management. To do so, we begin by exploring its relation to other
fundamental TL logics such as LTL and CTL. Let us compare them on a simple
example. Figure 4.2 shows two process models, which differ only for the gateway
type.

If we ignore the gates and consider them as directed labeled graphs, they are
indistinguishable from the CTL point of view (i.e., bisimilar [Milner 1989]). For
instance, in the state X the formula EFb is true and AFb is false for both models.
On the contrary, the TPL formula→ b evaluated in X is true for the left process but
false for the right one, and the formula b is true for both of them.

The language introduced in this chapter can be used to describe the temporal
relations in a given business process, in a similar way with Temporal Point Alge-
bra [Vilain and Kautz 1986]. However, the ability to explicitly specify the difference
between AND– and OR– gateways gives the ability to describe a business process

86 4. Business Process Transformation

more precisely. As it is shown later in this chapter, we can utilize TPL to abstract
from a concrete graphical representation of a business process and consider a busi-
ness process as a set of temporal formulas. Because of the nature of TPL logic, such
a representation is more precise than the one which is based on Temporal Point Al-
gebra or other types of temporal logics (LTL or CTL).

4.2 Process representation and transformation

Given a process P with a set of activities PA, with N = |PA|, consider N ×N matrix,
where each row i corresponds an activity ai ∈ PA, and each column j corresponds
an activity aj ∈ PA. In each cell of the matrix we put a symbol of the alphabet
A = {→, , •}.

In a cell (i, j) we put the following symbol:

• → if the formula ai → aj is valid;

• if the formula ai aj is valid, but the formula ai → aj is not;

• • if the formula ai aj is not valid;

• • for the cells on the main diagonal, i.e., if i = j.

Such a matrix of size N × N is called a process matrix of a given process. A
process matrix built for a process P is denoted as S(P).

Clearly, if a cell aij contains one of the arrows (→ or), then the symmetric cell
must contain •, since the process graph is supposed to be cycle–free. More formally,

Property 4.1 (Antisymmetry). ∀i, j : aij ∈ {→, } ⇒ aji = •.

Also, due to the transitivity properties of TPL (described in section 4.1.1), a pro-
cess matrix would inherit the transitivity traits:

Property 4.2 (Transitivity). ∀i, j, k:

• aik ∈ {→, } ∧ akj ∈ {→, } ⇒ aij ∈ {→, };

• aik =→ ∧akj =→⇒ aij =→.

Consider an example of a business process and its process matrix:

Example 4.1. An example of a business process is represented in Figure 4.4a, and its process
matrix is represented in Figure 4.4b. Here acronyms are used instead of activity names,
ex., RR instead of Request Registration,” RI instead of “Request Indication,” and so on.
Note that the second and third rows of the matrix (which correspond to RI and TA) are

4.2. Process representation and transformation 87

(a)

RR RI TA MD DE
RR • → →
RI • • • → →
TA • • • → →
MD • • • • →
DE • • • • •

(b)

Figure 4.4: Example 4.1

identical, and the same is true for the second and third columns. And it is logical because
those activities hold equivalent positions in the process, and if one exchanges them then the
process itself would remain the same.

A process matrix for a given business process holds the Properties 4.1 and 4.2,
the reverse situation is also true, as stated in the following theorem.

Theorem 4.1. The matrix M over the alphabetA identifies a process iff the following prop-
erties hold:

1. aii = •∀i;

2. Property 4.1 (antisymmetry); and

3. Property 4.2 (transitivity);

Proof. ⇐ trivial, followed from the properties of process matrix
⇒ The proof is constructive by providing the description of the algorithm, which is
schematically displayed in Algorithm 1.

This algorithm takes as an input the process matrix M and the set of activities A.
It is presumed that the size N of the matrix M is equal to the size of the list A, and
the order of activities in the list A is in accordance with the rows and columns in the
matrix M .

At the initial step, the function TransitiveReduction is invoked in order to get rid of
the redundant dependencies in the matrix M . A dependency is redundant iff it can
be unambiguously restored using another dependency and the rules of transitivity.

88 4. Business Process Transformation

A redundant dependency is removed from the matrix M (that is, the corresponding
cells are cleared).

The algorithm uses a temporary working set Ω, which contains all activities
which were already considered. Initially, this set contains only the final “activity”
of the process - ⊗.

Then the main cycle starts. First, the function GetPredecessors is invoked. It
searches for all such activities which refer to the ones which are already consid-
ered (which are contained in the set Ω) but do not refer to any other activities. Then,
all those activities are marked as considered by adding them into the set Ω, and
one iteration of the process structure is built by invoking the function CreateNextEle-
ment, which returns for each activity the next process element it must refer to (this
elements can be either an activity or a gate).

The cycle is repeated as long as the function GetPredecessors returns non–empty
set. Since the set A is finite, then the algorithm will finish the execution in finite
number of steps.

The function CreateNextElement is described in details in Algorithm 2. Initially,
for the given activity a, two sets of relations are built: one of type → and one of
type , respectively. The links are determined by reading the appropriate row in
the process matrix. Then, if there are no relations of type , a single AND–gate is
built. Also, if the set MA contains only one activity, then no gateway is built and
this particular activity is returned. Then, for each activity ai such as a → ai, the
following check is made: if ∀bi : a bi : bi → ai, then the activity a will always be
followed by the activity ai, and there is no need to make additional link from a to
ai. Otherwise, the activity ai is appended to the set S, which will be used later. If it
happens that the set S is empty, then only an OR–gate is needed (line 15), otherwise,
a combination of AND– and OR– gates is needed (line 18). If the set MO contains
only one activity, then a so–called bypassing OR–gate is created, with two outgoing
link, one leading to the activity b ∈MO, and another leading to the process element
immediately after the activity b.

Let us prove that at each step of the algorithm, the process being built corre-
sponds the original process matrix. For a given activity ai, if the process matrix
contains the formula ai → aj , then in result there will be either AND–gate leading
to the activity aj (Algorithm 2, line 5), or all the branches of an OR–gate will even-
tually lead to aj (lines 15, 18). If the process matrix contains the formula ai aj ,
then there will be an OR–gate, and only one of its branches would lead to aj . That
means, the formula ai → aj will not be valid for such process structure. If the pro-
cess matrix contains • symbol in the cell Mij , then the link from ai to aj will not
be built while considering the activity ai. Moreover, such a link cannot be added
indirectly via another activity ak, via adding links (ai, ak) and (ak, aj), since because

4.2. Process representation and transformation 89

of transitivity property of the process matrix the cell Mij must contain either→ or
 element.

Algorithm 1 Building a business process.

1: INPUT: Process matrix M , list of activities A
2: OUTPUT: Process 〈A,G, T 〉

3: TransitiveReduction(M)

4: Ω := {⊗}
5: repeat
6: Φ := GetPredecessors(P,Ω)

7: Ω := Ω
⋃

Φ

8: for a ∈ Φ do
9: g := CreateNextElement(a,M)

10: T := T
⋃
{(a, g)}

11: end for
12: until Φ = ∅ return 〈A,G, T 〉

As a consequence, any matrix which satisfies the Conditions 1–3 of the Theo-
rem 4.1 actually identifies some business process, and this process can be built using
the constructive proof of the Theorem 4.1.

Example 4.2. Consider an example of building a business process basing on a given pro-
cess matrix. The matrix is taken from the Example 4.1 and is repeated for convenience in
Figure 4.5a.

RR RI TA MD DE
RR • → →
RI • • • → →
TA • • • → →
MD • • • • →
DE • • • • •

(a)

RR RI TA MD DE
RR • — —
RI • • • → —
TA • • • → —
MD • • • • →
DE • • • • •

(b)

Figure 4.5: Example 4.2

First step is to run transitive reduction in order to remove the redundant dependencies,
the matrix in Figure 4.5b shows the result of such reduction. The symbols “—” represent

90 4. Business Process Transformation

Algorithm 2 Function CreateNextElement.

1: INPUT: Activity a, process matrix M
2: OUTPUT: Process element the activity a must refer to

3: MO := GetOrLinks(a,M) . get the relations of type
4: MA := GetAndLinks(a,M) . get the relations of→ type
5: if MO = ∅ then return MakeGateway AND(MA)

6: end if
7: S := ∅
8: for ai ∈MA do
9: for bj ∈MO do

10: if ¬(bj → ai) then
11: S := S

⋃
{ai}

12: end if
13: end for
14: end for
15: if S = ∅ then return MakeGateway OR(MO)

16: else
17: G := MakeGateway OR(MO)

18: return MakeGateway AND(S
⋃
{G})

19: end if

the places where appropriate formulas were removed. This matrix will be referred later as a
working matrix.

Now we can run the main cycle of the Algorithm 1. In Figure 4.6, each line corresponds
to a single iteration of the main cycle, where the second column contains the content of the set
Φ (which contains the result of invocation of function GetPredecessors). The third column
contains the result of invocation of function MakeLinksAndGateways, which is actually
the current state of the process building.

Initially, the process to be build contains only the final step⊗. Then, the first call to func-
tion GetPredecessors returns one activity – DE (line 1 in the table), because this activity
has no successors according to the working matrix. Function MakeLinksAndGateways
would add this single activity, and its link to the final one.

The second iteration is similar – function GetPredecessors returns the activity MD,
and MakeLinksAndGateways add it as well as its link to the next one — DE.

At the third iteration, function GetPredecessors returns the set of two activities – {RI,
TA}. Next, they are both added into the process, as well as the links to their successors. In
this case, the successor is the same – activity MD.

4.2. Process representation and transformation 91

At the fourth iteration, function GetPredecessors returns one activity – RR. But while
adding it into the process it turns that it has two successors – RI and TA. Therefore, a gate-
way must be introduced, and the type of this gateway is driven by the type of the dependency.
According to the working matrix, the dependency type is , and the gateway is therefore of
type “OR.”

1 {DE}

2 {MD}

3 {TA,RI}

4 {RR}

Figure 4.6: Example 4.2: Steps of the algorithm

4.2.1 Transformations

Consider different kinds of atomic process manipulations and their matrix equiv-
alence. The list of atomic operations was introduced in [Weber et al. 2008], and
analyzed in [Bulanov et al. 2011], and herein we analyze several of those operations
and how they can be represented as manipulations with process matrices.

1. Removing an activity from a process entails the removal of appropriate row
and column from the process matrix, thus obtaining a process matrix of smaller
size;

2. Adding a new activity entails the adding of a new column and row to the
process matrix, and the elements in that row and column would identify the
position of the newly added activity in the process;

3. Swapping two activities ai and aj entails the swapping of ith and jth rows and
columns, while preserving the mapping between row/column numbers and
the set of activities;

4. Move an activity ai, such as it would be located parallel to an activity aj entails
the making the ith row to be a copy of jth row, and the same for the ith column
(while preserving the mapping between row/column numbers and the set of
activities as well);

92 4. Business Process Transformation

The manipulations above are called primitive process manipulations, and they
are process-independent in a way that the same manipulation (ex., remove the ac-
tivity “X”) can be applied to any process, more formally:

Theorem 4.2. Given a process matrix M and any primitive manipulation pm(·), then
M ′ = pm(M) is also a process matrix.

Proof. We need to prove that the properties 1–3 of the Theorem 4.1 are retained after
application of a primitive transformation.

For property 1, the proof is trivial.
For property 2 (anti–symmetry), consider each transformation individually

1, 2 Removing and adding rows and columns does not violate the anti–symmetry,
provided that during adding of a new row and column it is filled with symbols
•.

3, 4 Swapping rows and columns does not affect the cells other than those belong-
ing to ith and jth rows and columns.

For property 3 (transitivity), again consider each transformation individually

1 ∀i, j, k: if aik, akj , and aik are binded with transitive relation, then either
ith, jth, or kth column is removed then the transitive relation becomes
irrelevant.

2 ∀i, j: consider the case the kth row and column are added, and analyze
how will it affect the possible transitivity relations between the elements
aik, akj , and aij . Since the newly added row and column contain only •
elements, then both aik and akj are equal to •, therefore, no transitivity
violation occurs. Now consider the elements aij , ajk, and aik. Since both
ajk and aik are equal to •, there there is no transitivity violation as well.
The same is for the case of aki, aij , and akj .

3 Consider three matrix cells, aik, akn, and ain, where index i is equal to
the corresponding index in the permutation (that is, ith row is swapped
with jth, and the same for columns), and k and n are arbitrary indices.
The values of those three cells are binded with the transitivity property,
now let us show that the permutation does not brake this link. Once the
permutation is applied, the first two cells will take the values which were
contained in the cells ajk and akn respectively, and the third cell will hold
the value which were in the cell ajn. But the cells ajk, akn, and ajn were
binded with the transitivity dependency in the original matrix, therefore,
this transitivity property will also hold in the result matrix.

4.2. Process representation and transformation 93

The primitive transformations 3 and 4 are actually permutations over the rows
and columns of a process matrix. A permutation is basically (re)arranging of some
list of objects. In our case, the objects to be rearranged are rows and columns of
a process matrix, and such rearrangement is first applied to the rows of the input
matrix, then the same rearrangement is applied to the columns of the intermediate
matrix3.

Such a permutation over a matrix of size N can be represented as a vector V =

{n1, n2, . . . nN} of size N , each of its elements ni being a natural number ranging
from 1 to N . The ith element of such a vector contains the target position of ith

row and column. A permutation V = {n1, n2, . . . nN} has no repetitions, if ∀i, j =

1 . . . N : i 6= j ⇒ ni 6= nj . In other words, all of the elements of the vector V are
distinct. In short form, given a matrix A and a permutation vector V , the result of
application of the permutation is written as B = AV , where B is the result matrix.

In addition to primitive transformation, non–primitive ones can be introduced.
They represent the direct manipulation with the content of the cells in a matrix in or-
der to make arbitrary modifications. An example of such a modification is changing
of the type of a gateway. Unlike primitive ones, there is nothing can be said about
the applicability of non–primitive transformation on different process matrices in
general, therefore, such transformations are process–dependent.

