

 University of Groningen

Domain-independent planning for services in uncertain and dynamic environments
Kaldeli, Eirini

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2013

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Kaldeli, E. (2013). Domain-independent planning for services in uncertain and dynamic environments. s.n.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 12-10-2022

https://research.rug.nl/en/publications/17fdefd0-e9f3-47bc-a730-95e7b64e5a9f

Domain-Independent Planning for
Services in Uncertain and Dynamic

Environments

Eirini Kaldeli

Printed by CPI Koninklijke Wöhrmann

© 2013, Eirini Kaldeli

RIJKSUNIVERSITEIT GRONINGEN

Domain-Independent Planning for Services

in Uncertain and Dynamic Environments

Proefschrift

ter verkrijging van het doctoraat in de

Wiskunde en Natuurwetenschappen

aan de Rijksuniversiteit Groningen

op gezag van de

Rector Magnificus, dr. E. Sterken,

in het openbaar te verdedigen op

vrijdag 10 mei 2013

om 16:15 uur

door

Eirini Kaldeli

geboren op 14 januari 1983

te Athene, Griekenland

Promotor: Prof. dr. M. Aiello

Beoordelingscommissie: Prof. dr. F. Arbab

Prof. dr. D. Nardi

Prof. dr. B. Nebel

ISBN: 978-90-367-6155-0

ISBN-Electronic: 978-90-367-6214-4

To Rozina and Christophoros

Contents

Acknowledgments xi

1 Introduction 1

1.1 Planning domain representation . 3

1.1.1 Planning as a Constraint Satisfaction Problem 5

1.2 Uncertainty about the initial state 6

1.3 Offline planning and online execution 7

1.3.1 A motivation example . 7

1.3.2 Orchestration through continual plan revisions 8

1.3.3 Dealing with dynamic environments 9

1.4 Thesis scope and organization . 10

1.5 Publications . 12

2 Related Work 15

2.1 Planning for service composition . 15

2.2 Planning domains and goal specifications 19

2.3 Planning as CSP . 21

2.4 Planning with incomplete information and sensing 23

2.5 Replanning and interactions with the environment 25

2.6 Comparative summary . 28

2.7 Service coordination in domotic environments 30

2.7.1 The Web of Things . 30

2.7.2 Service composition and AI Planning in pervasive systems . . 32

2.7.3 Smart Homes projects . 33

2.8 Business Process recovery . 34

vii

Contents

2.8.1 BP adaptation and repair . 34

2.8.2 Automated planning for BP reconfiguration 36

3 The RuG CSP-based Planner 39

3.1 Planning as constraint solving . 40

3.2 Planning Domain . 42

3.3 Encoding the Planning Domain into a CSP 46

3.3.1 Some action examples . 49

3.3.2 Implicit predicates in the knowledge base 51

3.4 Goal language . 52

3.4.1 Goal syntax . 53

3.4.2 Some goal examples . 54

3.4.3 Goals with parameters . 55

3.5 Representing the planning problem 56

3.5.1 Semantics of the goal . 58

3.6 Translating the goal into constraints 60

3.6.1 Translating a goal example into constraints 62

3.7 Solving the CSP . 62

3.7.1 A planning example . 65

3.8 Goal editor . 67

4 Planning in a Smart Home 71

4.1 Smartness via service composition at home 72

4.2 A day in the Smart Home . 75

4.2.1 Replanning for basic failure recovery 77

4.3 Architecture . 77

4.3.1 The pervasive layer . 78

4.3.2 The service composition layer 79

4.3.3 The user layer . 80

4.4 The home as a planning domain . 80

4.4.1 The OSGi UPnP-level home domain 80

4.4.2 The planning-level home domain 82

4.4.3 Incorporating context changes 82

4.4.4 User and home goals . 84

4.5 The prototype . 85

4.5.1 Pervasive and composition layers 85

4.5.2 The user layer . 88

4.5.3 Simulation and visualization 90

4.5.4 Sample interaction flow . 91

viii

Contents

4.6 Practically engineering a Smart Home 92

4.7 Technical evaluation . 94

4.7.1 Replanning scenarios . 99

4.8 User evaluation . 101

4.8.1 Experimental setup . 102

4.8.2 Usability evaluation results 104

5 Plan Orchestration via Altering the CSP 109

5.1 Architectural overview . 111

5.2 Execution-time transition system and orchestration path 113

5.3 Main policies of the orchestration algorithm 115

5.3.1 Plan repair vs. replanning . 117

5.3.2 Executing parallel actions and dealing with timeouts 119

5.3.3 Dealing with erratic behaviors, constraint violations, and per-

sistent information . 122

5.3.4 The orchestration algorithm 124

5.4 Implementation . 128

5.5 Running examples . 129

5.5.1 Entertainment WS marketplace 129

5.5.2 “Moving in grid” scenario . 131

5.6 Empirical evaluation . 133

5.6.1 Refinement towards replanning from scratch 133

5.6.2 Timeout of sensing actions 135

5.7 Discussion . 136

6 Automatic Runtime Business Process Repair 141

6.1 The problem of process interference 142

6.1.1 Process interference in e-Government: a test case 144

6.1.2 WMO process description . 145

6.1.3 Interference examples . 147

6.1.4 Required intervention processes 149

6.1.5 Automatic intervention process generation 151

6.2 Architectural overview . 152

6.3 Basic concepts . 154

6.3.1 Service Repository . 154

6.3.2 Business Process . 156

6.3.3 Dependency scope . 158

6.4 The BP as a planning domain . 161

6.4.1 Formation of the atomic actions 162

ix

Contents

6.4.2 Generation of the planning domain 164

6.4.3 Formation of the initial planning state 168

6.4.4 Generating the intervention process 169

6.5 The prototype . 170

6.5.1 Process Modeler . 170

6.5.2 The Process Executor . 170

6.6 Evaluation . 174

6.6.1 Tests on the WMO-law case study 175

6.6.2 Scalability in a simulated domain 177

7 Conclusions 179

7.1 Recapitulation . 179

7.2 Open issues and future directions . 181

A Appendix 183

A.1 Orchestration example of moving robot in grid 183

A.2 Representations of WMO BP and respective Planning Domain . . . 185

A.2.1 BP Representation of the WMO Process 185

A.2.2 Planning Domain modeling the WMO Process 189

Bibliography 214

Samenvatting 215

x

Acknowledgments

Although this dissertation is to a great extent about planning, the long process of

getting here has been full of developments, dilemmas and emotions that were “out

of plan”. Now that the thesis is to be sent out for printing, it may all seem clear

and obvious. Looking back, however, I cannot but realize how fortunate I am to

have encountered a number of people who have helped and supported me through

all the uncertainties. It is a great pleasure to thank them here.

My deepest feelings of gratitude are owed to my advisor, Marco Aiello, who

has been there with his unstinting guidance and encouragement at all stages of

this project. His belief in me, and his readiness to help by all means is what kept

me going at times of disillusionment. His advice has always been to the point

and prompt, no matter how busy he was, and his patience limitless. I believe he

rightfully deserves the title of the most supportive advisor, and I will always be

thankful to him.

Special thanks go to Alexander Lazovik, who has acted (although not officially)

as my second advisor. He is the one who gave me the initial push at a point

that I was feeling lost, and part of the material presented in this dissertation is

due to his contribution. Our long conversations have been stimulating, his strong

programming skills have proven invaluable, and through his guidance I have become

a better programmer.

I am also indebted to the members of the administrative staff at the University

of Groningen, and particularly to Ineke Schelhaas, Esmee Elshof, Desiree Hansen,

and Yvonne van der Weerd. Thanks to their effective and timely assistance, I never

had to worry about complex paperwork and practical matters. I also want to thank

Antonis for designing the cover of the thesis.

They say that a PhD is a lonely venture, and this is absolutely true. However,

without my friends and colleagues, I would never have managed to be at piece with

xi

Acknowledgments

this loneliness. Jelle and Electra are among the ones I connect my best times in

Groningen with. I will always heartwarmingly remember the young activist who

studies to change the world, and the blond Greek girl who passes for a native

Dutch speaker. During my stay in Groningen, I have changed many places and

housemates, some of who remain good friends till today. Lama and Kristiana have

been around during the toughest period of my PhD, pushing me to be more social,

and sharing their food with me when I had no time or mood for cooking. Narges

and Tiago may have left Groningen before me, but I will never forget the nice time

we have spent together. Other Greek expats in Groningen have contributed to

creating an atmosphere that feels like home, balanced with the diverse cultures I

have got to know through my international friends. I thank them all!

My colleagues at the University of Groningen have done their best to create a

warm and cooperative environment. When I first came to the Distributed Systems

group, we were only two PhD students, me and Elie El-Khoury, with whom I shared

the anxieties and joys of a new beginning. Since then, the group has expanded with

new members, who I would like to thank not only for our scientific collaboration

and opinion exchange, but also for the nice experiences we have shared in our

travels and going outs. In particular: Ilche Georgievski, Ehsan Ullah Warriach,

Viktoriya Degeler, Pavel Bulanov, Tuan Anh Nguyen, Heerko Groefsema, Andrea

Pagani, Ando Emerencia, and Mahir Can Doğanay, Faris Nizamic, Saleem Anwar,

and Fatima al-Saif. Nick van Beest may come from a different department, however

I consider him as “one of us”, and owe him special thanks for our close and fruitful

collaboration. For the enjoyable time we have had at the office and beyond, I

am thankful to Artemis Kontogogos, George Azopardi, Giannis Giotis, Giuseppe

Papari, Kerstin Bunte, Ahmad Waqas, and Aree Witoelar from the neighboring

research groups, as well as to Elena Lazovik.

It is not only my new friendships and acquaintances from Groningen that have

kept me upbeat throughout my PhD, but also my old dear friends from Athens. I

have not been seeing them as frequently as I would like, however they were always

there when I needed them: Vasilis with his discrete concern, Charalampos with

his lighthearted spirit, Stephanos who counts more as a friend than a cousin, and

Eva, despite her leaving from Greece. Lamprini, Andreas, Christina, Thodoris,

Vasiliki, Grigoris, Dimitris, and others, too many to mention individually, have all

contributed to making an expatriate’s time at her home country fun and cosy.

My broader family has also expressed their support in many forms. I would

like to especially mention the handmade delicatessen of my aunt Despoina, and the

satiric collages of my aunt Amalia, which have been arriving to Groningen by post

all these years.

Giorgos has been the reason behind my discovery of Groningen, and my decision

xii

Acknowledgments

to start a PhD there at the first place. Things have not developed as planned

since, and at the end, I am still undecided whether he has been a constructive or

distracting influence on my PhD. So, I am not sure whether he should have my

acknowledgements here. But he certainly has my love.

Following the thread that has lead me to pursuing a PhD, I ultimately find my

parents, Rozina and Christophoros, who have always encouraged me to learn more.

It is to them that I dedicate this dissertation.

Eirini Kaldeli

Groningen

March 24, 2013

xiii

Chapter 1

Introduction

The concept of service is used in Information Technology to abstract away from

the specifics of software implementation through the engagement of standardized

interfaces and well-defined functional descriptions. Services are made available over

some network, and can interact with each other by exchanging messages using a

communication protocol. Web-based standards, such as HTTP for transportation

and XML-based languages for the description of message and operations, are usu-

ally employed to prescribe these interoperable machine-to-machine interactions, in

which case services are implemented as Web Services (WSs).

Services, and especially Web Services, have emerged as the fundamental ele-

ments for building distributed applications. Traditionally, WSs have been used in

enterprise IT systems or made publicly available online via the Internet. However,

thanks to recent advancements in the hardware and software industry, service-

oriented applications are also becoming applicable to a variety of physical objects

with computational and networking capacities, such as embedded devices, sensor

and actuator networks, electronic appliances, or RFID-tagged objects. The result

is an environment with access to a vast amount of information and diverse opera-

tions, which, if exploited collectively, can pave the way for added-value applications

that deliver something more than just the sum of their parts. What we are looking

for is a composition of different services that can in synergy realize more complex

objectives. So, how can we compose the data provided by different sources, from

sensors to search engines, along with the operations offered by the available wired,

wireless, or mobile devices and computers? How does such a composition connect

with human or business needs, and how can these needs be expressed? Besides its

formation, how should a composition react to failures or changes in a constantly

evolving environment?

All these aspects are of concern to a wide range of scenarios, from smart homes

and virtual tourism, to e-government and robotics. To take the case of domestic

environments, compositions can represent daily routines of home inhabitants. For

example, every time a user wakes up, he may want the radio to start playing, the

coffee machine to prepare his coffee, the heating to adjust depending on weather

2 1. Introduction

conditions etc. The standard way to describe a composition of this kind is in the

form of some complex process, using a workflow-style language like WS-BPEL [OA-

SIS, 2007]. However, such a specification involves considerable manual effort and

is tailored towards a specific objective, assuming a closed world, where services are

static. If the requirements of the objective or the dynamics of the world change,

then the predefined composite process is not applicable anymore, and has to be

re-written.

Research in the discipline of AI (Artificial Intelligence) can contribute towards

the realization of service infrastructures that go beyond basic interoperation tech-

nologies and ad hoc process specifications, and offer highly automated function-

alities that are adaptable to changing user needs and environmental conditions.

Within the last years, several approaches inspired by work in the AI planning

community have been proposed in order to automate the process of service compo-

sition, e.g., [Sirin et al., 2004; Peer, 2005a; Sohrabi et al., 2006; Berardi et al., 2008].

Planning is the process of “choosing and organizing actions by anticipating their

expected outcomes”, with the aim of achieving some pre-stated goal [Ghallab et al.,

2004]. The analogies with the problem of service composition are evident: actions

correspond to functionalities offered by different services, and the goal is derived

from some user request or inferred by some situation that calls for a combination

of services to take care.

The underlying premise that enables AI methods such as planning to pervade

the territory of service infrastructures is that services come along with appropriate

semantic markups. Adding semantics to services, so as to specify their properties,

capabilities, interfaces, and effects, enables minimizing human intervention for a

number of tasks, such as service discovery, composition, and execution monitor-

ing [Cardoso and Sheth, 2006]. In the context of planning approaches, services are

usually represented either in terms of preconditions and effects or as state-transition

diagrams, as e.g., in [Berardi et al., 2003; Traverso and Pistore, 2004]. We adopt

the former view, and treat service operations as atomic actions, each of which is

modeled by a set of preconditions, which should hold before the operation can be

invoked, and effects, which model the results of an invocation.

The composition approach advocated by the current thesis is driven by the

general aim of combining services automatically and on-demand, relying solely on

individual descriptions of loosely-coupled software components, and a declarative

goal that specifies what has to be achieved, but not how. The idea is to maintain a

generic and modular repository that comprises a number of diverse service opera-

tions, from booking flights to arranging appointments with a doctor, and can serve

a variety of different objectives with minimal request-specific configuration. In or-

der to move towards such versatile domains, we use domain-independent planning,

1.1. Planning domain representation 3

and propose an extended language for expressing complex goals in a declarative

fashion, detached from the particularities and interdependencies of the available

services. This is unlike many previous approaches that restrict the applicability

of the domain to a set of anticipated user needs, predefined in the form of some

procedural template, e.g., [McIlraith, 2004; Sirin et al., 2004]. A quite powerful lan-

guage allows the specification of extended goals, which can capture requirements

over state traversals, beyond mere reachability properties.

1.1 Planning domain representation

Domain-independent planning relies on an abstract, general model of the actions

that are available in a domain. Conceptually, a planning domain can be seen as a

state transition system, where the application of actions changes the state of the

world. Given a model of the domain, the task of a planner is to find an appropriate

structure of actions (e.g., a totally or a partially ordered set of actions), which when

applied to some initial situation achieves some given objective. In the simplest case,

a plan is a sequence of actions that lead from some initial state to a goal state.

There are different ways to represent the set of states and the transition func-

tion. The most established representation approach is to consider a state as a set

of propositions. These propositions are derived from ground predicates, which de-

fine the relation between the different objects that exist in the world (for example,

adjacent(robot1 , loc1)). The truth value of some of these predicates, called fluents,

can be changed by applying some planning operator. Planning operators are de-

scribed by a set of (input) parameters, preconditions and effects. Preconditions and

effects are logical formulas on predicates, and parameters refer to the free variables

that are used in the preconditions or effects of the operator. For example, a simple

operator which moves a robot from some location l to another one d is described

like this:

moveRobot(l , d)

precs: robotAt(l) ∧ adjacent(l , d)

effects: robotAt(d) ∧ ¬robotAt(l)

The variables l, d are the input parameters, and can take values from some respec-

tive sets of objects-constants (different robots and locations in the domain). To

apply a schematic planning operator, its parameters have to be first substituted

by concrete objects. In that respect, an action corresponds to a grounded instance

of an operation. E.g., moveRobot(loc1 , loc2), where loc1 , loc2 are constants, is an

action.

Most planning approaches work on grounded instances of the planning domain,

4 1. Introduction

and it has been shown that finding a plan given a grounded representation is an

exponentially easier task than planning at the schematic level [Erol et al., 1995].

However, all these approaches deal with planning domains where the cardinality

of the free variables that are arguments to predicates and operators is kept small.

Such an assumption is not realistic in the case of service domains, which are data

intensive, i.e., they deal with variables that range over very large domains, such

as prices, dates etc. This means that if the behavior of a service operation is to

be modeled by some planning operator, then this has quite frequently to involve

fluents with numeric-valued arguments. For example, an operation for reserving

some airline ticket is parametrized by data associated with the flight, such as dates,

locations, airlines etc. Whether the application of such an operation will have

the intended effect or not, depends on the choice of the right value to the input

parameters of the operation. The right values for the input parameters may depend

on the outcomes of previous operations in the composition-plan, and thus reasoning

about their instantiation is part of the responsibility of the planning process. In

the worst case (depending on the domain), considering an operator which involves

k arguments with cardinality |V | each, there can be permissible |V |k grounded

instances. For large |V |s and many operators that involve variables with high

cardinalities, the number of ground operators, and, as a consequence the size of

the search space, can grow enormously. If one also considers grounding sensing

operations that return numeric-valued outputs, something quite common in many

service domains, the size of the grounded domain becomes intractable, and memory

explodes.

For these reasons, we choose to work directly at the schematic level of the

planning domain, and in the remainder of the thesis we use the terms planning

operator and action interchangeably. Following the so-called Multi-Valued Task

(MPT) paradigm [Helmert, 2009], we use state variables rather than predicates as

the basic elements for describing the world. Under that view, a state is considered

as a tuple of values to variables, and these values change through the application

of some action. This approach leads to a more compact encoding of the set of fea-

sible states, since it does not unnecessarily consider the combinations of predicates

which are mutually exclusive. Most importantly, state variables can conveniently

model outputs of sensing operations which take numeric values, rather than just

deriving the truth value of some predicate. This is an important requirement for

domains that involve many data source lookup services. Under the state-variable

perspective, planning operators are modeled in a conceptually different way. For

example, considering the planning operation for moving a robot, the state-variable

representation would introduce a variable locRobot modeling the location of each

robot in the domain:

1.1. Planning domain representation 5

moveRobot(d)

precs: adjacent(locRobot , d)

effects: locRobot := d

1.1.1 Planning as a Constraint Satisfaction Problem

In order to satisfy the requirements for domain-independent planning and dealing

with variables ranging over large domains, we propose to use a planner which is

based on translating the domain and the goal into a Constraint Satisfaction Prob-

lem (CSP), and applying a standard constraint solver for computing a solution-

plan. Planning as CSP fits well with many aspects that are of particular concern

for service domains. The encoding expected from the constraint solver suits the

MPT-like schematic planning representation, and constraint solving supports the

efficient handling of numeric expressions and variables ranging over large domains.

Moreover, such an encoding suits well with most standard WS description lan-

guages, which are based on state variables rather than predicates. Complex goals

can also be expressed in the form of constraints. Moreover, the CSP-based encod-

ing of the planning problem can be such so as to lead to plans that include parallel

actions, something particularly useful at execution time, since response times of

certain service operations are frequently quite long.

Dynamic constraint solving, which allows the efficient addition and removal of

constraints, can be applied to serve the need for continuously modifying the CSP

instance, so that it reflects the evolution of a changing environment. This enables

the planner to constantly incorporate new facts about the environment or remove

obsolete ones, check for possible inconsistencies, and react accordingly.

The main shortcoming of resorting to planning as CSP at the schematic level is

that it has less inferential power compared with modern domain-independent plan-

ners, and may suffer from performance issues for planning domains that require

complex combinatorial reasoning. The powerful heuristics used by best-performing

planners such as [Richter and Westphal, 2010; Hoffmann and Nebel, 2001], depend

on a propositional encoding, while the level at which the constraint solver operates

is quite detached from the structure of the planning domain. However, the principal

raison d’être of the proposed planning framework is not achieving high performances

in the domains used in planning competitions, but rather demonstrating its capa-

bility to address the special requirements put forth by service environments.

6 1. Introduction

1.2 Uncertainty about the initial state

Classical planning is founded on the assumption that the planner has complete

knowledge about the world. In many domains, however, the planner is likely to

start from a state where it possesses only partial knowledge about the current state

of the world, and has to resort to some sensing operations in order to acquire the

information that it misses, and which is needed for the successful completion of

the planning task. Service domains consisting of services publicly available on the

Web are usually dominated by services that are data sources, and offer mainly

operations which provide information about the current state of the world rather

than changing it [Fan and Kambhampati, 2005]. A successful composition-plan

may be conditioned on that information. For instance, given a request for buying a

book from amazon.com if this costs less that a maximum price, the purchase action

should only be performed after having retrieved the price by calling the appropriate

sensing action.

In such situations, we say that the planner has to deal with uncertainty about

the initial state, i.e., it has to consider that there is a number of different possibil-

ities about the actual values of certain variables. The actual value of an unknown

variable can be returned after the invocation of some sensing action, which is alter-

natively referred to as knowledge-gathering or observational action. Such actions in-

clude some special effects (analogously called observational or knowledge-gathering

or sensing effects), which, as opposed to world-altering effects, do not modify any

variable, but observe its current value and return it to the planner in the form of

some output. The information provided by observation actions frequently refers

to variables that range over very large domains. In most service domains one can

assume full observability, i.e., that there is at least one sensing action for each ini-

tially unknown variable, and that these actions, when invoked, will instantiate the

variable to a specific value.

In a domain-independent setting, the planning agent is expected to plan for

sensing as well. This means that the planner should be in the position to identify

what knowledge it lacks for satisfying the goal and reason how to seek for it, instead

of relying on sensing actions or queries that are explicitly specified in some imper-

ative WS template. The planner should also proactively take care of the data flow

aspect in the plan, referring to how the acquired outputs are used by subsequent

actions in the plan. For example, a user may like to mail a parcel to some person,

whose address he does not currently know. The plan has thus to consult a white

pages service first to retrieve the initially unknown address, and then give the order

for posting by passing the right address value to the respective input parameter.

To deal with the problem of incomplete knowledge, we adopt a knowledge-level

amazon.com

1.3. Offline planning and online execution 7

representation that reflects whether the values of the variables participating in the

domain are known to the planning agent at some given state or not. The knowledge-

level representation is generated automatically, given the definition of the variables,

planning operators and the goal. Given that, plans are constructed based on the

knowledge of the planner at some given state, and how this knowledge evolves

through the application of actions.

1.3 Offline planning and online execution

Uncertainty does not only refer to the initial state and planning-time non-deter-

minism concerning the different possible concrete values of the outputs of sensing

actions. Non-determinism about the state resulting after an action’s execution also

stems from other sources of contingencies. A service invocation may behave in un-

expected ways, such as return a failure, not respond at all, or even act in a way

different than the one prescribed by their description. The actual outcomes of a

service invocation only become visible at runtime, when the plan is exposed to

the actual environmental conditions. Thus, the problem of uncertainty is directly

correlated with the interaction between planning and execution. As the actions

included in a plan constructed offline under partial knowledge are being invoked

step-by-step, the planner enriches its knowledge about the environment, based on

the feedback it can collect, be it some newly sensed information, some failure indi-

cation, or other notifications about how the world changes. Under the light of the

feedback acquired online, the planner may have to revise certain decisions and look

for alternative solutions.

1.3.1 A motivation example

Suppose that a user is happy to learn that in the following days a singer he is fond

of is making a tour in the country where he lives. What he wants is to book a ticket

and a hotel room for the nearest upcoming concert whose date and location meet

some criteria referring to the weather conditions, the distance from his hometown,

his availability according to his agenda, as well as about the price he is willing to

pay for his overnight stay.

These requirements are expressed in the form of some declarative extended goal.

The satisfaction of this goal requires the collaboration of services coming from di-

verse business domains—namely related to traveling, entertainment events, maps,

calendar and weather services—in a manner that can hardly be anticipated in ad-

vance. Depending on the information returned at runtime, there are clearly many

different possible ways that this goal can be fulfilled. For example, it may turn out

8 1. Introduction

that the place of the first upcoming concert is too far, or that there is no hotel

available on that date within his budget, etc. In such cases, the original plan has

to be interrupted and revised, so that the conditions regarding the whereabouts

and date of the next concert are looked up. To further complicate things, at any

moment a service may fail. So, if, e.g., the booking service of the first selected

hotel that meets the users criteria happens to be in a permanent failure state, an

alternative hotel has to be searched, and depending on the result, the goal may

finally be satisfied or not.

1.3.2 Orchestration through continual plan revisions

One way to tackle the unpredictable nature of the environment is to enumerate all

possible states that may arise during execution, and construct a conditional plan

which includes branches for all possible outcomes of the various sources of uncer-

tainty that may affect the plan, as, e.g., performed in [Pistore, Marconi, Bertoli and

Traverso, 2005; Hoffmann et al., 2010]. However, given the large number of possible

outcomes of sensing actions and unforeseen contingencies, planning for all potential

circumstances that may appear during execution is not a recommended strategy

for most service domains. In order to deal with this high degree of uncertainty,

we adopt an approach that interweaves planning, monitoring and execution. The

approach resorts to continual planning, so that the upcoming plan steps anticipated

offline can be revised as execution proceeds, in face of inconsistencies that stem ei-

ther from the newly acquired information or from erroneous service behavior. The

process starts with an offline plan constructed on optimistic assumptions about the

outcome of service invocations (usually referred to as a weak plan [Cimatti et al.,

2003]). The execution progress is monitored, and assumed conditions are continu-

ously checked towards the discovered reality. If an inconsistency is detected, then

the planner is asked to modify the plan.

In order to describe this alternating sequence of offline planning and online

execution, we borrow the concept of orchestration, which is used by the service-

oriented computing community to denote an executable composition. In a service

infrastructure, the orchestration engine is a central coordinator which interacts

with the component WSs in accordance to the composite process specifications.

We reserve a similar role for an orchestration component that interacts with the

environment, informs the planner about the information it has collected, and decides

about when to switch from planning to execution and vice versa. Depending on

the situation, re-using parts of the existing plan may speed up the process of plan

revision. The orchestrator can ask the planner to compute a new plan from scratch,

or to attempt a refinement of the existing one, by updating the values of some input

1.3. Offline planning and online execution 9

parameters to actions, or adding some extra actions. Moreover, a non-blocking

strategy is adopted with respect to waiting for the response of sensing actions,

so that the framework can go on with planning and execution of actions that do

not depend on the expected response. Figure 1.1 presents a high-level overview

of the interactions between the planner, the orchestrator, and the environment.

Continual planning is realized via gradually altering the CSP instance, so that it

reflects the most current information about the environment, and, depending on

the plan revision policy, preserves or disregards previous plan commitments.

Figure 1.1: Basic schema of the interleaving planning and execution framework.

1.3.3 Dealing with dynamic environments

In most service environments, operations offered by services are accessible to many

stakeholders, who may work on commonly shared data and pursue their own tasks

simultaneously. This means that the dynamics of the domains change not only as a

result of the deliberate actions executed by the planning agent, but also due to the

activity of other exogenous agents who are active in the same environment. The

activity of other actors may have repercussions on the composition-plan under exe-

cution, and render it invalid, either because some information it relies on has in the

meantime become obsolete, or because certain scheduled actions are not applicable

anymore under the new circumstances. For example, considering a partially exe-

cuted composition which involves a robot moving around, if an external actor puts

an obstacle in the robot’s way in the middle of execution, the robot may fall unless

it revises its decisions about how to move. Moreover, in many service environments

dynamicity also applies to the availability of services, e.g., the services offered by a

mobile phone appear and disappear depending on the location of the phone. With

a few notable exceptions [Au et al., 2005; Bertoli et al., 2009; Klusch and Renner,

10 1. Introduction

2006], the problem of domain dynamicity has been by large overlooked by existing

planning approaches to WSC.

Depending on the service infrastructure within which it operates, the orchestra-

tor monitors the execution through different ways and to varying levels of details.

Traditionally, the communication between the orchestrator and the services takes

place by following a request-reply protocol, e.g., Java-RMI (Remote Method Invo-

cation) or CORBA (Common Object Request Broker Architecture). However, in

many service frameworks, it is feasible to implement and take advantage of publish-

subscribe mechanisms, e.g., in the OSGi framework (www.osgi.org) or the Amazon

Simple Notification Service for clouds. Such a mechanism allows software compo-

nents to raise events (publishers) by sending messages to interested parties which

have expressed interest in these events (consumers). By registering for certain event

types, the orchestrator can asynchronously receive notifications about changes that

occur in the environment, and react accordingly. This way, it is kept informed

about the results of the activities of other agents as well as about the actual effects

of the plan’s actions, and can detect whether the actual world state deviates from

the state that was predicted by the plan.

1.4 Thesis scope and organization

The contribution of the current thesis is balanced between the design aspects of a

planning system that can address the special requirements brought forth by ser-

vice composition, and the more technical aspects regarding how such a planner can

be integrated and put to work in different service-oriented platforms in order to

facilitate complicated and laborious tasks. Such platforms include a domain con-

sisting of diverse services publicly available on the Web, a Smart Home equipped

with intelligent devices exposed as services, and a framework for Business Process

(BP) recovery in case of process interference. The role reserved for the planner

in each of these environments varies from satisfying user requests to ensuring the

consistency of some broader system, be it a Smart Home or a set of concurrent

BPs. Issues related to how the planner interacts with the other components of

the service architecture, and how the expected planning representation is related

to service or workflow descriptions are of particular importance in the course of

realizing service-oriented platforms that can address real-world situations.

Depending on the application area, the characteristics of the planning system

become more or less important, and put together enhance the extent of scenarios

that can be represented and effectively dealt with. These characteristics include a

knowledge-level representation to model uncertainty about the initial state; efficient

www.osgi.org

1.4. Thesis scope and organization 11

handling of numeric-valued variables, which can appear as input to actions or output

of observational effects; production of plans with a high level of parallelism; support

for extended goals; and continual plan revision to deal with sensing outputs, failures,

long response times or timeouts, and exogenous events. All these features are

realized in a way that respects the requirement for domain independence.

The organization of the thesis is weighted between the description of the con-

cepts, algorithms and techniques used by the planning system on one hand, and

the design and implementation of broader service architectures with emphasis on

practical case-studies on the other.

Chapter 2 gives an overview of the existing literature on the various aspects that

concern this thesis, including planning approaches to WS composition, planning

as CSP, planning under uncertainty, Smart Homes and the Web of Things, and

Business Process recovery and adaptation.

Chapter 3 contains the basic definitions and algorithms that pertain to the

offline working of the planning system, which we refer to as the RuG planner.

In this chapter, we describe the representation of the planning domain extended

with additional variables to model the knowledge-level representation, as well as its

transformation into a CSP. We also present the syntax and the semantics of the

language for expressing extended goals, their transformation into constraints, as

well as a graphical editor for assisting the specification of goals. We show how the

resulting CSP is solved by a constraint solver, and give an example of an optimistic

plan produced by the offline planner.

Chapter 4 demonstrates the applicability of the RuG planner in domotic appli-

cations, concerned with the realization of intelligent home environments, which can

enhance the convenience, comfort, and security of modern home residents. This

chapter introduces a layered service-oriented architecture for Smart Homes, start-

ing from the lower device interconnectivity level up to the higher application layers

that undertake the load of complex functionalities, such as composition, and pro-

vide a number of services to end-users. The RuG planner stands at the core of

this architecture, and interacts seamlessly with the other components, such as the

context-awareness module and the human-computer interaction interface. Its task

is to compute compositions that can satisfy the goals issued by the users or inferred

by the home itself. A fully working prototype that realizes such an architecture is

evaluated both in terms of performance as well as from the end-user point of view,

so as to provide an assessment of the acceptability and usability of the solution.

The scenarios demonstrated in this chapter assume complete information about

the state of the world, collected by a set of sensors spread allover the house, and

consider that services are executed sequentially in a successful manner, without the

interference of external agents.

12 1. Introduction

The interesting case where offline planning has to be interleaved with execution

is investigated in Chapter 5. The focus of this chapter is the design and imple-

mentation of an orchestration framework, which is characterized by a high level

of non-blocking concurrency and can deal with a number of inconsistencies that

arise due to the uncertain and dynamic nature of service environment: with sens-

ing outputs that violate the optimistic offline assumptions, with erroneous service

behaviors that contradict the expected effects, with long response times, and with

exogenous events that interfere with the plan execution. The orchestration approach

is based on continuously revising partially executed plans via altering the CSP, and

by either reusing fractions of the previous solution or replanning from scratch. The

orchestration framework is evaluated on a number of simulated scenarios, which

demonstrate the instantiation of output-to-input parameters matchings, the trade-

off between plan refinement and planning from scratch, and the case of dealing with

actions that take too long to respond.

Chapter 6 is concerned with the problem of dynamicity due to changes caused by

external events in a setting of concurrently running Business Processes that access

and modify common resources. This problem is known as process interference, and

may lead a BP to some inconsistent state or to undesirable business outcomes,

e.g., when performing an action based on outdated information. One way to deal

with such issues is to annotate fragments of the BP with dependency scopes, which

specify a set of desired properties-goals that should be achieved to recover the BP

from certain inconsistencies. When during execution a modification event about

some volatile information is detected, the RuG planner can be used to automate

the generation of a recovery process, depending on the runtime conditions. To

achieve this level of automation, the BP description is annotated with appropriate

semantics, and then transformed to a planning domain. The approach is tested on

a real case study taken from the Dutch e-government.

The thesis concludes with Chapter 7, which discusses the main achievements of

the presented work and indicates some directions for possible continuations.

1.5 Publications

The work presented in the thesis has been published or submitted for publication

in several contexts. Table 1.1 gives an overview of how the various papers are

related with the aspects addressed in each of the main chapters of the thesis. The

contributions are to be considered joint with the respective co-authors.

1.5. Publications 13

Chapter Venue Citation

3 ICAPS 2009 [Kaldeli et al., 2009a]

4

ACM TWEB [Kaldeli et al., 2013]

IFAC SYROCO 2012 [Caruso et al., 2012]

ICSOC 2010 [Kaldeli et al., 2010]

ICSOC 2010 Demo Session [Warriach et al., 2010]

ICAPS 2009 Application Showcase [Kaldeli et al., 2009b]

5
AAAI 2011 [Kaldeli et al., 2011]

journal paper to be submitted to AI journal

6
KIBP 2012 (co-located with KR) [van Beest et al., 2012]

journal paper under review in Elsevier Information Systems

Table 1.1: Overview of publications, and manuscripts under review or preparation

in relation with the aspects addressed in the chapters of the thesis.