In order to make a formal representation of non–primitive transformations, con-
sider a matrix ∆ with elements belonging to the alphabet A′ = {→, , •,−}, and
specify the operation ⊕ such as:

∀a, b ∈ A′ : a⊕ b =

{
a if b = −
b otherwise

The ⊕ operation can be expanded for matrices, therefore, a non–primitive trans-
formation can be represented in matrix form asB = A⊕∆, where ∆ is a matrix over
the alphabetA′, and A is a process matrix. Note that the matrix B is not necessary a
process matrix (that is, not necessary holds properties 2–3 of the Theorem 4.1).

In general, given two process matrices A and B, we can extract a transformation
from A to B as a combination of primitive and non–primitive ones: B = AV ⊕ ∆,
where V and ∆ represent primitive and non–primitive parts of the transformation,
respectively. Note that such a transformation can always be extracted, since the
matrix ∆ can be chosen to be equal to the matrix B, but in such case the intended
modification would be lost, and it will not be possible to reuse such a transformation

3Actually, the order of rearrangement can be reversed: first rearrange columns, then rows, with the
same final result.

94 4. Business Process Transformation

(since the result would be the same regardless the input). It is therefore beneficial to
select from the family of possible transformations the one with minimal or possibly
empty non–primitive part. The primitive part is considered to be empty if its matrix
contains only elements “—.”

In result, the task of finding a process transformation can be formulated in the
following way: find such a permutation of rows and columns V in a matrix A, such
that the difference between the transformed matrixAV and the matrixB is minimal.
The distance between matrices is measured as a number of non–equivalent cells.

Since the processes may be based on different sets of activities, then the prepara-
tion step is needed. Given two processes, P1 and P2, let us assume that the function
which transforms P1 into P2 is sought. In that case, we add into the process P1 activ-
ities which belong to P2 but do not belong to P1. Also, we remove from the process
P1 activities which do not belong to the process P2. In result, both processes are
based on the same set of activities. The preparation is applied not to the processes
but to their process matrices. As it was described earlier in this section, such mod-
ifications mean adding or removing appropriate rows and columns in the process
matrix.

The algorithm is based on A∗ search algorithm (e.g., [Pearl 1984]), which finds a
permutation while minimizing the distance metric, which is equal to the number of
non–equivalent cells. The search starts with an identity permutation V = 1, 2, . . . N .
Then, at the depth i, we change the ith element of the current permutation vector
and consider all the alternative values for that elements (there are at most (N-1)
available alternatives at each moment).

The exhaustive search for a matrix of size N ×N would require N ! steps4, since
there are exactly N ! distinct permutations of length N . However, the A∗ algo-
rithm with a good heuristic can seriously reduce the actual computational time.
The heuristic function at depth i is equal to the number of non–equivalent rows
or columns in the sub–matrices of size (N − i) × (N − i) taken from the lower–
right corners of both matrices. This heuristic is admissible, since the number of
non–equivalent cells in sub–matrices is less then of equal to the number of non–
equivalent cells in the whole matrices.

In addition to the pure A∗ search, we employ the following improvements to
increase the efficiency or our search algorithm:

• Pruning of the intermediate search branches. The principle is the following:
at the step i, we consider the number of non–equivalent cells in the upper–
left corners of both matrices, and compare this number with the current best

4This is the case if we do not allow permutation with repetition. Otherwise, the number of possible
options rises up to NN

4.2. Process representation and transformation 95

result. If the number is greater or equal than the current best result, then it
makes no sense to explore the branch anymore.

• Iteratively increasing the maximal search depth, and the best result of the pre-
vious iteration is used as the initial state for the next iteration.

The cumulative effect of those improvements together with the choice if a heuris-
tic function makes it possible to solve the problem efficiently for the matrices of the
size of less than 20, and under reasonable time constraints for the matrices of larger
size, as it is shown later in Section 4.2.3.

Example 4.3. Consider two business processes, shown in Figure 4.7. There the process in
Figure 4.7a lacks the activity “HV” at the start of the process, but has and extra activity
“DE” at the end, comparing to the process in Figure 4.5b. Process matrices of both processes
are also shown in Figure 4.7 below their correspondent processes. Let us find a transforma-
tion from the left process to the right one.

(a) (b)

RR RI TA MD DE
RR • → →
RI • • • → →
TA • • • → →
MD • • • • →
DE • • • • •

(c)

HV RR RI TA MD
HV • → →
RR • • →
RI • • • • →
TA • • • • →
MD • • • • •

(d)

Figure 4.7: Example 4.3: Original processes

First, process matrix for the left process must be normalized. In this case, it means
removal of the activity “DE” and adding the activity “HV”. The result is shown in Fig-
ure 4.8a. The target process matrix is displayed for easy reference in Figure 4.8b. The source
matrix can be transformed into the target one by replacing the content of 4 cells in total (the
cells in the first row, excluding the upper–left cell).

But it can be also seen that the permutation (2, 2, 3, 4, 5) transforms the process matrix
into the one shown in Figure 4.9a, and this matrix differs from the target one only by one
cell.

96 4. Business Process Transformation

HV RR RI TA MD
HV • • • • •
RR • • →
RI • • • • →
TA • • • • →
MD • • • • •

(a)

HV RR RI TA MD
HV • → →
RR • • →
RI • • • • →
TA • • • • →
MD • • • • •

(b)

Figure 4.8: Example 4.3: Normalized process matrices

HV RR RI TA MD
HV • • →
RR • • →
RI • • • • →
TA • • • • →
MD • • • • •

(a)

HV RR RI TA MD
HV • → →
RR • • →
RI • • • • →
TA • • • • →
MD • • • • •

(b)

Figure 4.9: Example 4.3: After transformation

Once a transformation function is found, it becomes possible to address the task
of handling business process evolution, as described in the following section.

4.2.2 Business Process Evolution through Transformation Functions

Consider the situation displayed in Figure 4.1. There is a transformation from the
template process to the one of its variants (arrow “1,” function f), which can be
derived based on those two processes. In the same way, a transformation from the
template to the new template can be derived (arrow “2,” function g). The main task
is to obtain the new variant process in automated way, either following the arrow
“3” or “4.” Since the result may be different in both cases and there is no way to
identify which of them is better, we apply the automated transformation only in the
case when the results are the same.

More formally, given two transformation functions f and g and a process A, we
call f and g compatible w.r.t. a process A if f ◦ g(A) = g ◦ f(A), (where f ◦ g(A) =

f(g(A))), which means that those transformation can be applied to A in any order.
Such an automated transformation can be beneficial in the case when there are

hundreds of variants derived from one template, and one needs to make a quick
check if a new template process is compatible with all (or most) of the variants.

4.3. Discussion 97

The transformation functions fi which transforms from the original template to
the ith variant should be calculated only once and then the result can be stored and
reused multiple times whenever a different template process is introduced, thus
allowing to make an on-the-fly check of a newly modified template process.

4.2.3 Implementation and Evaluation

In order to evaluate the algorithm, we implemented a proof–of–concept prototype
in Java. This prototype is a command line tool which takes as an input two business
processes represented in XML Process Definition Language (XPDL) format [van der
Aalst 2003], and gives as a result the transformation function between the two input
processes. The object of performance test is to evaluate how much time does it take
to find a transformation function and does how this time depend on the size of input
processes.

In order to get a reasonably large data set, we reused the existing test set “BIT
process library, release 2009” [Fahland, Favre, Jobstmann, Koehler, Lohmann, Völzer
and Wolf 2009], which contains a set of real business processes. Of them, we ex-
tracted a set of pairs of business processes. Two business processes are linked into a
pair if they share at least 80% of their activities. In total, we obtained more that 150
pairs, with the size of business processes ranging from 10 to 30 activities.

The tests were conducted on a computer with an Intel R© CoreTM2 Duo proces-
sor @3,0GHz, with 3,5GB of RAM, running Java 1.6.0 24. The performance results
of experiments are displayed in Figure 4.10. Here X–axis represents the number
of activities in the processes, and Y–axis represents the time needed to compute a
transformation function in milliseconds. As it can be seen from the chart, for most
of the cases the time to compute is bounded by 0.2 second for the processes built of
15–20 activities. The results, however, become worse for the case of 25–30 activities,
which is expected behavior for a search problem of exponential complexity.

4.3 Discussion

Formal methods to represent processes provide strong advantages also when man-
aging the evolution of the processes. We have presented a formal language to de-
scribe process behaviors and its underlying process models. We have also intro-
duced a way to specify behavioral properties of a business process in matrix form,
and how different manipulation with business processes can be represented as ma-
nipulations on the corresponding process matrix.

The ways to extend the approach are the subject for future investigation. One
line is to study the expressive power and model theory of temporal process logic

98 4. Business Process Transformation

Figure 4.10: Performance of the Algorithm of Business Process Transformation Extraction

considering issues such as the completeness of TPL with respect to the Process mod-
els and identifying the full axiomatics. The second direction is to increase the expres-
sive power by distinguishing between OR– and XOR–gates. Finally, the algorithm
to derive a process transformation can be improved via either introducing better
heuristic functions or by analyzing how to apply algebraic matrix transformations
for the specific case of process matrices.

Looking into declarative–based solutions described in Chapter 2 [Pesic et al.
2007, van der Aalst and Pesic 2006, Lu et al. 2009, Sadiq et al. 2005] we can draw
a conclusion that they are mostly concerned with the task of business process flex-
ibility and the ease of possible change management. The inheritance of business
processes which is analyzed in [van der Aalst and Basten 2002, Basten and van der
Aalst 2001] solves the problem of connection between a template process and its cus-
tomized variants. However, it poses additional restrictions on possible customiza-
tions, while our approach is applicable to the general case.

The ideas behind annotation–based variability are in line with the task of busi-
ness process transformation, however, the possible modifications should be antici-
pated in advance and introduced in the form of annotations or explicit variability
points. On the contrary, the ideas of business process transformation presented in
this chapter are more general and do not require prior analysis.

The workflow mining techniques [van der Aalst, van Dongen, Herbst, Maruster,
Schimm and Weijters 2003] solve the similar problem of discovering a workflow
which is represented as a number of entries in the execution log. The specific of
our case is that we reuse additional information (i.e. the branching points and their
types) which can be extracted from the process definition.

Another way to make an automated process conversion is to merge two busi-

4.3. Discussion 99

ness process models to obtain a new one, which would inherit the features of both
original processes. Although merging of business processes can also be used to
deal with business process evolution [Bulanov et al. 2011], the extraction of process
transformation function allows to compare the actual change sets and to decide if
the modifications are compatible with each other or not.

Temporal planning techniques based on temporal point algebra [Vilain and Kautz
1986, Ghallab et al. 2004] also offer formal temporal–based relationship. While com-
paring to TPL, all its three base relations (,→,⇒) are represented as only one “less
than” relationship in the terms of temporal point algebra.

Finally, formal methods to compare business process models were studied in
[Dijkman, Dumas, van Dongen, Käärik and Mendling 2011] with the ability to com-
pare two business process models basing on the similarity metrics. The transforma-
tion functions described in this chapter could also be used as a source for a similarity
metric, although this was not the main focus of our study.

Published as:
N.R.T.P. van Beest and P. Bulanov and J.C. Wortmann and A. Lazovik – “Resolving Business Process
Interference via Dynamic Reconfigurationv,” Int. Conference on Service-Oriented Computing
(ICSOC–2010), LNCS 6470, pp. 47–60, 2010.
N.R.T.P. van Beest and E. Kaldeli and P. Bulanov and J.C. Wortmann and A. Lazovik – “Automatic
Detection of Business Process Interference,” 1st International Workshop on Knowledge-intensive Business
Processes (KIBP), 2012.
N.R.T.P. van Beest and E. Kaldeli and P. Bulanov and J.C. Wortmann and A. Lazovik – “Automated
Runtime Repair of Business Processes,” Submitted to Information Systems, 2012.

Chapter 5

The Case of Run Time

Until this point, we discussed the issues of business process variability at design
time. In other words, the variations of a business process model were driven by the
changes in requirements and therefore had to be reflected as a permanent change in
a model. However, the problem of business process variability at run time could be
analyzed in a similar manner. The prominent feature of run–time business process
variability is that the modifications are usually temporary and address the specifics
of one particular case. On the other hand, each of those cases is unique and might
never happen again, which makes the number of possible variations to grow, and as
a result the major achievements of design time variability become practically useless
for the case of run time.

In this chapter, we provide the result of joined work in cooperation with other
member of our research group. The idea of using of data–aware dependency scopes
to facilitate runtime reconfiguration was initially introduced by Nick van Beest [van
Beest, Szirbik and Wortmann 2010], and then further improved in the terms of for-
mal description and implementation in [van Beest, Bulanov, Wortmann and Lazovik
2010]. Later, Eirini Kaldeli brought us the benefits of automated planning being ap-
plied to cover the problem of generation of one–off business process variants, and
finally we put this all together in a form of a business process orchestration frame-
work which is capable of automated business process reconfiguration at the execu-
tion time [van Beest et al. 2012].

The detailed description of the problem of business process interference and data
awareness can be found in the work of Nick van Beest [van Beest, Bulanov, Wort-
mann and Lazovik 2010, van Beest, Szirbik and Wortmann 2010]. The problems of
application of automated planning, as well as the detailed description of the Plan-

102 5. The Case of Run Time

ner which is mentioned in this chapter are discovered in the work of Eirini Kaldeli
[Kaldeli et al. 2011, Kaldeli, Lazovik and Aiello 2009]. In this chapter, the results of
our joint work on runtime business process variability are presented, and the con-
tribution of the author of this thesis mostly concerns the Sections 5.2, 5.5, and 5.3
in the parts related to the architecture, implementation, and formal description, re-
spectively.

5.1 Runtime Variability using Dependency Scopes

In the case of design–time variability, the need to create a new variant is induced by
the changes in the initial requirements which govern a specific business process. The
specific feature of runtime business process variability is that the exact moment to
create a new business process variant has to be identified on the fly, while a business
process is still running. The reason to do such an early identification is to avoid the
execution of the steps which are already known to be unnecessary or even wrong
under new circumstances.

In [van Beest, Bulanov, Wortmann and Lazovik 2010], we provided a run-time
mechanism which uses dependency scopes and intervention processes to facilitate
run–time business process reconfiguration. A dependency scope (DS) specifies a part
of the BPs whose correct execution relies on the accuracy of a volatile process vari-
able, i.e. a process variable that can be changed externally during the execution of
the process. If a volatile variable is externally modified while the execution flow
resides within the range of the respective DS, an intervention process (IP) is triggered
as a response, with the purpose to address the modifications in business process
structure [van Beest, Bulanov, Wortmann and Lazovik 2010].

By using DSs, testing for potential run–time deviations at each activity can be
avoided. As a result, the process designer does not need to foresee all potential
process deviations in advance.

However, a significant amount of manual specification of the intervention pat-
terns is still required, since the appropriate IPs may differ considerably depend-
ing on the current execution state at which modification of a volatile variable oc-
curred. For complex processes with numerous activities, it is very difficult and
time-consuming to define IPs at design–time, as the amount of potential IPs may
be particularly high. In addition to that, it cannot be ensured that all important
variants of the business process are taken into account. Moreover, as the same BP
may be deployed and used by more than one organization, different intervention
processes have to be specified for each potential BP variant at each organization.

The workload due to extensive manual configuration can be significantly re-

5.1. Runtime Variability using Dependency Scopes 103

duced by automating the task of IP generation. In the scope of this chapter, domain-
independent AI planning is employed to automatically generate IPs, which restore
the consistency of a BP. In that way, the manual work required by the domain de-
signer is reduced to the specification of a high-level goal, which describes in a declar-
ative way the desired consistent state that has to be reached in case of interference.
To realize such a level of automation, additional semantic annotations are required,
which capture the functional aspects of the activities participating in the business
domain in terms of preconditions and effects, in spirit with existing process ontolo-
gies such as OWL-S [World Wide Web Consorcium (W3C) 2004].

5.1.1 Dependency Scopes within WMO Process Example

In order to guard for changes of the volatile process variables, Dependency Scopes
(DSs) can be defined covering a section of the process for which such a change poses
a potential risk of interference. We consider the case study which is described in
Section 1.1.1. In Figure 5.1, a part of the process from Figure 1.4 is annotated with the
appropriate DSs. The section covered by DS1 relies on the accuracy of the address
as well as the medical condition of the citizen, while the section covered by DS2
relies on the accuracy of the WMO eligibility criteria. That is, if the legal criteria that
are relevant for the used contract have changed, this might affect the order itself,
or the potential suppliers that are participating in the tender procedure. Finally, the
section within DS3 depends on the address and the medical condition of the citizen
as well. However, it is separate from DS1 because of the syntax of the BP.

If a DS is triggered by an external change on its process variable, potentially
some recovery activities need to be executed to restore consistency. This leads to
intervention processes, to be discussed in the next subsection.

5.1.2 Required Intervention Processes

The required IPs may differ for each situation. Let us consider for example the DS1
of Figure 5.1. If the provision concerns the delivery of a wheelchair, and the address
change is detected before the order for the wheelchair is sent to the supplier, the
following actions have to be performed. First, a new home visit to the new address
has to take place in order to check the new residence and living conditions, which
are important for the advice provided by the external consultant. Then, the medical
expert has to provide an updated advice, taking into account the characteristics of
the new residence, and then a new decision has to be made by the municipality
considering the newly acquired information (if for example the user has moved to
a nursery home, then the citizen may no longer be eligible for a wheelchair). If

104 5. The Case of Run Time

Figure 5.1: Dependency scopes in the WMO process.

the municipality still approves the citizen’s request, the requirements concerning
the wheelchair have to be updated, and the respective order has to be sent to the
supplier, as shown in Figure 5.2a. However, if the order was already sent to the
supplier before the new information became available, this order has to be canceled
prior to proceeding with the new one (Figure 5.2b). It should be noted, that if there
is an operation that offers the possibility to update the contents of an order that
has already been issued (given that it has not already been delivered), the IP would
include this operation rather than cancelling the existing order and re-issuing a new
one. After the execution of the appropriate IP, the process proceeds from the state
just after the DS.

Similarly, in case of a home modification, the form of the appropriate IP depends
on the state at which the address change has occured as well. If the address changes
before the order is sent, it is sufficient to execute the IP as represented in Figure 5.2c.

5.1. Runtime Variability using Dependency Scopes 105

Figure 5.2: Required intervention processes corresponding to DS1, in case of an address
change

Since the specifications on the order for a home modification directly rely on the
physical properties of the house, a change of address implies a cancellation of the
order if an order has already been sent, as shown in Figure 5.2d. However, these
examples assume that the citizen moves within the municipality (in our example this
is ’Groningen’). If the citizen has moved to another municipality, the order should
be cancelled and a notification sent to the city hall. Then, the entire process should
be aborted, regardless of the requested provision, as each municipality has its own
policies and procedures (Figure 5.2e).

It becomes evident from the example that even for a small DS, the complexity and
workload required for specifying the IPs is high. Addressing the consequences of an ad-
dress change on a small part of the process requires 5 distinct IPs. Anticipating and

106 5. The Case of Run Time

manually specifying the appropriate IP is difficult, time-consuming, and prone to
oversights of possible situations that may arise: different IPs are required not only
depending on the current state, but also on the actual value of the modified vari-
able. As a result, for each possible state in a DS and type of change to the modified
variable, a different IP may be required. Moreover, since the same BP may be used
by more than one municipality, different IPs have to be specified for each of the dif-
ferent cases, as they may have access to different compensation services or comply
with different rules.

5.1.3 Automatic Intervention Process Generation

Instead of relying on a procedural specification of IPs (or equivalently a composite
IP with a huge number of conditional branches to take into account all possible com-
bination of situations), we propose to assign the task of computing the appropriate
IP to an AI domain-independent planner. The task of the BP designer in this case
is reduced to a declarative specification of the properties that have to be fulfilled at
a higher level of abstraction, considering some general, more intuitive cases. This
way, it is not necessary to explicitly specify how these properties can be achieved
under all possible combinations of environmental conditions and execution states
of the BP. In this case the desired properties are captured by a goal. The goal repre-
sents the desired state after the end of the DS, along with some (optional) features
to be achieved. For example, considering the case of DS1 where the address change
indicates that the user has moved to a new home within the range of the municipal-
ity, all that has to be captured by the goal is that at the end ”the order of the citizen
has to be delivered.” The goals accompanying DS1 are presented in Section 5.3.2.
In this respect, the BP designer does not have to be concerned with which service
operations are available, whether the order concerns a wheelchair or home modifi-
cation, whether the order has already been sent out or not, which actions have to be
performed again and which not, as well as the order of these actions.

The approach adopted herein, leaves it to an AI planner to automatically gen-
erate the IP whenever possible, based on a semantically enriched services and BP
specification, the current state and the value of the volatile process variable. The
assumption is that appropriate semantic annotations are available: the semantics
accompanying the pool of services used by the BP have to be specified once and are
reused by different BPs, while the BP-specific semantics represent the BP structure
in a BPEL-like way, along with the direct dependency of some variables on the va-
lidity of some other variables (see Section 5.3). In the next section, the architecture
of the framework supporting the automatic generation of IPs is presented, and the
interplay between the different constituent modules is explained.

5.2. Architectural Overview 107

5.2 Architectural Overview

Figure 5.3 provides an overview of the main components of our framework, along
with their basic interactions. A Process Modeller (PM) is used to assist with the task
of the graphical modeling of the BP, providing a selection of standard control blocks
like sequence, flow, XOR etc., and design tools for modeling DSs, in accordance
with their definition provided in Section 5.3. DSs include the specification of some
high-level goals of declarative nature, which have to be fulfilled by the respective
intervention process.

Service Repository

prec:

eff:

Generate IP

AI Planner

Process Executor

Process Modeller

Process

Specific

Constraint

DS

++

Verifier

Environment

Compose

Planning Domain

Domain Generator

Design Time

Runtime

Goal

Planning Domain

BP Specification

+

AAS

BP Specification

Service Descriptions

Planning Domain + Goal + Initial State

prec:

eff:

goal:

Initial

state:

+
Initial State

Intervention Process

Figure 5.3: Main components of the framework and their basic interactions

The BP modelled by the PM uses activities that are available in the Service Repos-
itory (SR) by means of service operations. The SR keeps a list of service instances
(providers) that offer a set of service operations. Each service instance implements
a service description, which specifies the interface of the service annotated by some
extra semantics. These semantics allow each service operation to be represented as

108 5. The Case of Run Time

a planning action , reflecting its functional behaviour in terms of preconditions and
effects, which are necessary for enabling the automatic generation of intervention
processes. A subset of the service operations are referenced by the BP specification,
whereas operations offered by other service instances can be marked as pertinent
compensation actions, and can become part of an IP if necessary.

The Process Executor (PE) is responsible for executing the BP step by step (i.e. the
normal course of events as specified during design-time), and takes care of discov-
ering, binding and invoking the respective service operations residing in the Envi-
ronment, according to their specification as included in the SR. Some of the variables
describing the state of the environment can be directly changed by the process be-
ing executed by the PE, through the invocation of services it has access to, or can
be modified by some external process. In the latter case, the PE receives a modifica-
tion event, and updates its current internal state accordingly. In addition to process
execution, the PE supports the use of DSs. Before execution of each activity, the PE
checks whether the current state indicates a modification of the volatile variables
that are guarded by a DS that covers this activity. If so, it verifies whether any of the
conditions specified in the DS hold. If a condition holds (e.g. the new address is out-
side the current municipality), then the PE interrupts the execution and invokes the
AI Planner. The AI Planner requires as input (i) the Planning Domain (ii) the initial
planning state (i.e. the values of all process variables at the current execution step
and a set of variable interdependencies), and (iii) the goal describing the desired
properties to be achieved (e.g. a notification should be sent to the city hall). Before
explaining the AI planner in more detail, we will discuss the notion of a Planning
Domain.

The Planning Domain is computed by the Domain Generator (DG) only once per
BP, the first time that the PE identifies the need for automatic IP generation. In order
to form the Planning Domain, the PE passes the Atomic Actions (AA) and the BP
specification (provided as output by the PM) to the DG. The AA represent the BP-
pertinent action descriptions as kept in the SR (i.e. the ones referenced by the BP
along with the compensation operations).

Given the Planning Domain, the initial state and the goal, the AI planner gener-
ates the appropriate IP that achieves the associated goal. The generated IP is then
returned to the PE. After the execution of the IP, the PE either proceeds with the
execution of the original BP, starting from the state right after the triggered DS (as in
Figures 5.2a-d, where the original BP execution resumes after ”Delivery”), or aborts
if the IP leads to a state that indicates the termination of the BP (as in Figure 5.2e).
If the former is the case, potential branches that were running in parallel are also
resumed from the point they were interrupted, otherwise the entire process is in-
terrupted. In the case of nested DSs, as for example DS1 and DS2 of Figure 5.1, the

5.3. Basic Concepts 109

PE checks first whether the conditions specified by the outermost DS are true, and
if not, it proceeds by checking the inner DS. The generated IP is executed within
the scope of the DS it was triggered from and the parent DSs, i.e. variable modifi-
cations that are received during the execution of an IP are covered by the same set
of DSs that covered the action before which the planner was fired. If no plan can
be found, i.e. there is no way to overcome the inconsistencies caused by the volatile
variable modification using the activities it has access to, then the BP is canceled,
and a request for manual inspection is issued.

The implementation of the PE and the PM is presented in Section 5.5, while more
details about the AI planner are provided in Section 5.3.3 and Section 5.4.

5.3 Basic Concepts

In this section, the definition of the basic concepts is provided, where the approach
for BP repair is built upon.

5.3.1 Business Process

First, we define the SR, which comprises a set of service descriptions and a set of
service instances, which “implement” some service description. The service de-
scriptions comprise semantics, which specify the functionality provided by a service
type. The service instances specify the way to invoke a certain service conforming
to a service description. The semantic markups defined in the service description
are necessary in order to automate the task of IP generation. They are expressed
in terms of preconditions, which model the propositions that have to hold in the
current state for an activity to be executed, and effects, which formulate how vari-
ables are changed by the activity’s execution. The service descriptions are based on
an IOPE (Input Output Preconditions Effects) model, which is followed by estab-
lished Web Service semantic languages like WSDL-S [World Wide Web Consorcium
(W3C) 2005] and OWL-S [World Wide Web Consorcium (W3C) 2004].

Definition 5.1 (Service Repository (SR)). A Service Repository SR = (SD ,SI) is a
storage, which keeps a set of Service Descriptions SD , and a set of Service Instances
SI . A Service Description sd ∈ SD is a tuple sd = (sdid ,O ,SV), where sdid is a unique
identifier, O is a set of service operations, and SV is a list of variables , each ranging over
a finite domain. These variables correspond to state variables internal to the service, whose
value can be changed by the operations of the service. Each service operation o ∈ O is a tuple
o = (id(o), in(o), out(o), prec(o), eff (o)) where

• id(o) is the identifier of the operation

110 5. The Case of Run Time

• in(o) is a list of variables that play the role of input parameters to o, ranging over
finite domains

• out(o) is a list of variables that play the role of output parameters to o, ranging over
finite domains

• prec(o) is a set of preconditions and eff (o) a set of effects, as defined in Definition 5.4
with Var = in(o) ∪ out(o) ∪ SV

A Service Instance si ∈ SI is a tuple si = (iid(si), st(si)), where:

• st(si) is the unique identifier of the service description sd ∈ SD this instance complies
with

• iid(si) is an instance identifier. For each pair of service instances
si1 , si2 ∈ SI that have the same service description identifier st(si1) = st(si2),
iid(si1) 6= iid(si2).

The SR plays the role of a pool service descriptions and instances, which are
used as the building elements of different process specifications. In the following,
the definition of a Business Process (BP) is provided, which includes the basic ac-
tivities and control structures such as sequence, flow and XOR. The BP is enriched
with DSs, which also constitute parts of the process. The syntax of the BP is well-
defined and unambiguous, so that they can be directly executed by the Process Ex-
ecutor (see Section 5.5.2) and automatically transformed to a representation usable
by the planner. The BP definition used in this chapter is block-structured using the
standard XOR, flow and sequence constructs, in spirit with BPEL’s notation. This
definition is not in line with a BPMN–based definition employed in Chapters 3–4,
because the block–structured one is more suitable for the management of running
business process instances. As shown in [Ouvans, Dumas, ter Hofstede and van der
Aalst 2006, Kopp, Martin, Wutke and Leymann 2008], a BP representation follow-
ing a graph-based model, such as the BPMN-like notation used in Figure 1.4, can be
easily mapped to BPEL-like block structures, similar to the ones used in our defini-
tion. The representation is ultimately a tree structure where a block can have other
blocks as children, and for each block its parent can be obtained. The definition is
recursive, so that control structures and DSs can be nested within each other.