Chapter 2

Related Work

The topics investigated in the current thesis touch upon different fields, including

work in the areas of Service Composition, Planning as CSP, Planning with In-

complete Knowledge and with Extended Goals, Replanning and Interaction with

Execution, Domotics and the Web of Things, and Business Process Recovery and

Adaptation. Given the large amount of relevant literature in all these areas, in

the followings we discuss in more detail approaches that we consider as the most

pertinent to the main issues of our concern, while only providing an overview of

the broader picture. For more detailed discussions of related work across several

dimensions, the interested reader is directed to surveys in the respective fields, some

of which are cited in the followings.

2.1 Planning for service composition

A great number of approaches have been proposed in the literature about describing,

constructing, executing and maintaining Web Services compositions, with research

approaching the topic from different viewpoints, including issues related to service

discovery and matchmaking, e.g., [Skoutas et al., 2008; Pilioura and Tsalgatidou,

2009], support for process evolution and migration, e.g., [Ryu et al., 2008; Orriëns

and Yang, 2006], Quality of Service requirements, e.g., [Baligand et al., 2007; Has-

sine et al., 2006; Yu et al., 2007], support for dynamic reconfiguration, e.g., using

the channel-based coordination language Reo [Lazovik and Arbab, 2007; Krause

et al., 2011]. Several methodologies inspired from work in AI have been applied to

deal with problems associated to WSC, ranging from reinforcement learning [Wang

et al., 2008] to model checking and theorem proving [Rao, Küngas and Matskin,

2006; Papapanagiotou and Fleuriot, 2011].

In order to move towards compositions characterized by a higher degree of au-

tomation, customizability and context-awareness, AI planning methodologies have

been employed for composing WSs. The common premise underlying these ap-

proaches is that services come along with semantic markups that describe their

functionality in some convenient format, usually in terms of pre- and postcondi-

16 2. Related Work

tions, which make them akin to planning operators. Several ontologies for the

semantic description of WSs have been proposed in that respect, such as the in-

fluential OWL-S [W3C, 2004] (formerly DAML-S [DARPA, 2002]), WSMO [W3C,

2005a] and WSDL-S [W3C, 2005b]. Most planning approaches consider exact con-

cept matches between variables, inputs and outputs, or assume some ontology (or

multiple ontologies) and accompanying reasoning mechanism that take care of het-

erogeneities, e.g., [Sirin et al., 2003; Grau et al., 2004; Akkiraju et al., 2006; Lin

et al., 2007; Hatzi et al., 2010]. In [Pistore et al., 2006] the procedural and the onto-

logical information about semantic WSs are kept separately, and the link between

the two is provided by appropriate semantic annotations. The problem of how to

incorporate background ontologies into planning tools is investigated in [Sirbu and

Hoffmann, 2008; Hoffmann et al., 2007, 2009], where concept subsumption relations

are modeled through forward effects. The interesting challenge of planning in do-

mains which are incompletely specified is acknowledged in [Kambhampati, 2007].

Shallow descriptions of WSs are very often the case in public repositories as affirmed

by the survey performed in [Fan and Kambhampati, 2005].

Given that there is no commonly agreed definition of the problem of service

composition from the planning perspective, different approaches depart from differ-

ent starting points regarding what is given and what is to be achieved, as well from

different restrictive assumptions about the expected behavior of the services. As a

result, each approach considers its own test cases and scenarios that fit the partic-

ular features it seeks to demonstrate. Therefore, due to the lack of some commonly

agreed benchmark, no direct comparison in terms of performance, expressivity or

other well-defined requirements can be made. In the followings, we provide a brief

high-level overview of the different approaches that use AI-planning techniques for

the purpose of WSC.

A simple domain-independent planner for computing trivial compositions of

services modeled as STRIPS-style [Fikes and Nilsson, 1971] operators is used in

[Sheshagiri et al., 2003]. The approach proposed in [McDermott, 2002] constructs

conditional plans depending on the outcomes of information retrieval, however its

applicability is limited to very simple service domains. The PKS [Petrick and Bac-

chus, 2004] (Planning with Knowledge and Sensing) planning system is used for

generating compositions at the knowledge level in [Mart́ınez and Lespérance, 2004].

Services are modeled as primitive actions specified in a STRIPS-like formalism,

however domain-specific design rules are required to capture additional effects trig-

gered by sensing actions and search control constraints. A Partial Order Planning

approach is adopted in [Peer, 2005a], which provides for sensing, service failures

and replanning after exposure to the environment. In [Hoffmann et al., 2010], an

adaptation of the FF [Hoffmann and Nebel, 2001] (Fast Forward) planner is used

2.1. Planning for service composition 17

to construct Business Processes from atomic IT entities described in a planning-like

manner. A conformant FF adjusted to consider on-the-fly output constants is used

in [Hoffmann et al., 2009].

The approaches mentioned so far stick to domain-independent planning meth-

ods: they generate compositions relying on loosely-coupled individual descriptions

of independent services and keep the ad hoc knowledge about how these can be

linked to the minimum. Another line of research, assumes the availability of some

generic template description, which specifies the basic steps of the composition at

an abstract level. In that respect, planning is not fully automatic, however the

additional control knowledge makes these approaches more powerful in terms of

performance as well as expressivity, since they can usually handle advanced plan

constructs such as loops and/or branches. This tradition is followed by [McIlraith

and Son, 2002; McIlraith, 2004; Sohrabi et al., 2006, 2009], which build on modeling

the WS domain in situation calculus and using versions of the Golog programming

language. The general idea behind this proposal is to describe a set of user objec-

tives in terms of a sufficiently generic Golog program, which includes many different

non-deterministic choices to provide for variability. Then, the task of composition

amounts to the customization of this generic template at runtime with respect to

specific user constraints and preferences, which may also refer to non-functional

requirements [Sohrabi et al., 2006, 2009]. Regarding the problem of incomplete

knowledge, a middle-ground interpreter is employed, which senses online to obtain

the missing information, while only simulating the effects of world-altering actions,

until all necessary information has been gathered, and a correct plan has been found

and can actually be executed.

Hierarchical Task Networks (HTN) have also been used as a means to represent

generic procedures, e.g., [Wu et al., 2003; Sirin et al., 2004; Kuter et al., 2005; Au

et al., 2005; Lin et al., 2008]. SHOP2, a highly optimized HTN planning system,

is used to decompose process models, translated from DAML-S OWL-S to SHOP2

methods, into primitive operators/atomic services. In [Kuter et al., 2005], informa-

tion gathering is performed during planning time, by issuing a list of appropriate

queries to collect all information that is missing at the initial state. An extension of

the algorithm for dealing with information that may change during the operation

of the composition is presented in [Au et al., 2005], by considering that a solution

is correct only within some expiration time. The trustworthiness of a composition

is the focus of [Kuter and Golbeck, 2009], where users history of service ratings is

taken into account by SHOP2. HTN planning is also used in [Madhusudan and

Uttamsingh, 2006], where a solution is selected for execution among alternatives

based on some cost, and replanning may be triggered upon the discovery of a fail-

ure. An hybrid approach which combines domain-independent planning with HTN

18 2. Related Work

is adopted in [Klusch and Gerber, 2005, 2006]. The XLPLAN planner is used, which

can exploit information about hierarchical decomposition to speed up fast-forward

heuristic search in the action space.

An architecture that can choose between a number of different planners, de-

pending on the requirements associated with the specifics of the domain and goal

each time, is proposed in [Peer, 2004]. Other approaches propose a semi-automatic

composition procedure, where users can intervene and control the search over the

possible plans constructed at the planning graph level. In the Synthy [Agarwal,

Chafle, Dasgupta, Karnik, Kumar, Mittal and Srivastava, 2005; Agarwal, Dasgupta,

Karnik, Kumar, Kundu, Mittal and Srivastava, 2005] architecture for end-to-end

WSC, the stage of functional level synthesis is taken care by a GraphPlan-like con-

tingent planner [Mediratta and Srivastava, 2006] which returns probably incomplete

plan branches according to user preferences. A mixed-initiative approach is adopted

in [Rao, Dimitrov, Hofmann and Sadeh, 2006], where users can specify high-level

procedures and select from possible branches generated by a version of GraphPlan.

In [Beauche and Poizat, 2008], adaptation features are added to an extension of

GraphPlan with HTN-like decomposition constraints.

As opposed to approaches that view services as atomic planning operators, there

is a track of research which considers stateful services, where behavioral descrip-

tions impose constraints on the possible interactions that a service can be engaged

with. In [Traverso and Pistore, 2004; Pistore, Traverso and Bertoli, 2005; Pis-

tore, Marconi, Bertoli and Traverso, 2005; Pistore et al., 2006; Bertoli et al., 2006,

2010] component services are seen as state transition systems, e.g., derived from a

BPEL description as explained in [Traverso and Pistore, 2004; Pistore, Traverso and

Bertoli, 2005], where transitions correspond to asynchronous message exchanges

resulting from some atomic action’s execution. The requirements of the desired

composite service are expressed in some temporal logics-like language, and sym-

bolic techniques inspired by model checking are used for computing an executable

process, which includes conditions and loops. An extension for data flow require-

ments is described in [Marconi et al., 2006]. In [Bertoli et al., 2009], the approach is

extended to support requirements about how to handle uncontrollable events, such

as a flight delay.

Another interesting approach which abstracts services as transition systems is

the so-called “roman model” advocated by the work presented e.g., in [Hull et al.,

2003; Bultan et al., 2003; Berardi et al., 2003; Berardi, Calvanese, Giacomo, Lenz-

erini and Mecella, 2005; Berardi et al., 2008]. From that perspective, the compo-

sition problem is treated as a problem of coordinating the executions of a given

set of available services described as finite state automata. The objective itself is

described in terms of a target service-transition diagram that conforms to some

2.2. Planning domains and goal specifications 19

desired interactions. In [Berardi et al., 2003] available services are modeled as de-

terministic transition systems, i.e., given a state and an action the result of the

action on the service is a unique state. The approach is extended to allow non-

determinism in the target service in [Berardi et al., 2004], and non-determinism in

the case of available services is investigated in [Berardi, Calvanese, Giacomo and

Mecella, 2005], to provide for cases where the result of an interaction cannot be

foreseen offline. A technique for precomputing the maximal simulation of all possi-

ble compositions, and choosing at execution the next step (transition) according to

runtime information is proposed in [Berardi et al., 2008]. Distributed extensions of

the Roman model, in cases where there is no central orchestration that can meditate

between the services, are investigated in [Sardiña et al., 2007].

Planning algorithms have been applied for solving the WSC challenge, e.g., in

[Oh et al., 2007; Zou et al., 2012]. From that perspective, the composition problem

is defined as a data integration problem, and the aim is to find a chain of services

which given some set of input concepts produces a set of output concepts. In

such a context, WSs are seen as mere data sources, and all preconditions regard

the availability of some input parameters. Dependencies between actions amount

to matchings between sets of input and output parameters, and search can be

performed much quicker.

A number of surveys have went through planning approaches to WSC across dif-

ferent categorization and comparison lines. In [Chan et al., 2007; Kster et al., 2005;

Peer, 2005b], several approaches are classified according to the planning techniques

they use and in association with the features that characterize them. In [Agarwal

et al., 2008] the focus is on the relation between the offline composition and the

execution stage. Planning approaches are discussed along with other approaches

such as workflow management in [Srivastava and Koehler, 2003; Rao and Su, 2004;

Dustdar and Schreiner, 2005; Alamri et al., 2006; Eid et al., 2008].

2.2 Planning domains and goal specifications

PDDL (Planning Domain Description Language) has become the standard language

for defining planning problems which is used in the International Planning Compe-

titions since 1998 [McDermott and the AIPS-98 Planning Competition Committee,

1998], and has undergone several extensions [Fox and Long, 2003; Gerevini and

Long, 2006]. PDDL represents the world using objects and predicates, and nu-

meric expressions are not allowed to appear as arguments to predicates or values

of action parameters. The variable/value domain representation used by the RuG

planner is similar in concept with the Multi-valued Planning Task(MPT) encod-

20 2. Related Work

ing [Helmert, 2009, 2006]. An algorithm for automatically translating a PDDL

domain description into a MPT one is described in [Helmert, 2009]. Since our fo-

cus is on representing Web Services as planning operators, translating a planning

domain encoded in PDDL to the form that the RuG planner expects as input is

not a main concern. Our experience with modeling real services as planning actions

actually showed that an encoding based on state variables rather than predicates

follows more intuitively from service domain descriptions (see Section 4.4 about

the transformation of devices represented in OSGi-UPnP and Section 6.4.2 about

translating a BP into a planning domain).

The extended declarative goal language supported by the RuG planner as de-

scribed in Section 3.4 enhances the traditional specification a goal as a set of final

states by providing a number of additional features that allow the expression of

constraints over state trajectories and hands-off observational requirements. A

short overview of its basic operators has been presented in [Kaldeli et al., 2009a].

Many elements of the language are inspired by XSRL (XML Service Request Lan-

guage) [Papazoglou et al., 2002; Aiello et al., 2002; Lazovik et al., 2005] for formu-

lating complex requests against standard business processes.

PDDL3 [Gerevini and Long, 2006] extends the previous versions of PDDL, by

supporting a richer goal language which provides for state trajectory constraints

which should be respected by the entire sequence of plan states, as well as with soft

goals which are desired but necessary to achieve. The goal language supported by

the RuG planner is less expressive than PDDL3 and does not capture preference

goals (although the under_condition_or_not goal operator could be seen as a

form of soft requirement), but several parallels can be drawn with some of PDDL3

modal operators, such as always, sometime, and sometime-before.

The RuG planner goal language shares many concerns with the work presented

in [Golden and Weld, 1996; Golden, 1998; Golden et al., 1996], which deals with

meeting user goals in environments similar to the Unix operating system. Since in-

complete information is intrinsic in such domains (see also Section 2.4), distinguish-

ing between satisfaction and mere observational goals is essential. The operators

“initially”, “satisfy” and “hands-off” goals in [Golden, 1998] can be seen as analo-

gous to the combinations of the RuG planner’s achieve, find-out and maintainability

constructs described in Section 3.4. A clear distinction between achievement and

information gathering goals is also kept in [Peer, 2005a], for the purpose of com-

posing semantically annotated WSs transformed into PDDL operators. A model

which supports partial satisfaction of goals, making a distinction between core and

context-specific goals, is proposed in [Vukovic and Robinson, 2005].

Systems that follow the planning as Model Checking approach have built-in sup-

port for temporally extended goals, which allow imposing constraints on the state

2.3. Planning as CSP 21

trajectory, e.g., specification of safety or liveness properties. In [Traverso and Pis-

tore, 2004; Pistore, Traverso and Bertoli, 2005], the EAGLE goal language, based

on temporal logics extended with preferences, is used for composing WSs modeled

as state transition systems. Several goal specifications for composing WSs move

away from the purely domain-independent declarative spirit, and require that the

set of possible solutions is pre-defined in some form of procedural template, either in

the form of HTN methods, e.g., [Au et al., 2005], as a Golog program, e.g., [Sohrabi

et al., 2006], or as a target state automaton, e.g., [Berardi, Calvanese, Giacomo,

Hull and Mecella, 2005]. In such a context, runtime synthesis is responsible for cus-

tomizing the high-level procedural specification with respect to user constraints and

preferences. From that perspective, the work in [Sohrabi et al., 2006, 2009] extends

the approach presented in [Sohrabi et al., 2006], so that Golog generic procedures

can be customized not only based on hard but also on soft constraints, yielding com-

positions which are optimal with respect to the latter. The work presented in [Lin

et al., 2008] investigates how qualitative user preferences expressed in PDDL3 can

be incorporated in HTN planning for WSC, and [Sohrabi and McIlraith, 2010] deals

with optimal service compositions by considering constraints and preferences over

how HTN tasks should be parametrized and decomposed. An interesting proposal

for fusing procedural and declarative goals to allow greater flexibility in expressing

goals is made in [Shaparau et al., 2008].

2.3 Planning as CSP

A great amount of research has invested in exploiting constraint satisfaction tech-

niques for solving planning and scheduling problems. However, CSP-based planners

do not perform as well as state-of-the-art heuristic-based and SAT-based planners in

the domains used in planning competitions. A direct transformation of the planning

problem into a CSP has been presented in [Ghallab et al., 2004], where constraints

describe the preconditions and effects of actions along with frame axioms. A rather

different formulation based on successor state constraints similar to the ones cap-

tured by the planning graph is proposed in [Lopez and Bacchus, 2003], yielding

improved performance. In [Barták and Toropila, 2008], some enhanced reformula-

tions based on multi-valued state variables and transformations to ad-hoc tabular

constraints are applied. Several techniques that aim at reducing search space and

improving the efficiency of search strategies have been investigated in [Barták and

Toropila, 2009]. The multi-valued representation is used in [Gregory et al., 2010] for

problems with action costs, where cost-optimal sequential plans are generated by

identifying compositions/macros of actions. A CSP encoding for producing parallel

22 2. Related Work

plans is proposed in [Barták, 2011], through the use of constraints that model the

synchronization transitions that are possible between assignments to the same state

variable.

A compilation of GraphPlan’s planning graph into a CSP and using constraint

satisfaction search techniques to improve Graphplan’s backward search has been

proposed in [Kambhampati, 2000; Do and Kambhampati, 2001]. By encoding the

planning graph rather than the original planning problem, this approach is able to

capture more characteristics of the structure of the planning problem in the CSP

encoding. Constraints have also been used in the context of partial order planners

[Vidal, 2004].

Mixed CSPs, which distinguish between controllable decision variables and un-

controllable parameters corresponding to environmental uncertainty and contingent

events, have been used for modeling domains with incomplete knowledge and con-

tingent events [Fargier et al., 1996; Guettier and Yorke-Smith, 2005]. In [Guettier

and Yorke-Smith, 2005] mixed CSP is used for solving a control problem for the

aerospace domain. Although the planning problem is rather particular and defined

in terms of constraint-based automata and environmental constraints, an interest-

ing online solution is followed. New contingent plans are built from scratch incre-

mentally for increasing planning horizons/points in time, and these plans provide

decisions for an increasing subset of possible world states. A CSP encoding for the

conformant probabilistic planning problem, with no observability and probabilistic

actions, is used in [Hyafil and Bacchus, 2003, 2004]. An approach that integrates

constraint-based reasoning into the planning graph for temporal domains with pre-

dictable exogenous events that happen at known times is described in [Gerevini

et al., 2006].

Constraint satisfaction techniques have been used extensively for scheduling

problems that reason about time and resources, e.g., [Laborie, 2003; Gerevini et al.,

2006]. A survey on CSP techniques used in the context of planning and scheduling

is presented in [Barták et al., 2010]. To the best of our knowledge, CSP-based plan-

ners have been used so far for generating offline plans for grounded propositional

domains, and are decoupled from the execution environment. The suitability of

constraint solving techniques in a domain-independent planning setting for prob-

lems that involve uncertainty, sensing and unpredictable external events has not

yet been investigated. In such a context, dynamic CSP and solution reuse/repair

techniques, which use information collected from previous searches to speed up the

search in the altered CSP, may prove helpful. Such a method, which makes use of no-

good recording, is proposed in [van der Krogt and de Weerdt, 2005]. Performance

improves when solving a CSP that differs by one constraint (added or removed)

from a previously solved one. In [Wallace et al., 2009; Wallace and Grimes, 2010],

2.4. Planning with incomplete information and sensing 23

some heuristics that exploit information about certain important features of the

CSP that are not affected by the alterations are used, yielding considerably better

performance for randomly changed CSPs.

2.4 Planning with incomplete information and

sensing

Planning approaches that seek to deal with service environments have to take into

account uncertainty about the initial state and unpredictable runtime behavior. A

straightforward way to address these issues is to enumerate a priori all possible

states that may arise at execution time, and then construct a conditional/contin-

gent plan for each alternative runtime outcome. However, in service domains, the

search space resulting from such an approach may become too large to explore if

one considers the enormous number of ground actions and distinct outcomes as a

consequence of the large cardinality of input parameters as well as outputs.

In the XLPLAN planning system [Klusch and Gerber, 2005, 2006], external

procedure calls are implemented through linked call-back functions, which return

a Boolean indication of whether a predicate has been added or deleted from the

next world state. In [Hoffmann et al., 2010] non-determinism stemming from the

set of alternative action outcomes is treated through “determinization”, i.e., each

non-deterministic action is compiled into a set of deterministic actions, one for each

possible outcome. Clearly, although performance may be acceptable for binary vari-

ables, strategies that resort to determinization are not effective when the cardinality

of possible outcomes increases.

Some approaches address the problem of incomplete information by only sim-

ulating world-altering effects during the composition process, assuming complete

independence between sensing and world-altering actions, and setting limitations

on the interleaving between knowledge-providing and world-altering actions. In

[McIlraith, 2004; Sohrabi et al., 2006], information providing services are modeled

as external function calls within the Golog programs. The approach relies on the

assumption that information persists for a reasonable amount of time (until all

actions that make use of it are executed), and that it is not altered by any subse-

quent actions inside or outside the composition. It is also taken for granted that all

sensing actions can be performed even if the world-altering effects of actions that

precede them in the plan have not been materialized (but only simulated). Simi-

larly, in [Kuter et al., 2005; Au et al., 2005], information gathering and execution is

treated as a task disconnected from planning, and execution is ceased until all sens-

ing actions return. Analogous assumptions are made in [Peer, 2004, 2005a], where

24 2. Related Work

the subset of the plan consisting exclusively from sensing actions is extracted and

executed first. If the outcome of the actions violates the causal relations following

from the domain and goal, replanning is triggered.

Different algorithms for searching at the knowledge level have been proposed by

the research line focusing on composing services as state transition diagrams, based

on some temporally extended goal. Binary Decision Diagrams (BDDs) are used for

the compact representation of beliefs, which amount to sets of states. The compo-

sition is actually a conditional plan, depending on the outputs/resulting states of

knowledge-intensive transitions. One of the shortcomings of the initial algorithm

presented in [Pistore, Traverso and Bertoli, 2005] is that it can only deal with

Boolean-valued data. Non-Boolean data is considered in [Pistore, Marconi, Bertoli

and Traverso, 2005], however, tests are still limited to low cardinality, and perfor-

mance remains poor for reasonably complex compositions. A search algorithm on

the AND-OR graph corresponding to the belief-level space is applied in [Bertoli

et al., 2006], which however suffers from degrading performance as the number of

branches of the solution grows. In all approaches mentioned above the domain

description is proposition-based, the amount of outputs that can be generated is

limited, and the state-explosion problem cannot be avoided when data cardinality

increases. As shown in [Bertoli et al., 2010], belief-level construction grows expo-

nentially with the branching factor of the conditional solution.

A different knowledge-level formulation as instructed by PKS is used in [Mart́ınez

and Lespérance, 2004]. In PKS, the planner’s knowledge state is represented by a

set of databases, which are updated whenever sensing actions are executed. Al-

though the version of PKS used in [Mart́ınez and Lespérance, 2004] cannot deal

with high ranges of possible outcomes, it would be interesting to investigate the

applicability and performance of an extension of PKS presented in [Petrick, 2011].

This extension allows the generation of conditional plans that cover numeric-valued

outcomes by means of interval-valued functions, which are used to cut down the

branching factor.

Dealing with the data flow dimension, i.e., the relation between outputs of opera-

tors with inputs of other operators in the plan, is an important issue associated with

incomplete knowledge. For data intensive service domains determining the parame-

ters for an action can be equally difficult as determining which actions belong to the

plan. Since almost all state-of-the-art planners resort to some kind pre-processing

for compiling the PDDL domain into a fully grounded encoding, on-the-fly handling

of runtime outputs is difficult to implement. The problem of incorporating data

production and flow into a plan has been investigated in [Golden, 2003; Golden

and Pang, 2004]. Although [Golden and Pang, 2004] considers a planning graph

approach, its basic idea of adopting a CSP encoding which amounts to a lifted (not

2.5. Replanning and interactions with the environment 25

grounded) representation is also adopted by the RuG planner. In [Hoffmann et al.,

2009], data production is addressed by considering sets of additional potential con-

stants to instantiate outputs, and by applying an adapted version of conformant FF.

Input-output matchings are dealt with based on some axiomatizations [Hoffmann

et al., 2007; Hoffmann, 2008] describing the ramifications entailed by sensing, i.e.,

implications entailed by the outputs/newly created constants of services/operators.

However, the approach is limited to propositional effects, and the problem of search

space explosion when considering many output constants remains.

Independently of the problem of WSC, in the planning community, there have

been large advances in the performance of contingent planners which operate under

uncertainty. For example, besides symbolic methods similar to the ones used in

[Pistore, Marconi, Bertoli and Traverso, 2005; Bertoli et al., 2010], subtle logical

formulas have also been applied for the compact representation, pruning and search

in AND/OR graphs at the belief state space [To et al., 2011]. Instead of an explicit

encoding of all possible states, some approaches advocate an implicit representation

beliefs by keeping a history of actions and observations made, and inferring from

those whether a proposition holds, e.g., [Hoffmann and Brafman, 2005; Shani and

Brafman, 2011]. The conformant subcase where uncertainty comes only from the

initial state, while observation actions are deterministic is discussed in [Palacios and

Geffner, 2009; Albore et al., 2011]. An action language that provides for sensing

actions with probabilistically and qualitatively non-deterministic effects is proposed

in [Iocchi et al., 2009], and belief graphs are used to compute conditional plans.

However, to the best of our knowledge, all these versions of contingent planning

only consider observational effects that are propositional. If the application domain

is characterized by an intractably large set of contingencies, a plan monitoring and

repair approach is probably more appropriate.

2.5 Replanning and interactions with the

environment

In dynamic and uncertain domains, acting, sensing and planning has to be inter-

twined, so that the plan is continuously adapted to the knowledge acquired during

execution. In order to take into account online developments, the execution progress

is monitored to ensure that certain conditions assumed offline actually hold. If some

deviation is detected, then the original plan should be revised. Deviations between

the premised contextual conditions and the actual ones may result not only from

the uncertainty entailed by sensing actions, but also from changes incurred by rea-

sons beyond the control of the planning agent, such as unexpected failures or the

26 2. Related Work

actions of other agents that are present in the same environment.

Some planning approaches to WSC provide for simple reaction mechanisms to

some kinds of contingencies, which are however usually hand-coded and domain

dependent. In [Bertoli et al., 2009], exogenous events are treated via reaction goals,

which state what should be done when certain actions take place, while preferences

over goals are also dealt with. The computed composition is a conditional, tree-

structured plan, including branches regarding recoverable goal states. Therefore,

the approach suffers from performance problems when the branching factor grows.

In [Peer, 2005a], a partial order planner is used, and success conditions are included

in actions’ effects specifications. Replanning is triggered whenever some causal link

indicating an interdependency between actions is violated due to some inconvenient

outcome at runtime, and those violated links are avoided by the replanning search

process. In [Klusch and Renner, 2006], the XLPLAN planning system is extended

with an event listener about new facts, and changes in operators availability or the

goal, and offers replanning capabilities, relying however on a closed-world assump-

tion.

If the dynamics of the domain are known or can be learned, then these can

be incorporated into a probabilistic planning domain representation, where differ-

ent action effects occur with some probability. Markov Decision Processes (MDP)

constitute an established mathematical model for probabilistic planning problems,

and there are many planners which deal with probabilistic state models, e.g., [Yoon

et al., 2007; Göbelbecker et al., 2011]. Replanning has been extensively employed

by approaches which work on the determinized version of probabilistic domains, like

FF-Replan first presented in [Hoffmann and Nebel, 2001], and further extended, e.g.,

in [Yoon et al., 2008]. The basic idea is to remove the non-determinism and proba-

bilistic information from the domain by determinizing the possible outcomes/effects

(either by creating one action per outcome or a single action for one of the possible

outcomes), and then perform a search on that deterministic classical domain. Dur-

ing execution, if confronted with an unexpected state, search is repeated with the

unexpected state as the initial state. A common principle that is shared between

FF-Replan and the RuG planner is that both rely on optimistic assumptions about

the future, i.e., they compute a solution by selecting the most convenient outcome.

A strategy for identifying actions with unrecoverable outcomes, and adding precau-

tionary actions to the optimistic plan so as to avoid dead-ends is described in [Foss

et al., 2007].

There are several approaches which work on probabilistic domains with partial

observability and sensing actions. In [Shani and Brafman, 2011], the replanning

approach for the determinized representation is extended for such domains. Non-

determinism stemming from incomplete knowledge at the initial state, and from

2.5. Replanning and interactions with the environment 27

sensing actions is removed by considering a single distinguished initial state from

the set of possible (grounded) initial states. As the plan is being executed, belief

states are updated accordingly, and replanning is triggered if the initial belief state

sampling is not consistent with the world. This approach is not tested in domains

with numeric observation effects. A framework that switches from classical planning

to planning in small abstractions of the problem when encountering a sensing action

whose outcome is uncertain is proposed in [Göbelbecker et al., 2011]. This approach

can deal with noisy sensors, but the set of possible outcomes is kept small.

Many approaches to replanning try to reuse parts of the existing plan to guide

the search for the new one. The idea is that under certain circumstances the work

of adapting the current plan requires less time than planning from scratch, with-

out sacrificing quality. A refinement heuristic for partial order plans is proposed

in [van der Krogt and de Weerdt, 2005], which involves removing potentially prob-

lematic actions from the current plan, and incrementally adding extra actions to it

until reaching a valid plan. An approach that focuses on preserving plan stability,

i.e., replanning with minimum changes to previous plans, is presented in [Fox et al.,

2006]. However, depending on circumstances and the kind of changes in the state of

the world, the work required for repairing an old solution may be greater than plan-

ning by completely disregarding the previous solution [Nebel and Koehler, 1995]. A

balanced approach between replanning from scratch and plan repair is proposed in

[Borrajo and Veloso, 2012], where the plan is used as a bias to the heuristic search

for the new problem. In this case, search expands by probabilistically choosing

between heuristic search for the new goal and reuse of actions and goals of the past

plan. The approach is used to speed up the planning time for classical deterministic

domains. All above approaches are propositional.

Attention has been paid to examining the role of interactions between auto-

mated planning and execution, and the possible conflicts between plans and the

environment. Approaches that consider dynamic environments have to deal with

the tradeoff between investing too much effort in planning to ensure valid and op-

timal plans and quick commitment to probably bad choices, which may affect the

rest of the plan and lead to dead-ends. In [Mart́ınez et al., 2012], later parts of

the plan are computed based on an abstracted domain resulting from the lifting of

some manually selected predicates, with the aim of reducing computational effort

for planning while avoiding dead-ends. The approach is tested on propositional

domains with simple action failures, i.e., no exogenous events, and with no obser-

vations from sensing.

Previous frameworks that tightly integrate planning, monitoring, execution and

information gathering include [Golden and Weld, 1996; Golden, 1998; Golden et al.,

1996; Knoblock, 1995], which are concerned with building planning agents for dy-

28 2. Related Work

namic and uncertain environments such as the Unix operating system. The RuG

planner shares many concerns with this work, regarding tractable closed world rea-

soning with updates, knowledge preconditions, and observation effects that assign

values to runtime variables. In [Knoblock, 1995], sensing is realized through the

instantiation of these runtime variables (an idea analogous to the response variables

used in the RuG planner) which can be used by other actions, while failed actions

are treated via domain-specific failure handlers. In the context of WSC, a generic

algorithm which performs continual replanning from scratch after every invocation

of a knowledge-providing action is described in [Lazovik et al., 2003, 2006], however

no evaluation is provided.

More recently, a continual planning framework for multi-agent planning under

incomplete knowledge has been presented in [Brenner and Nebel, 2009]. Decisions

depending on yet unknown facts are postponed through the use of assertions, special

virtual actions that trigger replanning whenever their knowledge preconditions are

achieved at execution time. Replanning annotations in that context lead into post-

poning sensing till just before the actions that need the information to be observed,

which can be inefficient in terms of total execution time if a lot of time-consuming

sensing is required. Interestingly, assertions can also be used to learn new opera-

tors that become available to the planning agent during execution. Similarly to the

representation adopted by the RUG planner, multi-valued state variables are used

to model the domain rather than a propositional encoding.

2.6 Comparative summary

Table 2.1 illustrates an aggregate outline of some of the main approaches to WSC

which make use of planning techniques. Each column clusters together the collection

of work by a group of authors which share a common viewpoint to WSC, and

estimate it as a whole by taking into account the most recent improvements and

capabilities added to their line of work. The assessment is performed across five

dimensions, on each of which every approach is rated. The rates range from ’F’,

indicating limited or inefficient support for the respective capability, to ’FFF’,

signifying extended and efficient support.

Domain independence is assessed by considering the amount of effort required

to model the domain, and the diversity of user needs it can cover. Approaches

that represent the domain in terms of decoupled atomic actions are thus regarded

as domain-independent, while the use of procedural templates which predefine the

possible combinations of activities is regarded as domain-specific knowledge. Sup-

port for data refers to the extent to which numeric-valued variables and expressions

2.6. Comparative summary 29
A
p
p
r
o
a
c
h

D
o
m

a
in

in
d
e
p
e
n
d
e
n
c
e

S
u
p
p
o
r
t
fo
r

d
a
ta

G
o
a
l

e
x
p
r
e
ss
iv
it
y

S
e
n
si
n
g

C
o
n
ti
n
g
e
n
c
ie
s

M
cI

lr
a
it

h
,

S
h

o
ra

b
i

et
a
l.

F
(G

o
lo

g
p

ro
ce

d
u

re
)

F
F
F

(n
o
t

g
ro

u
n

d
ed

)

F
F
F

(p
re

fe
re

n
ce

s)

F
F

(r
es

tr
ic

ti
n

g

a
ss

u
m

p
ti

o
n

s)

F
(p

re
d

efi
n

ed

ch
o
ic

es
u

p
o
n

fa
il
u

re
s)

N
a
u

,
K

u
te

r,

S
ir

in
,

W
u

et
a
l.

F
(H

T
N

m
et

h
o
d

s)

F
(s

u
p

p
o
rt

ed
,

b
u

t

n
o
t

ex
p

li
ci

tl
y

d
is

cu
ss

ed
)

F
(i

m
p

er
a
ti

v
e)

F
F

(r
es

tr
ic

ti
n

g

a
ss

u
m

p
ti

o
n

s)

F
F

(t
im

eo
u

ts
,

o
u

td
a
te

d
in

fo
)

B
er

to
li
,

T
ra

v
er

so
,

P
is

to
re

et
a
l.

F
(S

T
S

)

F
F

(p
re

d
efi

n
ed

d
a
ta

ex
ch

a
n
g
e)

F
F
F

(t
em

p
o
ra

l
lo

g
ic

s,

p
re

fe
re

n
ce

s)

F
F

(c
o
n

d
it

io
n

a
l

p
la

n
)

F
F

(p
re

d
efi

n
ed

re
a
ct

io
n

s
to

ch
a
n

g
es

)

d
e

G
ia

co
m

o
,

B
er

a
rd

i,
et

a
l.

F
(S

T
S

)

F
F

(p
re

d
efi

n
ed

d
a
ta

ex
ch

a
n
g
e)

F
(t

a
rg

et
S

T
S

)

F
(p

re
d

efi
n

ed
in

ta
rg

et
S

T
S

)

F
(n

o
n

-

d
et

er
m

in
is

ti
c

S
T

S
)

P
ee

r
et

a
l.

F
F
F

(P
D

D
L

-l
ik

e)

F
F

(s
et

s
o
f

p
o
ss

ib
le

su
b

st
it

u
ti

o
n

s)

F
(fi

n
a
l

st
a
te

,

fi
n

d
-o

u
t

g
o
a
ls

)

F
F

(p
ro

a
ct

iv
e

b
u

t

re
st

ri
ct

in
g

a
ss

u
m

p
ti

o
n

s)

F
(r

ep
la

n
n

in
g

fo
r

fa
il
u

re
s)

K
lu

sc
h

et
a
l.

F
F

(F
F

+
H

T
N

)

F
F

(c
a
ll
-b

a
ck

fu
n

ct
io

n
s,

g
ro

u
n

d
in

g
)

F
(fi

n
a
l

st
a
te

)

F
(p

re
d

efi
n

ed
,

n
o
t

ex
p

li
ci

tl
y

d
is

cu
ss

ed
)

F
F

(r
ep

la
n

fo
r

ex
te

rn
a
l

ev
en

ts
)

A
ie

ll
o
,

L
a
zo

v
ik

et
a
l.

F
(p

ro
ce

ss
-l

ik
e)

F
F

(b
o
o
le

a
n

iz
a
ti

o
n

)

F
F
F

(X
S

R
L

)

F
F

(i
n
te

rl
ea

v
in

g
)

F
(s

u
p

p
o
rt

,
b

u
t

n
o
t

d
is

cu
ss

)

T
a
b
le

2
.1

:
C

o
m

p
ar

a
ti

v
e

su
m

m
ar

y
o
f

p
la

n
n

in
g

a
p

p
ro

a
ch

es
to

W
S

co
m

p
o
si

ti
o
n

.

30 2. Related Work

on them are efficiently handled with. The basic requirement for the data criterion

is the support for numeric-valued outputs of sensing operations. Goal expressivity

assesses whether the respective approach can satisfy goals over state traversals and

preferences, and whether the goal is of declarative or imperative nature.

Sensing refers to how observational actions are included to the composition

(whether they are predefined or the approach reasons about them), and how ob-

servational effects are allowed to be interleaved with world-altering ones during

execution. The latter consideration concerns the extent of restricting assumptions

about the relation of sensing actions to the overall composition, e.g., that sensing

actions do not depend on any world-altering effects.

The term contingencies encompasses failure responses, timeouts or any other

service behavior that deviates from the expected one, as well external events and

information changes due to factors other than the composition agent. Each ap-

proach is judged with respect to the kind of contingencies it can effectively deal

with (e.g., whether it only considers a success-failure distinction, or also takes care

of external events), as well as the amount of required extra manual specifications,

and to what degree these are domain-dependent.

2.7 Service coordination in domotic

environments

The main contribution of the work presented in Chapter 4 concerns the design

and implementation of a framework based on the concept of dynamic coordination

of intelligent devices exposed as services in the environment of a Smart Home.

In the followings, we give a short overview of research on the Web of Things,

discuss previous work related to composition and the employment of planning and

other similar AI-inspired approaches for pervasive systems, and finally refer to some

selected domotics project close to ours in spirit.

2.7.1 The Web of Things

The Web of Things is a term to describe Web-like infrastructures where the inter-

connected objects can be physical ones, for which there is a virtual representation

in the software architecture. These objects can be physically accessed and ma-

nipulated by human beings. Wireless sensors, embedded devices or RFID-tagged

items are integrated into a pervasive network and can communicate with other ob-

jects and services using Web-based principles, from SOAP and WSDL to Ajax and

REST. The Cool Town project [Kindberg et al., 2000] is one of the first examples

2.7. Service coordination in domotic environments 31

proposing the application of the Web paradigm for interlinking physical objects.

These interact by exchanging messages via HTTP connections and by the use of a

standard interface, rather than having heavy middleware applications running on

each device. The standard Web technologies are extended to support discovery,

mobility and location-awareness, and devices are indexed via Web pages, which

make their services available to users.

The principle of RESTful services is broadly used for providing a uniform HTTP

interface to interacting with smart things, independent of their platform protocol.

In [Duquennoy et al., 2009], it is demonstrated that putting Web Servers directly

on resource-constrained devices is a feasible solution. The authors of [Trifa et al.,

2010], on the other hand, argue for the use of smarts gateways, which hide the

underlying specific network protocols of the connected devices, and can thus be

used for providing aggregate functions, based e.g., on composing single lower-level

services. An extended discussion of different approaches building upon Web princi-

ples is provided in [Guinard et al., 2011], where it is shown how the notion of Web

mashups can be applied to physical objects, in order to offer more customization

possibilities to end-users. Since the focus of the present treatment is on realizing

home smartness via dynamic service composition, independently of the underlying

invocation mechanism, we do not enter into the debate of RESTful vs. Web Service

based architectures.

In recent years, several SOAs such as UPnP and Jini[Apache, n.d.] have emerged

to provide interoperability with minimum human intervention. The OSGi platform

has been widely used as a platform- and application-independent residential gate-

way that enables interconnection, discovery, and coordination of different devices,

thus offering more flexibility to domain designers, e.g., [Zeadally and Kubher, 2008;

Lee et al., 2009]. Moving towards a semantic annotation of the OSGi description

is proposed in [Gouvas et al., 2007] to improve the discovery process. The work

presented in [Aiello, 2006] investigates the use of Web Services in the domestic net-

work, and in [Aiello and Dustdar, 2008] the application of the Web Service stack is

proposed as a means to solve the interoperability problem at home. The architec-

ture builds on using WS-Notification as an event-based mechanism for addressing

emergency situations in the home, most notably, the fall of an elder, however the

aspects of context and coordination of service are not addressed beyond the basic

action/reaction interactions. In [Cabezas et al., 2008], an architecture for extend-

ing the OSGi registry with semantic terms is proposed, which allows the automatic

parsing of services by software agents, however no tasks more complex than service

registration and invocation are considered.

32 2. Related Work

2.7.2 Service composition and AI Planning in pervasive

systems

WS-BPEL [OASIS, 2007], the standard for expressing WS compositions, has also

been proposed to guide the coordination of pervasive systems. In [Lazovik et al.,

2009], the RuG visualization platform presented in Section 4.5.3 is coupled with a

BPEL engine to demonstrate some composition scenarios. The approach proposed

in [Redondo et al., 2008] describes how composite services deployed as BPEL pro-

cesses can be made available in a semantically enriched OSGi platform. However,

BPEL processes are pre-compiled and thus support limited dynamicity. In [Etzioni

et al., 2010], BPEL processes in a smart home are enhanced with a runtime fault

management mechanism, where the receipt of a fault-indicating event triggers an

appropriate predefined fault template according to the semantically inferred type

of the fault. However, these approaches do not overcome the limited flexibility and

adaptability deriving from the rigid nature of predefined processes.

In the context of domotic systems, AI-inspired techniques have been used for

coordinating intelligent components in a ubiquitous environment, without however

emphasizing on services in any specific way. In [Pecora and Cesta, 2007], each device

is represented as a software agent and the problem of service integration is cast to

Distributed Constraint Optimization. The coordination takes place in a purely

distributed manner, relying on the communication between independent agents.

On the negative side, modeling the home behavior involves specifying all possible

inter-relations between the variables comprising the domain in terms of complex

constraints, which makes it a fairly cumbersome process, even for a limited number

of services. The requests the user can make to the system are limited to a set

of rather simple commands, which only involve the interaction of a limited set of

predefined agents.

An Hierarchical Task Network planning approach is adopted in [Gravot et al.,

2006] for controlling a humanoid robot so that it performs certain cooking tasks.

The planner bases on the description of predefined methods expressed in terms of

the actions the robot can perform. A multi-agent approach is adopted by [Davids-

son and Boman, 2005] to control a smart building’s conditions with the objective

of saving energy and increasing users’ satisfaction. This approach however focuses

on triggering some predefined rules as a reaction to certain events rather than on

computing complex compositions of different services. In [Aker et al., 2011] the

action description language C+ is used for modeling a housekeeping domain: mul-

tiple robots have to collaborate to tidy up by moving objects around the house, and

the causal reasoner CCALC is applied to plan the robots’ activities in a safe way.

In [Giacomo et al., 2012], an extension of the Roman Model [Berardi, Calvanese,

2.7. Service coordination in domotic environments 33

Giacomo, Hull and Mecella, 2005] with goal-based processes is used for compos-

ing domotic stateful services. In the proposed framework, the user can state some

declarative goals that refer to transitions of some target process, i.e., a transition

system which models some user’s complex routine. In [Caruso et al., 2012] a frame-

work for Home automation which combines offline composition based on the Roman

Model approach with dynamic on-demand composition by using the RuG planner

is presented.

A review of different uses of planning in Smart Homes is presented in [Simpson

et al., 2006], where several research issues surrounding planning, such as plan recog-

nition and knowledge representation, are considered. In [Bronsted et al., 2010], the

main requirements and open challenges for service composition in pervasive envi-

ronments are analyzed, including issues related to context awareness, contingency

management, and device heterogeneity.

2.7.3 Smart Homes projects

A number of research and industrial projects focusing on supporting a wide range of

household devices over heterogeneous network environments have been performed

and are underway. The work presented in Chapter 4 has been conducted in the con-

text of the European project Smart Homes for All (SM4ALL) [SM4All, 2008-2011],

which builds upon the concept of service, and uses composability and semantic

techniques, in order to guarantee dynamicity, dependability and scalability, while

preserving the privacy and security of the home and its users. SOCRADES [Spiess

et al., 2009] focuses on an SOA-based integration architecture which enables the col-

laboration of ubiquitous devices in the manufacturing domain with services offered

at the enterprise application level. Like in our case, Web Services are embedded

to devices and a publish-subscribe mechanism is used to handle events. However,

only execution of pre-defined descriptions of service compositions, such as BPEL

or mash-ups, is supported, and runtime flexibility is limited to selecting the right

instances for a fixed sequence of service types.

HYDRA [Eisenhauer et al., 2010; Zhang and Hansen, 2008] proposes a service-

oriented middleware platform for networked embedded systems, which supports a

model-driven development of ambient intelligence applications, based on ontologies

of semantic devices. Semantic rules are used for diagnosing possible malfunctioning

in the system, however there is no support for intelligent composition generation to

deal with such situations. The RUNES middleware [Costa et al., 2007] for embedded

systems requires explicit connectors between components which may have inter-

related functionalities, and which can be further organized into groups that can

form stacks of overlay services. This design leads to a layered architecture, with

34 2. Related Work

limited however dynamicity and no automatic reasoning capabilities. The SM4ALL

platform tackles the problem of home automation at a higher application level, and

focuses on dynamic and runtime compositions of embedded services connected to

the network, thus realizing a system that is more user-centric, customizable and

context-adaptable with respect to the aforementioned infrastructures.

Several approaches stimulated from the field of Artificial Intelligence have been

adopted by projects that seek to leverage the smartness exposed by homes equipped

with smart sensors and actuators. In the context of the MavHome project, learning

algorithms are employed in [Rao and Cook, 2004] to predict the occurrence of com-

mon activities that take place in a home, and decide whether it should take them

over automatically. The Intelligent Buildings project, e.g., [Davidsson and Boman,

2005], builds upon an agent-based approach which has already been discussed in

Section 2.7.2. In the course of the ThinkHome project, the use of neural networks

is proposed in [Kastner et al., 2010] to learn the optimal values for the parame-

ters of automation activities with respect to context and user preferences, such as

specifying the best time to start heating a room based on weather conditions.

2.8 Business Process recovery

The approach for runtime BP reconfiguration by employing AI planning presented

in Chapter 6 shares many concerns with previous work in the areas of BP recovery,

adaptation and process interference, as discussed in Section 2.8.1. A comparative

overview of previous approaches which employ automated planning for the purpose

of runtime BP reconfiguration is presented in Section 2.8.2.

2.8.1 BP adaptation and repair

Design-time verification cannot cover for unexpected and unspecified runtime data

interactions. In order to handle such unforeseen runtime events, runtime process

changes can in many cases not be avoided. Changeability of business processes is

a large research area focusing on the capabilities to change business processes at

design-time or runtime, and a number of different frameworks have been proposed

in that context.

The ADEPT project is designed to support the synchronization between sev-

eral running instances of the same process. Any changes made by the user are

incorporated into all of the running instances without interrupting their execution

[Dadam and Reichert, 2009]. An improved version of the framework, ADEPT2,

enables ad-hoc flexibility for process instances and controlled evolution of process

schemas [Göser et al., 2007; Reichert and Dadam, 2009]. [Weske, 2001] provides

2.8. Business Process recovery 35

an approach for enhancing flexibility by dynamic adaptation of running workflow

instances. However, existing changeability frameworks are primarily requirements-

driven and their adaptation capabilities are specially tailored to facilitate and sup-

port new business requirements (and, therefore, improve flexibility). As such, they

do not incorporate the mechanisms to adapt the process in order to prevent erro-

neous business outcomes.

Adaptation is the ability of the implemented processes to cope with exceptional

circumstances by modifying the process during runtime. A number of techniques

have been proposed to support recovery from process execution inconsistencies.

AGENTWORK [Müller et al., 2004] is a workflow management system which sup-

ports automated business process adaptations in a comprehensive way. Exceptions

and necessary workflow adaptations are specified through a rule-based approach.

Using this approach, the system is able to react to process-failures like unavailable

resources or data. In [Xiao and Urban, 2008], an approach is proposed that deals

with recovery of failing processes using dependency tracking based on incremen-

tal data changes. A global schedule of these data changes is used to detect data

dependencies, in order to determine the impact of process failure and recovery pro-

cedures. In [Friedrich et al., 2010], repair processes are generated as a response

to failing activities, based on a set of rules that specify how individual activities

can be repaired through compensation or substitution. However, existing runtime

solutions for process adaptation with the purpose of recovery are based on failing

processes. That is, only those processes that fail during execution and terminate in

an improper way are recovered. In practice, however, process interference does not

necessarily cause processes to fail. More often, the processes finish regularly with-

out any system errors from an internal perspective, leading however to erroneous

results.

A solution more specific to process interference in Service-Oriented Comput-

ing is provided by [Urban et al., 2011]. Predefined (design-time) rules are used

to specify the required compensation actions in case of interference. In addition

to failing processes, this approach incorporates events like exceptional conditions

or unavailable activities. Nevertheless, this approach does not consider problems

occurring at a regularly executing process due to the use of inaccurate data. In [van

Beest, Bulanov, Wortmann and Lazovik, 2010], a runtime intervention approach is

proposed to repair BPs upon interference. However, the design-time specification of

the required IPs still requires an extensive manual effort. In order to automate the

IP generation, some extra semantic annotations are required for describing the BP.

The benefits of adding semantics to BPs have long been acknowledged by the work

in the field of Semantic Business Process Modeling, and exploited for a number

of different purposes, such as automating process verification [Henneberger et al.,

36 2. Related Work

2008], which rely on a description in terms of preconditions and effects, or process

model generation [Weber et al., 2010].

2.8.2 Automated planning for BP reconfiguration

The advantages of integrating AI planning techniques for several applications in

the field of Business Process Management have long been acknowledged. For in-

stance, different planning approaches can assist at the business process definition

phase [Rodŕıguez-Moreno and Kearney, 2002; Rodŕıguez-Moreno et al., 2007; Mad-

husudan et al., 2004], while in [Jarvis et al., 1999], the use of planning in case

of domain state changes. In order to facilitate (semi-)automatic adaptation at

runtime, AI planning techniques have been used from different viewpoints in the

literature. Goal-driven methods have been proposed for enabling variability, e.g., a

planner based on situation calculus is used in [Liaskos et al., 2012] for computing

sets of admissible configurations according to the constraints specified by users in

terms of extended goals. In [Beckstein and Klausner, 1999], the use of an intelligent

assistant based on AI planning techniques is discussed, which can suggest compen-

sation workflows or the re-execution of activities as a response to execution failures,

with the help of meta-level knowledge incorporated in the workflow semantics.

In [Ferreira and Ferreira, 2006], the use of machine learning is proposed in order

to infer the preconditions and effects of activities, and generate a partially ordered

execution plan that complies to these rules. The framework aims at providing a

candidate process that is able of achieving some business goals. At execution time,

if an activity fails, an alternative candidate plan is provided. Although the objective

is different than strictly resolving process interference, a common concern with this

framework’s approach is the decoupling of the BP-specific constraints from the

generic service repository, thus allowing the planner to generate partially ordered

plans with a high degree of flexibility.

A line of work close to ours is the approach to BP adaptation through planning

presented successively in [de Leoni et al., 2007, 2009; Marrella and Mecella, 2011].

This work uses several versions of Golog, which is based on planning by means of

the situation calculus, to adapt a running process in case mismatches between the

environment and the internal system representation are detected. In Golog, the

goal to be achieved has to be specified in a procedural way, as a non-deterministic

program, as opposed to the use of high-level declarative goals, as the ones used by

domain-independent planners, like the one presented herein. This implies that the

adaptation process has to be pre-specified in an action-centric way, which requires

domain-specific knowledge of the available services and arduous hand-coding by a

human expert. One advantage of the approach proposed in [Marrella and Mecella,

2.8. Business Process recovery 37

2011] is that it can manage any unforeseen event, by continuously comparing the

environment with the expected outcomes according to the BP specification at each

step of execution. The approach, however, only provides recovery policies that lead

to the expected state as specified in the original process, and can thus not cover

situations like the ones presented herein, which necessitate the fulfillment of extra

requirements or the use of compensation activities.

A goal-driven approach, which uses an extended version of the model-based

planner MBP [Shaparau et al., 2006], is adopted in [Bucchiarone et al., 2011, 2012]

for BP adaptation. In that approach, service operations as well as context properties

(e.g. “address”) are modeled as state transition systems, which requires considerable

manual effort. Every time a context change is observed, this has to be verified

against all policies-goals, and if an inconsistency is detected then an adaptation is

triggered. This process would be unable to detect inconsistencies in case of some

data modification that does not violate the goal-policies, but still leads to erroneous

results such as the delivery to an obsolete address. Although the approach supports

uncertain effects, it only considers non-numeric context variables, and would suffer

from state explosion and poor performance if monitored variables range over large

domains.

Chapter 3

The RuG CSP-based Planner

In most service domains, the planning agent does not only have to act, but also to

learn about the state of its surroundings. To achieve the latter, the planner can

resort to sensing operations to acquire all the knowledge it misses and which is

necessary to fulfill a goal. Sensing operations return exactly one outcome amongst

a (possibly very large) set of deterministic choices, i.e., we assume full observability.

The plan is constructed based on its limited offline knowledge and its information

about how this knowledge state evolves through the execution of certain actions.

The agent has to be able to reason about the possible outcomes of sensed informa-

tion at plan time, and construct plans under uncertainty. However, things become

more complicated by the fact that WS application domains involve to a large ex-

tent numeric-valued fluents, many of which have to be sensed. Because it is very

common for observation actions to return numeric information, e.g., the price of

an item, the date of an event, the temperature in a room etc. the planner must

be able to consider a potentially very large number of possible resulting states, i.e.,

configurations of the physical world. A successful plan may be conditioned on the

outcomes of such actions, e.g., the user may want to go ahead with buying a con-

cert ticket only if it is guaranteed that some conditions about the weather, cost etc.

hold. Similarly, some actions may have to be called taking as input arguments the

yet unknown output of some observation action, e.g., the user may wish to deliver

an item to some address that is retrieved by looking into an online catalog.

Given these characteristics of service domains, computing a contingent plan

[Albore et al., 2009; Pryor and Collins, 1996], i.e., a plan which includes all possible

branches resulting from the observed values, can be very expensive. Thus, models

that work with propositional representations, and consider all potential runtime

circumstances at the offline level to compute conditional plans, such as [Hoffmann

and Brafman, 2005; To et al., 2011; Bertoli and Cimatti, 2002; Bryce et al., 2006], are

not a recommended strategy for WS domains. Applications of contingency planning

that seek to address the problem of WS composition with incomplete knowledge

and sensing, like [Pistore, Marconi, Bertoli and Traverso, 2005; Bertoli et al., 2010;

Hoffmann et al., 2010], perform poorly in scenarios where a large number of possible

40 3. The RuG CSP-based Planner

outcomes are involved and disregard numeric expressions.

Rather than that, we adopt a knowledge-level approach where plans are built

based on the agent’s knowledge and the way that this is changed by executing

actions [Petrick and Bacchus, 2004], and under optimistic assumptions: plans are

constructed with the anticipation that all knowledge-gathering actions which are

necessary to provide the information necessary for achieving the requested goal

return outcomes that are in accordance with the goal and the preconditions of the

subsequent actions that lead to the desired situation. The intuition behind this

behavior is that human agents often act in a similar sense under conditions of

incomplete knowledge [Golden, 1998]: they plan ahead certain activities (e.g., open

a door) assuming some favorable state of the world (e.g., that the door is unlocked).

If at runtime they find out that the assumption they made is not true (e.g., the

door is locked), they would have to come up with an alternative plan (e.g., try

to first unlock the door). In most scenarios in WS application domains, planning

in anticipation of convenient outcomes is a good strategy, given the large amount

of available resources during search, e.g., it is likely to find some hotel room that

satisfies some reasonable criteria. How the offline plan can be later revised under

the light of runtime information and contingencies is described in Chapter 5. In

this chapter, we focus on the offline plan which is computed considering the agent’s

knowledge state and the way that this is changed by actions.

3.1 Planning as constraint solving

Under conditions of uncertainty due to the incomplete knowledge about the initial

state, the search space is no longer the set of states of the domain, but its power

set. A plan in this sense represents a traversal between sets of states rather than

complete description of states, and has only the potential to achieve the goal, if

there is some auspicious state sequence that could arise from the plan’s execution.

Such a plan is usually referred to as weak in the literature [Cimatti et al., 2003]. We

should emphasize that finding such a context-dependent plan is a much simpler task

than computing a strong contingent plan with conditional branches which would

satisfy the goal in all possible state sequences that could arise from observational

effects. However, as already explained, postponing the computation of alternative

contingent branches till more information is acquired from the environment seems

to be a more feasible approach for WS scenarios that involve many numeric vari-

ables and output-to-input mappings, and being optimistic is likely to be paid off.

Thus, all sources of non-determinism, where the actual behavior of actions at exe-

cution time contradicts the expected effects as modeled in the planning domain or

3.1. Planning as constraint solving 41

external agents alter the world in unanticipated ways, are left to be treated by in-

terleaving planning with execution and performing continual planning as described

in Chapter 5.

Besides the requirement for dealing with incomplete knowledge and numeric

sensed information, in order to model real-world service domains, one has also to

consider numeric properties (e.g., the temperature must be greater than 0) both in

preconditions and the goal, and be able to apply arithmetic operations (e.g., reduce

a distance by 1 meter). Moreover, input arguments of actions, such as dates, places

and so on, also range over large domains, and thus grounding actions may lead to

an intractably large state space. Modeling the ultimate encoding as a Constraint

Satisfaction Problem (CSP) is a particularly well-suited approach, if efficient han-

dling of numeric expressions and variables of high cardinalities is at stake. CSP

formalisms are expressive, since constraints in the context of a multi-valued encod-

ing allow us to naturally go beyond logical formulas, and use arithmetic formulas in

preconditions and effects without sacrificing efficiency. Complex declarative goals

under uncertainty, which accommodate for ordering constraints, maintainability

properties, numeric expressions and hands-off requirements can be also supported

in the context of the CSP representation as is explained in Section 3.4.1. Equipping

users with a rich language that allows them to specify a variety of different complex

requests in a declarative way is particularly important for realizing user-centric and

adaptable WS-enabled marketplaces [Papazoglou et al., 2002]. Moreover, describing

the world in terms of variables which may range over a domain of possible values

is particularly convenient for representing “under-defined” states: the range of the

allowed values depends on the current knowledge of the agent and is narrowed down

by the application of action effects. With such an encoding, states at which vari-

ables are not restricted to a specific value, represent sets of states, thus naturally

encompassing uncertainty.

In general, CSP-based planners [Barták and Toropila, 2009] are not yet as com-

petitive as the best-performing planners in International Planning Competitions,

such as Lama [Richter and Westphal, 2010], or SAT-based planners. It should be

mentioned though, that realistic service domains are usually not as structurally

complex as the domains used in the International Planning Competitions (for ex-

ample, the broadly used travel domain [Papazoglou et al., 2002] contrasted with

the PDDL domains in IPC1). In service environments, complexity does not usually

stem from highly transitive interdependencies between actions/service operations,

but challenges come from other sources, such as incomplete knowledge and sens-

ing, output-to-input parameter passings regarding variables that range over large

1ipc.icaps-conference.org

ipc.icaps-conference.org

42 3. The RuG CSP-based Planner

domains, the expressive power of the domain representation, the dynamic nature

of context, and the support for complex goals. In the followings, we present how

a CSP-based planner, called the RuG planner, can provide for a highly expressive

action schema, endowed with a number of features that fit the characteristics of ser-

vice domains, and are frequently overlooked by previous approaches. These features

include parallel actions, which are very important given the large response times of

many operations (especially sensing ones), handling of numeric variables and input

parameters, numeric preconditions, and a large variety of effects. A powerful lan-

guage for expressing complex goals, beyond the mere statement of properties that

should hold in the final state, is supported. The planning problem modeling accom-

modates for incomplete knowledge and information-gathering, which is realized by

an intuitive knowledge-level representation which is generated automatically, given

the high-level description of the domain and the goal.

3.2 Planning Domain

Unlike most traditional planning formalisms that are predicate-based, in CSP-based

planners the planning problem is usually described in terms of multi-valued state

variables. Following this trend, the domain modeling we use herein is based on

the Multi-valued Planning Task (MPT) encoding [Helmert, 2009], which leads to a

smaller number of variables ranging over larger domains, something that is known

to improve the performance of constraint solvers. We believe that the multi-valued

state variable representation is particularly well-suited for modeling service do-

mains. As we see in Section 4.4, this formalism is closer to the variable-based device-

level descriptions which follow specification standards such as OSGi-UPnP [OSGi

Alliance, 2009]. A similar observation holds for standard service description lan-

guages such as WSDL, or for workflow definition languages such as WS-BPEL,

which also build on variables rather than propositions. Most importantly, the multi-

valued encoding is a formalism that naturally supports variables ranging over large

domains, which are often neglected in the classical planning literature. Constraints

in the context of such an encoding allow to conveniently go beyond logical formulas,

and use arithmetic formulas in preconditions and effects without special effort or

major sacrifices in efficiency.

The planning domain that is supported by the RuG CSP-based planner is de-

scribed in Definition 1. In order to deal with incomplete knowledge and sensing, the

planning schema is enriched with a knowledge-level representation to model obser-

vational actions (sensing effects). Some extra types of effects, such as invalidate, are

supported to address some special situations related to planning for Business Pro-

3.2. Planning Domain 43

cess recovery (see Chapter 6). Conditional effects are also provided for. Moreover,

the planning formalism accommodates for numeric functions and effects beyond

mere assignments, such as increase/decrease, which are necessary to model service

operations such as increasing the overall price of an online shopping basket, or pay-

ing in some amount to a bank account. These are features that standard planning

task descriptions used by CSP-based planners usually do not accommodate, e.g.,

compare with [Barták and Toropila, 2009]. This extra expressivity, along with the

support for complex goals and the incorporation of runtime information, come at

the cost of computational efficiency. Extensive use of implications, i.e., disjunc-

tive constraints which are known to compromise the efficiency of constraint solvers,

becomes unavoidable, while the alternative CSP formulations discussed in [Barták

and Toropila, 2008] have restricted applicability (see Section 3.7).

Another characteristic of the supported planning schema is that input arguments

to actions may range over numeric-valued domains just as all other variables. This

is usually not allowed in traditional planning task descriptions [Fox and Long, 2003],

which would rule out some actions which are very common in the field of services.

For example, flying to a certain altitude would expect as input a number-valued

argument. It should be noted that this input might be the output of some previ-

ous operation in a composition, and thus the planning domain formalism should

be able to capture such input-output passings. The RuG planner resorts to an

ungrounded (not instantiated) action schema. Therefore, in the followings we use

the term action to denote what is usually called a planning operator. This should

be kept in mind when comparing with other planning approaches to service com-

position, which by “number of actions” refer to the number of grounded operators.

However, the grounded task can be exponentially larger than the original one, since

an operator with n input arguments, either one having a domain of size D, results

into |D|n many ground instances. This is a particularly important remark given

that the input parameters of operators which model services commonly range over

large domains, and thus, a single “action” in our representation may correspond

to hundreds or thousands of actions reported by planning approaches that work on

the grounded problem.

Definition 1 (Planning Domain (PD)). A Planning Domain is a tuple PD = 〈Var ,

Par ,Act〉, where:

� Var is a set of variables. Each variable v ∈ Var ranges over a finite domain Dv.

� Par is a set of variables that play the role of input parameters to members of

Act . Each variable p ∈ Par ranges over a finite domain Dp. Par and Var are

disjoint sets.

44 3. The RuG CSP-based Planner

� A is the set of actions. An action a ∈ Act is a quadruple

a = (id(a), in(a), precond(a), effects(a)), where:

� id(a) is a unique identifier

� in(a) ⊂ Par are the input parameters of a

� precond(a) is a propositional formula over Var ∪ Par , which conforms to the

following syntax:
precond(a) ::= prop | precond(a) ∧ precond(a) |

precond(a) ∨ precond(a) | ¬precond(a)

prop ::= var ◦ val | var1 ◦ var2 | (var1 � var2) ◦ val |
known(var) | brel(var1 , . . . , varn)

where var , var1 , . . . , varn ∈ (Var ∪ in(a)), val is some constant, ◦ is a relational

operator (◦ ∈ {=, <,>, 6=,≤,≥}), � a binary operator

(� ∈ {+,−}), known(var) a boolean relation indicating that var is known, and

brel an n-ary Boolean relation. We write
∧

i precondi(a) to denote a sequence

of conjunctions on preconditions, and likewise
∨

i precondi(a) for disjunctions.

� effects(a) is a conjunction of any of the following elements:

� assign(var , v), where v is some constant or v ∈ Var

� assign(var , f (v1 , v2)), where v1 , v2 ∈ (Var ∪ in(a)) or v1 , v2 are constants,

and f the sum or the subtract function

� increase(var , v) or decrease(var , v), where v ∈ Var ∪ in(a) or v is some con-

stant

� sense(var), where var ∈ Var

� cond effect(prop, effect(a)), which models a conditional effect, that is applied

at the next state only if prop holds at the current state.

� sense-cond effect(prop, effect(a)), which models a conditional effect that is

applied at the next state only if prop holds at the next state. This is used for

effects that should materialize only if the outcome of a sensing effect satisfies

prop.

� invalidate(var), where var ∈ Var . This effect states that var becomes un-

known.

Variables in V ar can only change values due to some action application, while

input parameters are left free to be assigned by the planner any value that is

convenient for the purpose of achieving the goal. A planning state s is defined as a

relation s = {(x ,Dx
s) | ∀x ∈ Var ∪ Par}, where Dx

s ⊆ Dx , and Dx is the domain of

x . Thus, the notion of a state adopted herein encompasses a set of traditional states

3.2. Planning Domain 45

representing assignments of values to the variables, and allows us to accommodate

for incomplete knowledge. The domain of x at state s is given by the state-variable

function JxK(s), so that JxK(s) = Dx
s if (x,Dx

s) ∈ s. If |Dx
s | = 1, this means that x

at s has a specific value. An action a is applicable on state s if its preconditions hold

at s, and its execution leads to a successor state s′. The propositions in precond(a)

refer to the values of variables V ar and parameters Par at state s, whereas the

updates instructed by effects(a) refer to the variables V ar at state s′. We say that

precond(a) holds at s (or alternatively that s satisfies precond(a)) if precond(a)

evaluates to true for all possible assignments to values that are consistent with

the domains of the variables at s. This implies for example that given a state

s = {(v1, {1}), (v2, {1, 2})} and an action a which has a precondition v1 = v2, a is

not applicable at s. As we see in Section 3.3 effects(a) also amount to a conjunction

of propositions that should hold at s′.

The effects of type sense(var) are called observational or knowledge-providing,

i.e., they observe the current value of a variable, while the rest types of effects are

world-altering, i.e., actively change the value of a variable. Variables that are part

of sensing effects correspond to WS outputs, e.g., indicated with annotations in

the XML Schema used in WSDL documents. An action may have both observa-

tional and world-altering effects. An interesting remark at this point is that the

investigation performed in [Fan and Kambhampati, 2005] acknowledges that the

majority of WS operations driven from public WS repositories only update the

agent’s knowledge state rather than the world state. To provide for incomplete in-

formation and sensing, the domain is extended by additional variables to model the

knowledge-level representation and distinguish between sensing and world-altering

actions. These variables are generated automatically given a domain description

SD. First, for each var ∈ Var ∪ Par , a new boolean variable var known is intro-

duced, which indicates whether var is known at state s (Jvar knownK(s) = true)

or not (Jvar knownK(s) = false). If proposition known(var) holds at state s, this

is equivalent to Jvar knownK(s) = true. The role of these knowledge-base variables

becomes obvious when we explain how effects and goals are translated into con-

straints. For every variable kvar ∈ Var that participates in an observational effect,

we introduce a new variable kvar response, which is a placeholder for the value

returned by the respective sensing operation. Since this value is unknown until exe-

cution time, kvar response ranges over kvar ’s domain (kvar response ∈ Dkvar). We

also maintain for every variable cvar ∈ Var that is part of at least one world-altering

effect a boolean flag var changed , which becomes true whenever this effect takes

place. Thus, we end up with an extended set of variables V = Var ∪Kb ∪ Cv ∪ Rv ,

where Kb is the set of knowledge-base variables, Cv the set of the change-indicative

variables, and Rv the response variables. States are also extended to include all

46 3. The RuG CSP-based Planner

variables in V ∪ Par .

On top of the action descriptions in PD, there may be a set of general con-

straints, which capture a simple aspect of the ramification problem [Finger, 1987],

i.e., indirect effects of actions on variables. General constraints resemble the rules

for the derived predicates discussed in [Edelkamp and Hoffmann, 2004]. For the

RuG planner, a general constraint is an implication constraint which states that

if the value of a variable var1 ∈ Var has some specific value(s), then a unique

value of var2 ∈ Var can be concluded as well. A general constraint has the form∨
i var1 = vi ⇒ var2 = v , where vi are some constants vi ∈ Dvar1 and v ∈ Dvar2 .

For example, let us consider an action which moves an actor between certain loca-

tions which model topological places that in turn belong to rooms (see Figure 3.1).

The effect of the action refers to an assignment to the variable robotLoc which in-

dicates the location of the moving robot, which however may also imply a change

to variable robotRoom that models the room in which the robot currently is. The

latter can be modeled as a function of the former, since knowing the location we

can infer the room. As we see in Section 3.3, the relation between the variables in-

volved in general constraints has to be considered in the axioms that are generated

to address the frame problem.

3.3 Encoding the Planning Domain into a CSP

Following a common practice in many planning approaches, we consider a bounded

planning problem, i.e., we restrict our target to finding a plan of length at most k

for an a priori given integer k. In the followings, we explain how the service domain

is encoded into a CSP, for some given integer k. The process is similar to the one

described in [Ghallab et al., 2004] (alternative encodings based on the planning

graph are proposed in [Kambhampati, 2000; Do and Kambhampati, 2001]).

A constraint satisfaction problem and its solution are defined as follows:

Definition 2 (CSP). A Constraint Satisfaction Problem is a triple CSP = 〈X,D, C〉
where:

� X = {x1, . . . , xn} is a finite set of n variables.

� D = {D1, . . . , Dn} is the set of finite domains of the variables in X, so that

xi ∈ Di.

� C = {c1, . . . , cm} is a finite set of constraints over the variables in X. A

constraint ci involving some subset of variables in X is a proposition that

restricts the allowable values of its variables.

3.3. Encoding the Planning Domain into a CSP 47

Definition 3 (Solution to a CSP). A solution to a CSP 〈X,D, C〉 is an assignment

of values to the variables in X, {x1 = v1, . . . , xn = vn}, with vi ∈ Di, that satisfies

all constraints in C.