Definition 5.2 (Business Process (BP)). Given a Service Repository SR=(SD, SI), a Busi-
ness process is a tuple BP = (PV ,E), with E being a process element
E = (act | seq | flow | XOR | repeat | while | DS), where:

• PV = PVi ∪ PVe is a set of variables ranging over finite domains.

5.3. Basic Concepts 111

– PVi is a set of internal variables, which are declared at the BP level (BP-specific).
A subset of these variables are passed as input parameters to the entire BP, in
which case we write BP(pv1 , . . . , pvn), where pvi ∈ PVi and pvi can be ini-
tialized with specific values at execution time.

– PVe is a set of external variables, which refer to variables declared in the SR.
An external variable v ∈ PVe is a reference sdid .iid .fid , with sdid being the
identifier of a service description sd = (sdid ,O ,SV) ∈ SD , iid the identifier of
a service instance
si = (iid , sdid) ∈ SI , and fid the identifier of some state variable (field) f ∈ SV .

• act is a process activity, which represents the invocation of an operation that exists
in SI . It is a tuple act = (id(act), in(act), out(act)), where id(act) is a reference
sdid .iid .oid , where sdid is the identifier of a service description sd = (sdid ,O ,SV)

∈ SD , iid is the identifier of a service instance
si = (iid , sdid) ∈ SI , and oid is the identifier of some operation o ∈ O . The input
and output parameters of act refer to the input and output parameters of the respective
oid , i.e. in(act) = in(oid) and out(act) = out(oid). The input (output) parameters
of all activities in the BP form the sets IP (OP). Input variables can be assigned
with constant values or other process variables. We thus write an action invocation
as id(act) (ip1:=v1, . . . , ipn:=vn), where ipi ∈ in(act), vi ∈ (PV ∪OP), or vi is a
value compliant with ipi ’s domain. There are also two extra special types of activities:
no-op, which represents an idle activity with true preconditions and no effects, and
terminate , whose execution causes the whole BP to halt. Directly after an action
invocation, an action’s output can be stored in some process variable, in which case we
write (pv1 := op1 , . . . , pvn := opn), where opi ∈ out(a) and pv ∈ PVi .

• seq refers to a totally ordered set of process elements, which are executed in sequence.
The following notation is used: seq{e1 . . . en}, where ei is a process element.

• flow represents a set of process elements, which are executed in parallel. We write
flow{e1 . . . en}, where ei is a process element.

• XOR is a set of tuples {(c1 , e1), . . . , (cn , en)}, where ei is a process element and ci
is a logical condition C , which conforms to the following syntax:
C ::= prop| ∧j Cj | ∨j Cj)|¬Cj

prop ::= var ◦ value | var1 ◦ var2 |(var1 � var2) ◦ value,
where var , var1 , var2 ∈ (PV ∪OP), value is some constant belonging to var ’s do-
main, ◦ is a relational operator (◦ ∈ {=, <,>, 6=,≤,≥}) and � a binary operator
(� ∈ {+,−}). All ci participating in an XOR are mutually exclusive, i.e. for any
given assignment to PV ∪OP , only a single ci evaluates to true, and ei will be exe-
cuted if ci evaluates to true. We write XOR{c1 ⇒ e1 , . . . , cn ⇒ en}.

112 5. The Case of Run Time

• repeat represents a loop structure, and is defined as a tuple (pe, c{pei}), where c is
a logical condition as already defined, and pe, pei are process elements. c is evaluated
just after the end of pe , and if it holds then pe is repeated, after the execution of the
optional pei . We write repeat{pe} while(c{pei}), with {pei} being optional.

• while is similar to repeat , with c being evaluated before pe starts.

• S is a dependency scope as defined in Definition 5.3.

5.3.2 Dependency scope

The DS is a guard-verify structure, where the critical part of the BP is included in
the guard block, while the verify block specifies the types of events that require inter-
vention. Whenever such an event occurs, the control flow is transferred to the verify
block, and the respective goal is activated. Once the resulting IP finishes execution
in the updated environment, the control flow of the BP continues from the point
following the guard-verify structure, unless it is explicitly forced to terminate.

Definition 5.3 (Dependency Scope (DS)). Given a SR = (SD ,SI) and a BP = (PVi ∪
PVe, E), a dependency scope is a tuple
DS = 〈guard(V V){Eg}, verify({(case(Ci) : Gi | Eip | terminate(Gi) |
terminate(Eip))})〉, where:

• guard(VV) indicates the set of volatile variables VV ⊂ PVe whose modification trig-
gers the verification of the DS, and Eg a process element in the BP . Whenever during
the execution of Eg an event indicating a change in the value of a volatile variable
vv ∈ VV is received, the verify part of the DS is triggered, and BP ’s execution is
interrupted.

• verify({(case(Ci) : Gi | Eip)}) comprises a set of tuples consisting of a case-condition
Ci and a goal Gi or a process element Eip to be pursued if Ci holds.

– Ci is a logical condition, as defined in Definition 5.2. Providing a case condition
is optional, with the default interpretation being Ci = TRUE .

– Gi specifies a goal, which ensures the satisfaction of the properties that reflect
the state right after the final activity of Eg . Gi is specified in the goal language
supported by the planner as presented in [Kaldeli et al. 2009]. After interrupting
the BP execution, the plan that satisfies the respective Gi (if it can be found) is
executed. When the plan’s execution is completed, the BP is resumed at the state
after Eg and from any other parallel branches of the BP that were interrupted.

5.3. Basic Concepts 113

– If an Eip is pre-specified to be executed in case Ci holds, then BP ’s execution is
interrupted, Eip is executed, and after its completion BP resumes from the end
of Eg .

• terminate(Gi) (terminate(Eip)) forces the process to terminate, i.e. abort the rest of
BP ’s execution, after fulfilling Gi (completing Eip ’s execution).

Following Definition 5.3, the DS specification representing DS1 of Figure 5.1 is
the following:

guard(address, medCond){

seq{

XOR{

... * subprocess *\

}

receiveDeliveryConf(dlIn orderId=orderId, dlIn cid=bpCid,

dlIn address=orderAddress,dlIn delContents=orderContents)

}

} verify{

address.county 6= ‘Groningen’: terminate(achieve-maint

(notifiedCityHall(‘countyChange’)=TRUE ∧ invalid(orderId)))

address.county = ‘Groningen’AND medCond 6= deceased:

achieve-maint(known(dlOut conf))

medCond=‘deceased’ : terminate(achieve-maint(invalid(orderId)))

}

According to DS1 , if a modification in the address or the medical condition oc-
curs within the scope of the guarded subprocess, the following goals are pursued:

• If the address change indicates that the citizen has moved to another munic-
ipality, the goal ensures that the intervention plan leads to a state, where the
order for a wheelchair or home modification (depending on the value of the
“provision” variable, which is determined by the activity “Intake and Appli-
cation”) has been cancelled, and a respective notification is sent to the city hall.
The plan will be equivalent to IP (e) of Figure 5.2.

• If the medical condition has changed to some new value that does not indicate
“deceased” and the customer is still within the range of the municipality, the
final desired state is that the delivery of wheelchair or home modification is
performed by taking into account the new situation (the new medical condi-
tion and/or address). Depending on the state at which the modification occurs

114 5. The Case of Run Time

and the kind of the modification, the generated plan is one of the IPs (a) to (d)
of Figure 5.2. After the plan’s execution the BP execution resumes to handle
the invoice.

• If the new value of medical condition indicates “deceased,” then the goal spec-
ifies that the order should be invalidated.

Depending on the state of the DS in the original BP, at which the relevant volatile
variable modification was identified, the generated plan may vary considerably for
the same goal. This way, one DS definition covers all forms of IPs specified in Fig-
ure 5.2, which are generated automatically by the planner. The domain designer
just prescribes in the goal what properties have to be satisfied during recovery, but
is not required to know the combinations of actions that can achieve the goal. The
planner uses a heuristic that promotes optimal plans. As a result, the planner may
come up with different plans that fulfill the goal, depending on the available ser-
vices. Considering, for example, an address change after an order has been sent in
DS1 in Figure 5.1. If the supplier service offers an updateOrder operation, the plan-
ner will advocate an update in the order address information, instead of cancelling
the existing order and sending a new one.

Interdependencies between variables are also defined on top of the BP specifi-
cation, prescribing the direct dependency of some variables on the validity of some
other variable. The dependsOn relation is used for this purpose:
dependsOn(v) = {v1 , . . . , vn}. Whenever a change in variable v is discovered or
whenever v is invalidated (by transitivity, as an effect of some other variable inter-
dependency) by the PE, the direct invalidation of the current values of v1 , . . . , vn
is automatically implied, without the need of some special-purpose process to take
care of that. For example, dependsOn(bpAddress address) = {hvOut homeInfo}, since
hvOut homeInfo refers to the information retrieved for the specific hvIn address .
Thus, if the person moves to some other address, the collected information is not
valid anymore. In turn, a set of variables, like arOut requirements reflecting the ac-
quired requirements concerning the wheelchair, are directly dependent on
hvOut homeInfo. On the other hand, an orderId is not directly dependent on the ad-
dress, since it remains valid after these variables change, unless some other course
of interaction actively cancels it. These additional statements are of particular rele-
vance when the change of a volatile variable is discovered, so that all information
directly dependent on the consistency of the volatile variable also becomes obsolete,
as shown in Section 5.4.2.

5.3. Basic Concepts 115

5.3.3 The Planning Domain

The PE constructs a planning domain given a BP specification and a SR, which
is used by the planner for generating the IPs upon recovery requests. In this sub-
section, a simplified definition of a Planning Domain (PD) is provided, in line with
[Kaldeli et al. 2011]. The planning domain has some special characteristics that dis-
tinguish it from classical planning representations. The domain accommodates for
numeric fluents, which can range over finite domains, including the input argu-
ments of actions. The planning domain is enriched with a knowledge-level repre-
sentation to model observational actions (sensing effects), which is useful for deal-
ing with XORs with conditions on the outcome of such actions. The automatic com-
position of a planning domain is further described in Section 5.4.

Definition 5.4 (Planning Domain (PD)).
A Planning Domain is a tuple PD = 〈Var ,Par ,A〉, where:

• Var is a set of variables. Each variable v ∈ Var ranges over a finite domain Dv .

• Par is a set of variables that play the role of input parameters to members of A. Each
variable p ∈ Par ranges over a finite domain Dp.

• A is the set of actions. An action a ∈ A is a triple
a = (id(a), in(a), precond(a), effects(a)), where:

– id(a) is a unique identifier

– in(a) ⊂ Par are the input parameters of a

– precond(a) is a propositional formula over Var ∪ Par ;

– effect(a) is a formal description of the outcome of the action a, including the
description of the output parameters.

The effect of a given action may be either deterministic or non–deterministic. The
former case means that the outcome is known in advance provided the values of all
of the input parameters. The latter case, on the contrary, means that the outcome
cannot be anticipated and the only way to know the result is to actually invoke the
corresponding action. Non–deterministic effects are useful in deferred choices, i.e.
XOR–splits here the condition depends on some interaction with the actual execu-
tion environment. Its verification is thus deferred until runtime, after some variable
is determined during the execution of a knowledge–providing action.

The domain is extended with additional variables to model the knowledge–
level representation, and to distinguish between sensing and world–altering actions.
These variables are generated automatically given a planning domain PD. First, for

116 5. The Case of Run Time

each var ∈ Var , a new boolean variable var known is introduced, which indicates
whether var is known at state s (var known(s) = true) or not (var known(s) = false).

Following a common practice in many planning approaches, we consider a
bounded planning problem, i.e. we restrict our target to finding a plan of length at
most k, for increasing values of k. Considering a planning domain extended with
the knowledge–level representation PD = 〈V,A〉, the target is to encode PD into
Constraint Satisfaction Problem (CSP). The reason behind that transformation is to
represent our problem in the form which is acceptable by one of the standard con-
straint solvers.

First, for each variable x ∈ V ranging overDx, and for each 0≤ i ≤ k , we define a
CSP variable x[i] in CSP with domainDx. Actions are also represented as variables:
for each action a ∈ A and for each 0≤ i ≤ k−1 a boolean variable a[i] is defined.
This way, the computed plan can include parallel actions, which may save time
during the execution. Action preconditions and effects, are automatically encoded
as constraints on the CSP state variables, based on the formulation described in
[Ghallab et al. 2004].

5.4 Automatic Intervention Process Generation

In this section, the preliminary steps required for IP generation are explained. These
steps comprise the generation of a planning domain by the DG and composition of
the initial planning state by the PE.

5.4.1 Generation of the Planning Domain

The semantic specifications stored in the Service Repository are process-independent,
and capture the generic functionality of the respective service operations in terms
of preconditions and effects, so that they can be used in the context of various BPs.
Usually these preconditions and effects concern the set of inputs and outputs of the
respective operations and some additional aspects that are internal to the particular
service.

For each BP , the operations of a subset of service instances in the Service Repos-
itory are marked as pertinent compensation methods. These methods can be part of
the intervention processes for repairing the BP , and are annotated by the domain
designer. If a permissive approach is adopted, the entire set of service instances in
the SI part of the SR is allowed to be used by the IP. These compensation methods,
along with the invocation methods referenced by the activities in the BP , form the

5.4. Automatic Intervention Process Generation 117

BP-pertinent Methods (BPPM) set. For each method sdid .iid .oid ∈ BPPM of a ser-
vice instance si = (iid , sdid) ∈ SI , whose service description includes an operation
o with id(o) = oid , the PE generates some instance-level variables, preconditions,
and effects, based on its iid and the operation description o this method realizes.
The resulting set of instance-level method descriptions forms the Planning Domain,
as described below.