Considering a planning domain extended with the knowledge-level representa-

tion PD′ = 〈V ,Par ,Act〉, the aim is to encode PD′ into a CSP = 〈X,D, C〉. First,

the variables X are derived as follows: for each variable x ∈ V ∪ Par ranging over

Dx, and for each 0≤ i ≤ k , we define a CSP variable x[i] in CSP with domain

Dx. Actions are also represented as variables: for each action a ∈ Act and for each

0≤ i ≤ k−1 a boolean variable a[i] is defined. This way the computed plan can

include parallel actions, a fact that may save time at execution.

After deriving the CSP state variables X, the actions’ preconditions and effects

are encoded into constraints. Given an action a = (id(a), in(a), precond(a),

effects(a)), we use the notation precond(a)[i], prop[i] and effect(a)[i] to indicate

the preconditions, propositions and effects on the state variables corresponding

to state i. Thus, precond(a)[i] (effect(a)[i] respectively) results from substituting

every variable x ∈ X which appears in precond(a) (effect(a)) by its corresponding

state variable x[i]. For each action a, and for each 0 ≤ i < k:

� We add the constraint

a[i] = true ⇒ precond(a)[i] ∧
∧

v∈precond(a) v known[i] = true

� We add a constraint which enforces that all input parameters should be known:

a[i] = true ⇒
∧

p∈in(a) p known[i] = true

� For every effectj in effects(a), we add a constraint of type

a[i] = true ⇒
∧

j constr(effectj)[i + 1],

where constr(effectj)[i + 1] is a constraint derived depending on the type of

effectj :

� Case assign(var , v):

- var [i + 1] = v [i] ∧ var know [i + 1] = true ∧
var changed [i + 1] = true ∧ v known[i] = true, if v ∈ Var ∪ in(a)

- var [i + 1] = v ∧ var know [i + 1] = true ∧
var changed [i + 1] = true, if v some constant

Similarly, for the effect of type assign(var , f (v1 , v2))

� Case increase(var , v):

- var [i + 1] = var [i] + v [i] ∧ var changed [i + 1] = true ∧
v known[i] = true, if v ∈ Var ∪ in(a)

- var [i + 1] = var [i] + v ∧ var changed [i + 1] = true, if v some constant

48 3. The RuG CSP-based Planner

Respectively, for the effect of type decrease(var , v).

� Case sense(var):

var [i + 1] = var response ∧ var known = true

� Case cond effect(prop, effect):

prop[i] ⇒ constr(effect)[i + 1]

� Case sense-cond effect(prop, effect):

prop[i + 1] ⇒ constr(effect)[i + 1]

Note that the translation of effects into constraints may entail the addition of

constraints that should hold at the previous state (precondition). For example, to

assign some variable v to some other variable var, v should already be known. In

cases where precond [i] includes some Boolean relation brel(var1 , . . . , varn)[i], this is

substituted by a proposition on these variables, according to translation rules spe-

cific to the relation brel . Depending on the relation, the resulting constraints may be

less or more complex. For example, adjacent same room(loc1, loc2) (see Figure 3.1)

is translated into a disjunction which includes all possible allowed value pairs of vari-

ables loc1 , loc2 (i.e., grounding is not avoided):
∨

c1i ,c2j
(loc1 = c1i ∧ loc2 = c2j),

for all location values c1i , c2j which are adjacent and belong to the same room.

On top of the domain description, restrictions referring to the initial state are ex-

pressed in the form of a conjunction of propositions
∧

i prop initi , where prop initi
are propositions on the variables x ∈ X. The encoding of the (partial) description

of the initial state corresponds to the addition of the constraints prop init [0] for

each proposition prop init that refers to the initial state.

A strong requirement that all variables involved in the preconditions should be

known is also added as part of the precondition constraints. This ensures that the

preconditions hold for all possible assignments to variables consistent with their

allowed domain at a given state, as already mentioned. On the other hand, this

excludes the applicability of an action in some cases that would be admissible.

For example, given a state s = {(v , {1 , 2}), (v known, {false})} and an action a

with precondition v < 3 , a cannot be applied at s. This restriction is necessary

however to prohibit undesirable situations, such as allowing the application of a

at a state s = {(v , {1 , 2 , 3}), (v known, {false})}. In such a case, the constraint

solver would be able to find some assignment that satisfies the constraints, which

however is undesirable, since we cannot be sure if the application of a is safe, given

the uncertainty about v’s actual value. Only if there is a way to sense v’s value,

should the application of a be permitted. This restriction implies that the RuG

planner is not able to handle problems with partial observability such as the ones

addressed in [Petrick, 2011], where actions can be applied even if some variable in

the preconditions is not known.

3.3. Encoding the Planning Domain into a CSP 49

Considering the general constraints, these are also translated at the level of

CSP variables as constraints that should hold at all states. Thus, for each gen-

eral constraint
∨

i var1 = vi ⇒ var2 = v and for each 0 ≤ i < k the constraint∨
i var1 [i] = vi ⇒ var2 [i] = v ∧ var2 known[i]= true is added. Frame axiom con-

straints are also generated, which guarantee that variables cannot change between

subsequent states, unless some action that affects them takes place. For every

v ∈ (V − Rv) and for each 0 ≤ i ≤ k − 1, we add the constraint∧
j (actionAff (v)j = 0) ⇒ v [i] = v [i + 1],

where actionAff (v)j are the actions affecting v, i.e.,the actions for which v appears

in the left side of some equality involved in the constraints derived from their effects.

If v appears in the right side of the implication of a general constraint, then actions

whose effects involve the variable on the left side of the respective general constraint

are also included in actionAff (v)j .

The set of constraints that comprise CSP are further extended by additional

constraints that constitute the goal (see Section 3.6), yielding the planning prob-

lem in the form of a CSP that are passed to the constraint solver. The handling

of the sensing effects allows the offline solver to assign arbitrary values to unknown

variables, however if the corresponding knowledge variable var known is false, this

value is of no validity: the formulation of actions’ preconditions and effects do

not allow it to be assigned to any other variable, or considered as satisfying the

goal. By adopting such an encoding, the required sensing actions are determined

pro-actively, depending on the goal and the knowledge the user already possesses.

Another effect of the encoding is that the planner always generates an optimistic

plan, i.e., anticipating that all knowledge-gathering actions return information that

is in accordance with the user’s requirements, and all actions are executed suc-

cessfully. This happens because the solver is free to make any assignments to the

unknown variables, that fit its purposes, as long as they do not violate the con-

straints entailed by the domain and goal constraints. This initial plan is revised

during execution as we see in Chapter 3.

3.3.1 Some action examples

Figure 3.1 illustrates two simple examples of actions expressed in terms of precon-

ditions and effects, and shows the constraints associated with them, as a result of

the process described in Section 3.3. The usability of effects like invalidate and

sense-cond effect is exhibited in Section 6.4, where it is shown how these effects

model deferred choices in a Business Process. Examples of BP activities represented

in terms of preconditions and effects can be found in Appendix A.2.1.

50 3. The RuG CSP-based Planner

payIn(amountPar, accIdPar)

prec: ∅
effects: increase(accBalance, amountPar)

CSP constraints, ∀0≤i<k :

prec constraints: /*parameters known*/

payIn[i] = true ⇒
(amountPar known[i] = true ∧ accIdPar known[i] = true)

effect constraints: /*world-altering*/

payIn[i] = true ⇒ (accBalance changed [i + 1] = true ∧
accBalance[i + 1] = accBalance[i] + amountPar [i])

findAccBalance(accIdPar)

prec: ∅
effects: sense(accBalance)

CSP constraints ∀0≤i<k :

prec constraints: /*parameters known*/

findAccBalance[i] = true ⇒ (accIdPar known[i] = true ∧
effect constraints: /*sensing*/

findAccBalance[i] = true ⇒ accBalance known[i + 1] = true ∧
accBalance[i + 1] = accBalance response[i + 1]

moveRobot(robotLocPar, robotRoomPar)

prec: robotLoc 6= robotLocPar ∧
(adjacent same room(robotLoc, robotLocPar) ∨

(adjacent diff rooms(robotLoc, robotLocPar) ∧
door open(robotRoom, robotRoomPar)))

effects: assign(robotLoc, robotLocPar)

Location - room general constraints

robotLoc = LOC11 ∨ robotLoc = LOC12 ⇒ robotRoom = ROOM1

robotLocPar = LOC11 ∨ robotLocPar = LOC12 ⇒
robotRoomPar = ROOM1 etc.

Figure 3.1: Three action examples expressed in terms of constraints.

3.3. Encoding the Planning Domain into a CSP 51

CSP constraints ∀0≤i<k :

prec constraints:

moveRobot [i] = true ⇒ (robotLocPar known[i] = true ∧
robotRoomPar known[i] = true ∧

robotLoc = robotLocPar∧
((robotLoc[i] = LOC11 ∧ robotLocPar [i] = LOC12)∨
(robotLoc[i] = LOC12 ∧ robotLocPar [i] = LOC11) ∨ . . .) ∨
((robotLoc[i] = LOC11 ∧ robotLocPar [i] = LOC21 ∧

doorROOM1 ROOM2 [i] = OPEN) ∨
(robotLoc[i] = LOC21 ∧ robotLocPar [i] = LOC11 ∧

doorROOM1 ROOM2 [i] = OPEN) ∨ . . .)

effect constraints:

moveRobot [i] = true ⇒ robotLoc[i + 1] = robotLocPar [i] ∧
robotLoc known[i + 1] = true ∧ robotLoc changed [i + 1] = true

CSP-level general constraints, ∀0≤i≤k :

robotLoc[i] = LOC11 ∧ robotLoc[i] = LOC12 ⇒
robotRoom[i] = ROOM1 ∧ robotRoom[i] known = true

Figure 3.1: (continued)

3.3.2 Implicit predicates in the knowledge base

Although knowledge-level variables reflect whether a state variable is known or

not, they cannot capture the presence or absence of information about functions

(propositional or not). The question is how to model the fact that the planner

knows that, e.g., a hotel room has been booked for some specific place and room

parameters, i.e., that bookedHotel is true for some certain values of hPlacePar and

hDatePar . As already explained, grounding the domain is not a feasible option

because of the many input parameters which range over large domains. Therefore, in

order to keep track of the knowledge about variables that are predicated on certain

input parameters, a separate modeling is required, to allow distinguishing between

information that refers to different input parameters, and enables the planner to

make the appropriate output-to-input assignments. As new observations are made

at execution time, the knowledge base facts and the respective constraints change,

as we see in Chapter 5. How parametrized goals are expressed is discussed in

Section 3.4.1.

The planner maintains two structures to store its knowledge about the values

of variables. knowlBase is a map that keeps the values of variables predicated

on certain parameter values, i.e., the fact that var = val , where var ∈ Var and

52 3. The RuG CSP-based Planner

val ∈ Dvar , given some set {(p1 = c1), . . . , (pn = cn)}, where pi ∈ Par and ci ∈
Dpi . knownVars stores the known values of variables which do not depend on any

parameters.

For each entry of knowlBase {(p1 = c1), . . . , (pn = cn)} 7→ (var , val), a virtual

KB action is added to the planning domain. This virtual action has as input param-

eters the list {p1 , . . . , pn}, preconditions
∧

i(pi = ci), and an effect called virtual

assign virtAssign(var , val). The constraints capturing this assignment are the same

as the ones of the standard assign(var , val), except that the change indicatory ac-

tion var changed is not set to true. Thus, a virtual KB action simulates a sensing

action whose output is known in advance. This way, grounding is performed only

with respect to what the planner knows, which is expected to be limited, especially

in comparison with the number of all possible configurations that could exist. Vir-

tual KB actions are considered in the formation of frame axioms just like other

actions. The planner will always try virtual actions before actual actions.

Regarding the knownVars list, for each (var = val) ∈ knownVars, the CSP vari-

able var [0] is assigned to val , and var known[0] to true. The planner always starts

from an initial state where all variables which are not part of knownVars are un-

known. This implies that the plan has to include virtual actions into the plan, to

transition to a state that represents what it actually already knows. The informa-

tion included in knowlBase and knownVars may be annotated by some timestamp

and expiration time, after which it is removed from the map, i.e., considered not

to be known anymore. Therefore, the initial state and the set of virtual KB is

constructed anew every time the planner is triggered.

The CSP solver may choose whatever virtual actions reflecting the knowlBase

map suit its purposes, and assign their input parameters accordingly. For example,

consider a goal about delivering a parcel to the address where some given person,

“Peter Pan”, lives. If knowlBase already contains the entry namePar = “PeterPan”

7→ catalAddress = “Neverland”, then the planner will will choose the respective vir-

tual action KBSense1 with input parameters namePar = “PeterPan” to retrieve

the desired value for catalAddress, and then proceed to the reservation action. A

complete example is shown in Section 3.4.3

3.4 Goal language

Till now, we have described the representation and encoding into a CSP of the

planning domain and the initial state. In the followings we present the syntax and

semantics of the goal, and show how this can be translated into a set of constraints

which together with the constraints formulating the planning domain and initial

3.4. Goal language 53

state constitute the final CSP which is passed to the constraint solver. The goal

language supported by the RuG planner equips the user with potent constructs

for expressing complex goals, beyond the mere statement of properties that should

hold in the final state. Conditions over state traversals, maintainability properties,

and distinguishing between wish to observe the environment and wish to change

it are some of the features this language supports. These aspects are expressed

in a declarative way, so that the user doesn’t have to know about the operational

details of the available operations and how they can be combined. The basic goal

operators have been first presented in [Kaldeli et al., 2009a]. The RuG planner

goal language shares many common concerns with the aspects presented in [Golden

and Weld, 1996], such as the distinction between hands-off observations and accom-

plishment goals, while many constructs of its formalization resemble the syntax of

XSRL [Papazoglou et al., 2002; Lazovik et al., 2005].

3.4.1 Goal syntax

The goal syntax is defined as follows:

goal ::=
∧

i(condition-goali | condition or not-goali
| subgoali)

condition-goal ::= (subgoal) under_condition goal

condition or not-goal ::= (subgoal) under_condition_or_not goal

subgoal ::= final (props) |
achieve(props) |
achieve-maint (props) |
all_states (props) |
find_out-maint (props) |
find_out (props)

where props is a propositional formula as the precond(a) defined in Definition 1,

with var ,var1 , . . . , varn ∈ (Var ∪ Par). All variables and parameters not specified

in the goal (or the initial state constraints) are assumed to be undefined (i.e., their

respective knowledge-level variables are set to false).

The final subgoal is satisfied if props holds at the last state, while achieve

requires that props should be true at some state over the state traversal. The maint

annotation adds the requirement that once the respective propositions become true

at some state, they should remain true in all subsequent states till the final one.

all_states imposes that props should be true at all states, and is usually applied on

input parameters whose values are set by the user. The find_out type of subgoals

enforces a hands-off requirement on the variables the respective propositions involve,

54 3. The RuG CSP-based Planner

i.e., the planner tries to satisfy the propositions at some state without allowing any

world-altering effect on these variables before that state. find_out-maint ensures

that the involved variables should remain intact at all states of the plan. For

instance, the goal find_out(account balance > 100) will be satisfied if the sensed

value of the variable account balance is greater than 100, without however allowing

any action to alter the variable’s value before the sensing action. On the other

hand, if the goal is achieve(account balance > 100), the planner will do everything

possible in order to fulfill the proposition, e.g., it might invoke a pay in action that

increases the account balance by some amount.

Subgoals can be further on combined through the condition goal constructs,

which impose some conditions that should be assured before the fulfillment of the

subsequent subgoal. subgoal0 under_condition goal1 is satisfied if subgoal0 is

satisfied for the first time at some state s (see Definition 7) and goali is satis-

fied in the state sequence preceding s. under_condition thus imposes a before-

then relation between goals over the state traversal, and is particularly useful in

cases where the user would like to go ahead with altering some variable, only if its

sensed value satisfies some property beforehand. under_condition_or_not allows

the expression of what can be seen as some kind of soft requirements: subgoal0
under_condition_or_not goal1 will also be fulfilled if goal1 is not satisfiable;

if however it is, then subgoal0 has to be as well. It should be mentioned that the

under_condition_or_not structure works as intended only if the variables involved

in goal1 are known at planning time. The formal semantics of the goal language is

provided in Section 3.5.

3.4.2 Some goal examples

Several examples of goals which combine various constructs and express the require-

ments of the different scenarios dealt with in this thesis can be found in Chapters 4,6

and 5. In the followings, we present two simple examples to demonstrate the use

of some basic constructs supported by the goal language:

Goal 1

achieve-maint(bookedConcert = TRUE) under_condition

(find_out-maint(temperature > 0))

Goal 2

achieve-maint(bookedHotel = TRUE) ∧ (

achieve-maint(bookedConcert = TRUE)

under_condition_or_not (find_out-maint(temperature > 0)))

3.4. Goal language 55

Goal 3∧
iachieve(robotLocation = roomi)

Goal 1 is accomplished if s is the first state at which bookedConcert = TRUE

is satisfied, and find_out-maint(temperature > 0) is satisfied in the state sequence

preceding s (in this example, the maintainability requirement imposed by find_out-

maint is in practice redundant because there is no way to change the weather).

If temperature < 0 , then Goal 1 fails. On the other hand, Goal 2 ensures that

bookedConcert= TRUE will be satisfied if the temperature is not below zero, while

if it is, then only bookedHotel = TRUE will be looked after. Goal 3 expresses that

a robot should visit all rooms in a house, leaving the order of visits to be computed

by the planner depending on the structure of the house.

3.4.3 Goals with parameters

It still remains unclear how to represent functions in the goal, e.g., how to say

that bookedHotel(hPlacePar , hDatePar) is desired, where hPlacePar and hDatePar

can be either a specific value or refer to some other variable, that may correspond

to the yet unknown outcome of some other action (e.g., hDatePar = eventDate).

In approaches where actions and propositional functions are grounded, to reach a

final state that satisfies bookedHotel(“Groningen”, “12 -04 -2012 ”), the respective

propositional variable should appear in the effects of some grounded instance of

some operator (e.g., bookHotel Groningen 12042012). But how can such a goal be

expressed and satisfied in a variable-based ungrounded context? Actually, what an

expression like bookedHotel(“Groningen”, “12 -04 -2012 ”) implies is that the input

arguments of the action which fulfills bookedHotel , should be set to “Groningen”,

and “12 -04 -2012 ” respectively. The effects of this action satisfy the proposition by

setting the variable bookedHotel to true.

To capture such expressions we introduce a special notation prop withParams∧
j parj = vj , where prop refers to some proposition that should hold at state i, and∧
j parj = vj with parj ∈ Par should hold at state i−1. vj can be either a constant

vj ∈ Dparj or a variable vj ∈ Var . According to this notation we would thus write:

bookedHotel = true withParams (hPlacePar = “Groningen”∧
hDatePar = “12 -04 -2012 ”).

A goal that requests booking two hotel rooms on different dates would look like:

achieve(bookedHotel = true withParams

(hPlacePar = “Groningen” ∧ hDatePar = “12 -04 -2012 ”)) ∧
achieve(bookedHotel = true withParams

(hPlacePar = “Rotterdam” ∧ hDatePar = “13 -04 -2012 ”)).

56 3. The RuG CSP-based Planner

Output-to-input matchings can be captured in the goal by binding parameters

to other variables. Recalling the example in Section 3.3.2, the goal would look like

this:

final(delivery = true withParams (destinationPar = catalAddress))

under_condition

find_out-maint(known(catalAddress) withParams (namePar = “PeterPan”))

This expresses the wish to perform some delivery to a destination which represents

the address of “Peter Pan”, which can be retrieved, e.g., from some sensing action

provided by an online catalog. That sensing action should be performed with the

right assignment (namePar = “PeterPan”), and the delivery should be performed

on the respective output, otherwise the goal cannot be satisfied (see also the concrete

semantics of the goal constructs in Section 3.5).

If the knowledge base already includes the entries

(namePar = “PeterPan”) 7→ (catalAddress = “Neverland”), and

(namePar = “Alice”) 7→ (catalAddress = “Wonderland”)

then the following two virtual KB actions are added to the planning domain, as

described in section 3.3.2:

KB1 (namePar) KB1 (namePar)

prec: namePar = “PeterPan” prec: namePar = “Alice”

eff: virtAssign(catalAddress, eff: virtAssign(catalAddress,

“Neverland”) “Wonderland”)

Given these facts, the planner produces the plan:

KB1 (namePar = “PeterPan”), deliver(destinationPar = “Neverland”).

A goal which requests a delivery to both Alice and Peter Pan is also satisfiable, by

a plan like:

KB1 (“PeterPan”), deliver(“Neverland”),KB2 (“Alice”), deliver(“Wonderland”)

(for readability reasons, we put directly the input parameters values along with

the actions). The applicability of knowlBase becomes more evident in Chapter 5,

where the entries in the knowledge base change according to the observations made

during execution.

3.5 Representing the planning problem

Based on the planning domain as described in Definition 1, a State Transition

System (STS) Σ evolves by specifying a state-transition function γ on the state and

3.5. Representing the planning problem 57

action sets. The γ function is applied to a state and leads to a set of states. This is

due to the fact that effects(a) do not only model assignments to values, but also to

outcomes that are unknown offline, i.e., do not have a specific value. As described

in the process of constraints derivation in Section 3.3, effects(a) entail a conjunction

of propositions constr effectj that should hold at the successor state. Recalling that

a state s satisfies a propositional formula props only if all possible combinations

of values that are members of the domains of the variables at s satisfy props, it

follows that an effect of type sense(var) leads to a set of states: the proposition

var = var response should hold at the successor state, with var response ∈ Dvar ,

which amounts to |Dvar | different states. This way, the γ function captures a sense

of incomplete knowledge and offline non-determinism in the case of knowledge-

gathering actions.To support the possibility of applying multiple concurrent actions

at a single transition, and be able to give a definition of plan that provides for

parallel actions, the γ function takes as argument a set of actions.

Definition 4 (State Transition System). A state transition system based on a

planning domain extended with the knowledge-level representation PD′ = 〈V ,Par ,

Act〉 is a triple Σ = 〈S,Act , γ〉, such that:

� S is a set of states S = {s = {(x1, D
x1
s), . . . , (xn, D

xn
s)}, with x ∈ V ∪ Par

and Dxi
s ⊆ Dxi .

� γ : S × ℘(Act) → ℘(S) (where ℘ denotes the powerset) is the transition

function: given a state s and a set of actions A = {a1 , . . . , an} ⊂ Act so that

precond(ai) hold at s for all ai ∈ A, the application of all effects(ai) on s leads

to a set of successor states Ss. If for some ai, precond(ai) do not hold at s,

or if A = ∅, γ(s,A) = ∅.

Generalizing on sets of states S, we define Γ̂ (S ,A) =
⋃

s∈S γ(s,A). Having

provided the syntax of the goal and the notions related to the state transition

system modeling the planning domain, we can now proceed to the definition of the

planning problem and plan.

Definition 5 (Planning Problem). A planning problem is a triple P = 〈Σ ,S0 , g〉,
where Σ is a transition system as in Definition 4, S0 is the set of all states which

satisfy a conjunction of propositions prop initi , and g is a goal.

Definition 6 (Plan). A plan consists of a sequence of action sets π = 〈A0, . . . ,

Ak−1〉, where k is the length of the plan, and a sequence inPars of assignment

relations inParsi for each Ai ∈ π. inParsi is defined as

{(p := cp) | ∀p ∈ in(a) ∀a ∈ Ai}, where cp ∈ Dp.

58 3. The RuG CSP-based Planner

Note that many Ais may refer to empty sets, since k is set to some number

greater than the expected maximum plan (see also Section 3.7). We extend the

Γ̂ function to capture the set of states that are brought forth by applying the

actions in π, starting from S0 [inPars0], where S0 [inPars0] is S0 with the domains

of input parameters updated according to inPars0 . Given an action sequence π =

〈A0, . . . , Ak−1〉, and an inPars = 〈inPars0 , . . . , inParsk−1 〉 we use the notation:

Γ(S) = Γ̂(S[inPars0], A0), Γ2(S) = Γ̂(Γ(S), A0)[inPars1], A1),

and similarly for Γ3(S), . . . ,Γk(S). Thus, a plan consisting of π and inPars imposes

a sequence of state sets

S̃ = 〈S0 ,Γ (S0),Γ 2 (S0), . . . , Γ k (S0)〉.
We call S̃ the offline execution path. Note that the transition function is applied

on a subset of the state set resulting from the previous transition, as induced by

the sequence of input parameter assignments in the plan. In the next section, we

formally describe when a plan π has the potential to solve the planning problem P ,

i.e., when the application of π yields an S̃ that satisfies the goal g.

3.5.1 Semantics of the goal

The notion of goal satisfaction is defined in terms of the execution path S̃ =

〈S0 [inPars0], . . . ,Sk 〉 induced by a planning problem P = 〈Σ, S0, g〉, an input pa-

rameters assignment inPars, and a sequence of action sets π = 〈A0, . . . , Ak−1〉. As

described in Section 3.4.1, the goal g amounts to a conjunction of condition goals

and subgoals, and eventually its elemental constituents are propositions. In the

followings, we use the notation S ⊇ props if there is at least one state s ∈ S that

satisfies the propositional formula props. We say that a plan has the potential to

solve the planning problem, if it corresponds to an execution path which subsumes

some sequence of states that satisfy the propositions inferred by the goal. We denote

the index of the last state set in an execution path as last(S̃). We first introduce

the notion of the minimal execution path in reference with a set of propositions,

which is used for defining the formal semantics of the goal.

Definition 7 (Minimal execution path). min(S̃ , props) = 〈S0 , . . . ,Sn〉 is a subse-

quence of S̃, so that

(Sn ⊇ props) ∧ (∀i , 0 ≤ i ≤ n − 1 : ¬(Si ⊇ props)).

Thus, min(S̃ , props) represents the execution path whose final state set Sn is the

first one in the sequence that contains a state that satisfies props.

We say that an execution path S̃ = 〈S0,Γ(S0), . . . ,Γk(S0)〉 has the potential to

solve the planning problem P given a set of initial states S0 and a goal g, and we

3.5. Representing the planning problem 59

write S̃ |= g if:

S̃ |= final(props) : Sk ⊇ props and known

where props and known = props ∧
∧

vari∈props vari known = true

S̃ |= all_states(props) :

∀Sj ∈ S̃ : Sj ⊇ props and known

S̃ |= achieve(props) :

∃ Sj ∈ S̃ such that Sj ⊇ props and known

S̃ |= achieve-maint(props) :

S̃ |= achieve(props) ∧ (∀j , k ≥ j ≥ last(min(S̃ , props and known))) :

Sj ⊇ props and known

S̃ |= find_out(props) :

S̃ |= achieve(props ∧∧
vari∈props and appear in world-altering effects vari changed = false)

S̃ |= find_out-maint(props) :

S̃ |= find_out(props) ∧
∀j , k ≥ j ≥ last(min(S̃ , props and known)) : Sj ⊇ (props ∧∧

vari∈props and appear in world-altering effects vari changed = false)

S̃ |= (condition-goal = sg under_condition goal :

(S̃ |= sg ∧ (min(S̃ , props and known(sg)) |= goal)

where props and known(sg) are the propositions corresponding to sg

plus the requirement that all variables involved in them are known

S̃ |= (condition or not-goal = sg under_condition_or_not goal :

(S̃ |= goal)⇒ S̃ |= (sg under_condition goal)

S̃ |=
∧

i goali :
∧

i(S̃ |= goali)

As in the case of the constraints entailed by the preconditions presented in Sec-

tion 3.3, an extra requirement that all variables involved in props should be known

is added. This implies that, setting aside uncertainty stemming from sensing effects,

a plan has the potential to solve the planning problem if the goal is satisfied for all

possible assignments to variables allowed by prop init . Thus, given some prop init

that imply (1 ≤ v ≤ 2), an empty action set and the goal g=final(v = 1), g is not

satisfiable. If, on the other hand, there is a sensing action with effect sense(v), there

is a plan that has the potential to satisfy the goal. However, this extra require-

ment that all variables in the goal should be known may exclude plans that would

otherwise be considered acceptable. For example, given the same prop init and

an empty action set, the goal final(v < 3) is also not satisfiable, despite the fact

60 3. The RuG CSP-based Planner

that it holds for all possible assignments to v . This strong restriction is necessary

to prevent the constraint solver from presenting trivial assignments as acceptable

solutions, despite the fact that we will never be sure if this assignment is indeed

a solution. If, however, we have the opportunity to sense the actual state of the

environment we will be able to check the validity of the solution during execution

time. Thus, the term potential to solve refers to the uncertainty of outcomes dur-

ing sensing, but not to the uncertainty due to the incomplete knowledge about the

initial state.

3.6 Translating the goal into constraints

The goal is translated into a set of constraints on the CSP-level state variables,

which are added to the set of constraints formulating the planning domain as de-

scribed in Section 3.3. The process of transformation of the goal into constraints is

presented in Algorithm 1. translate goal(g, 0, k) returns the set of constraints

that model the goal given a planning problem with bound k. The conjunction

of subgoals and condition goals comprising the goal is traversed, and each one

is transformed accordingly to a set of constraints on the state variables. If the

goal is a subgoal, the conjunction of propositions props included in it is extracted.

The generated constraints follow from the semantics described in Section 3.5. In

case of conditional goals, the goal constraints are generated recursively regarding

the minimal execution path which satisfies the heading subgoal. Given a goal sg

under_condition g, condition constraints(sg, g, 0, k) recursively calls trans-

late goal(g, 0, j), where j is the index of the first state where the propositions cor-

responding to subgoal sg are satisfied (j is the state for which props and known(sg)

hold, but do not hold at the previous state j − 1).

Algorithm 1 Translate goal into constraints on CSP variables

function translate goal(g, m, n)

for gi ← get next in conjunction(g) do

match type(gi)

case subgoal :

constr [i]← translate subgoal(gi, m, n))

case condition-goal ∨ condition or not-goal :

constr [i]← translate cond goal(gi, m, n))

end for

return
∧

i constr [i]

end function

3.6. Translating the goal into constraints 61

function translate subgoal(sg, m, n)

props ← extract propositions(sg)

props and known ← props ∧
∧

vari∈props vari known = true

match type(sg)

case final : return props and known[n]

case all states: return
∧n

i=m props and known[i]

case achieve: return
∨n

i=m props and known[i]

case achieve-maint : return props and known[n]

for i← m,n− 1 do

return props and known[i] ⇒
∧n

j=i+1 props and known[j]

end for

case find out :

return
∨n

i=m(props and known[i] ∧∧
varl∈props in world-altering effects varl changed [i] = false)

case find out-maint :

return props and known[n] ∧∧
varl∈props in world-altering effects varl changed [n] = false ∧∧n−1
i=m props and known[i] ⇒

∧n
j=i+1 props and known[j]

end function

function translate cond goal(g, m, n)

sg ← get head(g)

cg ← get tail(g)

match type(g)

case condition-goal:

return translate subgoal(sg, m, n) ∧
condition constraints(sg, cg, m, n)

case condition or not-goal:

return ¬translate goal(cg, m, n) ∨
translate cond goal(sg under condition cg, m, n)

end function

function condition constraints(sg1, g2, m, n)

props1 ← extract propositions(sg1)

props and known1 ← props1 ∧
∧

vari∈props1
vari known = true

return
∧k

i=m+1 (props and known1 [i] ∧
¬props and known1 [i − 1])⇒

translate goal(g2, m, i-m-1))

end function

62 3. The RuG CSP-based Planner

3.6.1 Translating a goal example into constraints

In the followings, we provide the constraints generated for the encoding of Goal 1

of Section 3.4.1:

/*achieve-maint subgoal*/

bookedConcert [k] ∧ bookedConcert known[k]

for i ← 0 , k − 1

(bookedConcert [i] ∧ bookedConcert known[i])⇒∧k
j=i+1 (bookedConcert [j] ∧ bookedConcert known[j])

/*under condition constraints*/

for i ← 1 , k

(bookedConcert [i] ∧ bookedConcert known[i]∧
¬(bookedConcert [i − 1] ∧ bookedConcert known[i − 1]))⇒
/*find out-maint subgoal*/

((tempr [i − 1] > 0 ∧ tempr known[i − 1] ∧ ¬tempr changed [i − 1])

∧
∧i−2

j=0 ((tempr [j] > 0 ∧ tempr known[j])⇒∧i−1
n=j+1 (tempr [n] > 0 ∧ tempr known[n]))

3.7 Solving the CSP

The set of constraints resulting from the translation of the planning domain, the

propositions referring to the initial state and the goal form the CSP which is passed

to the constraint solver. The constraint solver computes a valid assignment to the

CSP variables that model the planning actions, and this assignment corresponds to

an optimistic plan that has the potential to solve the planning problem. We use the

Choco v2.1.1 constraint programming library [Choco library documentation, 2012],

which provides a large choice of implemented constraints, as well as a variety of pre-

defined but also custom search methods. Moreover, it allows the dynamic addition

and removal of constraints, a feature which is necessary for efficiently incorporating

the new information acquired at execution time, and keeping track of environment

evolution as explained in Chapter 5.

Prior to calling the solver, the planner first prunes from its search space the

actions about which it knows in advance they have no potential to contribute to the

goal. This preliminary process identifies all actions ai that include at least one of the

goal variables in their effects, and then recursively finds all actions which include in

their effects variables that are involved in the preconditions of the actions ai that are

directly related to the goal. The search for applicable actions during solving is thus

limited to this set of possible candidates, an effect that may considerably facilitate

3.7. Solving the CSP 63

the solver’s work in situations where there are many actions available, but few are

relevant to the goal—as is usually the case of large domains which offer diverse

functionalities. Along with this preliminary pruning, a value selection strategy

that first tries to assign false values to the action variables is employed. This way,

the inclusion of redundant sensing or even unwanted world-altering actions in the

produced plans is usually avoided. Yet, it does not guarantee that the computed

plans are optimal, i.e., that they include the least possible number of actions which

fulfill the goal. It should be noted that the standard methodology for shortest-plan

search, which starts with trying to find a plan of length k = 1, and continues in

case of failure with a plan of length k = 2 etc., would not result in optimal plans

due to the fact that parallel actions are allowed (one variable per action). Although

the RuG planner does not ensure optimality, the tests on diverse domains confirm

that the produced plans are “good” and in most cases optimal. Moreover, the plans

usually exhibit a high degree of parallelism.

In the current implementation, the supported types for state variables are enu-

merations and integers. For computing a valid plan it is enough to only instantiate

the variables modeling the actions, since, once these are known, the values of the

relevant state variables can be inferred by propagation. Therefore, only the ac-

tion variables are indicated as “decision” variables. The solving process proceeds

through a combination of consistency techniques and search (branching) algorithms.

Choco allows the specification of different levels of consistency to be enforced on

different kinds of constraints. By default, constraints are propagated using the

GAC3rm algorithm [Choco library documentation, 2012]. Nested constraints of high

arity, i.e., which involve a high number of variables, or constraints with at least one

variable with a very large domain are represented by decomposition, and are thus

automatically reified [Gent et al., 2007] at the solver level through the introduction

of intermediate variables. Decomposition is necessary especially for dealing with the

complex constraints that model the maintainability and conditional goals, however

at the cost of a decrease of the level of filtering. The way that a planning domain is

modeled also affects the structure of the resulting CSP and thus the performance

of the solver. For example, opting for an encoding which keeps the number of plan-

ning operators as low as possible is beneficial for propagation, since it results in less

constraints.

The branching strategies are defined on the decision variables. They instruct

the selection of some uninstantiated variable, using some variable ordering heuris-

tic, and the assignment of some value from its domain to it, by employing some

value ordering heuristic. Several branching strategies have been investigated and

tested, and depending on the domain instance the combination which provides the

optimal results varies. Usually, search strategies that yield good-quality plans have

64 3. The RuG CSP-based Planner

worse performance than strategies which lead to plans that include redundant ac-

tions, e.g., by applying a random value assignment. In the rest of the thesis, a

“most constrained” variable selection heuristic and an “increasing domain” value

iteration strategy is employed in the testing process, unless stated otherwise. Most

constrained implies selecting the variable involved in the largest number of con-

straints. Variables modeling virtual KB actions are selected before all others. Then

an iteration over values in increasing order takes place.

Regarding the choice of k, this is selected depending on the planning domain.

It could be restricted by the number of grounded action instances, however since

this can be very high (given the potentially large domains of the input parameters),

k is set by the domain designer, based on his anticipation of a maximum size of

expected plans and his knowledge of the domain. For example, given a domain,

where a robot has to move between some locations, k could be set to 3 times

the number of locations. Note that due to the high degree of parallelism that

characterizes the produced plans, many solutions which require considerably more

than k actions will be found.

Exploiting properties characteristic to the planning problem, such as causal

dependencies, that are used in modern heuristics becomes difficult because the re-

sulting CSP encoding is quite detached from the structure of the original planning

problem, and the encoding is not propositional. As already mentioned, the en-

hancements presented in [Barták and Toropila, 2008, 2009] are not applicable in a

planning domain as expressive as the one supported by the RuG planner. The model

reformulations from logical to combinatorial encodings are dependent on a classical

STRIPS representation, and cannot be applied because of the use of numeric-valued

variables and input parameters, arithmetic preconditions, and effects beyond mere

assignments. Moreover, the main proposals for improved search strategies rely on a

formulation that only allows sequential plans. However, including parallel actions

when possible pays off at execution time, since many actions and especially sens-

ing ones, take a long time to respond. Due to these reasons, the performance of

the RuG planner has less inferential power in complex combinatorial propositional

reasoning compared with state-of-the-art planners. However, it provides for an ex-

pressive domain representation, with extensive support for numbers, can efficiently

deal with uncertainty about numeric information, and supports a rich language for

expressing extended goals. These characteristics are indispensable to model and

handle pragmatic scenarios in WS application domains.

3.7. Solving the CSP 65

3.7.1 A planning example

Let us now consider a planning problem which models the scenario described at an

abstract level in Section 1.3.1. The planning domain consists 30 different planning

actions, 23 of which have sensing effects. The planning operators simulate the

functionality of services that reside in the Web, derived from different business

areas related to making online appointments, shopping, shipping, traveling, learning

about entertainment events, maps, calendar, and weather services. The actions can

be mapped to the APIs of real services, as presented in [Kaldeli et al., 2011]. For

example the Yahoo! weather service can be used as a source of information regarding

temperature or weather conditions, Google maps for geographical information such

as distances, Google calendar for checking the marked occupations for some given

date, and the eventful.com for collecting useful data about a number of cultural

events, e.g., browse through the list of concerts for a given band. The responses

of the actual services are in these cases XML documents, which are parsed to

extract the respective information, and intermediate transformations may be needed

to translate the derived data to some format that can be used at the planning

level, and vice versa. For example, because the Yahoo! weather-related services

require WOEIDs (Where on Earth IDentifier) as the form of their location-related

input parameters, locations have to be mapped to this format, while dates are

also transformed between different formats, depending on the specification of each

service. The process of translating the combination of planning actions and input

parameters into concrete invocations and appropriately parsing the responses is

taken care by some separate executor, as e.g., implemented in [Westra, 2010].

Such a domain that encompasses a broad diversity of services can serve a large

variety of different user needs, from arranging some entertainment activity to pur-

chasing some item or making an appointment with a doctor. For example, let us

consider a user who lives in Groningen, NL, and wants to book a ticket and a hotel

room for the nearest upcoming concert of the band “Neutral Milk Hotel” whose date

and location meet some criteria referring to the weather conditions, the distance

from Groningen, his availability on the performance day according to his agenda,

as well as about the price he is willing to pay for his overnight stay. This wish is

captured by the following nested goal:

Entertainment goal

achieve-maint((bookedHotel = TRUE ∧ hotelPrice < 80)

withParams (hPlacePar = eventPlace ∧ hDatePar = eventDate∧
numbOfNightsPar = 1 ∧ roomTypePar = “single”))

under_condition

eventful.com

66 3. The RuG CSP-based Planner

achieve-maint((bookedTicket = TRUE) withParams

(bandNamePar = “NeutralMilkHotel”∧
concDatePar = eventDate))

under_condition

find_out((temperature > 0) withParams

(wPlacePar = eventPlace ∧ wDatePar = eventDate)

∧ busy = FALSE withParams (cDatePar = eventDate)

∧ (distance < 200) withParams

(mapsOriginPar = “Groningen,NL”∧
mapsDestinPar = eventPlace))

The variables eventPlace and eventDate on which the performance will take

place are unknown offline, and it is up to some knowledge gathering service (namely

the eventful.com service) to provide them. In the initial optimistic plan these are

assigned some convenient value by the solver, however the respective knowledge-

level variables indicate that this value is not a valid one. An assignment to some

variable var = value for which var known = false is signaled in the optimistic plan

by a “defaultVar” mark.

By employing the conservative combination of most constrained and increasing

domain selection strategies, the following plan is generated offline for the entertain-

ment goal:

{getEventsList(Neutral Milk Hotel)},
{getNextEvent},
{checkCalendarAvail(defaultDate),

getDistance(Groningen, defaultPlace),

getTemperature(defaultPlace, defaultDate),

getAvailHotels(defaultDate, defaultPlace, 1, 1)},
{bookConcertTicket(Neutral Milk Hotel, defaultDate)},
{getNextHotelInfo},
{bookHotel(defaultHotel, defaultDate, 1, 1)}

For readability reasons we put the assignment to the input parameters together

with the actions. The values “defaultPlace”, “defaultDate” and “defaultHotel” all

correspond to the same values, i.e., to the yet unknown eventPlace, eventDate and

hotelId sensed by getNextEvent and getNextHotelInfo. getEventsList computes

the list of performances for a given band ordered by date. The service for dealing

with hotels provides aggregated searching and booking facilities over a wide range

of hotel providers (such as services as booking.com do), and orders the results

eventful.com
booking.com

3.8. Goal editor 67

according to some criterion (e.g., price). getNextHotelInfo returns the information

(price, hotel id) of the next hotel in the formed list. The time for transforming

the planning domain and goal into a CSP takes 3.4 sec on an Intel Core i5 Core i5

@2.50Ghz computer with 4GB of RAM. The time for computing the solution-goal

is 3.7 sec. More results regarding evaluation of different scenarios are provided in

Chapters 4, 5 and 6.

Depending on the information returned at runtime, there are many different

possible ways for the plan execution to evolve. For example, it may turn out that

the place of the first upcoming concert is too far, or that there is no hotel available

on that date within his budget, etc. In such cases, the original plan has to be

interrupted and revised, so that the conditions regarding the whereabouts and date

of the next concert are looked up. To further complicate things, at any moment a

service may fail. So, if e.g., the booking service of the first selected hotel that meets

the users criteria happens to be in a permanent failure state, an alternative hotel

has to be searched, and depending on the result, the goal may finally be satisfied

or not. In Chapter 5, we pick up again this example, and discuss the behavior of

an orchestrating algorithm that takes care of contingencies that come up after the

exposure of the offline plan to the environment.

3.8 Goal editor

A graphical goal editor, which is designed to assist the user in specifying a goal

given planning domain, has been implemented as part of a web-based user interface

for smart homes. Detailed information about the implementation of the UI and

its features can be found in [Yumatov, 2011]. The UI is platform-independent and

can operate on a broad range of devices ranging from mobile phones to portable

computers and traditional PCs. The goal editor is one of the features offered by

the UI, along with a user-friendly explorer of the available services, a graphical

overview that keeps track of the current states of the devices-services, and support

for directly commanding services if possible.

The goal editor presents the user with the constructs of the language and the

planning-level variables, and guides him in specifying a goal, by suggesting the

allowed combinations of constructs and expressions through pop-up lists. Meta-

information, such as the location of devices in the case that actions correspond

to operations offered by devices, is used to group state variables offered by the

services in the pop-up lists. Services and variables are annotated with icons, if

these are available, so that the user can conveniently detect the desired properties.

The domains of the variables are taken into account to restrict the options for

68 3. The RuG CSP-based Planner

variables and values selection depending on the kind of the chosen propositional

formula. Thus, variables incompatible with some expression operator as well as

unacceptable values are filtered out. Figure 3.2 depicts a screenshot of an expression

editing window. The Val button opens up a value picker menu, while Srv opens a

dialog with all devices which include variables with a domain compatible with the

light variable.

Once the goal is specified through the graphical contacts, it is stored into an

XML format, that respects an XML schema which models the goal syntax. The

planning domain, parsed by the UI to exclude all necessary information and pro-

duce the graphical overview, is also represented in XML format. Figure 3.3 depicts

how the goal

achieve-maint(main livRoom lamp : light = ON)

under_condition_or_not

find_out(natural light = DARK) ∧
achieve-maint(chair livRoom lamp : light = OFF ∧

tv : tv state = ON ∧ tv : tv channel = 2 ∧
chair : chair state = MIDDLE)

is specified and stored in the goal editor. Note that under_condition_or_not is in-

dicated as “optional condition”, while a variable identifier includes the device name

(before the separator “:”). The variable values are represented visually through

appropriate icons, e.g., the state “ON” for a lamp is presented by an image which

depicts a lamp that is on.

Support for managing stored goals, such as editing, organizing them into groups

according to their functionality or other properties or bookmarking them, is pro-

Figure 3.2: Goal editor: an example of an expression editing window

3.8. Goal editor 69

Figure 3.3: Goal editor: an example of an conditional goal representation

Figure 3.4: Goal editor: an example of an conditional goal representation

70 3. The RuG CSP-based Planner

vided to the user. The user can only edit or delete these goals that are allowed

by his user permissions, and the viewing of available goals can also be filtered ac-

cording to the user profile, including e.g., his preferences or possible disabilities. A

screenshot of some goals viewable by a user is shown in Figure 3.4.

In the current implementation, the UI communicates with the planner and the

repository which keeps the domain representation (see also Section 4 for the UI as

part of a domotics architecture) through the REST (Representational State Trans-

fer) interface. Once a request for satisfying a goal is issued, the XML representation

of the goal is passed as input to the planner, which parses it, and translates it into

constraints which are dynamically added to the set of constraints that model the

planning domain. Then, after taking into account the current state of the world, the

resulting CSP is passed to the constraint solver, which computes a valid assignment

to the action variables, i.e., a plan that has the potential to satisfy the goal.

Chapter 4

Planning in a Smart Home

The use of planning techniques for service composition has so far mainly focused

either on the public Web, where services are distributed on the internet, being reg-

istered, for example, on a UDDI (Universal Description, Discovery and Integration)

registry, or on corporate IT scenarios, where services are kept to some infrastructure

accessible only to a limited number of stakeholders, e.g., a private cloud. However,

the evolution of web technologies has also highly affected other open and heteroge-

neous networks of autonomous entities. A prominent example is the Web of Things,

which is concerned with the interoperation of everyday embedded devices. The Web

of Things paradigm is widely used in the field of domotics, which aims at the re-

alization of highly automated intelligent home environments, so as to enhance the

feeling of comfort and safety of the its inhabitants. The similarities between the two

sorts of Web include the loose coupling of the computational hosts, the high het-

erogeneity in terms of hardware and software running on the connected nodes, the

importance of communication protocols, and the need to effectively coordinate and

integrate the different components, in order to deliver to the end-user a transparent

and satisfactory access to the system.

Given these requirements, infrastructures that base on the concept of service

constitute a natural proposal to the realization of next-generation homes [Aiello

and Dustdar, 2008]. Indeed, there are a number of service-oriented platforms for

pervasive applications, such as the Java-based Jini infrastructure [Apache, n.d.],

the Universal Plug and Play multimedia standards [UPnP Forum, 2008], and the

Open Services Gateway initiative (OSGi) [OSGi Alliance, 2009]. However, these

platforms focus mainly on aspects related to basic device interoperation and spon-

taneous networking, without providing for dynamic coordination and more complex

and intelligent functionalities that can be built at a higher application level. One

should take full advantage of the capabilities offered by a well-designed Service-

Oriented Architecture for the home, and, by automatically composing the available

autonomous device operations, enable the delivery of added-value services which

will be perceived as smart by the user.

72 4. Planning in a Smart Home

4.1 Smartness via service composition at home

To satisfy the wishes of the user and guarantee his comfort and safety, the house

has to be able to exhibit quite complex functionalities rather than just triggering

some single service or a pre-designed sequence of fixed services. A trivial operation

such as turning on a light in a corridor can be achieved with a switch or a passive

infrared sensor. However, the coordination of the home so as to effectively deal with

a gas leak detection is far more demanding, especially when considering the many

possible contextual states the house and the user can be in, and each of which

may require several possible handlings to achieve the same ultimate safety goal.

Moreover, developing rigid solutions that are tailored to a specific home instance

and user needs is not an efficient approach, given the considerable effort that is

required to adapt them for new customers.

Designing and predicting all possible service compositions is thus not a viable

solution given 1) the large variety of different user requirements and home instances,

and 2) the lifecycle of a specific home: devices evolve over time, with new func-

tionalities constantly appearing or disappearing, the state of the devices constantly

changes, users move around, and thus the number of possible contextual states can

be very high. Therefore, approaches to service coordination in such a dynamic

setting have to be easily customizable to different home instances and user needs,

be able to support home evolution, and perform complex reasoning about contex-

tual information rather than relying on hardwired sets of service instances. These

remarks are in line with the challenges that should be addressed by service composi-

tion mechanisms in pervasive environments as identified by Bronsted et al. in their

survey about service composition issues in pervasive computing [Bronsted et al.,

2010]:

� Context awareness: “A composition is context aware if it is sensitive to context

changes, its constituent services are sensitive to context changes, or the set of

composed services varies with context changes.”

� Managing contingencies: “In a pervasive computing environment, devices—

and thus services—often have unpredictable availability [. . .] A service in a

given composition might become unavailable and need replacement, so the

logic for discovering and inserting a replacement service shouldn’t reside in

the constituent services.”

� Leveraging heterogeneous devices: “Pervasive computing systems use a variety

of devices, from Internet servers to networked sensors and actuators.”

4.1. Smartness via service composition at home 73

� Empowering users: “Pervasive computing applications require new interac-

tion models because document-centric, desktop-based computer interfaces are

often unavailable or impractical.”

In this chapter we show how these challenges can be addressed through an ar-

chitecture which bases on the notion of service abstraction, and has at its core the

RuG planner presented in Section 3. In such a context, the objective to be achieved

is described in the form of a declarative goal, while the services published by the

available devices are selected and combined during runtime. This way, different

compositions can be be computed for the same goal depending on the current state

of the devices, thus meeting the first challenge about context awareness. Regarding

the second requirement, the system supports dynamic service availability, and de-

vices can enter or leave the network. Since the composition is computed at runtime

rather than at design time, the reasoning is performed on the most up-to-date set

of services, which may change over time. The third challenge is realized by an open

and dynamic pervasive layer which supports a number of different communication

protocols, and offers a standard interface for controlling all devices to the upper

layers, thus ensuring interoperability. Finally, the infrastructure is user-centric and

can be easily adapted to match new user needs through the specification of goals

which can be inserted either by the designer or the home inhabitants themselves, as

well as the support for different user interfaces, such as a touch screen, voice-based

or Brain Computer Interfaces (BCI).

We think that Smart Homes constitute an environment that is particularly ex-

pedient for the application of AI planning techniques. In fact, the applicability

of elaborate automated discovery and composition of services available online in

the Web is limited by the lack of machine-interpretable and standardized seman-

tic mark-ups, as well as the very limited meaningful correlation and compatibility

among operations of different services, with the vast majority of public services

being mere data sources, as concluded by the findings presented in [Fan and Kamb-

hampati, 2005]. The environment of a Smart Home, on the other hand, is more

structured, well-defined and controllable, thus making the added value gained by

non-trivial automated composition and monitoring of services a feasible and realistic

task. In this case, one can rely on consistent descriptions of service operations, with

proper syntactic and semantic mark-ups provided by the home domain designer, to

perform powerful reasoning for complex tasks which considerably advance the level

of home intelligence.

As far as we are aware, this is the first attempt to fully integrate a domain-

independent planning component in an event-driven service-oriented prototype for

pervasive applications in a domotic environment. In such a setting, the planning

74 4. Planning in a Smart Home

module has to continuously interact through asynchronous message passing with the

other components, such as the context awareness and the service repository, so that

it seamlessly adjusts the planning domain instance to reflect environmental changes,

and reacts accordingly at runtime. Although the implementation presented herein

relies on the OSGi-UPnP platform for exposing devices as Web Services, the archi-

tectural components are loosely coupled with each other and independent of the par-

ticularities of the specific architecture (e.g. SOAP, OSGi-UPnP). Thus, they can be

easily adapted so that they inter-work in a different setting (e.g., see [Caruso et al.,

2012] for an implementation using the Representational State Transfer (REST) for

inter-communication, and custom proxies for a variety of real hardware devices

with different protocols). The platform has been fully implemented, evaluated, and

tested with real users on a simulated home environment.

The adopted planning domain modeling relies solely on individual descriptions

of de-coupled device operations, described and implemented using existing protocol

standards, such as UPnP-OSGi. The multi-valued variable-based encoding of the

planning domain maintains a close relation to the actual way that device operations

are realized, e.g., adhering to a direct mapping between UPnP- and planning-level

variables (see Section 9). These characteristics contribute towards reducing the

manual effort, and making more intuitive the task of converting the pervasive-level

domain and context into their planning-level equivalent, as well as the users’ goal

specification. Contextual changes are propagated asynchronously to the planner

and incorporated into the planning instance representation in form of constraints,

while the generated plans are characterized by a high degree of parallelism, which

can be exploited at execution time for achieving better overall response times.

Straightforward replanning is applied for simple failure recovery.

The architecture we present in this chapter has been designed, implemented and

evaluated in the context of the European project Smart Homes for All (SM4ALL)

[SM4All, 2008-2011]. The service-orientation principles of the architecture are not

limited to the lower levels of the pervasive layer, but also at the application layer. By

building on established standards such as OSGi and UPnP, the platform abstracts

to higher layers that support complex reasoning on the set of available services and

their state, as well as the interaction with state-of-the-art user interfaces such as

BCIs. Most importantly, the architecture supports the performance of runtime ser-

vice composition. A fully-working prototype has been implemented and evaluated

with respect to the efficiency of the composition layer, but also the acceptability and

effectiveness from the side of end-users from diverse backgrounds, namely a group

of elderly and disabled people, and a group of younger technologically experienced

users. The manuscript extends the

The remainder of the chapter is organized as follows. Section 4.2 describes some

4.2. A day in the Smart Home 75

scenarios that seek to demonstrate what kind of problems and situations a ‘smart’

home equipped with the SM4ALL architecture can deal with. The main aspects

of the SM4ALL project and the software architecture we propose are introduced

in Section 4.3. Section 4.4 describes how service composition through planning

can achieve a smart home behavior. The prototype we built to test the validity of

the approach is presented in Section 4.5, while the engineering process to deliver

a smart home is illustrated in Section 4.6. The technical evaluation of the system

and the user evaluation of it are presented in Sections 4.7 and 4.8, respectively.

4.2 A day in the Smart Home

Let us now describe how a Smart Home equipped with the SM4ALL architecture

behaves over a possible course of events that happen throughout a rather adven-

turous day in the house, including both conventional user requests and reactions

to emergency situations. The following scenarios play the role of demonstrative

examples throughout the paper, and have been tested in a simulated environment,

as described in Section 4.7. We consider that the home inhabitant is a disabled

person who can move around on an electric wheel-chair, while a nurse pays a visit

for some hours every day. A location component keeps track of the location of the

users to the level of some predefined areas.

At 8 pm the waking-up goal prescribed by the user is automatically triggered:

the alarm clock rings, the curtains in the bedroom are opened, the lights may be

turned on depending on the amount of daylight detected by a natural light sensor,

and the motorized bed is elevated. After taking a shower, the user wants to move

to the sitting room and watch some TV. Such a goal dictates that the TV is set to

the user’s channel of preference, the lights are adjusted depending on the indication

of the natural light sensor, and the curtains are also shut accordingly. The air-

conditioner is turned on if the temperature sensor in the living room indicates that

the temperature is too high, while the necessary doors are opened to facilitate the

user moving to the sitting room.

At noon, the user goes to the kitchen to prepare something to eat. While being

there, the smoke detector in the kitchen identifies a potentially dangerous smoke

leak—but fortunately not due to fire. As a result, a predefined home goal for dealing

with this situation is automatically triggered: after having ensured that the user

has safely moved out of the kitchen (let’s say to the adjacent sitting room), the door

leading to the kitchen is closed to isolate the smoke in a single room. The ventilator

is turned on and the kitchen window is also opened, so that the foul air is expelled,

while an alarm notification appears on the TV screen. While waiting in the sitting

76 4. Planning in a Smart Home

room, the user wants to move back to the kitchen, but only after having assured

that the environment there is safe, and the smoke has been eliminated. This wish

implies resorting to sensing to identify the current situation in the kitchen. Let’s

assume that after some time the smoke is eliminated, causing the alarm on the TV

and the ventilator to automatically turn off.

After verifying that no serious damage has been caused, the user moves to the

sofa in the sitting room and wishes to have a cold beer in his hands. Assuming that

the house is equipped with a housekeeping robot (similar to the cooking assistant

described in [Gravot et al., 2006]) able of performing basic recognition and manipu-

lation tasks, such as moving around, getting and putting items at particular places,

sensing their temperature etc., then the request of the user can be fulfilled by the

robot. Let’s say that there are no beers in the fridge, however the system finds out

that there are some beers left on the storage shelf —the assumption is that items

in the house are labeled by RFID tags, and a smart fridge and smart shelves keep

track of them. Having this information in hand, the robot will move to the storage

room and get a beer from there. In order to satisfy the requirement that the beer

should be cold, it will proceed in placing the beer it has taken in the fridge, and

leave it there for two minutes to cool. Then it will take it out again and bring it to

the sofa.

Later in the afternoon, while the user is taking a bath, and the nurse has gone

out for some shopping, a fall is identified by the fall detector attached to him [Aiello

and Dustdar, 2008], and an emergency goal is automatically triggered: the health

center is notified and an informative message is sent to the nurse’s PDA or mobile

phone, while the robot is moved to the bathroom in case the user wants to ask for

some additional assistance. Given that the fall has not caused any serious trouble,

the night finds the user lying in his bed reading a book, and after some time he

decides that it’s time for going to sleep. He thus issues a goal that prepares the

bedroom conditions for sleeping, which involves setting the alarm clock to some

preferred wake-up time, lowering the motorized bed position, turning off the lights

and closing the curtains.

It should be emphasized that user goals as well as the description of the device

functionalities are kept as de-coupled as possible from the particular setting of a

home instance, and the set of desired service invocations is reasoned at runtime,

depending on the capabilities of the particular house and its current context. Thus,

the functionality for sending a message to the nurse for example is specified in a

generic way, so that it may be taken care by different atomic device instances or a

combination of them. This depends on which particular devices that can offer the

semantically prescribed unified messaging possibility are available in the specific

pervasive system, e.g., a smart phone, PDA, mobile etc. Moreover, depending on

4.3. Architecture 77

what is inferred about the current state of the house, the same goal may lead to

quite different compositions of activities. For example, regarding the goal about

getting a cold beer, if there exists a beer already in the fridge, the composition will

instruct the robot to directly get it from there, or, in the case of the fall detection

goal, if the nurse happens to be at home, all that has to be done is to turn on a

local alarm to notify him, so that he can take care.

4.2.1 Replanning for basic failure recovery

The scenarios mentioned above assume that no contingencies occur during execu-

tion, and that all service invocations complete successfully. What if, however, a

service is out of order, and responds with a failure or if a timeout occurs? In such

cases, the system will first try to re-invoke the erroneous service, and if again a

failure or timeout is observed, it will perform replanning. This means that the

composition engine will attempt to achieve the goal by computing an alternative

plan, which does not include the faulty service.

Considering the scenario with the beer described above, let us assume that the

door that leads to the kitchen is blocked, e.g., because in the meantime someone has

put an obstacle which hinders its opening, and therefore the respective automatic

door opening invocation reports an error (or times out). As a result, the composition

engine looks whether there is an alternative route to the kitchen, which does not go

through the problematic door. It should be noted that the new plan will take into

account the contextual situation that has resulted after executing all actions that

preceded the attempt for opening the kitchen door, which means that the robot

may need to go back in order to follow the right route. If no alternative plan can

be found, then the system responds that the goal is not satisfiable under the given

contextual circumstances. Similarly, let us assume that, when executing the plan

that prepares the living room for watching TV, the automatic turning on operation

of the TV service responds with a failure. Assuming that the robot assistant has

also the ability of turning on the TV by manually pressing the button on the device,

the composition engine will compute an alternative plan which involves moving the

robot in front of the TV so that it can switch it on.

4.3 Architecture

The key idea underpinning the SM4ALL architecture is that the software infrastruc-

ture is entirely based on the abstraction of a service providing for an open, dynamic

and flexible sensing and control infrastructure. Figure 4.1 provides a schematization

of the systems’ main components and their basic interactions. One can distinguish

78 4. Planning in a Smart Home

three macro layers: the pervasive layer, where the home devices live; the composi-

tion layer, which is responsible for collecting information about the environment,

interpreting it and coordinating the available services; and the user layer which

provides the interface to issuing commands to the home.

4.3.1 The pervasive layer

The role of the pervasive layer is to discover and interconnect networked devices,

and provide a common mechanism for accessing the services they offer for the rest

of the middleware layers and applications. It bases on standard device-level service-

oriented technologies, such as the UPnP and OSGi. This way, all types of devices are

described in a standardized programmatic manner, and are controlled in accordance

with this description. The pervasive platform enables heterogeneous components to

be integrated independently of their interconnectivity protocol through the use of an

appropriate proxy for each communication technology. The platform is extensible,

so that new device instances can be integrated to it in an efficient and dynamic way,

without requiring a reboot of the system. Discovery of new devices is performed

Figure 4.1: Architectural overview.

4.3. Architecture 79

automatically, and depending on the type of the detected device, the pervasive

platform checks whether it can find the respective control software in the drivers

repositories it has access to. If a driver prescribing the functionalities provided

by the discovered device can be found, then no manual configuration is needed,

otherwise an appropriate description of the new device type has to be added into

the system.

The layer is based on an asynchronous publish and subscribe architecture so

that interested parties are notified about the appearance and disappearance of ser-

vices, as well as about state changes. Several clients can connect to the pervasive

layer, such as a BPEL engine, a context-awareness component, a visualization soft-

ware tool (see Section 4.5.3) or a user interface [Aloise et al., 2011]. These clients

subscribe to event types they are interested in, i.e., concerning the change of some

variable of interest. More details about the technologies and standards adopted for

satisfying the requirements for the pervasive layer are provided in Section 4.5.

4.3.2 The service composition layer

Central to the SM4ALL architecture is the composition layer, which is further ab-

stracted into five components. The repository keeps the descriptions of the set of

supported service types, including appropriate semantic markups about the opera-

tions offered, as well as the registry with the actual device instances that are active

at any given moment. This is kept up-to-date according to the notifications re-

ceived from the pervasive layer. A map representing the layout of the house (e.g.,

the rooms that comprise it, and how they are arranged) is also stored in the reposi-

tory. Whenever a new device registers itself to the pervasive layer, it also publishes

itself to the repository as an instance of its associated abstract type, specifying its

functionalities in terms of action preconditions and effects. The context awareness

component seamlessly monitors the status of the devices and the users’ location,

collects and aggregates information, and via a publish-subscribe mechanism notifies

the interested parties. The rule engine uses information about context changes and,

if certain conditions hold, takes action (e.g., a fire is detected, and an emergency

plan should be put into practice) by directly invoking the composition module.

The composition module receives high-level complex goals issued either by the

user layer (e.g., a request for a beer) or the rule engine (e.g., an emergency goal

for combating some dangerous gas that has been detected), and tries to fulfill them

by generating appropriate compositions of the available services. The compositions

are computed automatically and on the fly by the RuG planner. Whenever a goal

is issued, the planner generates a plan, whose execution changes the state of the

environment in accordance with the properties prescribed by the goal. The plan

80 4. Planning in a Smart Home

is then passed to the executor, which translates the composition into lower-level

service invocations and executes them step-by-step, in a synchronous manner. In

case that a service operation returns a permanent failure, the plan execution is

terminated, the erroneous service is removed from the registry of currently active

devices, and the composition module is asked to compute a new alternative plan

for the same goal.

4.3.3 The user layer

The user layer provides the means for the final users to interact with the middleware

and instruct the home. The basic module of the user layer is the Abstract Adaptive

Interface (AAI) [Catarci et al., 2011], which acts as a proxy that provides services

to the particular user interface. Through a unique adaptable algorithm, the AAI

is able to manage many different user interface models, such as a touch screen or a

brain computer interface, by changing its behavior on the basis of the concrete UI

characteristics.

The AAI collects information about the available service operations of active

devices and the goals kept in the repository, and forwards them to the concrete

UIs. The information collected from the repository includes visual data (icons)

associated with the service operations offered by the devices, as well as information

about their location, so that they can be organized accordingly, depending on the

capabilities of the concrete UIs. Moreover, a set of icons representing complex goals,

such as preparing the bedroom for sleeping, are also made available. The AAI is

seamlessly updated to reflect the most recent status of the devices, as delivered

by the context awareness component, and notifies the concrete UIs connected to

the system accordingly. Whenever an icon is selected, the respective instruction

is sent either directly to the executor, if it represents a single operation, or to the

composition module, if it corresponds to a complex goal.

4.4 The home as a planning domain

4.4.1 The OSGi UPnP-level home domain

All devices that participate in the home domain must have an interface description

in accordance with the OSGi UPnP Device Service specification, so that they can be

automatically discovered by the base driver, and added to the OSGi registry. Each

device exposes its functionalities as one or more UPnP services, which provide

a collection of method calls that constitute the UPnP actions, and is associated

with a set of public variables, called state variables. State variables are typed,

4.4. The home as a planning domain 81

and can be posted as events, which means that a notification will be generated

whenever their value changes. A UPnP action can have multiple input and output

arguments, which according to the OSGi UPnP specification are also represented

as state variables. An action may have access to state variables that are associated

to other services, and may perform computations on them or actively change them,

e.g., a robot may be able to manually control external devices. UPnP actions

can be distinguished into sensors, which just sense the value of a state variable,

and actuators, which change the value of one or more state variables. The home

domain can thus ultimately be conceived as a set of UPnP actions, which belong

to several UPnP services, that in turn are provided by UPnP devices, and can be

defined at this low level of the UPnP hierarchy as follows.

Definition 8 (Home Domain). A Home Domain (at the UPnP level) is a tuple

HD = 〈UVar ,UPar ,USetAct ,UGetAct〉 where:

� UVar is a set of variables that reflect some attribute of a service. Each

v ∈ UVar ranges over a finite domain Dv.

� UPar is a set of variables that play the role of input arguments to actions.

Each p ∈ UPar ranges over a finite domain Dp.

� USetAct are UPnP actions that change the value of one or more variables

and UGetAct are purely sensing actions that return the value of a vari-

able. We assume that there is a sensing action for every variable of interest

v ∈ UVar . These two sets form together the set of all available UPnP actions

UAct = USetAct ∪UGetAct . Each ua ∈ UAct has an identifier id(ua) and

optionally a set of input arguments in(ua) ∈ UPar . The identifier of the ac-

tion has the form id(ua) =DeviceId:ServiceId:ActionId, where DeviceId and

ServiceId are the identifiers of the device and the respective service the action

belongs to. Each device is assigned a unique identifier.

The OSGi UPnP actions describe in a syntactic way the operations that can

be performed on the state variables. For example, the OSGi UPnP action “Close-

Curtains” sets the value of the Boolean state variable “Curtains” to false. Usually,

at this level, the description of the way actions perform is rather primitive, and

does not include any checks about conditions that must hold for the action to be

invoked in a safe and correct way. For example, given a window that opens inwards,

if the “CloseCurtains” action is invoked while the window is open, its casements

will interfere with the curtains. Similarly, the action for setting the TV channel will

fail its goal if the TV is off, or the action that is responsible for moving the robot

may lead to an unfortunate situation if it is performed towards a closed door. This

82 4. Planning in a Smart Home

higher degree of reasoning, which is essential for coordinating more complex tasks,

is captured by the planning-level semantics.

4.4.2 The planning-level home domain

In order to automate the task of composition, the OSGi UPnP services have to be

enriched with additional semantic annotations, which are necessary for the formal-

ization of the available activities, as well as the description of the goal that has

to be fulfilled upon a user request or a triggering event. To this end, the service

operations must be annotated by the domain designer with appropriate semantic

mark-ups, in terms of preconditions and effects as described in Definition 1. This set

of semantically annotated activities constitute the actions that form the planning

domain, which is formally defined as follows:

Definition 9 (Planning Home Domain). Given a UPnP-level Home Domain HD =

〈UVar ,UPar ,UGetAct ,USetAct〉, a Home Planning Domain is a Planning Domain

PHD =〈Var , Par , Act〉 (see Definition 1), with:

� Var = UVar

� Par = SPar

� For each ua ∈ USetAct , there is an action a ∈ Act , with

id(a) = id(ua) and in(a) = in(ua)

The preconditions and effects of the planning actions are defined on top of the

UPnP-level syntactic descriptions.

It should be noted that the set of sensing actions UGetAct are not represented

as planning actions, since their values are updated upon the receipt of the events

that are continuously generated by device state changes or by the available sensors

as shown in 4.4.3.The Planning Home Domain is transformed into a CSP following

the methodology described in Section 3.3. On top of the constraints corresponding

to the Planning Home Domain, constraints stating some conditions that should

hold at every state, or should never be violated at any state, may also be added

to the CSP by the domain designer. These constraints for example may reflect the

layout of the house, stating e.g., adjacent rooms(KITCHEN ,LIVING ROOM).

4.4.3 Incorporating context changes

The current value of a state variable may become known either asynchronously via

a change event that originates from the invocation of some actuator kind of UPnP

action (USetAct), or synchronously from the call of some UPnP action of sensing

4.4. The home as a planning domain 83

type (UGetAct). A sensing action is usually called internally by the respective

sensor device, either periodically or when a specific condition in the environment

is detected, depending on the type of sensor. It may be also called by any external

client that can control the sensor device. A state variable event change or an output

argument conveys a tuple (v, value), where v ∈ UVar and value ∈ Dv . The new

knowledge contained in the tuple is incorporated as a constraint into the CSP as

follows:

� When bootstrapping, all sensing actions that are accessible by the orchestrator

component are called. Thus, for each variable v ∈ Var which can be sensed,

the retrieved pairs (v, inValue) are kept in a structure mapVarVal .

� For each v that is included in the bootstrapping phase, a constraint v [0] =

inValue is added to the CSP , reflecting the current knowledge at the initial

planning state.

� Whenever the context awareness component receives a change event, or the

orchestrator calls a sensing action, the respective tuple (v, value) is processed:

if v is included in the mapVarVal structure, and has a current value inValue

and inValue 6= value, then the constraint v [0] = inValue is removed from the

CSP , and the constraint v [0] = value is added.