Given a Service Repository SR = (SD ,SI), a BP , and a set of BP-pertinent Meth-
ods BPPM, the Planning Domain is built in the following way:

• When the PE receives a request to execute the BP , a unique instance reference
bp-iid is assigned.

• For each method bpo = sdid .iid .oid ∈ BPPM , the service description
sd = (sdid ,O ,SV) ∈ SD is found, and the operation
o = (id(o), in(o), out(o), prec(o), eff (o)) ∈ O with id(o) = oid is retrieved.

• For each input parameter ipi ∈ in(o), a new input variable is created for
sdid .iid .oid , with name bp-iid .sd .iid .oid .ipi and a domain identical to ipi . Sim-
ilarly, for each output parameter opi ∈ out(o), a new output variable is cre-
ated, with name bp-iid .sd .iid .oid .opi and a domain identical to opi . The re-
sulting instance-level input and output parameters form the sets in(bpo) and
out(bpo) respectively.

• Based on the preconditions and effects of o, the sets prec(bpo) and eff (bpo)

are generated, by substituting each input and output parameter with name
v appearing in prec(o) and eff (o) by the reference bp-iid .sdid .iid .oid .v . In
case of a service state variable var ∈ SV with local name v , the reference is
substituted with the universal name sdid .iid .v , which is BP independent. If
sdid .iid .v has not been met before, the respective variable with name sdid .iid .v

and with domain identical to var is created.

This way, for each act = sdid .iid .oid ∈ BPPM the invocation method descrip-
tion tuple imd = (bp-iid .sdid .iid .oid , in(act), out(act), prec(act), eff (act)) is created
by the PE. Each imd is converted to a planning action (as defined in Definition 5.4)
a = (id(a) = (bp-iid .sdid .iid .oid , in(ai) = in(act)), prec(a) = prec(act),

eff (a) = eff (act)).
The planning domain which is formed as described above reflects only the atomic-

level semantics of the actions. In the context of a certain BP, the universal action
descriptions have to be enriched with extra preconditions and/or effects, which
reflect the process-specific interdependencies, and which can be automatically in-
ferred from the structure of the BP. The details of the capturing of such process–level
details can be found in [van Beest et al. 2012].

118 5. The Case of Run Time

5.4.2 Composition of the initial planning state

The initial planning state comprises the values of all variables at the current state of
execution and the knowledge level with respect to the variables interdependency
rules. Given the manually specified variable interdependencies in terms of the
dependsOn sets, these are enriched during execution of the BP by the PE: if an ac-
tion comprising an assignment effect assign(v ′, v) or an increase(decrease) effect
increase(v ′, v) (decrease(v ′, v)), has been executed, variable v′ is added automati-
cally to the dependsOn(v) set (if the set does not already exist, it is created). Each
time the AI planner is called by the PE, the initial planning state is formulated as
follows.

• Each variable var ∈ PV is equal to a value corresponding to the state of execu-
tion, i.e. considering the assignments to the BP input parameters, the outputs
of the service invocations, the assignments to variables, and the received ex-
ternal events (for more details see Section 5.5).

• For each variable var for which no specific value has been acquired yet, the
respective knowledge variable known var is set to false at the initial state
(known var(0) = false).

• Given a change event on a volatile variable vv, the interdependency rules are
parsed. For each var ∈ dependsOn(vv), known var(0) = false , indicating that
the value of var as reflected by the current state of execution is not valid. The
same is done recursively ∀ var ′ ∈ dependsOn(var), ∀ var ∈ dependsOn(vv).

5.4.3 Generating the IP

By starting from the initial state as delivered by the PE, and depending on the goal,
the IP can be computed by the AI planner using the planning domain. This IP may
include the re-invocation of activities with the up-to-date input parameters, if this
is required to achieve the goal (e.g. pay a visit to the new address to acquire the
informed requirements), or try to find a sequence of “undo” actions that actively
lead to the invalidation of some variables (e.g. try to cancel an order that has been
sent if possible). In case of deferred choices (i.e. XOR-constructs where the value of
a variable participating in the respective condition is unknown off-line) it has to be
ensured that the right branch is followed at runtime. One way to address this issue
is to rely on conditional plans, as e.g. presented in [Pistore, Marconi, Bertoli and
Traverso 2005, Hoffmann, Weber and Kraft 2010]. However, for these approaches
it is difficult to deal with sensing outcomes that range over numeric-valued do-
mains. Herein, we resort to a re-planning mechanism to model deferred choices,

5.5. The Prototype 119

where the value of the condition is acquired during runtime. The plan originally
returned by the planner is optimistic, i.e. the variables that are unknown off-line are
assumed to have values that lead to the shortest plan that fulfills the goal. Thus, in
the case of the IP Figure 5.2c, it generates the plan that corresponds to the assump-
tion that the output of “HomeVisit” hvOut maRequired = false , which indicates that
the home inspection does not entail the need for a medical advice, that the decision
is positive, and that the supplier selected by the customer is approved. Whenever
a knowledge-providing activity is executed by the PE, and the initially unknown
variable is instantiated, the outcome is compared with the value assumed by the
plan. That is, it is checked whether the new knowledge incorporated in the CSP
violates any constraint. If no violation is detected, then the execution of the IP may
proceed according to the initial plan. Otherwise the planner is invoked again with
the same goal and a new initial state, including the value of the sensed variable. As a
result, a request for a Home Modification may require the following series of interac-
tions when planning for Goal achieve-maint(known(delOut delId)) (see Section 5.3.2),
in order to obtain the IP shown in Figure 5.2c (the input parameters are omitted for
brevity):

Initial plan: {HomeVisit,Decision,TenderProcedure,CheckTender ,SendOrder ,Delivery}

Execute HomeVisit Output: hvOut maRequired = true, constraint violation, re-plan

New plan: {MedicalAdvice,Decision,TenderProcedure,CheckTender ,SendOrder ,Delivery}
Execute: MedicalAdvice maOut medInfo = ‘Document12A′

Execute Decision Output: dcOut approvalCheck = true

Execute TenderProcedure Output: tpOut tenderSelection = ‘ACMFrizianConstructions′

Execute CheckTender Output: ctOut tenderOK = false, constraint violation, re-plan

New plan: {TenderProcedure,CheckTender ,SendOrder ,Delivery}
Execute TenderProcedure Output: tpOut tenderSelection =‘van der Meer Elevators’
Execute CheckTender Output ctOut tenderOK = false

Execute SendOrderToSelSupplier Output: soOut orderId = ‘14578AS ′

Execute Delivery Output: dlOut conf = ‘Delivered′

If the output of “Decision” is negative, then no plan exists that satisfies the goal.
In that case, the planner returns a message indicating that the goal is not satisfiable,
causing the BP execution to be aborted. In total 9 service operations are invoked as
part of the IP.

5.5 The Prototype

The proposed approach for automatic process recovery upon data changes has been
implemented in a prototype, comprising the components of the architecture out-
lined in Figure 5.3.

120 5. The Case of Run Time

5.5.1 Process Modeller

The Process Modeller (PM) is implemented in Java, by the use of standard Java 2D
graphical libraries. It supports all basic BP modelling constructs, including flows,
XOR splits etc., with an added support for DS modelling. Furthermore, the PM
provides for the declaration of the process variables, i.e. the definition of their name
and type. However, the actual object creation is handled by the PE, which keeps
and manages a local database as described in Section 5.5.2. The PM is connected to
the Service Repository, so that the BP designer can use service operations that exist
in the SR as activities in the BP being modelled.

Check Tender

Tender

Procedure

Send Order to

Supplier

Send Order to

Supplier

Acquire

Requirements

Delivery

Confirmation

DS2: {WMO Eligibility Criteria}

Delivery

Confirmation

Send Request to

Supplier

Handle Invoice

DS1: {Address, Medical Condition}

ctOut_tenderOK

= TRUE

ctOut_tenderOK

= FALSE

itOut_provision =

‘home modification’

itOut_provision =

‘wheelchair’

itOut_provision =

‘care in kind’

itOut_provision =

‘personal budget’

Figure 5.4: Screenshot of the Process Modeller.

Figure 5.4 presents a screenshot of the PM, showing the graphical representation
of DS1 and DS2 of the WMO process from Figure 5.1. The DSs are saved along with
the process specification itself. The final output of the PM is an XML representation
of the BP, which conforms to Definition 5.2. This representation is passed to the PE
for execution, as described in the next subsection.

5.5. The Prototype 121

5.5.2 The Process Executor

The Process Executor (PE) is responsible for executing a BP as specified by the PM.
The PE takes as input a BP specification in conformance with an XML schema that
represents Definition 5.2, and with the BP input parameters instantiated to specific
values. The PE works in cooperation with the Service Repository as described in
Definition 5.1. The details of Service Instances implementation are out of scope of
this study, and for the purposes of the testing presented in Section 5.6 the service
invocations are simulated.

HomeModification

CheckTender

SendOrderToSelSupplierTender

Procedure

Check Tender

Send Order To

Selected Supplier

HomeModification.iid.CheckTender

HomeModification.iid.SendOrderToSelSupplier

Process Instance

iid = WMO_hm_GR

Service Repository

TenderProcedure

Service Description:

Service Instances:

HomeModification.iid.TenderProcedure

(“WMO_hm_GR”, “HomeModification”)
...

...

Figure 5.5: Example of a Service Description and a Service Instance.

The activities included in the BP specification must refer to method invocations
that can be retrieved from the SR. Given a fully qualified reference to an invocation
method sdid.iid.oid specified by an activity in the BP specification, the PE retrieves
the respective description kept in the SR. For example, the activity “Send Order”
in Figure 5.5 refers to “HomeModification.iid.sendOrderToSel-Supplier,” which corre-
sponds to the method “sendOrderToSelSupplier” of the “HomeModification” service
description, and is provided by the service instance with identifier “WMO hm GR”
(see Definition 5.1). The service description of “HomeModification” as well as the ser-
vice instance (provider) “WMO hm GR” are kept in the SR, as shown in Figure 5.5.
It should be noted that the value of the variable iid in the BP specification may be
unknown before a process is actually started, and an assignment to another value
iid = iv can be used instead of a predefined value. The value of iv can be provided
by the user at execution time, or retrieved by the PE as an output value of a service

122 5. The Case of Run Time

method call. In the example in Figure 5.5 the value “WMO hm GR” for the variable
iid is provided at the time the process instance execution starts.

In the current implementation, an activity is executed by directly invoking the
respective method, without checking whether the preconditions prescribed in the
corresponding service instance description in the AA hold. The reason for such a
simplification is to make the process executer to operate in the same way as a typical
execution engine, thus providing backward compatibility.

The data flow and knowledge about the environment are handled by a local stor-
age (LS), which is maintained by the PE and reflects its knowledge about the envi-
ronment and the state of the process instance execution. Some of these variables
are specific to a particular BP running instance, and some are common to multiple
BPs. During execution, the PE updates the LS according to the new information it
receives from the environment (from service method invocations), and to the spec-
ifications included in the BP description (assignments to variables). When the PE
receives a request for executing an instance of a BP specification BP = (PV ,E), it as-
signs a unique identifier bp-iid to the running instance, and constructs the AA along
with the instance-level inputs and outputs AI ∪AO (as described in Section 5.4.1),
which are added to the LS. Each service state variable sv ∈ ASV (see Section 5.4.1)
is added to the LS if it does not already exist. This way, state variables of the AA

are shared among running process instances, whereas instance-level input and out-
put variables are unique to each process instance. Moreover, the PE constructs the
instance-level internal variables declared in the BP (i.e. for each var ∈ PVi) with
name v a variable with name bp-iid .v and domain identical to var ’s domain is added
to the LS. The internal process variables are also unique to the process instance. The
value of an instance-level variable cannot be changed by any other external factor
other than the BP instance bp-iid it belongs to, while a shared variable can be modi-
fied by any other entity that calls the service operation which affects it.

The distinguishing feature of the PE with respect to other well-known BP execu-
tion engines is the support for dealing with the DSs specified in a BP. When a process
execution runs into a DS, the PE turns into a special “DS mode.” In that mode, the
PE creates an event listener for each of the volatile variables specified in the DS.
It is assumed that modification events can be captured by subscribing to specific
variables of interest, and that external services that have the permission to change
these variables, publish an appropriate event that is caught by the subscribed clients
(listeners). The details of event firing and catching are out of scope of the study.

The event handling is deferred until the activity currently being executed fin-
ishes, thus avoiding potential inconsistencies that may result from canceling an
activity in the middle of execution. Therefore, the information conveyed by the
data modification events is stored in a memory list that maintains tuples of the re-

5.5. The Prototype 123

cently modified variables and their latest values. A new event on the same variable
overwrites the old value of the variable kept in the memory list. This list of recent
changes is checked prior to executing the next activity within a DS, and if it is not
empty, the conditions in the verify block of the DS are checked towards the latest
values kept in the list. If a condition evaluates to true, the respective goal or process
element is fired, while the BP execution is suspended. In case of a flow, all parallel
branches are put on hold. The list of recent changes is cleared, and the LS is updated
accordingly, by incorporating the most up-to-date values to the respective variables.

In case a goal has to be pursued, the planner is invoked in order to create a plan
which is then executed, while in the case of a pre-specified element this is directly
executed. After a plan or a pre-specified element is executed the initial process ex-
ecution is resumed, starting from the activity which is immediately after the end
of the current DS. In case parallel branches were suspended, these are resumed as
well (the underlying assumption is that the execution of the generated IP does not
introduce any inconsistencies in the suspended concurrent branches). The only ex-
ception is when there is a terminate annotation referring to the goal that is triggered
(see Definition 5.3), in which case the original BP is terminated instead.

In case of nested DSs, the conditions are verified for all active dependency scopes
starting from the most outer one and going inward. When the execution of a sub-
process covered by some DS is finished, then the respective DS is removed from the
list of active DSs, as well as all event listeners associated with it. If the list is empty,
then PE leaves the “DS mode” and does not listen to any data modification events.
Note that while executing an IP, the PE still remains in the same “DS mode,” and
thus treats the modification events it receives during the IP execution in the same
way as it did during execution of the process element covered by the DS in the BP.
This means that an IP “inherits” the DSs that covered the activity before which the
planner was invoked. In case a DS condition is triggered, the current IP execution
is interrupted, a new IP is generated, after whose completion, the PE returns to the
state after the DS in the original BP.