Besides changes in the values of variables, a contextual change may reflect the

Besides changes in the values of variables, a contextual change may reflect the re-

alization that a service has become unavailable, if the response after a synchronous

call of the UPnP action ua by the orchestrator indicates a permanent failure. In

such a case, the semantic repository is notified that the respective operation is not

functioning properly anymore, and removes it from the registry of available services.

The repository thus publishes an event which indicates that the action ua has be-

come unavailable, and in turn, the following constraints are added to the CSP : for

all 0 ≤ i < k , a[i] = false, where a[i] is the CSP-level boolean variable modeling

the planning action that corresponds to the UPnP action ua, with id(a) = id(ua).

This way, subsequent plans are not allowed to include action a in any step. If

the services become available again, then the above constraints are dynamically

removed from the CSP, upon the appropriate notification received from the reposi-

tory. We remark that the connection and disconnection of constraints is postponed

if the constraint solver is currently searching for a valid assignment. Therefore,

under certain circumstances, the solution-plan computed by the solver may rely on

assumptions about the contextual state that have become out-of-date.

84 4. Planning in a Smart Home

4.4.4 User and home goals

A set of predefined goals depending on the user’s routine and needs are made

available through the set of buttons modeling complex activities that appear in

the control panel of the supported UI. If the goal issued can be satisfied, the

generated plan is executed and the home devices change state accordingly. If

the goal is not satisfiable under the current context, a message is shown on the

user interface. Table 4.1 shows how the goals described in natural language in

the scenarios of Section 4.2 are expressed in the goal language presented in Sec-

tion 3.4.1. In Goal 5, the achieve-final construct allows robotLocation to change

many times while the robot is moving around to find and get the beers, as op-

posed to the achieve-maint(
∧

i propi) subgoals which ensure that once
∧

i propi

become true at some state, they will stay true till the final state of the produced

plan. The construct goal1 under_condition goal0 in Goal 4 ensures that only if

kitchSmoke = OFF holds will the rest of the goal about moving to the kitchen be

carried on. In contrast, the under_condition_or_not structure in Goal 2 ensures

that the subgoal sitrAirCond = ON will be satisfied if the temperature is higher

than 30 degrees, while if the temperature is lower than that, then only the rest of

the conjunctions of subgoals will be looked after. Note that in the case of Goal

8, healthEm + ‘ ALARM ’ refers to a concatenation of strings, taken care by an

external method call.

Given a goal, the composition module may come up with completely different

plans, depending on the domain instance and initial state. The cause that triggers

an event can also be taken into account: in the case of the health emergency goal,

the notification message sent to the nurse’s mobile phone and to the hospital incor-

porates the cause of the failure. If the Rule Engine triggered the goal because it rec-

ognized a fall, then healthEm = ‘FALL’, if the context conditions indicated a heart

attack then healthEm = ‘HEART ATTACK ’ etc. The heath emergency recognition

can be based on complex computations on several sensed context variables, like e.g.,

presented in [Li et al., 2009]. For example, a fall could be detected based on the

measurements delivered by wearable sensors, such as gyroscopes and accelerators,

e.g., angle2 ÷ angle1 > v1 ∧ accx > v2 ∧ accy > v3 → healthEm = ‘FALL’.

In Section 4.7, we present the plans generated by the planner module for each

of the goals in Table 4.1 for a specific smart home domain and for the particular

initial states we have used for testing our scenarios.

4.5. The prototype 85

Goal 1:

wake up

(by Rule Engine)

achieve-maint(alarmClock = ON ∧ bedrCurtains = OPEN

∧ bedLevel = HIGH) ∧
achieve-maint(bedrLight = ON) under_condition_or_not

find_out-maint(bedrNatLight = LOW)

Goal 2:

watch TV

(by UI)

achieve-maint(TvChannel = CH5 ∧ personRoom = SITR)

∧ sitrLight = MEDIUM) ∧
achieve-maint(sitrCurtains = CLOSED) under_condition_or_not

find_out-maint(sitrNatLight = LIGHT) ∧
achieve-maint(sitrAirCond = ON) under_condition_or_not

find_out-maint(sitrTemperature > 30)

Goal 3:

deal with smoke leak

(by Rule engine)

achieve-maint(kitchVentilator = ON ∧
TvState = ALARM ∧ kitchWindow = OPEN) ∧

achieve-final(doorsLeadTo(KITCHEN) = CLOSED)

under_condition_or_not

achieve-maint(personRoom 6= KITCHEN)

Goal 4:

smoke eliminated achieve-maint(kitchVentilator = OFF ∧ TV = OFF)

(by Rule engine)

Goal 5 achieve-maint(userLocation = AT OVEN) under_condition

go to kitchen if safe find_out-maint(kitchSmoke = OFF)

(by UI)

Goal 6:

bring cold beer

(by UI)

achieve-final(robotLocation = userLocation ∧
robotHolds = BEER ∧ beerTaken = COLD)

Goal 7:

health emergency

(by Rule Engine)

achieve-maint(nurseNotif = healthEm + ‘ ALARM ’ ∧
hospitalNotif = healthEm + ‘ ALARM ’ ∧
robotLocation = userLocation) under_condition_or_not

find_out-maint(nurseLocation = OUTSIDE)

Goal 8:

go to sleep

(by UI)

achieve-maint(bedLevel = LOW ∧ alarmClockTime = 08 :00

bedrCurtains = CLOSED ∧ bedrLight = OFF)

Table 4.1: Goals for the smart home.

4.5 The prototype

The SM4ALL architecture is fully implemented, so as to test its technical properties,

but also the experience of users with it. In the followings, we illustrate the prototype

built based on the design presented in Section 4.3.

4.5.1 Pervasive and composition layers

We use the UPnP protocol to control the hardware devices, HTTP to enable access

to remote clients, and the OSGi Service Platform as the intermediary between the

physical UPnP layer and the service endpoints. The implementation is based on the

86 4. Planning in a Smart Home

Figure 4.2: Architecture of the pervasive layer

Apache Felix project1, which is a framework for writing devices exposed as UPnP

(conforming with the OSGi UPnP specification version 1.1) and integrating them

into the OSGi bundle repository. The interface of the services is written in Java.

Figure 4.2 provides an overview of the internal structure of the pervasive layer,

and the standards it uses. At the bottom sits the network layer, where physical

devices with different networking protocols are located. The device abstraction

layer abstracts away the underlying device technology by offering a driver for each

of the technologies that the pervasive middleware supports. UPnP is used as the

device-neutral technology to which all devices are wrapped by the respective driver,

so that they can be then registered as OSGi services.

Besides UPnP, the prototype is able to automatically discover and support Blue-

tooth and ZigBee2 devices, but it can be easily extended by adding drivers for

other technologies as well. All devices’ provided functionalities, independently of

1felix.apache.org
2www.zigbee.org

felix.apache.org
www.zigbee.org

4.5. The prototype 87

their network protocol, are described in compliance with the format prescribed by

the OSGi UPnP specification, based on two types of elements: actions, which de-

scribe the operations a service supports, and state variables which represent the

current state of an UPnP service. Whenever the value of a state variable changes,

the respective event is published and propagated to the upper layers, notifying all

subscribed parties.

OSGi is used as the platform to expose the devices’ functionalities as services

to the application layers. All components participating in the OSGi framework are

deployed as so-called ‘bundles’. The Controller is a special OSGi bundle that is

responsible for handling events and controlling the services available in the frame-

work, functioning as a bridge between the OSGi layer and the WS gateway, which

executes a lightweight HTTP server that provides a standardized API to external

components. Several clients can be registered to the server running on top of the

OSGi framework, and call the exposed operations, such as getting the list of avail-

able services, subscribing to state variable events, or invoking an action offered by a

service. Clients can be a BPEL engine, a home visualization application [Warriach

et al., 2010], or the SM4ALL executor component.

The context awareness module is registered as a client to the WS endpoint

on top of the pervasive layer, and subscribes to all change events of the variables

involved in the service descriptions. The executor is also a client to the pervasive

layer, without however subscribing to any variable change events: all it has to do

is to be able to invoke services through the respective operation exposed by the

WS server, as instructed by the composition component or directly by a simple

command coming from the user layer. The semantic repository is yet another client

of the pervasive layer, which is notified about the registration and de-registration of

services, so that it adds a new instance of the abstract description of the associated

service type. The pervasive layer and the clients registered to it, interact through

the exchange of XML messages.

The context awareness acts as a listener to UPnP change variable events, which

are further processed by the planner, so that they are ultimately incorporated at

the initial state of the evolving CSP instance. Whenever a goal is issued, the RuG

planner computes a solution which amounts to a valid plan (the implementation

details of the RuG planner are provided in Section 3.7). The invocations of op-

erations by the executor take place in a synchronous way, so that the next action

in a totally ordered plan is invoked after a success return value is received by the

previous action invocation.

88 4. Planning in a Smart Home

4.5.2 The user layer

The Abstract Adaptive Interface (AAI) [Catarci et al., 2011] is registered as a client

of the server on top of the OSGi framework, and whatever commands are issued

via the concrete UIs are passed through it to the lower levels of the architecture.

Its implementation is based on Apache Tomcat and Apache Axis. Two kind of

UIs, a standard Web-based and a Brain Computer Interface, are connected to the

AAI proxy, with which they interact via the exchange of XML messages. The

Web Interface (or alternatively referred to as control panel) consists of dynamic

and responsive web pages developed in JSP (Java Server Pages). The web pages

provide different views of the virtual home. A global view presents all commands

available to the user, in the form of clickable icons along with some descriptive

text, corresponding either to atomic service operations, such as “turn on the light

in the bedroom”, or to complex goals (discussed in the following section) stored in

the repository. The icons represent the current state of the devices, e.g. the icon

indicating “Kitchen light ON” reflects the fact that the current state of the respec-

tive light is on, and clicking on it entails turning the light off, and thus refreshing

the web page accordingly, after the notification originated by the respective UPnP

device is received. A page depicting the rooms of a virtual apartment allows the

user to move to the view of a particular room, from which only the devices whose

Figure 4.3: Views available via the Web interface.

4.5. The prototype 89

location matches this room can be seen and controlled, as depicted in Figure 4.3.

An extra Web page is reserved to reflect the current state of the devices at the user

layer when the BCI is used.

Figure 4.4: A BCI user interacting with the virtual home.

The BCI [Guger et al., 2009] is intended for users who have lost part of their

motor ability due to aging or chronic neurological disorders, and are therefore un-

able or find it difficult to control the system via the standard Web interface. The

BCI used in the test sessions is a portable asynchronous P300-based one, which

translates the users’ voluntary electroencephalographic (EEG) modulations into a

control signal sent to some external device. The set of available commands model-

ing devices and goals are presented on a computer monitor in a form of a 4 by 4

matrix of flashing icons, which are flashing in a random order. The user wearing the

EEG cap has to concentrate on a specific symbol, and whenever this is highlighted,

a particular component is recognized in the measured EEG data. As a result, the

identified command is transmitted to the AAI proxy. Because the flashing icons

have to be static, i.e., they represent a device rather than its current state, the ef-

fect of the commands issued through the BCI are reflected via the web page of the

Web Interface reserved for this purpose, which is updated whenever the state of a

device changes. Figure 4.4 shows a user wearing an EEG cap, having the list of the

screen with the flashing icons-commands on her left side, and viewing a projected

simulation of a Smart Home. More details about the technology and testing results

concerning the BCI can be found in [Aloise et al., 2010].

90 4. Planning in a Smart Home

4.5.3 Simulation and visualization

Setting up an actual physical home or lab facility, furnished with modern sensors

and actuators, is particularly expensive and effort-demanding, and performing tests

with end-users in it can be inefficient. Therefore, it is instrumental to be able to

acquire feedback from users before moving to the actual home and installing the

real hardware devices, so that their requirements are taken into account early in the

development process. To this end, we have implemented a virtual home environment

which mimics as closely as possible an actual home setting, with simulated home

services substituting physical hardware.

Figure 4.5: A screenshot of the home simulation.

The implementation of the simulation and visualization platform –the RuG

ViSi tool– is based on Google SketchUp and has been demonstrated [Lazovik et al.,

2009; Warriach et al., 2010]. It is integrated in the framework as a client of the

WS endpoints at the pervasive layer. The apartment modeled is equipped with

virtual devices implemented in Ruby3, which are coupled with the Web Services

exposed by the devices in the pervasive layer. In this way, whenever a device

3www.ruby-lang.org

www.ruby-lang.org

4.5. The prototype 91

state is changed, the result is replicated in real time in the visualized home. For

instance, to model a reaction to fall detection, we have coupled a virtual alarm in

the simulated house with a Sentilla mote4 equipped with an accelerometer. The

device uses the ZigBee communication protocol, and is wrapped in the OGSi layer.

When shaken, the virtual alarm is turned to red, indicating a warning about the

fall. The position of a user in the house is also shown, by coupling a user virtual

service with a location detector that provides information about the user’s location.

Conversely, one can also control the devices at the pervasive layer through their

virtual equivalents, so that there is a one-to-one mapping between the state of the

OSGi UPnP-level environment and its visual reproduction. Figure 4.5 depicts a

screenshot of a virtual house, and shows how visualized devices at the RuG ViSi

level, such as lamps or the TV, interact with OSGi UPnP devices. In case of a

composition, the series of effects entailed by the executed UPnP-level operations

are reflected in the appropriate sequence at the visualization level.

4.5.4 Sample interaction flow

In order to demonstrate how the different components of the SM4ALL prototype

are integrated and cooperate with each other, we go through a simple scenario and

describe the control and information flow which realizes the desired behavior. Let us

consider an example with a single physical device of type Lamp. The description of

the Lamp type includes one published Boolean-valued UPnP variable, lightStatus,

and three UPnP actions, turnOn, turnOff and a sensing one that returns the current

value of lightStatus. It is also annotated by an appropriate semantic representation

of the two actuator operations in terms of preconditions and effects. This descrip-

tion is stored in the Semantic Repository, as an XML file. During bootstrapping,

the device is automatically discovered thanks to the OSGi-UPnP platform, and the

Semantic Repository is notified about its subscription. As an effect, the Semantic

Repository produces an instance-specific semantic description of the operations of-

fered by the particular device, by adding the device’s unique identifier (lamp1) as

a prefix to the variables and actions that are declared in the abstract type Lamp

description. All subscribed components are notified about the lamp availability

and its description, so that based on that, the planner produces a domain consist-

ing of one variable (lamp1 ::status) and two planning actions (lamp1 ::turnOn and

lamp1 ::turnOff). To inform all interested parties about the current state of all

devices, the executor invokes all available sensing actions. As an effect, the lamp

device publishes an event which contains the current value of lamp1 ::status. The

4www.sentilla.com

www.sentilla.com

92 4. Planning in a Smart Home

context awareness component forwards this event to the UI, the Rule engine, and

the planner, which sets accordingly its initial state (see Section 4.4.3).

Let us also assume that a trivial goal, which specifies that lamp1 : status should

be TRUE , is also stored in the repository. Thus, the UI along with the subscribed

services is also notified about the existing goals, and thus presents in the Web Inter-

face the appropriate icon. When the user selects this icon, a request for producing a

composition that satisfies the respective goal is forwarded by the AAI proxy to the

planner. Assuming that at the current state lamp1 ::status = FALSE , the planner

computes a plan consisting of a single action lamp1 ::turnOn. The plan is passed to

the executor, and ultimately the UPnP action called turnOn that belongs to device

lamp1 is called at the pervasive layer. The call is synchronous, and if successfully

fulfilled a “success” reply is returned to the executor. Moreover, a change event

concerning the lamp1 ::status variable of lamp1 is published by the pervasive layer,

and is ultimately received by all subscribed clients: the planner updates its initial

state, so that it reflects the most latest values of the UPnP variables, and similarly

the UI changes the icon which indicates the state of the lamp. If the response re-

ceived by the executor indicates that the lamp is broken, the executor notifies the

Semantic Repository, which takes the initiative to unsubscribe the service from the

OSGi-UPnP platform, and asynchronously notify about this removal all interested

parties. Thus, if the goal for turning on the light is issued again, the planner will

respond that no plan can be found.

4.6 Practically engineering a Smart Home

The SM4ALL architecture can in principle be fitted to any existing home. In the fol-

lowings, we describe the actual phases that such a fitting process, necessary to make

a home smart with respect to the SM4ALL approach, would have to go through.

Clearly, the average home user does not want to bother with technical details, and is

willing at most to provide some input on what are the goals he wishes to regularly

perform in the home. In Figure 4.6, we provide a schematization of the process

where we show from left to right the state in which the home goes through, and

we distinguish the engineering phases (top) and the stakeholders who are actually

responsible for successfully completing each phase of the process (bottom).

The first phase of the SM4ALL fitting process requires to make an inventory of

the devices present in the home and identify which additional hardware is required

to cover the user needs e.g., door motors, smart meters, smart fridge, etc. Then

the new devices have to be physically installed in the home. In this initial phase,

it is mostly to the SM4ALL expert to do the requirement engineering and to the

4.6. Practically engineering a Smart Home 93

carpenter to fit the hardware in the home. The second phase consists of making

the hardware interoperate, which relates to the pervasive layer of the SM4ALL

architecture. An internetwork expert has to make sure that all devices are connected

to the network and can exchange messages. This is in principle effortless for the

devices which adhere to UPnP standards, and should be easily achieved also for

other devices based on known protocols.

Figure 4.6: The process of fitting the SM4ALL architecture into an existing home.

If a new type of device is introduced into the SM4ALL system, i.e., the func-

tionalities it offers have never been described before in terms of preconditions and

effects, it is also necessary to add these extra semantics. If the new device, e.g.,

a particular lamp, is an instance of a known service type, e.g., the lamp-A type,

then all that has to be done is to declare the type of the device. This task is

performed by the domain designer. The effort of this stakeholder is thus consid-

erable at the beginning, when the behavior of the supported device types have to

be semantically specified, and gradually diminishes as more and more devices are

added to the semantic repository to be used by the composition layer. The last

technical phase of the process consists in customizing the interface to the home for

the user. This means identifying the appropriate type of interface hardware (e.g.,

BCI, touchscreen, voice interface), and also the complex requests according to the

users’ needs and routine. The requests are formulated by the domain designer or

the experienced user in conformity with the declarative fashion of the extended goal

language, and are tied to an icon that appears in the user interface. Emergency

goals are also formulated along with the conditions that enact them and added to

the rule engine. Again, the specification of the goals requires more effort in the

first installations, and becomes less demanding as reuse of already formulated goals

94 4. Planning in a Smart Home

becomes the norm. Finally, one could imagine a final certification phase where an

expert or standardization body may certificate the home to be SM4ALL compliant,

thus allowing for interoperation with new SM4ALL certified hardware.

Considering the shift towards interoperable and service-oriented home setting,

OSGi-UPnP is a good candidate for constituting a common standard for home ap-

pliances, especially since it can easily support different network protocols. However,

the vendors who offer devices with a ready-to-use OSGi interface, certified as “OSGi

Compliant”, are still limited (these include Samsung, 4DhomeNet, IBM, Connected

Systems and others). Given that the reality in home appliances is still far from the

adoption of some common standard, the task of enabling compliance with the OSGi

platform falls on the home designer. Depending on the specifications of each de-

vice, this task may vary from easy to difficult or impossible. For some frameworks

it is possible to wrap them directly as OSGi bundles, for some implementing an

adaption layer is necessary, while for others some patching of their sources is un-

avoidable. To give an example from our own experience, the task of representing a

Sentilla accelerometer in terms of the UPnP standards is a matter of less than an

hour, however implementing an adapter for Zigbee, the network protocol used by

the device, required a couple of weeks development time. However, an adapter for a

given network protocol needs to be developed only once, and as long as well-known

protocol discovery plugins and adapters are available at the OSGi home gateway,

new devices that use these protocols can be automatically integrated.

4.7 Technical evaluation

We provide both a technical evaluation of the system to assess whether the ar-

chitecture is effective and the used techniques have adequate performance; and a

user evaluation in Section 4.8 to give an initial assessment of the acceptability and

usability of the solution. The major focus of the technical evaluation is on the com-

position component, and is based on the scenario described in Section 4.2. The tests

have been run on a 1.83 Ghz computer running Debian lenny and Java 1.6.0 12.

The service components are simulated with accordance to the OSGI UPnP Device

Specification and are exposed as OSGi bundles. Each device offers one or more

services, each of which involves a number of actions and state variables.

The composition layer subscribes as a client to the Web Service server: the se-

mantic repository gets the list of active devices and provides the respective action

descriptions, the context awareness component subscribes to the events regarding

all domain variables, and the executor is also connected, ready to receive invoca-

tion instructions. For the evaluation purposes we model a home with 5 rooms,

4.7. Technical evaluation 95

and 14 simulated UPnP devices. For simplicity, we have simulated one aggregated

device for managing all doors by passing the specific door which the open/close

operations affect as an input argument, thus having one device for controlling 4

doors, and a similar case holds for the lights, window, and curtains devices. The

total number of UPnP actions implemented by the devices is 28 (plus the sensing

actions that are defined for each state variable in the domain) and involve 37 dif-

ferent state variables. These actions model the getting and setting of the declared

state variables. For example, the air condition device comprises two state vari-

ables, AirConditionState ∈ Boolean and AirCondTemperature ∈ Integer . It also

offers two UPnP actions of activator type, each one defined in a separate service:

a SetEnumStateVar for turning on and off AirCondState, and SetIntStateVar for

controlling the desired AirCondTemperature. For the purposes of simulation, the

user himself is represented as one of the services at the pervasive layer. One can

think of a person on a wheel chair, which can be controlled automatically, and its

position is being tracked by a localization component. The robot device refers to

a robot that, without loss of generality, is dedicated in the testing scenario to the

task of bringing beers to his master: it can move around the house (as described in

Section 3.3.1), get a beer from the fridge or the storage, sense if it is cold or not,

and cool it if necessary by putting it in the fridge and waiting for some time. A

state variable can be involved in more than one services, possibly belonging to dif-

ferent devices, like the FridgeDoor variable, which can be controlled automatically

or directly by the Robot device.

Initial state Plan

Goal 1 (wake up)

[1a] : bedLevel=LOW,

bedrNaturalLight=DARK,

bedrCurtains=CLOSED, bedrLight=OFF

{set bedLevel(MEDIUM),

ring alarmClock, open bedrCurtains

turnOn bedrLight}, set bedLevel(HIGH)

[1b] : Same as above, but with

bedrNaturalLight=LIGHT

{set bedLevel(MEDIUM),

ring alarmClock, open bedrCurtains},
set bedLevel(HIGH)

Goal 2 (watch TV)

[2a]: TV=OFF, sitrLight=LIGHT,

sitrTemperature=32,

sitrNaturalLight=LIGHT,

sitrCurtains=OPEN, ∀i doori=CLOSED

{turnOn lightSitr(MEDIUM),

close sitrCurtains, turnOn sitrAirCond,

set TV(ON)}, set TVChannel(CH5)

96 4. Planning in a Smart Home

[2b]: Same as above, but with

sitrTemperature=20,

sitrNaturalLight=DARK

{turn lightSitr(MEDIUM),

set TV(ON)}, set TVChannel(CH5)

Goal 3 (deal with smoke leak)

[3a]: userLocation=AT OVEN,

TV=ON, kitchWindow=CLOSED,

ventilator=OFF, kitchSitrDoor=OPEN

{turn on ventilator, open kitchWindow,

open kitchSitrDoor, set TV(ALARM)},
moveUser to(AT KITCH DOOR),

moveUser to(AT TV),

close kitchSitrDoor

[3b]: Same as above with

userLocation=AT TV

{turnOn ventilator, open kitchWindow,

close kitchSitrDoor, set TV(ALARM)}

Goal 4 (smoke eliminated)

[4]: kitchSmoke=OFF, TV=ALARM,

kitchVentilator=ON

{turnOff kitchVentilator, set TV(OFF)}

Goal 5 (go to kitchen if safe)

[5a]: kitchenSmoke=ON The goal cannot be satisfied

[5b]: Same as above but with

kitchenSmoke=OFF,

userLocation=AT STOR ENTR

open kitchStorDoor,

moveUser to(AT FRIDGE),

moveUser to(AT OVEN),

close kitchStorDoor

Goal 6 (get cold beer)

[6a]: robotLocation=AT START,

userLocation=AT SOFA,

kitchStorDoor=CLOSED,

sitrKitchDoor = CLOSED,

numOfBeersInFridge=0,

numOfBeersInStorage=8,

robotHolds=EMPTY,

fridgeDoor=CLOSED

{open sitrKitchDoor,

open kitchStorDoor},
moveRobot to(AT OVEN),

moveRobot to(AT STOR SHELF),

robotGetsBeerFromStorage,

open fridgeDoor,

moveRobot to(AT FRIDGE),

robotCoolsBeer, {open fridgeDoor,

close kitchStorDoor},
robotGetsBeerFromFridge,

{moveRobot to(AT SOFA),

close fridgeDoor}

4.7. Technical evaluation 97

[6b]: Same as above but with

numOfBeersInFridge=1

open sitrKitchDoor,

moveRobot to(AT OVEN),

open fridgeDoor,

moveRobot to(AT FRIDGE),

{robotGetsBeerFromFridge,

open kitchStorDoor,

open bedrBathrDoor,

open sitrBedrDoor},
{moveRobot to(AT SOFA),

close fridgeDoor}

Goal 7 (health emergency)

[7]: nurseLocation=OUTSIDE,

cause=FALL, ∀i doori=CLOSED,

robotLocation=AT TV

{sendMsg NrsPDA(FALL ALARM),

notifyHospital(FALL ALARM),

open sitrBedrDoor,

open bedrBathrDoor},
moveRobot to(AT BED),

moveRobot to(AT BATH)

Goal 8 (go to sleep)

[8]: bedLevel=UP,

bedrCurtains=OPEN,

bedrWindow=OPEN, bedrLight=ON

{set bedLevel(MEDIUM),

close bedrWindow,

set alarmClock(08:00),

turn on bedrLight=OFF},
{close bedrCurtains, set bedLevel(LOW)}

Table 4.2: The plans generated for the goals in Table 4.1, for different initial states

(only the initial values that are of interest to the goal are mentioned).

Table 4.2 shows the sequence of actions generated by the planner for each of

the goals in Table 4.1 (because of space issues, only the initial values that are of

interest to the goal are mentioned in the table, rather than the full initial context of

the home and user). Each plan is represented as a partially ordered set of actions,

with comma-separated actions a1, a2 indicating that action a1 has to be performed

before a2, while the actions included in the same set {a1, . . . , an} can be executed

in parallel. One can see that depending on the current contextual state, the plans

which satisfy a given goal may be radically different. The planner produces plans

with a high degree of parallelism. However, in the current implementation, the

executor does not support parallel action executions, and thus the actual invocations

are performed in a serialized manner. Because of the use of a random search

98 4. Planning in a Smart Home

Test Number of

actions in

plan

Plan

Composition

time (in sec)

Plan

execution

time (in sec)

[1a] (wake up, no natural light) 5 1.1 0.5

[1b] (wake up, natural light) 4 1 0.3

[2a] (watch TV, temperature too

high, natural light)
5 1.5 0.7

[2b] (watch TV, temperature ok,

no natural light)
3 1.4 0.6

[3a] (deal with smoke, user in

kitchen)

7–9 1.2 1

[3b] (deal with smoke, user not in

kitchen)
4 0.6 0.4

[4] (smoke eliminated) 2 0.7 0.4

[5a] (go to kitchen, smoke on) 0 0.1 -

[5b] (go to kitchen, smoke off) 4–5 0.7 0.4

[6a] (get beer, fridge empty) 12–15 2.6 0.8

[6b] (get beer, fridge full) 7–10 2.2 0.7

[7] (health emergency) 6 1.4 0.5

[8] (go to sleep, bedrWindow open) 6 1.2 0.6

Table 4.3: Time required for composition and execution.

strategy, the plans returned may slightly vary between different runs: the order of

some actions may be different or some extra actions may be included. The latter

is due to the fact that the planner does not generate optimal plans, i.e., the ones

comprising the minimum possible number of actions. Thus, it may occur that a

plan includes unnecessary actions or useless repetitions of actions, as e.g., in plan

[5a], where some doors are opened for no reason without that being necessary for

the goal’s satisfaction.

The time required by the planner to subscribe to the available UPnP services,

build the planning-level domain description, and sense the first initial state, by

invoking the UPnP sensing actions for all state variables, is 10.8 sec. After that,

it is ready to generate plans for the goals that are issued by the user or the rule

engine, while it is notified about any changes by the context module, and updates

its current initial state accordingly. We have measured the time the planner takes

to compute each of the plans, as well as the time needed for each plan to be actually

executed by invoking the respective UPnP actions. These results are summarized

in Table 4.3. We have used a random branching strategy during constraint solving,

4.7. Technical evaluation 99

by resting the search after a maximum number of backtracks. The reported times

both for composition and execution are the average over 5 separate runs. Of course,

if we consider real rather than simulated devices, the execution times especially for

motion-related actions would be much longer. The most demanding goal is Goal 6

(getting a cold beer), especially in the case where there are no beers already stored

in the fridge, mainly due to the substantial backtracking required to find a solution

(up to 478 backtracks, compared to 47 backtracks in the worst case concerning the

other goals). The invocation time per operation call is a up to a few msec for all

devices, since these are simulated. The execution time amounts to the time required

for the interaction between the composition module and the executor, i.e., the time

for mapping the planning actions to UPnP actions, calling them, and getting the

response, while at the same time a listener parses the UPnP change variable events

and updates the CSP.

An evaluation of the performance of the pervasive layer with respect to the

number of clients it can support in association with the number of connected devices

is beyond the scope of the current presentation. Results with respect to such a

parameter are presented in [Kaldeli et al., 2010].

4.7.1 Replanning scenarios

For the purpose of simulating failure handling scenarios, we only consider two basic

kinds of UPnP action invocation responses: “success” and “failure”. The policy

upon a failure response is first to try to invoke the erroneous operation once more,

and if a failure occurs for a second time, then to attempt to replan. The application

of different policies depending on the kind and severity of contingencies that are

detecting during execution may be possible if a more subtle distinction of the cause

of failure is available (e.g., attempt to re-invoke the same service several times, or

directly remove the service if the response indicates a permanent failure). Timeout

conditions may differ depending on the type of action (e.g., a service operation for

closing/opening a door should respond within a second, while closing the curtains

takes longer). Timeouts are handled the same way as failures.

Table 4.4 summarizes the behavior and performance of the system under certain

circumstances concerning the scenarios described in Section 4.2.1, where an error

occurs during the execution of the initial plan. The services used for the tests are

the same as before, with the addition of 3 extra service actions. For the purpose of

scenario 1, which refers to the goal for watching TV, a “switch” operation is added

to the robot device, which models its ability to turn on the TV if its location is in

front of it. To simulate the different scenarios regarding scenario 2, two extra door

services are added, to simulate the possibilities for the robot to follow alternative

100 4. Planning in a Smart Home

Scenario 1: Re-planning for Goal 2 (watch TV)

Initial state: as in Table4.2[2a] and robotLocation=AT BED

Initial plan: as in Table4.2[2a]

Execute plan: set TV(ON) responds with failure twice, re-planning

New plan: open sitrBedrDoor, moveRobot to(AT SOFA) ,

moveRobot to(AT TV), robotSetTV(ON),

set TVChannel(CH5)

Execute plan: Completed successfully

Planning attempts: 2

Total planning time: 3.3 sec

Scenario 2: Re-planning for Goal 6 (bring cold beer)

Initial state: as in Table4.2[6b]

Initial plan: as in Table4.2[6b]

Execute plan: open sitrKitchDoor responds with failure twice,

re-planning

New plan: {open sitrStorDoor, open kitchStorDoor},
moveRobot to(AT STOR SHELF), open fridgeDoor,

moveRobot to(AT FRIDGE),

moveRobot to(AT SOFA)

Execute plan: open kitchStorDoor times out twice, re-planning

New plan: {open sitrBedrDoor, open bedrKitchDoor},
moveRobot to(AT BED), open fridgeDoor,

moveRobot to(AT FRIDGE),

moveRobot to(AT SOFA)

Execute plan: open sitrBedrDoor times out twice, re-planning

New Plan: The goal cannot be satisfied

Planning attempts: 4

Total planning time: 12.3 sec

Table 4.4: Behavior and time results of the planner for two possible re-planning

scenarios depending on execution circumstances

routes to reach the kitchen.

In scenario 1, after the invocation to remotely turn on the TV fails, a second

attempt is made, and after the service responds with a failure again, the erroneous

4.8. User evaluation 101

action is removed from the constraint network, through the addition of the appro-

priate prohibitive constraint (see Section 4.4.3). The planner is called again, and

the new composition instructs the robot to move from the bed where it currently

is to the TV and switch it on. In scenario 2, the robot cannot move from the

sitting room to the kitchen directly, because the door that connects the two rooms

is blocked. After pruning the faulty door from the search space, an plan that leads

the robot to the kitchen through the storage room is generated. However, the door

that connects the living room with the storage room also proves to be defect, and

the invocation for opening it times out. As a result, the planner will try to find an

alternative route through the bedroom. Due to bad luck though, it turns out that

the door to the bedroom is also out of order, and the planner will make a fourth

attempt to compute a plan which does not include any of the malfunctioning doors.

Since no alternative plan can be found, the plan reports that the requested goal

cannot be satisfied given the current circumstances.

4.8 User evaluation

According to the ISO 9241-11 standard, usability refers to “the extent to which a

product can be used by specified users to achieve specified goals with effectiveness,

efficiency and satisfaction in a specified context of use”. In the case of the SM4ALL

framework, the context of use is determined by the diverse requirements, abilities

and technological knowledge of the intended users. To perform a fair test, we

identify two antithetic groups: the first group comprises elderly people, some of

whom suffer from severe motor disability, and will be referred to in the followings as

the Elderly and Disabled (E/D) group; the second group consists of young people

experienced with computer innovations, who will from now on be referred to as

the Technological Savvies (TS). The focus of the testing methodology is to assess

whether the architectural design and implementation of the SM4ALL framework

is useful and usable by users with diverse capabilities and aspirations, without the

need of personalized reconfigurations.

The user evaluation methodology bases on a quantitative analysis regarding a

number of basic dimensions, which are determined by connecting the established

usability components in the literature [Nielsen, 1994b,a; Kim et al., 2003] with the

context of domotic environments. Each of the dimensions takes into account some

specific metric parameters, about which users are asked to give a score (usually in a

scale from 0 to 4). The main dimensions’ scores are calculated by taking the average

of the parameters’ values. In the followings we list the main usability features along

with their relevant metric components:

102 4. Planning in a Smart Home

� Acceptability of domotic solutions in general captures the opinion of users

towards the importance of domotics technology, their eagerness to delegate

tasks to a computer, and their extent of concerns towards privacy intrusion.

� Learnability assesses how easy it is for the user to get familiarized with the

system. It refers to the amount of effort the users have to make in order to

comprehend the functionalities of the system, and to be able to control it in

accordance with the tasks he wants to accomplish.

� Aggregate system effectiveness measures how satisfied the users are from the

system, by taking into account a number of aspects referring to different

components. Virtual apartment effectiveness refers to the extent to which

the design of the home and the optical effects at the visualization level give

the feeling of a real home. Two metrics are used with respect to the control

panel’s usability, assessing how clear and attractive the Web Interface is, and

how convenient to use it is. One more metric is used to assess the satisfaction

of users with respect to the support of complex goals. Finally, the extent of

difficulties or irritation resulting from some unexpected behavior or missing

feature, and from low performance is also taken into account.