In order to generate a plan, the AI planner needs a planning domain representa-
tion (see Definition 5.4). To this end, the PE calls the Domain Generator, by passing
to it the Atomic Actions (AA), built as described in Section 5.4.1 by including all
service instances referenced in the BP and a set of eligible compensation services
from the SR. The planning domain is constructed only once for a specific BP, the
first time that a DS is triggered. The goal taken from the DS specification and the
current state, i.e. the values of the variables that are part of the planning domain as
reflected by the updated database, are handed over to the AI planner, which uses
them along with the planning domain to compute a plan. This plan, which includes
only sequence and flow structures, is then passed for execution to the PE. Loops in

124 5. The Case of Run Time

the plan are “flattened,” i.e. the plans explicitly include all repetitions in sequence.
Deferred choices (such as in the case of XORs) are addressed indirectly as already
described in Section 5.4.3: whenever the PE executes an operation that returns a
new value, the constraint solver is called to check whether this value leads to any
inconsistencies with respect to the outcome anticipated by the plan, and if so, the
planner is re-invoked with the current state of execution as the initial state (and the
same goal).

5.5.3 The planner

The planner is implemented in Java, and communicates with the PE through stan-
dard method calls. Upon receiving a request for computing a plan from the PE, the
planner translates the BP-specific planning domain, the initial state and the goal it
received into a CSP, as presented in Section 5.3.3. A standard constraint solver is
applied to solve the CSP, in order to find a solution that amounts to a valid plan.
The Choco v2.1.1 constraint programming library 1 is used, which provides a large
choice of implemented constraints, as well as a variety of pre-defined and custom
search methods. The solution to a CSP amounts to a partially ordered plan, i.e.
one that may contain parallel actions if not restricted by interdependencies between
actions. This plan is passed to the PE for execution, as described in the previous
section.

5.6 Evaluation

The aim of the evaluation is (i) to demonstrate the effectiveness of our approach
with respect to our working example presented in Section 5.5 and (ii) to test the per-
formance with respect to the time that is required to generate the necessary IPs. The
specification of the desired goals and DSs has been conducted in close cooperation
with WMO employees at the municipality of Groningen. Our experience confirmed
that the translation of the requirements as expressed by non-technical employees to
the representation required by our framework is rather intuitive, and is relatively
easily understood when shown to non-experts for proof-checking.

In the tests presented in the next subsection, service invocations are simulated,
and the methods provided by the service instances have a predefined behaviour,
simulated according to the different situations we want to test. The performance of
the framework has been tested with respect to atomic action repositories of increas-
ing size, since domains that comprise a large set of actions, may raise concerns of

1www.emn.fr/z-info/choco-solver

www.emn.fr/z-info/choco-solver

5.7. Discussion 125

inefficiency.
For the case of the WMO process taken from the case study (Section 1.1.1, Fig-

ure 1.4), the experiments on generating of intervention processes displayed good
performance results. For the plans comprising of 5 to 7 activities, the time required
to calculate the plan lies within one second.

In addition to the tests on the real business process, we performed scalability
tests on a virtual test set of 100 atomic actions. The tests demonstrated that for a
trivial domain, less than 6 sec are required to generate an IP comprising as many as
30 activities. These results confirm that the time for generating an IP in realistic situ-
ations is a matter of a few seconds, which is an acceptable performance considering
the average throughput time of long-running BPs (varying between 1 and 6 weeks
for the WMO case). The detailed description of the tests together with their results
can be found in [van Beest et al. 2012].

5.7 Discussion

In this chapter, an approach is presented for automated runtime process reconfig-
uration, which ensures the recovery of a BP from erroneous states without the ne-
cessity of predefining all potential interference situations, and the respective ways
to overcome them. We have studied the feasibility of our approach with respect
to a real scenario, the business process of the Dutch WMO law. We show how AI
planning can be used to ensure the consistency of the process execution results in an
automatic way, given a number of high-level annotations in terms of dependency
scopes provided by the domain designer. The application of the approach in busi-
ness domains where data can be changed by external factors, can highly benefit
organizations by resolving potential inconsistencies in a way that enables a higher
degree of flexibility by reducing hard-coded dependency solutions and workflow
repair mechanisms.

To evaluate the feasibility of the approach, an architecture has been designed
and a prototype has been implemented. The results indicate that coupling DSs with
declarative goals and generating IPs at runtime by means of AI planning is a usable
and realistic method for resolving inconsistencies caused by process interference.
The proposed method is both sound and complete. That is, the generated IPs al-
ways satisfy the properties specified in the goal, and if there exists a combination of
activities that achieves the goal, then this sequence is found.

The work presented in this chapter has the affinity with the problem of transation
management in business processes [Grefen, Vonk and Apers 2001]. The situation
with transactions, however, is very specific in a way that it is important to recover

126 5. The Case of Run Time

the process and compensate the negative effects. This work, on the other hand, is
mainly focused on business process reconfiguration as a way to address the changes
in the underlying requirements or the modification in the execution context, when
the task of consistency keeping is not of the main concern.

Although the focus of the current study is to deal with inconsistencies that result
from process interference, the overall approach based on domain-independent AI
planning for BP reconfiguration is more general. For example, the system can be ex-
tended so that it can be used for process adaptation in case of changes in the business
requirements/rules. The dynamic nature of the CSP on which the planning frame-
work is based on allows the incorporation of changes in the BP-specific constraints
at runtime: constraints which become obsolete can be removed on-the-fly from the
constraint network, and the same holds for the addition of new constraints.

Our precondition and effects language is similar in spirit with existing seman-
tic markups for Web Services such as OWL-S. Finding a suitable and yet powerful
interface for designing goals and service descriptions and integration with existing
standards is open for future investigation.

According to the approach presented herein, a recovery process is only fired in
case of change events that are covered by dependency scopes. However, there may
be environmental changes that compromise the consistency of the Business Process,
and have not taken into consideration by the domain designer. In order to prevent
potential erroneous situations resulting from such events that have not been antici-
pated at design time, we also consider to adopt a conservative policy that holds the
execution in case a violation with respect to the BP specification is detected. This can
be done by extending the process executor, so that it can check whether the precon-
ditions of an action, as specified in the semantic repository, indeed hold at execution
time. This will imply some extra cost for violation checks, and is similar to the ap-
proach for mismatch detection presented in [Marrella and Mecella 2011]. These ex-
tra checks for violations during execution will also help address cases where the IP
may lead to inconsistencies with respect to possible concurrent activities that were
put to hold during the recovery process.

The work presented herein shares many concerns with different subfields of BP
management, including work in the areas of BP recovery, adaptation and process
interference. Automated planning for the purpose of runtime BP reconfiguration
has been proposed earlier in the literature.

Although adaptation of processes to resolve process interference can be consid-
ered a very specific form of changeability, existing changeability frameworks are pri-
marily requirements-driven. That is, their adaptation capabilities are specially tai-
lored to facilitate and support new business requirements (and, therefore, improve
flexibility), whereas they do not incorporate the mechanisms to adapt the process in

5.7. Discussion 127

order to prevent erroneous business outcomes. Consequently, requirements-driven
changeability and adaptability can be considered orthogonal to our research.

The methodology adopted herein shares many common concerns with the work
on semantic service composition by adopting AI planning techniques [Sohrabi and
McIlraith 2010, Kaldeli et al. 2011, Au et al. 2005], since the ultimate task is to com-
bine actions in a dynamic way. The common premise underlying these approaches
is that services come along with semantic annotations that describe their behaviour
in some convenient format, usually in terms of preconditions and effects, which is
the representation we follow in the current work as well. Many of the approaches
proposed for service composition via automated planning, however, require that
the set of supported solutions is pre-defined in some form of procedural templates,
like in [Sohrabi and McIlraith 2010, Au et al. 2005]. On the contrary, our approach of
ad-hoc automatic process instance reconfiguration relies on a domain-independent
planner that has been first presented in [Kaldeli et al. 2009], where the domain de-
signer just states what properties have to be satisfied, without having to anticipate
how these can be fulfilled.

Temporal aspects, maintainability properties, and the distinction between the
wish to observe the environment or change it are some of the features this language
supports [Kaldeli et al. 2009]. Moreover, due to the internal reformulation of the
problem as a Constraint Satisfaction Problem (CSP), the planner naturally supports
efficient handling of variables ranging over large domains, which are commonly
used by BPs (dates, locations etc). Furthermore, the planner is equipped with a
knowledge-level representation to deal with the problem of incomplete knowledge
and sensing, which is particularly well-suited in the case of XORs evaluating a con-
dition, whose output is unknown off-line. This way, plans are automatically built
based on the agent’s knowledge and the way that this is changed by actions. Re-
planning is employed to deal with the large number of possible outcomes and un-
foreseen contingencies at runtime, as described in [Kaldeli et al. 2011].

Chapter 6

Conclusion

In this thesis we proposed a framework for operating of multiple variants of the
same business process. One of the prominent features of our framework is the han-
dling of variations which may happen at the time of business process modeling as
well as the variations which may happen at runtime. Additionally, we cover the
problem of business process migration, when a change in a generic business pro-
cess has to be propagated to each of the individual customized variants, and, addi-
tionally, possible modification of a generic process can be verified against existing
variants.

The framework is based on the application of the formalisms of propositional
and temporal logic to describe a business process model as a set of logical formu-
las. The first advantage of such a representation is the ability to describe a whole
family of business processes at once via simple manipulations with logical formu-
las. We provide an intuitive way to describe a business process or a family of busi-
ness process by the means of a visual modeling language, which is based on BPMN
notation enhanced with additional modeling elements. These additional elements
range from simple unidirectional arrows reflecting some relationship between two
business process elements to complicated group elements embracing whole sub–
processes. For each of the visual elements there is a transformation rule which pre-
scribes how to convert that element into a set of CTL formulas.

Comparing with the state of the art design–time frameworks we emphasize that
our framework offers both declarative and imperative variability techniques. Be-
cause of its declarative foundation, it inherits the expressivity provided by that kind
of frameworks [van der Aalst and Pesic 2006, Pesic et al. 2007]. At the same time,
declarative usability issues are ameliorated through a straightforward to use visual
modeling extension from which the declarative constraint formulas can be gener-
ated directly.

The second advantage of our solution is the ability to analyze the difference be-
tween two or more business process models and describe that difference in the form
of a transformation function. Such a way to represent a business process makes it
possible to analyze the difference between any two given business processes as a re-
sult of matrix transformation. We analyze the properties of the matrices which rep-

130 6. Conclusion

resent business processes, and can tell the correspondence between manipulation
with such matrices and the respective changes in a business process model inflicted
by such manipulation; and we distinguish between adding, removing, moving, and
swapping of the activities in a business process model. These four manipulations
we call primitive, and they all possess the same important property that they can
be applied to any business process and the result of such a manipulation is also a
business process.

We proved that property via analyzing the basic properties of the matrices that
represent business processes, and noticing that any of the aforementioned primitive
manipulations over a matrix retains those basic properties. A transformation from
one business process model to another can be easily extracted working with pro-
cess matrices only, since such a transformation can be represented as an algebraic
operation over matrices. As a result, we reduce the task of extraction of such trans-
formation functions to the task of identifying a proper permutations of rows and
columns of a process matrix, that is, such a replacement of row and columns in the
starting matrix so that the transformed one is the desired matrix.

If such a permutation does not exist, then we look instead for a permutation
which makes the starting matrix as close as possible to the desired matrix. The
distance between any two matrices in our case is the number of their non–equivalent
cells, and it tells us what is the degree of mistake when we are approximating a
real matrix transformation with a primitive one (the one which is a combination of
primitive transformation).

The ideas behind annotation–based variability are in line with the task of busi-
ness process transformation, however, the possible modifications should be known
in advance and introduced in the form of annotations or explicit variability points.
On the contrary, the ideas of business process transformation presented in this thesis
are more general and do not require any prior analysis.

The third advantage of our framework is the ability to execute a business pro-
cess in such a way that the actual sequence of actions is decided at runtime on the
basis of the context of execution. We also implemented a special business process
orchestration engine, which takes as input a business process described in BPEL–
like language. The distinctive features of our engine comparing with existing ones
are (i) it listens to the data modification events, and, (ii), if necessary, stops the ex-
ecution of the business process and starts a so–called repair process. Such a repair
process could contain the activities of the alternative branch of the business process
together with the activities which compensate for the result of the activities which
were already executed.

The first feature is achieved with the help of so–called dependency scopes, which
are essentially sub–processes which are dependent on certain data variables. If one

131

of such variables attached to a dependency scope is modified while the execution of
a business process is within the dependency scope, then the execution of a business
process is suspended, and a repair process is created.

The creation of a repair process is up to an AI planner, which is actually a domain-
independent planner based on dynamic Constraint Satisfaction Problem (CSP) tech-
niques [Kaldeli et al. 2009]. The planner takes as input a declarative goal which
is attached to the corresponding dependency scope and a planning domain which
contains all the variables relevant to the business process together with their actual
values. The generated repair processes always satisfy the properties specified in the
goal, and if there exists a combination of activities that achieves the goal, then this
sequence is found and returned back to the orchestration engine for later execution.

To summarize, in this thesis we proposed a framework which supports busi-
ness process variability at both design– and run– time with additional support for
business process evolution. The idea, however, is the same for all of those facets
of business process management and is based on the representation of a business
process as a set of logical formulas, which are then processed and analyzed with
the help of existing tools and methodologies. Our framework was also verified on
real–life business processes taken from the field of Dutch e–Government.

There are several possible extensions to the research conducted within the scope
of this thesis. First, the visual modeling language we developed to support the
design–time variability can be enhanced to support an automated creation of busi-
ness process variants. Currently, we support the automated creation at runtime
which is driven by the execution context, and the result business process is actu-
ally a sequence of activities which covers one particular situation only. By enrich-
ing our visual modeling language with additional annotations, we can generate a
whole business process model derived from the original template based on specific
requirements provided by a user.

Second, our language for business process representation can be enriched to dis-
tinguish not only different kind of branching points (OR– and AND–), but also to
take into account the logical conditions which are typically assigned to different
branches of an OR– or XOR– gateway. This will also solve the issue of not support-
ing of XOR–gateways explicitly, and expand our language to cover both behavioral
and data–flow models of a business process.