� Efficiency is concerned with the speed at which the system performs certain

tasks. Time efficiency is measured with respect to the user’s assessment of

the time required to complete atomic operations and complex goals.

4.8.1 Experimental setup

Demographics

The E/D group consists of 31 elderly people (12 males and 19 females), between

47 and 91 years old, and an average age of 71 years. Eight persons out of this

group suffer from chronic neurological disorders and make use of the BCI (5 males,

2 females; mean age=64.85 ± 5.81 years). All users of this group are clients of

the Frisian health care institution in the Netherlands “Thuiszorg Het Friese Land”

(THFL). 13 of the users in this group have experience with computers, and 9 of

them make use of some kind of domotic devices at their house (e.g., automatic

shutters, motorized armchair, lights etc). The testing took place in the months of

October and November 2010. The TS group consists of 30 students who are doing

their MSc in Computer Science at the University of Groningen, and attend a course

on ubiquitous computing in the spring of 2011. Their age ranges between 21 and

30 years old, with an average age of 25 years. 10% of them are female and 90%

4.8. User evaluation 103

Figure 4.7: Basic interactions between the components at the experimental setup.

male. Naturally, all members of this group are advanced users of computers, and 3

of them have used actual domotic devices.

Testing sessions

Figure 4.7 provides a high-level overview of the essential components of the ex-

perimental setup, and the basic sequence of events that take place between them.

The user issues his commands via the Web Interface or the BCI panel, depending

on whether she suffers from motor disabilities or not. The instructions are passed

to the lower levels of the SM4ALL platform, and the results are reflected at the

visualization level, projected on a separate screen, while the Web Interface view

is updated accordingly. The home instance visualized and controlled by the users

is based on a virtual reconstruction of a real apartment built at the premises of

the Fondazione Santa Lucia in Rome. The apartment consists of four rooms (two

bedrooms, a kitchen and a living room), equipped with 32 simulated devices (lights,

doors, motorized bed, curtains, windows, TV, air condition etc). The Web Inter-

face provides icons for controlling individually all available devices, organized per

room view, and additional icons for modeling two complex goals, one for adjusting

the living room conditions for watching TV, and one for preparing the bedroom

104 4. Planning in a Smart Home

for sleeping. The BCI offers control capabilities for only a subset of the devices

and goals, since it supports up to 16 icons at a time. Users are asked to follow

an instructive scenario, i.e., a predetermined set of actions specified by the experi-

menters, which includes achieving certain conditions, e.g., preparing the house for

the night, by issuing individual commands, such as “turn off kitchen light”, and the

complex goals that are made available to them. The user can then freely interact

with the system. At the end, the user is asked to fill in a questionnaire, where she is

required to provide a score for each of the usability components already described.

Along with the metric values, users are encouraged to provide a short explanation

of their assessment. The questionnaire addressed to the TS group includes some ex-

tra questions with respect to the one addressed to the E/D group, requesting more

details about the assessment of time efficiency and the effectiveness of complex

goals.

The testing sessions with the E/D group have been arranged and conducted

in cooperation with staff members of the THFL. The testing sessions which do

not involve use of the BCI took place separately for each user, at his home of

residence. Each individual testing session, including the platforms setup in the users

environment, lasted one hour in average. The BCI testing sessions took place at the

THFL premises, conducted in two consecutive days. The first day was dedicated to

the training of the BCI system, and making a profile of the brain activity of each

participant (the BCI training requires 30 minutes on average per person). The

second day the users were ready to interact with the actual SM4ALL platform.

The tests with the TS group were conducted during three different sessions in a

university lecture room.

4.8.2 Usability evaluation results

Elderly people

Table 4.5 summarizes the quantitative findings of the usability tests with the mem-

bers of the E/D group. All quantitative factors included in the questionnaires are

mapped to a scale from 0 to 1. Results of time efficiency assessment or particular

to the complex goals are not presented, as this was intended specifically for the TS

group. A natural observation is that the amount of effort reported by the partici-

pants of the BCI tests is higher than the effort assessment of the users who did not

have to learn how to use the BCI equipment. The findings indicate that satisfaction

from the Web Interface effectiveness is particularly high, while satisfaction from the

virtual experience delivered by the visual effects is quite lower. The data are further

analyzed in the comparative evaluation presented in at the end of this section.

4.8. User evaluation 105

Mean

Non-BCI BCI Overall

Acceptance of

0.79 0.91 0.82privacy disclosure

[0 (negative) - 1 (positive)]

Acceptance of tasks
0.7 0.82 0.72

automation

Aggregate domotics acceptance 0.78 0.88 0.8

Learnability effort
0.15 0.37 0.26

[0(low) - 1 (high)]

Control panel effectiveness
0.88 0.93 0.89

[0 (negative) - 1 (positive)]

Virtual home effectiveness 0.78 0.69 0.76

Aggregate framework effectiveness 0.83 0.79 0.82

Table 4.5: Aggregated results of the usability tests with the E/D group.

Technological savvies

The quantitative results of the testing sessions conducted with the members of the

TS group are presented in Table 4.6. Similarly to the findings from the E/D group,

the technological savvies gave a high score to the effectiveness of the control panel

and a lower score to the satisfaction from the virtual home feeling. It is worth men-

tioning the particularly high assessment of the complex goals effectiveness, which

the members of this group highlighted as particularly interesting and useful.

Satisfaction from the time performance of tasks associated to complex goals

is rather smaller with regard to efficiency of performing atomic operations. The

diagram Figure 4.8 shows how satisfaction from time efficiency is distributed in the

TS group. The results indicate that 76% of the users give a time efficiency rank

of over 0.7, while only 3% of the users give an assessment lower than 0.5. Further

analysis of the rest of the dimensions is provided in the next section.

Comparative analysis

The comparison between the results of the two groups can lead to some interesting

conclusions. Regarding the acceptability of domotic technologies, the E/D group

is more reluctant to have a computer overtaking tasks, while the TS group is more

positive towards the automation of domotic routines. 30% of the E/D group gives

a score below 0.5 to acceptance of domotic tasks automation. On the other hand,

members of the E/D group express less concerns about privacy in comparison with

106 4. Planning in a Smart Home

Mean

Acceptance of

0.48privacy disclosure

[0 (negative) - 1 (positive)]

Acceptance of
0.81

tasks automation

Aggregate domotics acceptance 0.74

Learnability effort
0.4

[0(low) - 1 (high)]

Complex goals effectiveness
0.89

[0 (negative) - 1 (positive)]

Virtual home effectiveness 0.7

Control panel effectiveness 0.84

Aggregate framework effectiveness 0.78

Time efficiency complex goals
0.79

[0 (slow) - 1 (fast)]

Time efficiency for atomic actions 0.9

Aggregate time efficiency 0.83

Table 4.6: Aggregated results of the usability tests with the TS group.

Figure 4.8: Overall time efficiency assessment by the TS group.

4.8. User evaluation 107

the TS group. Many of the elderly, and especially the ones suffering from serious

disabilities or health problems, are quite used to being surveilled and looked after

by specialized personnel, such as nurses or household assistants, and therefore 50%

of them do not express any considerable worries about privacy intrusion. On the

contrary, 40% of the young technological savvies, are seriously concerned about

invasion of privacy and violation of personal space.

Figure 4.9: Comparative distribution of aggregate assessment with respect to sys-

tem’s effectiveness.

With respect to the amount of time required for understanding and learning how

to use the framework, members of the E/D group needed 10 min on average, while

the technological savvies 2 min on average. For the members of the E/D group who

had not used a computer before, considerable time was required to get familiarized

with the use of a mouse. Although members of the E/D group presumably needed

more time to learn the system, both groups assessed that the system was easy to

perceive and control: 73% of the E/D and 83% of the TS users put the amount of

the learnability effort between 0 and 0.25.

Regarding aggregated satisfaction from the system’s effectiveness, it should be

noted that in the case of the E/D group the average is in most cases calculated with

respect to less constituting parameters, because the members of the E/D group left

many questions unanswered. As can be seen in the distributions plotted in Fig-

ure 4.9, the findings regarding the TS group can be approximated by a Gaussian

108 4. Planning in a Smart Home

distribution, with a mean of µ = 0.78 and σ = 0.15. In the case of the E/D group,

the population is concentrated around higher values of aggregate effectiveness as-

sessment, with 65% giving a value of over 0.8. In both groups, for 77% of the users,

the aggregate assessment for effectiveness is over 0.7.

Chapter 5

Plan Orchestration via Altering the CSP

Due to the conditions of incomplete knowledge which has to be sensed, as well as

other sources of contingency such as failures or unexpected changes in the state

of the world, the problem of service composition cannot be tackled in detachment

from the actual context of execution. In Chapter 3 we have presented an intuitive

knowledge-level encoding which accommodates for proactive information seeking as

part of the planning process, based on the agent’s knowledge and the way that this

evolves via the application of sensing actions. We have described how the func-

tioning of the RuG planner leads to the construction of plans which rely on certain

optimistic assumptions about the actual state of the world. Due to the large amount

of possible service outcomes, which are often numeric, and the range of unforeseen

contingencies at runtime, computing offline contingent plans for all possible config-

urations, as e.g., in [To et al., 2011; Bryce et al., 2006; Pistore, Marconi, Bertoli

and Traverso, 2005; Hoffmann et al., 2010], becomes particularly expensive or even

infeasible. Moreover, most planning approaches to WSC completely disregard re-

covery from failures and, with some notable exceptions such as [Au et al., 2005;

Bertoli et al., 2009; Klusch and Renner, 2006], they rely on the assumption of a

static environment. Information is expected to persist till the end of execution,

while it is taken for granted that the world changes only as a result of the actions

of the planning agent, and in conformance with their functional description.

In order to overcome these limitations without compromising the requirement

for domain-independence, an approach that integrates planning, monitoring and

execution is opted for, so that findings about the environment are directly integrated

into the planning process. To this end, the computation of alternative plans is

delayed until this is called for by the new information acquired during execution.

Continual planning is performed, so that the upcoming plan steps anticipated offline

can be revised as execution progresses, in face of inconsistencies that arise either

from the newly acquired information, from services’ inconsistent behaviors or from

the actions of exogenous agents that interfere with the plan. In such a setting,

the goal is considered to have been accomplished, if all individual actions in this

sequence of updated plans are executed successfully. We call this process that

110 5. Plan Orchestration via Altering the CSP

starts from an initial plan and moves on by interweaving action invocations with

plan revisions an orchestration. The concept of orchestration in that context is in

line with the intended meaning of the term in Service Oriented Computing, in the

broad sense of realizing a conductor (planning agent) who decides which instruments

(service operations) should play which notes in a piece of music (goal or plan). In

practice, orchestration usually refers to the process of concretizing synthesis and

making it executable. In our approach, synthesis and execution-time coordination

are blended together, and orchestration refers to that integrated process.

The orchestration approach adopted herein shares many concerns with the

frameworks for planning in the environment of Unix operating systems presented in

[Golden and Weld, 1996; Golden, 1998; Knoblock, 1995], including the modifications

incurred to the current plan depending on the bindings of the runtime variables

(analogous to the RuG planner’s “var response” variables) and the world state

changes. However, these approaches are still dependent on well-crafted domain-

specific knowledge regarding e.g., failure handlers, causal links between producers

and consumers or search control. An approach for interleaving planning and execu-

tion, where parts of the plan are postponed depending on a number of replanning

assertions is described in [Brenner and Nebel, 2009].

In the followings, we show how orchestration can be performed by applying

gradual modifications to the CSP instance which models the planning domain, the

goal and the constantly changing contextual state. The modifications correspond to

the incorporation of new facts about the state of the world or the removal of obsolete

ones, to refinements of the sequence of actions included in the already computed

plan, or to useful information about the behavior of services that is collected by

inspecting how they operate. The orchestration algorithm is characterized by the

following traits:

� It exploits the high degree of parallelism in the plan, by performing concurrent

invocations and handling the responses in a non-blocking way. Since the

execution time of some service operations may be very long, the orchestrator

is able to continue planning and proceed to the execution of subsequent actions

if this is allowed by the domain and goal restrictions, while waiting for the

response of some service invocation.

� It continuously incorporates asynchronous context updates, if such a mecha-

nism is available.

� Provides the means to recover from failure-indicating responses and timeouts.

Other arbitrary service outcomes that contradict its expected behavior can

5.1. Architectural overview 111

also be tolerated under the assumption of a consistent and timely publish-

subscribe mechanism.

� Can cope with possible discrepancies due to the activity of exogenous agents,

which may act in parallel with the plan execution and interfere with it.

� Seeks to keep a balance between the effort spent in computing a new plan

from scratch and in refining the existing one.

� It takes care of the data flow by instantiating numeric-valued input parameters

to the actually sensed output parameters. This is performed through plan

refinement, by considering the history of known facts in the form of constraints

and the goal requirements.

5.1 Architectural overview

Figure 5.1 provides a high-level overview of the main interactions of the orchestrator

with the other components which interweave planning, monitoring and execution.

The orchestrator is realized in accordance with the actor model [Greif, 1975], which

enables a high degree of concurrent computations, through the asynchronous ex-

change of messages, the creation of new concurrent entities on the spot, and the

designation of certain tasks to them, so that they are carried out in parallel.

Whenever a request about computing a plan for a new goal is issued, the or-

chestrator asks the planner to compute an initial optimistic plan as described in

Chapter 3. This entails adding dynamically the constraints that follow from the

goal (see Section 3.6) to the model kept by the RuG planner, i.e., the constraint

network that models the planning domain (see Section 3.3). The solver takes into

consideration the current model along with some assignments to CSP-level variables

that reflect the initial planning state, as delivered by the current context. The so-

lution to the CSP which amounts to an offline plan (if one exists) is passed to the

orchestrator, whose task is to gradually execute and update it, according to the

information it acquires through its interaction with the environment. Every step

of the plan involves a set of parallel actions (see Definition 6), which are mapped

to a set of respective concrete service operations that are executed concurrently, as

described in Section 5.3.2.

Since the offline plan has no way to anticipate any values that are to be ob-

served, whenever new information is sensed, some revision is needed. For example,

if the user wants to send some mail to a particular address, which is unknown and

has to be supplied by some address-providing service, then at the point when the

112 5. Plan Orchestration via Altering the CSP

address becomes known, re-solving is required to instantiate the right input argu-

ments of the sensing actions that depend on that information. Other sources of

contingencies, such as failures or timeouts, may also call for a refinement of the

plan, as discussed in extent in Section 5.3.3. For example, if some actions respond

with a permanent failure or persistently do not respond within some expected time-

out, then an alternative plan which does not include these actions has to be sought

for. While waiting for actions that take long to respond, the orchestration process

goes on with continuously planning new actions to be executed, depending on the

latest view it has about the world state and the history of execution so far. These

conditions also determine whether it is preferable to refine the existing plan or to

plan from scratch. Requests for refinement are addressed directly at the solver level

of the RuG planner, as long as the basic model remains the same (i.e., changes refer

only to the initial state). This way, the search process can start from an already

propagated instance of the model, and proceed from a state where some variables

are already instantiated according to the most up-to-date context. The details of

how the plan refinement process works are discussed in Section 5.3.1.

Figure 5.1: Architectural overview of the orchestrator and the basic interactions

which enable the interchange between planning, monitoring and execution.

Dashed arrows in Figure 5.1 correspond to interactions that are only available

under certain assumptions. Change events can be received asynchronously if this

5.2. Execution-time transition system and orchestration path 113

is supported by some publish/subscribe mechanism, such as the one provided by

OSGi-UPnP presented in Chapter 4. The instantiation of an action to the operation

offered by a specific service provider is taken care by some external component,

which is responsible for discovering and selecting the appropriate service instances.

The process of service discovery and selection is an interesting and difficult problem

by itself, e.g., see [Skoutas et al., 2008; Pilioura and Tsalgatidou, 2009], and is out

of the scope of the current thesis.

5.2 Execution-time transition system and orches-

tration path

Recalling Definition 4, the STS Σ has to be extended in order to capture obser-

vations and external events. For simplicity reasons, we make some simplifying

assumptions about the situation that this extended STS models: (i) if an action is

applied, all of its effects take place as prescribed (ii) observations and events refer to

disjoint sets of variables, and (iii) all observations corresponding to a set of actions

are retrieved timely, i.e., before the application of the next sets of actions in a plan.

Failed actions and byzantine behaviors can be modeled indirectly, by introducing

events which assign certain variables after the application of some action. We show

that for such a model, the orchestration algorithm can be trapped in dead-ends.

Definition 10 (Execution-level State Transition System). An execution-level state

transition system based on a planning domain PD′ = 〈V ,Par ,Act〉 (where V =

Var ∪Kb ∪ Cv ∪ Rv) is a tuple Σe = 〈S,Act ,Ev ,Obv , ζ〉, where:

� S is a set of states.

� Act is a set of actions.

� Ev is a set of events. An event is an assignment to some variable (var := val),

where var ∈ Var does not participate in any observational effect, and val ∈
Dvari .

� Obv is a set of observations. An observation is an assignment to some response

variable (var response =: val), where var response ∈ Rv and val ∈ Dvar .

� ζ : S×℘(Act)×℘(Obv)×℘(Ev)→ ℘(S) is the execution-level state transition

function ζ(s,A,O,E) = {δ(s′, O,E) | ∀s′ ∈ γ(s,A)}, where A ⊂ Act , O ⊂
Obv, E ⊂ Ev, and:

- all assignments in E and O refer to different variables.

114 5. Plan Orchestration via Altering the CSP

- γ is defined in Definition 4.

- δ : S × ℘(Obv) × ℘(Ev) → S is a function which updates a states by

applying the assignments in E and O.

- For every var which appears in a sensing effect sense(var) of some ai ∈ A,

var response is part of some observation oi ∈ O .

Generalizing on sets of states S, we define: Ẑ (S ,A,O ,E) =
⋃

s∈S ζ(s,A,O ,E).

Definition 11 (Orchestration Problem). An orchestration problem is a triple OP =

〈Σe ,S0 , g〉, where Σe is an execution-level state transition system, S0 is the set of

all states that satisfy a conjunction of propositions
∧

i prop init i , and g is a goal

as specified in Section 3.4.1.

Definition 12 (Orchestration). An orchestration is a sequence of triples of sets of

actions, events and observations

orch = 〈(A0, O0, E0), . . . , (Ak−1, Ok−1, Ek−1)〉, and a sequence inPars of assign-

ment relations inParsi as defined in Definition 6 for each Ai that appears in orch.

In an orchestration, the sequence of events and observations is uncontrollable,

and the sequence of actions and input parameters is selected by the planner. We call

the sequence of actions 〈A0 , . . . ,Ak−1 〉 in orch along with inPars the execution-

level plan πe . Similarly to Section 3.5, we extend the Ẑ function to capture the

sequence of set of states that are brought forth by orch and inPars, starting from

S0 . Given an orchestration

orch = 〈(A0, O0, E0), . . . , (Ak−1, Ok−1, Ek−1)〉,
we use the notation:

Z(S) = Ẑ(S[inPars0], A0, O0, E0), Z2(S) = Ẑ(Z(S)[inPars1], A1, O1, E1) etc.

Thus, an orchestration comprising πe induces a sequence of state sets

S̃e = 〈S0 , Z(S0), Z2(S0), . . . , Zk(S0)〉.
We call S̃e the orchestration path or run.

An orchestration path S̃e = 〈S0, Z(S0), . . . , Zk(S0)〉 is a solution to the or-

chestration problem OP = 〈Σe ,S0 , g〉, and we write S̃e |= g, if S̃e satisfies the

properties described in Section 3.5. We say that an execution-level plan πe is a

weak or optimistic solution to the orchestration problem OP , if there is some se-

quence {(O0 ,E0), . . . , (Ok−1 ,Ek−1)} where E0 = . . . = Ek−1 = ∅, which leads to

an orchestration path that is a solution. That is, if no events occur during the

orchestration and there is some convenient assignment to response variables that

satisfies the goal. We say that πe is a strong plan, if it leads to an orchestration

path that is a solution for any sequence {(O0 ,E0), . . . , (Ok−1 ,Ek−1)}. Since the

sequence of events and observations is unknown at planning time, we cannot say

5.3. Main policies of the orchestration algorithm 115

whether a plan is a solution or not before all transitions actually take place. Strong

plans, i.e., plans that are a solution no matter how the execution behaves, do not

exist in the systems we are interested in, since any event may occur at any transition

point.

Due to the uncontrollable nature of events, dead-ends cannot be avoided, i.e.,

the orchestration may bring the world to a state from which the goal is no longer

satisfiable. Given a partially executed plan {A0 , . . . ,Ai−1}, considering the current

set of states Si , an event ei may lead to a set of states S ′i = {δ(s, ∅, {ei}) | ∀s ∈ Si},
from which no plan {Ai , . . . ,Ak−1} that is an optimistic solution to the problem

OP = 〈Σe ,S
′
i , g〉 can be computed. In Section 5.3, we describe the practical aspects

of an orchestration algorithm, which constructs an execution plan incrementally, by

taking the first set of actions of each offline optimistic plan computed by the RuG

planner. Each optimistic plan is computed considering the states that result from

the application of the δ function at each step. At each revision step, the planner

considers a new CSP instance following from the current version of the knowledge

base, which incorporates the information included in the latest sets of observations

and events.

5.3 Main policies of the orchestration algorithm

In the most common scenarios concerning marketplaces of services on the public

Web or in inter- and intra-corporate domains, the planning agent communicates

with the execution environment in a synchronous manner, through a sequence of

requests and responses that follow from the plan steps. This means that the plan-

ning agent has no other way to get informed about any changes that occur in the

environment except by resorting to explicit service invocations. Due to this situ-

ation, the planner will comprehend that some actions it scheduled for invocation

are no longer feasible only after attempting to invoke them. E.g., after a hotel

room that fits the user criteria has been found, there is a chance that this becomes

unavailable before the plan proceeds to the booking process. The unavailability

will only be realized by the planner when the response from the booking service

is received, indicating that the room has already been reserved by some external

agent. Therefore, in such domains, the reasonable information persistence assump-

tion is made, i.e., it is taken for granted that the knowledge collected by the actions

at runtime remains valid till the end of the plan’s execution. This implies that

activities of external agents that also affect the environmental state are assumed

not to interfere with the plan execution, otherwise the plan may end up in undesir-

able situations. For example, it may proceed in buying some item based on some

116 5. Plan Orchestration via Altering the CSP

information about its price that has in the meantime been changed, but this change

passed unnoticed. Given these assumptions, the offline plan has to be checked for

possible inconsistencies and revised only when new information is sensed, or in case

of failures or timeout of service invocations. This is enough under an additional

premise that is tacitly made: that services are characterized by clean failures, i.e.,

during an invocation either all of the action’s effects are materialized as modeled in

the planning domain, or none of them is (in which case the service responds with a

failure or timeouts).

On the other hand, in settings such as the SM4ALL architecture described in

Chapter 4 or the Business Process Execution framework presented in Chapter 6

which reacts to interference, the planning agent is asynchronously notified about

environmental changes, by subscribing to events it is interested in. For example, in

the smart home setting, events are published whenever a service changes its state,

and the planner continuously listens to these events. This way, the planning agent

is kept up-to-date about the evolution of the environmental state, and can exploit

this knowledge to escape undesirable outcomes by timely turning aside from its

scheduled route. For example, recalling the scenario about fetching the cold beer

(see Section 4.2), if someone closes the storage door while the robot is about to

take the beer from the storage shelf, the planning agent has to revise the remaining

plan steps to avoid stumbling upon a closed door. Thus, consistency has to be

ensured every time a context change due to some external agent is perceived by

the planner, and this change may pose a “threat” to the remaining plan actions.

However, whenever a planner receives some service variable change event, there is no

way to distinguish whether this change is the result of some invocation instructed by

the planner itself or by some independent actor. Therefore, violation checks have to

be enforced whenever the context changes, either due to the progress of the plan or

the activity of exogenous agents. These consecutive inspections for inconsistency

are of course more time consuming than having to verify the plan only towards

sensing outcomes and failures. However, it prevents unsafe developments due to a

particular kind of byzantine behavior, when services report successful completion

but in fact behave in a way that contradicts their expected effects. No matter what

arbitrary results a service invocation brings about, as long as the asynchronous

notification mechanism works correctly and timely, these will be taken into account

as part of the new context when planning for the next steps. The assumptions

concerning the publish-subscribe mechanism are that change events are not lost

and that they are received in the order they occur in the environment (FIFO is

respected).

5.3. Main policies of the orchestration algorithm 117

5.3.1 Plan repair vs. replanning

Due to the above observations, it becomes clear that the time spent in consistency

checks and plan updates becomes dominant in the overall planning and execution

time till the goal is satisfied (see e.g., the evaluation results in [Kaldeli et al.,

2011]). Even in the most common case when some output is being sensed, the time

for instantiating subsequent input arguments which depend on this newly acquired

information and inspecting whether this leads to some conflict may be considerable,

especially since the domain includes numeric relations. One way to perform the

necessary plan updates is to completely disregard the previous solution-plan, and

perform replanning from scratch (this is the approach adopted in [Kaldeli et al.,

2011]). Another way is to try to reuse parts of the existing plan as the building

blocks for constructing a new plan, as in the strategies adopted e.g., by [Fox et al.,

2006; Wallace et al., 2009; van der Krogt and de Weerdt, 2005]. However, under

certain circumstances the effort spent on modifying a plan can be larger than the

effort required to generate a new one [Nebel and Koehler, 1995]. For example, if the

context change is such that a drastically different plan is required, then investing

too much time in adapting the previous plan is not a good strategy. It should be

noted that in the scenarios we are interested in, maintaining minimal perturbation

or plan stability [Fox et al., 2006] of the original plan is not a concern per se.

We are rather interested in computing good quality plans in short time from the

current state onwards. Depending on the situation, namely the domain structure

and goal in combination with the type of context change, sticking to the existing

plan structure may offer bad guidance.

In the orchestration approach adopted herein, we try to establish a middle-

ground for the tradeoff between investing too much effort in attempting to adjust

the current plan suffix, and directly proceeding into computing a new plan from

scratch. If the plan revision process takes too long, this is probably an indication

that the new situation calls for a plan that looks quite different from the original

one, and should therefore give up in favor of replanning from scratch (see example

in Section 5.5.1). We therefore try within some time limit, usually a fraction of the

time required to compute the original plan, to perform some fast search for refin-

ing the plan. In terms of the CSP representation, plan repair amounts to dealing

with the dynamic CSP problem, where a CSP is subject to a sequence of alter-

ations, i.e., additions and removals of value assignments and constraints. There are

several methods which rely on CSP solution reuse to speed up the task of finding

a consistent assignment to the altered CSP, e.g., [van der Krogt and de Weerdt,

2005] which exploits no-good learning. These methods, however, are beneficial un-

der certain assumptions, e.g., when context changes correspond to constraints/value

118 5. Plan Orchestration via Altering the CSP

additions and deletions that pertain to a few variables (scope), or when the changes

to the CSP are monotonic (relaxation through removal of a constraint or restric-

tion through addition of some constraint). The heuristic reasoning approach based

on reusing information about certain stable problem features presented in [Wallace

et al., 2009; Wallace and Grimes, 2010] may be helpful for our purposes, and it

would be interesting to test it in the future.

The refining process adopted herein attempts to construct within some time

limit a new plan by adding extra actions at the beginning, the end or in parallel with

actions of the existing plan, and allows input parameters of the actions in the current

plan to take different values. This way, output collected at the last step of execution

is taken into account, so that input arguments to subsequent actions which depend

on that output can be instantiated accordingly in the updated plan. At the CSP

level, this approach amounts to constructing a partial assignment consisting of

the action variables participating in the original plan, while leaving the rest of

the variables to be assigned by the search strategy. Performing un-refinement,

i.e., determining certain actions in the original plan as being redundant or even

hinder the goal fulfillment given the new initial state, can be particularly difficult

and time-consuming (repeatedly reserving old assignments can lead to tremendous

thrashing [Wallace et al., 2009]), and therefore we directly resort to replanning from

scratch if no augmented plan can be found.

Every time a bundle of concurrent actions in the current plan is executed, and all

respective responses are received or some average expected response time elapses,

it may be necessary to check whether the remainder of the plan is still valid under

the new context. Consistency checks are performed at every step if a notification

mechanism is available, giving the opportunity to the planning agent to compare

the expected planning state with the actual state of the world as delivered by the

latest change events. In such a case, the context encapsulates all the world-altering

results of the services invoked by the planning agent independently of whether these

are in conformance with the expected effects or not, as well as the world-altering

behavior of probable exogenous agents. Consistency inspection is very quick, since

it amounts to passing to the solver a complete assignment. After the phase of

the parallel execution of some actions at step i completes, the solver is passed a

full assignment to variables and parameters, which is the same as the assignment

corresponding to the current plan, except that variables at state i+ 1 are assigned

the values delivered by the current environmental state. If there is no notification

mechanism, then all world-altering effects are materialized as prescribed in the

planning domain, and no consistency check is necessary. In such a case, validity

has to be checked only when new information is sensed.

Regarding the new information accumulated by possible sensed outputs, this

5.3. Main policies of the orchestration algorithm 119

is incorporated into the knowledge base knowlBase (see Section 3.3.2). At each

plan revision, the respective virtual KB actions are extracted as described in Sec-

tion 3.3.2, and the respective constraints are added to the CSP, after removing the

ones referring to the obsolete knowledge base. This way, predicates are modeled

indirectly by keeping the history of persistent information collected so far for dif-

ferent input parameters. The constraints induced by the knowledge base ensure

that the refinement process leads to the appropriate output-to-input assignments,

as instructed by the goal (see example in Section 5.5.1).

If the plan suffix is found to be invalid with respect to the current environmental

state, then an attempt to extend the plan is made. More specifically, let us consider

a plan π = 〈A′0, A′1, . . . , A′k−1〉 (see Definition 6), and define π̂ = 〈A0, A1, . . . , An−1〉,
n ≤ k, as the sequence of non-empty action sets in π, respecting order. Assuming

that k is always selected to be quite larger than the maximum number of plan

steps (see Section 3.3), after the phase of parallel execution of A0 completes, and

depending on the collected outcomes, π̂ can be augmented by adding extra actions

before, after or in parallel with the actions in the suffix 〈A1, . . . , An−1〉. The refining

process shifts the plan suffix leaving d = d(k − n)/2e “empty” places before it,

and the rest after it. To do so, it constructs a partial assignment at the solver

level: {a[d + i − 1] = 1 | ∀a ∈ Ai, 1 ≤ i < n}, where a[j] is the CSP-level

action variable representing a at state j. Input parameters are left open to be

assigned by the solver, depending on the updated initial state, which includes the

most up-to-date variables about the world. Any new observation (value of some

var response) returned after the completion ofA0 is added to knowlBase, predicated

on the specific input parameter values with which A0 were called. This entails a

modification to the CSP model, through the addition of the respective virtual KB

actions. The updated model and partial solution are passed to the solver, and

the search process attempts to find an assignment for the remaining variables.

If this process fails to find a valid solution within some limited time, then the

instantiations to the action variables are removed, the search retracts to the generic

model instance, and a new solution is sought with a partial assignment reflecting

only the initial state.

5.3.2 Executing parallel actions and dealing with timeouts

One of the advantages of the RuG planner is that the produced plans are distin-

guished by a high degree of parallelism. This property can prove highly beneficial

at execution time, especially since service compositions are likely to involve many

sensing operations that can be performed in parallel. Moreover, even if only a sub-

set of a bundle of concurrent actions complete successfully and within some time

120 5. Plan Orchestration via Altering the CSP

frame, this may be enough to enable the invocation of subsequent actions in the

plan. This is an eager and optimistic strategy based on the assumption that fulfill-

ing part of the goal is desirable, even if the goal as a whole is not satisfiable. Since

many services are characterized by long response times, it would be inefficient to

suspend plan execution entirely while awaiting the results of slow or problematic

services. Only actions whose preconditions are activated by effects that have been

materialized will be scheduled for invocation at the next step, and only given that

this is not against the goal specifications. It is one thing for a user to wish to

purchase a CD and a book, and another to state that he wants to reserve a hotel

room at some place under the condition that he has found a way to reach this place.

In the first case, the user would be probably pleased if he managed to purchase at

least one of the desired items, while in the second place he would be reluctant to

pay for the hotel room without being able to arrive at the place.

Actions which according to the domain and the goal depend on operations that

are still pending are postponed till the effects of the slow operations on which

these depend have been substantiated. If it turns out that there is no way (through

invoking alternative service providers or by pursuing a different plan) to achieve the

effects which are necessary for proceeding to the reliant actions, the orchestrator

returns with an infeasibility notification, but the tasks that are independent of these

unattainable effects have already been fulfilled. Such a behavior of eager execution

is similar in spirit with the ENQUIRER algorithm presented in [Kuter et al., 2005;

Au et al., 2005], although the latter refers exclusively to long-lasting observational

queries, which are external to the plan (the HTN-based algorithm used in this

approach does not plan for knowledge gathering), and relies on the assumption that

the information-gathering and execution task is disconnected from planning, which

is only about altering the environment. The orchestration algorithm presented

herein, on the other hand, puts no restriction on whether the effects of the pending

service interfere with the rest of the plan or not.

This eager-to-execute policy works in the following way. Considering a sequence

π̂ = {A0, A1, . . . , An−1}, all actions in Ai are invoked in parallel, by generating an

equal number of concurrent futures , i.e., containers which act as proxies for the

yet unknown result of the respective action (see Section 5.4 for implementation de-

tails). The futures complete either when a response is received (indicating success

or failure) or when some predefined timeout period expires. The timeout reflects

some short delay within which an average, reasonably fast service is expected to re-

spond. Services which justifiably need longer time for searching or processing data,

are kept in a list of pending actors until they respond successfully or they expire,

i.e., the respective expected long response time passes. In case an asynchronous

mechanism for receiving notifications about environmental changes is available, the

5.3. Main policies of the orchestration algorithm 121

assumption is that this mechanism is reliable and timely, so that notifications re-

garding the effects of the completed futures are received within some milliseconds

after the short timeout period.

After the short timeout elapses, the collected information and context changes

are processed to decide on plan refinement or replanning from scratch. The up-

dated plan (refined or new) is computed starting from an initial state that reflects

the new context, and assumes the successful completion of any pending actions.

Thus, considering the invocation of the parallel actions Ai at state i, and some

actions Ap ⊆ Ai which do not respond within the short time limit, the new initial

state is formed by assigning all variables that participate in the effects of Ap to

the values they have at the solver state i + 1. The values of these variables at

state i are stored for bookkeeping so that they can be later recovered in case of a

failure response or timeout. An action a which is part of the updated plan is exe-

cuted only if precond(a) does not include any variable which is part of the effects

pendEffects of any of the pending actions. Moreover, if (i) the goal comprises a goal

of type g1 under_condition g2, (ii) some variable in precond(a) or effects(a) is

involved in any of the propositions within g1, and (iii) some variable which is part of

pendEffects appears in g2, then a is prevented from being executed. In such a case,

the orchestration process waits until the respective pending action either responds

or expires, i.e., the expected delay time elapses. These restrictions for allowing an

action invocation are overly strict, and may end up putting some actions on hold

unnecessarily. For example, if an action’s a preconditions share some common vari-

able with the effects of some pending action pa, a’s invocation will be suspended

until pa expires or responds, no matter if these preconditions are actually satisfied

independently of the outcome of pa.