And finally, our framework can be upgraded to a business process repository,
that is, in addition to covering the issues related to variability, the framework should
also provide additional features. Those features include the ability to store a collec-
tion of business processes together with their variants, keeping track of the changes
in business processes, providing with search for and comparison of business process
model as provided by the state of the art BP repositories [Dijkman et al. 2012].

Appendix A

Modal Logics in a Nutshell

Modal propositional logic is a formal logic which can tell about the truth of proposi-
tions with regard to other conditions. Formally, the syntax of modal logic is defined
recursively as follows [Blackburn et al. 2001]:

1. Each propositional formula is a modal formula;

2. If p is a modal formula, so is ¬p;

3. If p, q are modal formulas, so is p ∧ q;

4. If p is a modal formula, so is �p.

Additionally, a special symbol ♦ is used in order to simplify the expressions of
modal logic, and the meaning of this symbol is the following: ♦p ≡ ¬�¬p, where p
is a modal formula.

A model is needed in order to tell the truth about a given modal formula. In
other words, the same formula can be valuated to TRUE (>) of FALSE (⊥) depend-
ing on the model under consideration. In order to define a model, one needs to
define a frame and a valuation function.

Kripke structure [Blackburn et al. 2001] is used as a frame for modal logic, and
this structure is defined as a tuple K = 〈S,R〉, where

1. S is a non–empty set of states, and

2. R ⊆ S × S is a set or relations.

In other words, a Kripke structure can be seen as a directed graph. A valuation
function w.r.t. a given Kripke structureK = 〈S,R〉 is a function L : S → 2AP , where
AP is a set of atomic propositions. In other words, a valuation function tells which
propositions at which states are equal to TRUE.

Given a modelM, which in turn consists of a Kripke structure K = 〈S,R〉 and a
valuation function L, the truth of a modal formula can be defined w.r.t. a given state
x ∈ S. If a formula p is valuated to > at a state x of a modelM it is formally written
asM, x |= p. The truth of a given modal formula is defined recursively as follows:

134 A. Modal Logics in a Nutshell

1. M, x |= a⇔ a ∈ L(x) for any atomic proposition a;

2. M, x |= ¬p⇔ notM, x |= p;

3. M, x |= p ∧ q ⇔M, x |= p ∧M, x |= q;

4. M, x |= �p⇔ ∀y : (x, y) ∈ R :M, y |= p.

There are many different modal logics, but in the scope of this thesis we are
mostly interested with Linear Temporal Logic (LTL) and Computational Tree Logics
(CTL, CTL+, CTL∗).

A.1 Linear Temporal Logic (LTL)

Linear temporal logic [Pnueli 1977] is a modal propositional logic with its modality
related to time. The syntax of LTL is defined recursively as follows:

1. Each propositional formula is an LTL formula;

2. If p, q are LTL formulas, then so are (p ∧ q) and ¬p;

3. If p is an LTL formula, then ◦p, ♦p and �p are also LTL formulas;

4. If p, q are LTL formulas, then [pUq] and [pWq] are also LTL formulas.

The formulas of LTL are evaluated for a given modelM for a given path π. A
path π = {x1, x2, . . . xn, . . .} is a potentially infinite sequence of states xi ∈ S, when
∀i : xi, xi+1 ∈ π ⇔ (xi, xi+1) ∈ R, where K = 〈S,R〉 is a frame of the modelM.

The truth of LTL formulas is defined recursively as follows for a given path π =

{x1, x2, . . .}:

1. M, π |= a⇔ a ∈ L(x1) for any atomic proposition a;

2. M, π |= ¬p⇔ notM, π |= p;

3. M, π |= p ∧ q ⇔M, π |= p ∧M, π |= q;

4. M, π |= ◦p means that for the path π = {x1, x2, . . .} :M, x2 |= p;

5. M, π |= ♦p means that for the path π = {x1, x2, . . .} : ∃xi ∈ π :M, xi |= p;

6. M, π |= �p means that for the path π = {x1, x2, . . .} : ∀xi ∈ π :M, xi |= p;

7. M, π |= pUq means that for the path π = {x1, x2, . . .} : ∃n : ∀i = 1 . . . (n− 1) :

M, xi |= p ∧M, xn |= q;

8. M, π |= pWq ⇔M, π |= pUq ∨M, π |= Gp.

A.2. Computational Tree Logic (CTL) 135

A.2 Computational Tree Logic (CTL)

Computational Tree Logic (CTL) and Computational Tree Logic+ (CTL+) are Branching–
time Logics and are defined recursively as follows by applying rules 1-5 and 1-6
respectively [Clarke et al. 1986, Emerson and Halpern 1985].

1. Each primitive formula is a state formula;

2. If p, q are state formulas, then so are (p ∧ q) and ¬p;

3. If p is a state formula, then Xp, Fp and Gp are path formulas;

4. If p is a path formula, then Ep and Ap are state formulas;

5. If p, q are state formulas, then [pUq] and [pWq] are path formulas;

6. If p, q are path formulas, then so are p ∧ q and ¬p.

The semantics of CTL is more complicated than the semantics of LTL because
of the distinction between path and state formulas. A path p is a potentially infinite
sequence π = {x1, x2, . . . xn, . . .}, defined in the same way as it was defined for LTL.
The truth of CTL and CTL+ is defined recursively as follows, when a state formula
is evaluated at a state x, and a path formula is evaluated at a path π:

1. M, x |= a⇔ a ∈ L(x) for any atomic proposition a;

2. M, x |= ¬p⇔ notM, x |= p;

3. M, x |= p ∧ q ⇔M, x |= p ∧M, x |= q;

4. M, x |= Ap means that for all paths pi in the modelM which start in the state
x, the path formula p holds for those paths;

5. M, x |= Ep means that there is a path pi in the model M which start in the
state x, the path formula p holds for the path pi;

6. M, π |= Xp means that for the path π = {x1, x2, . . .} :M, x2 |= p;

7. M, π |= Fp means that for the path π = {x1, x2, . . .} : ∃xi ∈ π :M, xi |= p;

8. M, π |= Gp means that for the path π = {x1, x2, . . .} : ∀xi ∈ π :M, xi |= p;

9. M, π |= pUq means that for the path π = {x1, x2, . . .} : ∃n : ∀i = 1 . . . (n− 1) :

M, xi |= p ∧M, xn |= q;

10. M, π |= pWq ⇔M, π |= pUq ∨M, π |= Gp;

136 A. Modal Logics in a Nutshell

11. M, π |= ¬p means that notM, π |= p;

12. M, π |= p ∧ q ⇔M, π |= p ∧M, π |= q.

The rules 1–10 are relevant for both CTL and CTL+, and the rest of the rules are
relevant for CTL+ only.

Bibliography

Adams, M., ter Hofstede, A., Edmond, D. and van der Aalst, W.: 2006, Worklets: A service-
oriented implementation of dynamic flexibility in workflows, On the Move to Meaningful
Internet Systems 2006: CoopIS, DOA, GADA, and ODBASE, pp. 291–308.

Aiello, M., Bulanov, P. and Groefsema, H.: 2010, Requirements and tools for variability
management, IEEE workshop on Requirement Engineering for Services (REFS 2010) at IEEE
COMPSAC, pp. 245 – 250.

Allen, J. F.: 1983, Maintaining knowledge about temporal intervals, Commun. ACM
26(11), 832–843.

Au, T., Kuter, U. and Nau, D.: 2005, Web Service Composition with Volatile Information, Prof.
of the 4th Int. Semantic Web Conf. (ISWC).

Augustus, M. A. A.: 167 A.D., Meditations, Vol. 10 of Meditations, Handwritten.

Bachmann, F., Goedicke, M., Leite, J., Nord, R., Pohl, K., Ramesh, B. and Vilbig, A.: 2004,
A meta-model for representing variability in product family development, Software
Product-Family Engineering, Vol. 3014, pp. 66–80.

Balko, S., ter Hofstede, A. H. M., Barros, A. P. and La Rosa, M.: 2009, Controlled flexibility and
lifecycle management of business processes through extensibility, EMISA, pp. 97–110.

Basten, T. and van der Aalst, W. M.: 2001, Inheritance of behavior, Journal of Logic and Algebraic
Programming 47(2), 47 – 145.

Becker, J., Delfmann, P. and Knackstedt, R.: 2007, Adaptive reference modeling: Integrat-
ing configurative and generic adaptation techniques for information models, Reference
Modeling, pp. 27–58.

Beckstein, C. and Klausner, J.: 1999, A meta level architecture for workflow management,
Journal of Integrated Design and Process Science 3, 15–26.

Blackburn, P., Rijke, M. D. and Venema, Y.: 2001, Modal Logic, Cambrige University Press.

Brogi, A. and Popescu, R.: 2006, Towards semi-automated workflow-based aggregation of
web services, CIbSE, pp. 9–22.

138 BIBLIOGRAPHY

Bulanov, P., Lazovik, A. and Aiello, M.: 2011, Business process customization using process
merging techniques, In Int. Conf. on Service-Oriented Computing and Applications, pp. 1–4.

Charfi, A. and Mezini, M.: 2004, Hybrid web service composition: business processes meet
business rules, ICSOC, pp. 30–38.

Clarke, E. M., Emerson, E. A. and Sistla, A. P.: 1986, Automatic verification of finite-state con-
current systems using temporal logic specifications, ACM Transactions on Programming
Languages and Systems 8(2), 244–263.

Clarke, E. M., Grumberg, O. and Peled, D. A.: 2000, Model Checking, MIT Press.

Cleaveland, R.: 1999, Temporal process logic, CONCUR99 Concurrency Theory, Vol. 1664,
pp. 779–779.

Clements, P.: 2006, Managing variability for software product lines: Working with variability
mechanisms, Software Product Line Conference, 2006 10th International, pp. 207–208.

Cook, S. A.: 1971, The complexity of theorem-proving procedures, Proceedings of the third
annual ACM symposium on Theory of computing, STOC ’71, pp. 151–158.

Czarnecki, K. and Eisenecker, U.: 2000, Generative Programming: Methods, Tools, and Applica-
tions, Addison-Wesley.

Dadam, P. and Reichert, M.: 2009, The ADEPT project: a decade of research and development
for robust and flexible process support, Computer Science - R&D 23(2), 81–97.

de Leoni, M., De Giacomo, G., Lespèrance, Y. and Mecella, M.: 2009, On-line adaptation of se-
quential mobile processes running concurrently, Proceedings of the 2009 ACM symposium
on Applied Computing, SAC’09, ACM, pp. 1345–1352.

de Leoni, M., Mecella, M. and De Giacomo, G.: 2007, Highly dynamic adaptation in process
management systems through execution monitoring, BPM 2007 pp. 182–197.

Delfmann, P. and Knackstedt, R.: 2007, Towards tool support for information model variant
management - a design science approach, ECIS, pp. 2098–2109.

Dijkman, R., La Rosa, M. and Reijers, H. A.: 2012, Managing large collections of business
process modelscurrent techniques and challenges, Computers in Industry 63(2), 91 – 97.

Dijkman, R. M., Dumas, M., van Dongen, B. F., Käärik, R. and Mendling, J.: 2011, Similarity
of business process models: Metrics and evaluation, Inf. Syst. 36(2), 498–516.

Emerson, E. A. and Halpern, J. Y.: 1985, Decision procedures and expressiveness in the tem-
poral logic of branching time, Journal of Computer and System Sciences 30(1), 1–24.

Eshuis, R. and Grefen, P. W. P. J.: 2009, Composing services into structured processes, Interna-
tional Journal of Cooperative Information Systems 18(2), 309–337.

Fahland, D., Favre, C., Jobstmann, B., Koehler, J., Lohmann, N., Völzer, H. and Wolf, K.: 2009,
Instantaneous soundness checking of industrial business process models, 7th Int. Conf.
on Business Process Management, pp. 278–293.

Ferreira, H. and Ferreira, D.: 2006, An integrated life cycle for workflow management based
on learning and planning, International Journal of Cooperative Information Systems 15, 485–
505.

BIBLIOGRAPHY 139

Gajewski, M., Meyer, H., Momotko, M., Schuschel, H. and Weske, M.: 2005, Dynamic fail-
ure recovery of generated workflows, Database and Expert Systems Applications (DEXA)
Workshops, IEEE Computer Society Press, pp. 982–986.

Galvão, I., van den Broek, P. and Akşit, M.: 2010, A model for variability design rationale
in spl, Proceedings of the Fourth European Conference on Software Architecture: Companion
Volume, ECSA ’10, pp. 332–335.

Garcia-Molina, H. and Salem, K.: 1987, Sagas, Proc. of 1987 ACM SIGMOD Int. Conf. on Man-
agement of data, ACM, pp. 249–259.

Ghallab, M., Nau, D. and Traverso, P.: 2004, Automated Planning: Theory and Practice, Elsevier.
Chapters 13,14.

Giannakopoulou, D. and Havelund, K.: 2001, Automata-based verification of temporal prop-
erties on running programs, Automated Software Engineering, 2001. (ASE 2001). Proceed-
ings. 16th Annual International Conference on, pp. 412–416.

Gottschalk, F., van der Aalst, W. M. P., Jansen-Vullers, M. H. and La Rosa, M.: 2008, Config-
urable workflow models, Int. J. Cooperative Inf. Syst. 17(2), 177–221.

Grefen, P., Vonk, J. and Apers, P.: 2001, Global transaction support for workflow manage-
ment systems: from formal specification to practical implementation, The VLDB Journal
10, 316–333.

Groefsema, H., Bulanov, P. and Aiello, M.: 2011, Declarative enhancement framework for
business processes, Int. Conference on Service-Oriented Computing, ICSOC, LNCS 7084,
pp. 495–504.

Hallerbach, A., Bauer, T. and Reichert, M.: 2008, Managing process variants in the process life
cycle, ICEIS (3-2), pp. 154–161.

Hoffmann, J., Weber, I. and Kraft, F.: 2010, SAP Speaks PDDL, 4th National Conf. of the Ameri-
can Association for Artificial Intelligence (AAAI’10).

Jablonski, S.: 1994, MOBILE - a modular workflow model and architecture, 4th Int. Conf. on
Dynamic Modelling and Information Systems.

Jarvis, P., Moore, J., Stader, J., Macintosh, A., Casson-du Mont, A. and Chung, P.: 1999, Ex-
ploiting ai technologies to realise adaptive workflow systems, In Proc. AAAI Workshop
on Agent-Based Systems in the Business Context, 1999, AAAI Technical Report WS-99-02.

Kaldeli, E., Lazovik, A. and Aiello, M.: 2009, Extended goals for composing services, Pro-
ceedings of the 19th International Conference on Automated Planning and Scheduling (ICAPS
2009), AAAI Press.

Kaldeli, E., Lazovik, A. and Aiello, M.: 2011, Continual planning with sensing for Web Service
composition, Proc. of the 25th AAAI Conf. on Artificial Intelligence (to appear), AAAI Press.

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E. and Peterson, A. S.: 1990, Feature-
oriented domain analysis (FODA) feasibility study, Technical Report CMU/SEI-90-TR-21,
Carnegie-Mellon University, Software Engineering Institute.

Kang, K., Lee, J. and Donohoe, P.: 2002, Feature-oriented product line engineering, Software,
IEEE 19(4), 58 – 65.

140 BIBLIOGRAPHY

Kopp, O., Martin, D., Wutke, D. and Leymann, F.: 2008, On the choice between graph-based
and block-structured business process modeling languages, Modellierung betrieblicher In-
formationssysteme (MobIS 2008), Vol. 141 of Lecture Notes in Informatics (LNI), pp. 59–72.

Küster, J. M., Gerth, C., Förster, A. and Engels, G.: 2008, A tool for process merging in
business-driven development, CAiSE Forum, pp. 89–92.

La Rosa, M., Dumas, M., Uba, R. and Dijkman, R.: 2010, Merging business process models,
OTM Conferences (1), pp. 96–113.

La Rosa, M., Lux, J., Seidel, S., Dumas, M. and ter Hofstede, A.: 2007, Questionnaire-driven
configuration of reference process models, Advanced Information Systems Engineering, Vol.
4495, pp. 424–438.

La Rosa, M., van der Aalst, W., Dumas, M. and ter Hofstede, A.: 2009, Questionnaire-based
variability modeling for system configuration, Software and Systems Modeling 8, 251–274.

Lapouchnian, A., Yu, Y. and Mylopoulos, J.: 2007, Requirements-driven design and configu-
ration management of business processes, BPM, pp. 246–261.

Levesque, H. J., Reiter, R., Lespérance, Y., Lin, F. and Scherl, R. B.: 1997, GOLOG: A logic
programming language for dynamic domains, The Journal of Logic Programming 31(13), 59
– 83.

Liang, Q., Chakarapani, L. N., Su, S. Y. W., Chikkamagalur, R. N. and Lam, H.: 2004, A semi-
automatic approach to composite web services discovery, description and invocation,
Int. Journal Web Service Research 1(4), 64–89.

Lu, R., Sadiq, S. and Governatori, G.: 2009, On managing business processes variants, Data
Knowl. Eng. 68(7), 642–664.

Madhusudan, T., Zhao, J. L. and Marshall, B.: 2004, A case-based reasoning framework for
workflow model management, Data Knowl. Eng. 50, 87–115.

Marrella, A. and Mecella, M.: 2011, Continuous planning for solving business process adap-
tivity, 12th International Working Conference on Business Process Modeling, Development and
Support (BPMDS 2011), in conjunction with CAiSE 2011.

Milner, R.: 1989, Communication and concurrency.

Milner, R.: 1999, Communicating and Mobile Systems: The Pi Calculus, Cambridge University
Press.

Momotko, M. and Subieta, K.: 2004, Process query language: A way to make workflow pro-
cesses more flexible, ADBIS, pp. 306–321.

Müller, R., Greiner, U. and Rahm, E.: 2004, AgentWork: a workflow system supporting rule-
based workflow adaptation, Data & Knowledge Engineering 51(2), 223 – 256.

Murata, T.: 1989, Petri nets: Properties, analysis and applications, Proceedings of the IEEE
77(4), 541 –580.

Object Management Group (OMG): 2009, Business process model and notation
(BPMN) FTF beta 1 for version 2.0, Technical Report dtc/2009-08-14, OMG.
http://www.omg.org/spec/BPMN/2.0, accessible July 2012.

BIBLIOGRAPHY 141

(OMG), O. M. G.: 2005, UML 2.0 unified modeling language, Technical Report formal/2005-07-
05, OMG. http://www.omg.org/spec/UML/2.0, accessible July 2012.

Ouvans, C., Dumas, M., ter Hofstede, A. and van der Aalst, W.: 2006, From bpmn process
models to bpel web services, Web Services, 2006. ICWS ’06. International Conference on,
pp. 285–292.

Pearl, J.: 1984, Heuristics: intelligent search strategies for computer problem solving, Addison-
Wesley Longman Publishing Co., Inc.

Pesic, M., Schonenberg, M. H., Sidorova, N. and van der Aalst, W. M. P.: 2007, Constraint-
based workflow models: Change made easy, OTM Conferences (1), pp. 77–94.

Petri, C. A.: 1962, Kommunikation mit Automaten, PhD thesis, Fakultät für Mathematik und
Physik, Technische Hochschule Darmstadt, Darmstadt, Germany.

Pistore, M., Marconi, A., Bertoli, P. and Traverso, P.: 2005, Automated Composition of Web
Services by Planning at the Knowledge Level, 19th Int. Joint Conference on Artificial Intel-
ligence, pp. 1252–1259.

Pnueli, A.: 1977, The temporal logic of programs, Foundations of Computer Science, 1977., 18th
Annual Symposium on, pp. 46 –57.

Pohl, K., Böckle, G. and Linden, F. J. v. d.: 2005, Software Product Line Engineering, Springer.

Reichert, M. and Dadam, P.: 1998, ADEPTflex - supporting dynamic changes of workflows
without loosing control, Journal of Intelligent Information Systems 10, 93–129.

Reiter, R.: 2001, Knowledge in Action: Logical Foundations for Specifying and Implementing Dy-
namical Systems, MIT Press.

Rinderle, S., Reichert, M. and Dadam, P.: 2004, Correctness criteria for dynamic changes in
workflow systems a survey, Data and Knowledge Engineering 50, 9–34.

Rodrı́guez-Moreno, M. D., Borrajo, D., Cesta, A. and Oddi, A.: 2007, Integrating planning
and scheduling in workflow domains, Expert Systems and Applications 33(2), 389–406.

Rodrı́guez-Moreno, M. D. and Kearney, P.: 2002, Integrating ai planning techniques with
workflow management system, Knowledge-Based Systems 15(5-6), 285–291.

Sadiq, S. W., Orlowska, M. E. and Sadiq, W.: 2005, Specification and validation of process
constraints for flexible workflows, Information Systems 30(5), 349–378.

Sarshar, K. and Loos, P.: 2005, Comparing the control-flow of EPC and petri net from the
end-user perspective, Business Process Management, Vol. 3649, pp. 434–439.

Schnieders, A. and Puhlmann, F.: 2007, Variability modeling and product derivation in e-
business process families, Technologies for Business Information Systems, pp. 63–74.

Schonenberg, H., Mans, R., Russell, N., Mulyar, N. and van der Aalst, W. M. P.: 2008, Process
flexibility: A survey of contemporary approaches, CIAO! / EOMAS, Vol. 10 of LNBIP,
Springer, pp. 16–30.

Sinnema, M., Deelstra, S., Nijhuis, J. and Bosch, J.: 2006, Modeling dependencies in prod-
uct families with covamof, IEEE International Symposium and Workshop on Engineering of
Computer Based Systems (ECBS ’06), IEEE Computer Society, pp. 299–307.

142 BIBLIOGRAPHY

Sohrabi, S. and McIlraith, S. A.: 2010, Preference-based web service composition: A mid-
dle ground between execution and search, Proc. of 9th Int. Semantic Web Conf. (ISWC),
pp. 713–729.

Sun, C. and Aiello, M.: 2008, Towards variable service compositions using VxBPEL, ICSR,
pp. 257–261.

Sun, S., Kumar, A. and Yen, J.: 2006, Merging workflows: A new perspective on connecting
business processes, Decision Support Systems 42(2), 844–858.

Urban, S., Gao, L., Shrestha, R. and Courter, A.: 2011, The dynamics of process modeling:
New directions for the use of events and rules in service-oriented computing, The Evo-
lution of Conceptual Modeling, Vol. 6520 of LNCS, pp. 205–224.

van Beest, N., Bulanov, P., Wortmann, J. and Lazovik, A.: 2010, Resolving business process
interference via dynamic reconfiguration, 8th International Conference on Service Oriented
Computing (ICSOC-2010), Vol. 6470/2010, Lecture Notes in Computer Science, pp. 47–60.

van Beest, N., Kaldeli, E., Bulanov, P., Wortmann, J. and Lazovik, A.: 2012, Auto-
mated runtime repair of business processes, Technical report, University of Groningen.
http://www.cs.rug.nl/˜eirini/papers/tech 2012-12-2.pdf.

van Beest, N. R. T. P., Szirbik, N. B. and Wortmann, J. C.: 2010, Assessing the interference
in concurrent business processes, Proc. of 12th Int. Conf. on Enterprise Information Systems
(ICEIS), pp. 261–270.

van der Aalst, W.: 2003, Patterns and xpdl: A critical evaluation of the xml process definition
language.

van der Aalst, W. and Dongen, B. F. V.: 2002, Discovering workflow performance models from
timed logs, International Conference on Engineering and Deployment of Cooperative Informa-
tion Systems (EDCIS 2002), volume 2480 of Lecture Notes in Computer Science, pp. 45–63.

van der Aalst, W. M. P. and Basten, T.: 2002, Inheritance of workflows: an approach to tackling
problems related to change, Theor. Comput. Sci. 270(1-2), 125–203.

van der Aalst, W. M. P., van Dongen, B. F., Herbst, J., Maruster, L., Schimm, G. and Weijters,
A. J. M. M.: 2003, Workflow mining: A survey of issues and approaches, Data Knowl.
Eng. 47(2), 237–267.

van der Aalst, W. M. P., Weske, M. and Grünbauer, D.: 2005, Case handling: a new paradigm
for business process support, Data Knowl. Eng. 53(2), 129–162.

van der Aalst, W. and Pesic, M.: 2006, DecSerFlow: Towards a truly declarative service flow
language, Web Services and Formal Methods, Vol. 4184, pp. 1–23.

van der Aalst, W., ter Hofstede, A. H. M. and Weske, M.: 2003, Business process management:
A survey, Business Process Management, pp. 1–12.

van der Aalst, W., ter Hofstede, A., Kiepuszewski, B. and Barros, A.: 2003, Workflow patterns,
Distributed and Parallel Databases 14(3), 5–51.

Vanhatalo, J., Völzer, H. and Leymann, F.: 2007, Faster and more focused control-flow analysis
for business process models through sese decomposition, Proceedings of the 5th interna-
tional conference on Service-Oriented Computing, ICSOC ’07, pp. 43–55.

BIBLIOGRAPHY 143

Vilain, M. B. and Kautz, H. A.: 1986, Constraint propagation algorithms for temporal reason-
ing, AAAI, pp. 377–382.

Weber, B., Reichert, M. and Rinderle-Ma, S.: 2008, Change patterns and change support fea-
tures - enhancing flexibility in process-aware information systems, Data Knowl. Eng.
66(3), 438–466.

World Wide Web Consorcium (W3C): 2004, OWL-S: semantic markup for web services, Tech-
nical Report SUBM-OWL-S-20041122, W3C. http://www.w3.org/Submission/OWL-S,
accessible July 2012.

World Wide Web Consorcium (W3C): 2005, Web Service Semantics – WSDL-S, Technical Report
SUBM-WSDL-S-20051107, W3C. http://www.w3.org/Submission/WSDL-S, accessible
July 2012.

Wynn, M., Verbeek, H., van der Aalst, W., ter Hofstede, A. and Edmond, D.: 2009, Business
process verification : finally a reality!, Business Process Management Journal 15(1), 74–92.

Xiao, Y. and Urban, S.: 2008, Using data dependencies to support the recovery of concurrent
processes in a service composition environment, Proc. of the 16th Int. Conf. on Cooperative
Inf. Systems.

	Acknowledgements
	Samenvatting
	Introduction
	Case–Study: Variability in Local eGovernment
	Business Process Variability
	Business Process Evolution
	Runtime reconfiguration

	Management of Business Process Variants

	Related Work
	Business Process Variability
	Declarative vs. imperative variability
	Annotation–based Variability
	Variability by Underspecification
	Declarative Process Execution
	Runtime Business Process Reconfiguration

	Business Process Generation
	Process Merge
	Workflow Mining
	Other Approaches to Business Process Generation

	The Case of Design Time
	Basic Definitions
	Template Design
	Declarative Techniques
	Imperative Techniques

	Constraint Relations
	Prerequisite
	Exclusion
	Substitution
	Corequisite
	Exclusive–Choice

	Variant Design: An Example
	Process Healthiness
	Variant Validation
	Model Conversion
	Validation Algorithm

	Evaluation
	The Imperative Case
	The Declarative PVDI Case
	Expressive Power
	Ease of Use

	Implementation and Performance Results
	Discussion

	Business Process Transformation
	A Temporal Logic of Business Processes
	Temporal Process Logic
	Discussion

	Process representation and transformation
	Transformations
	Business Process Evolution through Transformation Functions
	Implementation and Evaluation

	Discussion

	The Case of Run Time
	Runtime Variability using Dependency Scopes
	Dependency Scopes within WMO Process Example
	Required Intervention Processes
	Automatic Intervention Process Generation

	Architectural Overview
	Basic Concepts
	Business Process
	Dependency scope
	The Planning Domain

	Automatic Intervention Process Generation
	Generation of the Planning Domain
	Composition of the initial planning state
	Generating the IP

	The Prototype
	Process Modeller
	The Process Executor
	The planner

	Evaluation
	Discussion

	Conclusion
	Modal Logics in a Nutshell
	Linear Temporal Logic (LTL)
	Computational Tree Logic (CTL)

	Bibliography