Expiration is interpreted as an indication of erroneous behavior and can be

dealt with as described in Section 5.3.3. Whenever a pending action expires, its

assumed effects which had been incorporated in the initial planning state have to be

retracted. This is done by assigning the variables which participate in its effects to

the stored values that correspond to the state before the action’s invocation. This

way, any future plans will be computed as if the pending had failed. If however in the

meantime the variables involved in the expired action’s effects have been modified

by some other actor, these changes will be overwritten by the stored values, and

the new plans will rely on an obsolete state of the world. To deal with this issue,

whenever a change event concerning a variable that participates in a pending action

effects is received, the stored values for retracting are updated accordingly.

122 5. Plan Orchestration via Altering the CSP

5.3.3 Dealing with erratic behaviors, constraint violations,

and persistent information

Erroneous responses and expirations are handled depending on the type of the faulty

service, the availability of alternative service implementations, and on the severity

of reported failure if some response signifying a failure is returned. Accordingly,

a second invocation attempt may be made, some different service provider may

be looked for, or an alternative plans which can lead to the same results may be

computed. In many domains, a certain functionality modeled by some planning

action may be realized by more than one service providers, e.g., different weather

information APIs, flights search and booking services etc. In such cases, a plan-

ning action corresponds to some “abstract” service or service type, which can be

translated to different concrete service operations at execution time. Thus, if some

erroneous behavior is observed regarding a specific physical service instance, there

may be some alternative concrete service that matches the same logical action.

We assume that this matchmaking process is undertaken by some special-purpose

discovery and selection component, e.g., [Skoutas et al., 2008; Pilioura and Tsal-

gatidou, 2009], which returns the set of functionally equivalent services and selects

the next appropriate instance to invoke according to some criteria. These crite-

ria may consider Quality of Service metrics, or also take into account user-specific

preferences, and is not the focus of this work.

In cases where some sensed output leads to a constraint violation, whether it

is advisable to sample some other concrete instance, give it a try with the same

provider or make a functionally different choice at the planning level depends on

the nature of the service. For services whose output may differ depending on the

selected provider, such as stores returning the availability or price of a requested

item, it makes sense to try alternative instances. This is not the case for services

that provide information that is not instance-specific, such as the weather, map etc.

If the received faulty response indicates a permanent failure, then there is no use

in trying to invoke the same service instance again. The respective service imple-

mentation entry in the list of candidate services is marked accordingly, so that the

specific instance is restrained from future selections. If no alternative implemen-

tation for the same action can be found, a constraint which forbids the action in

question to be chosen by subsequent plans is added to the CSP. Depending on the

policy and the type of the service, the ban may concern the action in general, i.e.,

for all 0 ≤ i < k, a[i] = 0, or the action in combination with the input parameters

values vp it was invoked, i.e., for all 0 ≤ i < k,
∧

p∈in(a) p[i] = vp ⇒ a[i] = 0 . Time-

outs that surpass the expected delay for a given service are treated as a symptom

of a service being in problematic state.

5.3. Main policies of the orchestration algorithm 123

Byzantine services which indicate successful completion without delivering the

expected results can be indirectly tolerated without threatening the consistency

of the plan, if the orchestrator is consistently and timely informed about the ac-

tual state of the world. Consistency checks are performed on the basis of the

latest change events, and thus, every time the preconditions of the next actions are

checked towards the actual and not the expected environmental state. This way,

for example, before trying to move through some door, the orchestrator will wait

until receiving the change event that the door has been opened. However, spotting

which service is the abnormal one, in order to take proper action and isolate it from

future steps, is a much more difficult task. Since it is impossible to identify the

actor who invoked a service operation, it remains unclear whether some inspected

world-altering effect is the result of invoking a faulty service or of the activity of

some external actor. Separate dedicated monitoring techniques are required to de-

cide whether a service is byzantine or not, by inspecting the behavior of all services

and infer unusual patterns, as e.g., in [Murugan and Ramachandran, 2012]. If the

orchestrator is not notified that a service has been compromised so as to forbid it

from subsequent plans, it may keep on invoking the service, as long as it receives a

reply that indicates success. To prevent the orchestrator from repeating invocations

to such malicious services, an upper limit is set to the number of times that a certain

operation can be consecutively called with the same input for the same planning

state. This way, consecutive calls of healthy services instructed by the plan itself

are allowed, as far as consistency checks return successfully. This is the case as long

as we are not dealing with services which are expected to return different output

each time they are called (and thus should be justifiably included in subsequent

plans until they provide the right result). If there is some external actor which is

responsible for the repeated executions (e.g., someone consecutively turns off some

light right after the orchestrator turns it on), then banning the service perceived

wrongly as byzantine is probably a good idea in that case as well.

Undesirable situations in the general case can be effectively resolved only if

actions with potentially severe world-altering effects, which e.g., involve a payment,

are reversible. It may be the case that no solution can be found from the current

execution stage, because some actions which have been performed as part of a

previous plan or by some exogenous agent have brought the world to a state from

which the goal is no longer satisfiable. Such situations can only result due to

environmental uncertainty and evolution, and not due to incomplete offline search,

which chose to follow some wrong path. If there is access to undoing activities,

then world-altering actions which have been executed as part of the plan can be

retracted one by one, to seek if the goal is satisfiable from prior states.

124 5. Plan Orchestration via Altering the CSP

5.3.4 The orchestration algorithm

Algorithm 2 summarizes the behavior of the orchestrator, which encompasses the

aforementioned policies. The orchestrator is realized as an actor [Greif, 1975; He-

witt et al., 1973], i.e., an object which seamlessly reacts in a concurrent manner to

messages it receives asynchronously. The message newModel(domain) is related to

the construction of a new CSP model which encodes the planning domain domain

as described in the translation process in Section 3.3. The resulting constraints are

propagated, and this generic world propagated instance is stored as a starting point

for all subsequent solving requests (as long as no service with new functionalities is

installed, in which case the model has to be re-constructed). Each time a request for

satisfying a new goal is issued (newPlan(goal)), the constraints modeling the goal

are added to the constraint network (after removing any constraints modeling pre-

viously handled goals), and the CSP is propagated and stored as the goal-specific

world instance from which search will start in all refinement and replanning at-

tempts, till the goal is satisfied or no solution can be found.

Other messages concern the receipt of some change event , an indication that

some service type has become unavailable, and the appearance of a new service

type (contextChange(var , val), removeAction(a), and addAction(a) respectively).

In the latter case, if the description of the respective action a already exists in the

planning domain, i.e., the constraints which represent its preconditions and effects

are part of the CSP, then it is enough to remove the constraint that had banned it at

the solver level. Otherwise, if the new service type offers new functionalities, which

have not been encountered before, the addition cannot take place in a dynamic

manner: the whole CSP has to be reconstructed, so that the state variables and

frame axioms associated with the new action are taken into account.

The message monitor(plan, si) refers to the core part of the orchestrating pro-

cess. The pseudocode pieces together and codifies all the steps of parallel execution

through futures, plan refinement or replanning, handling of failures and timeouts,

and selection of alternative physical services that have been described in detail

in Section 5.3. The algorithm represents the most general case, i.e., it considers

asynchronous context changes, accommodates for a particular kind of byzantine be-

havior, and maintains an evolving set of alternative service instances for the same

action. The pieces of code which are within curly brackets ({}) indicate critical

sections. Since all concurrent futures work on the same CSP and context, only one

such entity at a time is allowed to access the CSP or context, and any other critical

requests from other actors are suspended until the lock on the respective object is

released.

5.3. Main policies of the orchestration algorithm 125

Algorithm 2 Orchestrating Actor: asynchronous context changes, concurrent ex-

ecution and continual refinement of plan or replan depending on latest context

function receive

case newModel(domain):

form CSP(domain)

case contextChange(var , val):

{update context(var , val)}
if var is part of the effects of some f ∈ pendingActors then

bookKeepValues(f , var , val)

case removeAction(a):

Add constraint a[i] = 0 for all 0 ≤ i < k to model level

case addAction(a):

if a exists in CSP then

Remove constraints a[i] = 0 for all 0 ≤ i < k

else

Create new CSP model including new action description a

case newPlan(goal):

set goal constraint(goal)

return solve CSP

case monitor(plan, s):

A := getNext Parallel Acts(plan, s)

F := execute par acts(A, s) // Form futures sequence

for f [a, serv]← F do

// f concerning a and service instance serv

on future complete(f , a, s)

end for

F onAllComplete

// short timeout has expired or all futures responded

check plan(plan, s)
end function

function on future complete(f , a, s)

f onComplete // Future return or timeout: run in parallel

case success:

126 5. Plan Orchestration via Altering the CSP

if response contains sensed output then

{update context(out)}
if persistent info then

{bookKeepBehavior(f , inParams(f , s), out)}
if f ∈ pendingActors then // f with long timeout returned

Add f to pendingActors

case short timeout:

if service(f) has justifiably longTimeout then

// f in pendingActors until response or longTimeout expires

Add f to pendingActors

// Proceed as if a’s effects have been materialized

{update context(effectVars(a)[succ(s)])}
bookKeepValues(f , effectVars(a)[s])

case failure:

if f ∈ pendingActors then //f with long timeout returned

Remove f from pendingActors

bookKeepBehavior(f , inParams(f , s), failure)

end function

function check plan(plan, s)

// Partial assignment at solver level, complete solution

updPlan := refine plan(plan, s)

if updPlan 6= ∅ then

send monitor(updPlan, 0)

else // Refinement failed, replan from scratch

newPlan :=replan

if newPlan 6= ∅ then

send monitor(newPlan, 0)

else

notify client “Goal is not satisfiable”

end function

5.3. Main policies of the orchestration algorithm 127

function refine plan(plan, s)

// Instantiation of known variables at the solver level

copy context to init state

planSuffix := consistent(plan, s)

if empty(planSuffix) then

// CSP-level action variables in plan suffix after s are set to 1

// Input parameters and rest of action variables left unassigned

assign partial solution(plan, s)

return solve CSP

else

return planSuffix

end function

function execute par acts(A, s) // Returns a set of futures F

for pf ← pendingActors do

if longTimeout(pf) has expired then

Remove pf from pendingActors

undo effects(pf)

check plan(plan, s); return

else

F .add(pf)

end for

for a← A do

if a not dependent on any other action in pendingActors AND

not scheduled before at s then

serv := get next instance(a, inParams(a, s))

F .add(execute(serv , inParams(a, s)))

if a has been scheduled before at s then

// Detected some malicious action

bookKeepBehavior(f , inParams(f , s), failure)

end for

return F

end function

128 5. Plan Orchestration via Altering the CSP

5.4 Implementation

The framework for interleaving planning, monitoring and execution has been imple-

mented by using the akka library in Scala1, which builds upon the theory of actor

models [Greif, 1975; Hewitt et al., 1973]. Akka provides the means for building scal-

able and fault-tolerant concurrent applications at a high abstraction level, based on

an asynchronous, non-blocking and lightweight event-driven programming model.

The orchestration component, the RuG planner and the service environment corre-

spond to different actors, which are independent entities that operate concurrently

and communicate with each other by asynchronously exchanging messages. Each

component-actor may supervise a set of smaller actors-children, each of which rep-

resents some lower-level constituent entity and is responsible for certain functions

that are assigned to it.

All services that participate in the service environment are modeled as individual

actors, which are overseen by the parent-environment actor. The parent actor

delegates the requests for service calls it receives from the orchestration component

to the respective child-actor, which simulates the requested service. The service-

level actor processes the message and reacts accordingly, depending on the behavior

that we wish to simulate, e.g., by replying with a message that includes some output

values or indicates some failure, by raising an exception, taking too long to respond

or sending no message at all. Each child is treated separately, and different fault

handling directives (e.g., stop, resume, restart, escalate) can be implemented by the

parent actor, depending on the type of failure and the failing service actor. Service-

level actors can be connected to real services, e.g., some OSGi bundle realizing some

intelligent device, or the API of some actual Web Service (see [Westra, 2010]).

An important tool for dealing with concurrency is futures. Futures are used to

retrieve the results of parallel invocations in a non-blocking way, as described in

Algorithm 2. Each future’s lifecycle is treated by some separate callback, which

amounts to some generated special-purpose actor that waits and reacts to the fu-

ture’s completion. These callbacks, which may be executed in any order or in

parallel depending on the service behavior, entail certain modifications to the CSP,

which is shared among them. Atomicity on the operations on the CSP is ensured

through the Scala STM (Software Transactional Memory) library2, which takes care

of coordinating access to shared data from concurrent threads.

1akka.io
2nbronson.github.com/scala-stm

akka.io
nbronson.github.com/scala-stm

5.5. Running examples 129

5.5 Running examples

In the followings, we present how the orchestrating algorithm operates given some

simulated service behaviors in different planning domains and environmental cir-

cumstances. All scenarios presented in the followings were performed on a Core i5

@2.50Ghz computer with 4GB of RAM, running Ubuntu 12.10.

5.5.1 Entertainment WS marketplace

Let us recall the example for attending a concert presented in Section 3.7.1, and

show a running instance of the orchestrating algorithm, given the initial plan. In

such a setting, the only source of information about the context changes are the

responses of the service invocations, and it can be assumed that no external actor

interferes with the plan. The scenario involves many sensing actions (about the

place, date, weather etc.) whose output has to be passed as input to subsequent

actions, and thus the plan refinement process has to repeatedly take care of the

appropriate instantiation of input parameters. For example, when the information

about the upcoming band’s performance is acquired, the input parameters of all

actions which depend on the concert’s date and place have to be instantiated to

the outputs of the “getNextEvent” action (instead of the random convenient values

they were assigned offline).

A run using real WSs has been presented in [Kaldeli et al., 2011], with an

orchestration algorithm that plans from scratch at every step. The run simulates a

situation where the place of the first upcoming concert turns out to be too far. This

information, as well as the information gathered by the other knowledge-providing

actions, i.e., the distance, weather etc., is added to knowlBase. Due to violation of

the goal constraints caused by the distance variable, an attempt for refinement is

made. The respective virtual KB actions are constructed, and the CSP is updated

accordingly. At the initial state, all variables referring to the weather, distance

etc., are unknown, since they are not included in varKnown (their knowledge is

predicated on certain input parameter values as stated in knowlBase).

Since retrieving the facts included in the knowledge base does not lead to a

solution, the planner adds the following sensing actions to the plan: first the re-

trieval of the next performance, and then the respective actions for sensing the

new distance, weather, hotel list etc. Refinement is performed once more, after

the information about the next performance is instantiated. Then the information

about the weather, calendar availability, distance and hotel rooms regarding the

new whereabouts is collected in parallel. Since the new information does not vio-

late the goal requirements, the existing plan is found to be consistent, and a ticket

130 5. Plan Orchestration via Altering the CSP

is booked. However, when proceeding to hotel room reservation, the hotel provider

first in the list (the default order is by increasing price) returns a permanent failure.

The policy for dealing with a bookHotels failure response in this case is to forbid

it to be called again with the same input arguments. Thus, the refinement process

enforces the investigation of the next provider in the list of available hotels.

The sequence of steps taken by the orchestrator when the monitor(initialPlan,

0) message is received are summarized in the followings:

getEventsList(Neutral Milk Hotel) ; evList=known

getNextEvent ; eventDate=2012-02-05, eventPlace=Brussels

Refine plan (assignment of outputs to inputs of actions in plan suffix)

In parallel: {
checkCalendarAvail(2012-02-05) ; calendarAvail=true

getTemperature(Brussels, 05 Feb 2012) ; temperature=11

getDistance(Groningen, Brussels) ; distance=360

getAvailHotels(2012-02-05, defaultPl, 1, single) ; hList=known

}
Sensed value 360 for distance violates constraints, Refine plan

Updated plan found by adding extra actions to plan suffix

getNextEvent ; eventDate=2012-02-08, eventPlace=Amsterdam

Refine plan (information regarding date and place has changed)

In parallel: {
getDistance(Groningen, Amsterdam) ; distance=182

checkCalendarAvail(2012-02-08) ; calendarAvail=true

getTemperature(Groningen, 08 Feb 2012) ; temperature=11

getAvailHotels(2012-02-08, Amsterdam, 1, single) ; hList=known

}
bookConcertTicket(Neutral Milk Hotel, 2012-02-08) ; ok

getNextHotelInfo ; hotelWS=Chancellor Hotel, hotelPrice=60

Refine plan (assignment of outputs to input parameters of actions in plan suffix)

bookHotel(Chancellor Hotel, 2012-02-08, 1, single) ; null

A failure occurred, Refine plan (after banning bookHotel with same input param-

eters)

getNextHotelInfo ; hotelWS=Fairmont Hotel, hotelPrice=75

Refine plan (assignment of outputs to input parameters of actions in plan suffix)

bookHotel(Fairmont Hotel, 2012-02-08, 1, single) ; hBooked=true

As we see, the plan is refined whenever the response of an action invocation

includes some newly sensed output, and the consistency check of the existing plan

5.5. Running examples 131

suffix fails. This happens either because the input parameters of subsequent actions

have to be updated, or because the new information violates some constraint. If

the response indicates success (ok) and the action does not include any knowledge-

providing effects, the process proceeds directly to executing the next action(s),

assuming that the service indeed behaved as expected. A response which indicates

a failure (null) also calls for plan refinement. The run includes 6 calls to the solver

for plan refinement which take 3.5 sec in total, and 9 consistency checks which

require 2.8 sec.

5.5.2 “Moving in grid” scenario

In the followings we investigate a simulation which is designed to combine in a

single run of the orchestrator three types of contingencies which occur during ex-

ecution: an exogenous action which interferes with the plan, a malicious service

with byzantine behavior, and an operation which requires a long time to respond.

The scenario concerns a robot moving around in a house setting as indicated in

Figure 5.2. The rooms of the house are connected through doors, which can be

either open, closed or locked. The robot can open a door only if it stands in front of

it (on either of the two sides), and only if the door is unlocked (i.e., it cannot unlock

doors). Let us also assume that especially for opening the two doors which lead

to R22 the robot needs to have at hand a special password, which it can retrieve

by invoking a slow sensing operation that requires 40 sec to respond. The robot

can move as instructed by the action described in Section 3.3.1, that is, between

locations which are adjacent to each other (connected through the dashed lines in

Figure 5.2), with the additional requirement that if the locations belong to separate

rooms, the intermediate door should be open.

At the initial state the robot resides at location R00 R01, and the goal is to

reach location R22 R21 at the final state (where RX RY is the location at room

RX and is connected with a location in room RY). All doors are initially closed

and unlocked. A possible run of the orchestration, including three different types

of contingencies, is presented in Appendix A.1. The initial plan guides the robot to

R22 through R01, R11 and R21, and instructs calling the sensing action to retrieve

the necessary password at the second state of the plan. Since the sensing action

takes long to respond, it is checked whether there are any actions in the plan suffix

that do not depend on the expected password and can thus be executed. Indeed,

the robot can keep on moving until the door leading to R22. However, while the

robot is still in R01, someone locks the door which leads from R11 to R21. Such

a contingency at this state requires a drastic change in the robot’s planned route,

and cannot be dealt with by just augmenting the plan. Thus the refinement process

132 5. Plan Orchestration via Altering the CSP

R00

R11

R01 R02

R10 R12

R20 R21 R22

Figure 5.2: Graphical representation of a planning domain modeling the movement

in a 3x3 grid. A robot can move between adjacent locations that belong to the same

room (connected through lines) and between rooms if the interconnecting door is

open.

fails, and replanning from scratch is performed.

The new plan leads the robot through R02 and R12. Due to bad lack though,

it turns out that the door that connects R02 and R12 behaves in a corrupt way:

although the opening operation responds with a success, the door is actually not

opened. As a result, an augmented plan which includes a second attempt is com-

puted. The door behaves the same way for a second time, and thus a new refined

plan is produced. However, the opening door operation is not invoked again, since

already two invocations corresponding to the same planning state have been at-

tempted, and the action is in turn forbidden from any subsequent plans. Since no

refined plan can be found given the prohibition of the specific door opening opera-

tion, a new plan is computed from scratch. The alternative route directs the robot

back to R01, then to R11 and then to R12. However, as the robot stands before

the door leading to R22, the password sensing action expires (it has not responded

within the expected maximum timeout), and is thus treated as a failed action. Since

there is no other way to collect the password, it is impossible to satisfy the goal.

An alternative policy could be to try re-invoking the expired actions, with the hope

that they would provide the required output.

During the above orchestration run, there are 14 validation checks and 4 at-

tempts to refine the plan (including the failed ones), taking 6.6 sec in total, while

5.6. Empirical evaluation 133

3 plans are computed from scratch (including the initial one), taking 17.9 sec al-

together. It should be noted that the way the orchestration run actually evolves

highly depends on the structure of the generated plans. For example, in the above

example, assuming that doors can be opened remotely, independently of the loca-

tion of the robot, it makes a difference whether the opening of the doors is scheduled

in parallel at the beginning of the plan, or delayed till later steps. Although both

plans consist of the same number of actions (i.e., are equally “good”), it is desir-

able to push actions as early as possible in the plan, since this way any erroneous

services are detected earlier, thus avoiding invocations which prove to be needless

or misguiding (e.g., avoid moving on to some door, then detect it is erroneous, and

have to go back again). Moreover, operations which are expected to take a long

time to complete should be preferably scheduled at an early stage of the plan.

5.6 Empirical evaluation

We now present some scenarios especially designed to demonstrate the behavior of

the orchestrator under different “interesting” circumstances.

5.6.1 Refinement towards replanning from scratch

The test cases presented in Table 5.1 seek to investigate the tradeoff between at-

tempting a plan refinement or directly proceeding to planning from scratch. All

tests are variations of a planning domain which represents a robot moving between

adjacent rooms connected by doors, which can be open, closed or locked. In all

tests, the goal is for the robot to move from the top leftmost room to the bottom

rightmost room, starting from an initial state where all doors are closed. The num-

bers 3–5 indicate the dimension of the grid, i.e., refer to a 3x3, 4x4 and a 5x5 grid

respectively. In tests annotated by “*” no attempt for plan refinement is made,

and all updated plans at every step of the orchestration process are computed by

resorting directly to replanning from scratch. The upper time limit that the refine-

ment process may take is set to half the time required by the last planning from

scratch invocation.

In all simulations, as the robot proceeds, an external actor repeatedly hinders

its route: just before the robot is about to cross an opened door, the troublesome

agent locks that door. All operations are simulated so as they successfully respond

within 4 sec, and 2 sec is the extra waiting time, within which the change events

implied by the invocations are expected to be received. The conservative most-

constrained/increasing domain strategy (see Section 3.7) is used for planning from

scratch in the 3x3 and 4x4 grid tests, and for the refinement process in all cases. For

134 5. Plan Orchestration via Altering the CSP

Test

Refine time Plan from Consistency Total orche-

(] attempts) scratch time check time stration time

(] attempts) (] attempts)

unlock3 0.9 (3) 0.3 (1) 0.4 (11) 24

unlock3* −− 1.0 (4) 0.5 (13) 25

unlock4 2.9 (5) 3.3 (1) 3.5 (26) 62

unlock4* −− 12.8 (6) 3.2 (24) 69

unlock5 6.0 (7) 39.2 (1) 10.3 (24) 102

unlock5* −− 202.6 (10) 12.4 (33) 327

unlock-notInRoom3 0.8 (3) 0.6 (1) 1.2 (18) 39

unlock-notInRoom3* −− 2.4 (4) 1.3 (18) 41

unlock-notInRoom4 3.9 (5) 3.2 (1) 4.1 (21) 53

unlock-notInRoom4* −− 19.5 (6) 5.2 (26) 79

unlock-notInRoom5 13.1 (7) 59.3 (1) 22.8 (33) 158

unlock-notInRoom5* −− 176.8 (8) 23.0 (33) 268

permanent-lock3 0.2 (3) 0.3 (4) 0.3 (8) 18

permanent-lock3* −− 0.4 (4) 0.3 (8) 18

permanent-lock4 13.4 (8) 8.1 (9) 5.2 (23) 61

permanent-lock4* −− 8.3 (9) 4.9 (22) 49

permanent-lock5 81.5 (12) 147.1 (13) 13.8 (27) 317

permanent-lock5* −− 135.6 (13) 14.3 (31) 243

Table 5.1: Results for different simulated tests where some external actor intervenes

with the plan (time in sec). Total orchestration time counts the time elapsed

between issuing the goal and its satisfaction or failure. Plan from scratch time

includes the time for computing the initial plan.

the tests in the 5x5 grid, the initial plan takes more than 15 minutes to complete

with the default search strategy, and therefore a random values assignment approach

is employed whenever planning from scratch, with the search restarting every time

some increasing node limit is reached. The resulting plans are not always the

optimal ones, and may include redundant actions.

In the tests signified by “unlock”, the robot can open as well as unlock rooms.

Thus, every time the robot unexpectedly encounters a locked door, it has to update

its plan by first unlocking and then opening the door targeted by the exogenous

agent. In these cases, attempting a plan refinement instead of directly planning from

scratch saves a considerable amount of time, at least for the 4x4 and 5x5 grids, as

is shown in Table 5.1. As expected, the longer time plan generation takes, the

5.6. Empirical evaluation 135

more benefit is gained by employing plan extension, since in these simulations the

updated plan should just involve the addition of two more actions at the beginning,

which is very fast to compute. The two approaches also lead to slightly different

overall sequence of steps, since some redundant actions may be included at times,

especially when employing the random value assignment strategy.

To investigate the performance of the orchestration in situations where a more

elaborate plan refinement is required, let us assume that the robot can unlock a door

only if it resides in some room other than the ones the door connects. This entails

that whenever the exogenous agent locks a door that the robot is about to cross,

the robot has to first move to some adjacent room, unlock the door, then move

back, open it and go on with its route. This situation is reflected by the “unlock-

notInRoom” tests in Table 5.1. Also in these tests, resorting to plan refinement

leads to considerably better performance. However, in cases where there is no way

to augment the plan to tackle the new contextual situation, the time devoted to

attempting plan refinement is wasted. This case is simulated by the “permanent-

lock” tests, which concern the same planning domain as in “unlock”, except that

the robot has no capability to unlock doors. Thus, every time the robot has to deal

with an unexpectedly locked door, the refinement attempt fails, since a drastically

different plan has to be found. In this case, resorting directly to replanning from

scratch actually saves time.

5.6.2 Timeout of sensing actions

The following tests simulate situations where some actions take justifiably long

time to respond, and aim at demonstrating how different plan structures affect the

overall orchestration process. The planning domain concerns again a robot moving

between adjacent rooms in a square of increasing dimension. To open a door the

robot should know a 3-digits password specific for that door, which it can retrieve

by invoking a sensing action from any location. The robot has to move from the

uppermost left room to the bottom rightmost one, starting from an initial state

where all doors are closed and all passwords are unknown to the robot. In all

tests simulating the execution behavior, the password sensing actions take 40 sec to

respond, moving actions take 8 sec, opening the door takes 1 sec, and the average

waiting time for a bundle of parallel actions to respond is 10 sec.

Depending on which planning states sensing actions are scheduled, the robot

may end up waiting for shorter or longer time for some sensing action to respond

before being able to open the respective door. Table 5.2 summarizes the results

for three different structures of initial plans which are passed for execution and

monitoring to the orchestration algorithm. All plans consist of the same number of

136 5. Plan Orchestration via Altering the CSP

Test
Refine time Consistency check Total orche-

(] attempts) time (] attempts) stration time

pswdOpen3-opt 0.5 (1) 0.6 (7) 76

pswdOpen3-subOpt 0.8 (2) 0.9 (9) 88

pswdOpen3-worst 4.7 (4) 1.1 (11) 121

pswdOpen4-opt 4.1 (1) 10.8 (8) 113

pswdOpen4-subOpt 11.0 (3) 18.3 (13) 155

pswdOpen4-worst 12.1 (6) 13.7 (22) 275

pswdOpen5-opt 12.8 (1) 58.5 (11) 144

pswdOpen5-subOpt 33.5 (3) 60.9 (14) 281

pswdOpen5-worst 63.4 (8) 71.6 (20) 437

Table 5.2: Results for simulated tests with actions that take long to respond for

three different plan structures (time in sec). Total orchestration time counts the

time elapsed between issuing the goal and its satisfaction or failure.

actions, however the state at which actions are placed varies: “opt” refers to the

optimal situation where all the password sensing actions in the plan are concentrated

at the first state, “subOpt” to the plan actually generated by the RuG planner

by employing the random values assignment with restarts searching strategy, and

“worst” to a plan where each password sensing action is scheduled just before

the respective door opening. After the invocation of some parallel actions sets, a

validation check and probably a refinement attempt is performed when all actions

respond or the short timeout expires. Given the validated or updated plan, it is

checked whether it is possible to proceed with any plan actions which do not require

the knowledge of the specific password. Thus, the robot can move further if possible,

while the password is being sensed (this happens with the “subOpt” simulations).

Whenever a pending action responds, the orchestration goes on with executing the

updated plan suffix. The results in Table 5.2 demonstrate the large gain in time

when the actions which take long to respond are scheduled as early as possible in

the plan. The larger the domain, i.e., the more slow actions are involved, the larger

the difference between the optimal and the worst approach is.

5.7 Discussion

Given the non-determinism following from observations, external events and erro-

neous or byzantine action behavior, the orchestration algorithm may be trapped in

5.7. Discussion 137

some dead-end. Dead-ends cannot be avoided, because the planner cannot predict

the actual state and the evolution of the environment, and during the orchestration

any event and observation may occur. If there are alternative offline plans, there is

no bias in favor of a specific plan based on some model of the execution-level and

environmental behavior. The orchestration algorithm may end up in a dead-end

even if one assumes that there are no external events and that an action’s execu-

tion leads to a set of states which satisfy the propositions entailed by the action’s

effects. To give an example, let us consider a goal final(var = true), and two

actions a2, a3 having an effect assign(var , true). a2 has a precondition v2 = 1 and

a3 a precondition v3 = true. Let us also assume that there is an action a0 with

no preconditions and with effects sense(v2) and assign(vb, false), and some other

action a1 with effect sense(v3) and precondition vb = true. Starting from a situa-

tion where v2 , v3 are unknown and vb = true, there are two offline plans (of equal

length) that have the potential to satisfy the goal: 〈a0 , a2 〉, and 〈a1 , a3 〉. If in the

actual world, which is sensed at execution time, v2 = false and v3 = true, then the

execution of the first plan ends up in a dead-end, since after the execution of a0 ,

a1 is not applicable anymore. Similar situations can result from problems where

actions have either exclusively observational or exclusively world-altering effects.

As has been shown in Section 5.5.2, producing the shortest plan is not enough

to lead to the optimal orchestration runs. The plans that are opted for should

be the ones which include actions as much in parallel and as early as possible.

However, the RuG planner does not always produce the desired structure of plans,

and in some cases it even computes suboptimal ones, thus the orchestration process

may not follow the shortest run. Moreover, the orchestrator may be trapped into

repeating a sequence of steps without managing to reach the goal. This “stuck in a

loop” situation may arise in cases where suboptimal plans of a certain pattern are

repeatedly produced, or due to the malicious behavior of external actions which may

lead a certain execution to a deadlock. To give an example of such a problematic

situation, let us assume a robot which wants to move from R00 to R02 of Figure 5.1,

and that the door leading from R01 to R02 can be opened only if the robot resides

in R00. If an external actor closes the door leading from R01 to R02 every time

before the robot tries to pass through it, a revised plan instructing the robot to go

back to R00, reopen the door and move forth again will be repeatedly generated.

The orchestrator has no way to identify that it is trapped in a loop due to the

consistent behavior of some exogenous actor, so as to make the decision to follow

an alternative plan, e.g., reach R02 through rooms R10, R11, and R12, with the

hope that the doors in that route will not be blocked. A similar deadlock may result

in any case in which there is need for replanning when the robot resides in R01 and

the planner generates a suboptimal plan, which directs the robot first back to R00,

138 5. Plan Orchestration via Altering the CSP

and then forward to R01 and further. To avoid such situations, some randomness

should be inserted in cases where the orchestrator repeats the same sequence of

actions, and this repetition is not included in the current plan. For example, the

orchestrator may try to randomly choose from the set of actions applicable at the

current state, with the hope that from that new state the planner will escape the

deadlock situation.

It should also be noted that the algorithm’s behavior highly depends on the

selection of concrete service instances for some given planning-level action. The

selection process in the current orchestrating algorithm only addresses simple sit-

uations, like trying an alternative provider if some instance returns a failure or

timeouts. However, more advanced policies regarding the instance selection process

and its implications to the planning level are required to address more tricky situ-

ations. For example, in some cases, selecting a specific provider at some early step

of the plan may affect later selection possibilities.

Because of the separation between the instance-level selection process and the

planning (action) selection level, the orchestrator may not exhaust all possible com-

binations of concretized syntheses, and thus be unable to find a solution, even if

there exists one. In the current implementation, information acquired by some

service invocation is incorporated at the planning level (in the form of implication

constraints to the CSP), i.e., it is assumed that this information is independent of

the service provider selection and refers to the abstract action itself. If at some later

stage it turns out that no plan can be found from the state onwards, it should be

possible to remove the known facts kept in the knowlBase map which are dependent

on some specific service instance. This way, the planner can include in the updated

plan the same actions with the same input parameters, hoping for some differ-

ent, more appropriate output. The selection process employed by the orchestrator

chooses a different service instance each time that the same knowledge-providing

action with the same input is requested in a given orchestration run. However,

depending on the circumstances (e.g., for information which is known to change

very quickly) it may be desirable to re-invoke the same instance for the same action

request. The identification of the right policies depending on the type of the service

and the history of the orchestration run is left as future work.

It should be emphasized that the orchestration algorithm is memoryless, in the

sense that at each stage where a plan refinement or replanning is requested it only

considers the current state, but not the history of the execution path (sequence of

state states) since the orchestration run started. This implies that goals over state

trajectories may never be satisfied, and the orchestration process may needlessly

re-invoke the same actions or wrongly report that the goal is not satisfiable, because

it fails to realize that parts of the goal have been fulfilled in the past. For example,

5.7. Discussion 139

consider Goal 3 from 3.4.1 requesting that a robot should visit all rooms

(
∧

iachieve(robotLocation = roomi)). If at some point during the plan’s execution

a need for plan update appears, then the new plan will re-schedule moving to rooms

that have already been visited. Even worse, if in the meantime some doors leading

to these already visited rooms have been blocked and pruned from the search space,

the orchestrator will fail to find a valid solution. Thus, for certain combinations

of goals and circumstances, correctness may be violated. Checking whether a goal

holds over the execution path induced by the complete orchestration run is far from

straightforward. It requires a separate modeling of the sequence of state sets which

has occurred so far independently from actions, which has to be combined with the

planning problem.

The architecture and methodologies presented in this chapter is the result of joint work with

Nick van Beest, and the process executor presented in Section 6.5.2 is a contribution by Pavel

Bulanov.

Chapter 6

Automatic Runtime Business Process
Repair

Current organizations are characterized by long-running distributed Business Pro-

cesses (BPs) involving many different stakeholders [Li et al., 2010; Gomaa et al.,

2010]. The application of service orientation in the field of Business Process Man-

agement enables the integration of interoperable, local or remote services within a

BP, thus realizing complex composite functionalities, while aiming at adaptability

and reuse. The application of AI planning techniques as a means to infuse flexibility

and and adaptability to the field of Business Process Management Systems (BPMS)

is not new, e.g., [Beckstein and Klausner, 1999; Ferreira and Ferreira, 2006; de Leoni

et al., 2007]. In this chapter we focus on the problem of process interference, which

arises when multiple BPs that share common resources are running simultaneously.

In such a dynamic setting, data modifications by external actors and other concur-

rent processes may lead to inconsistencies and undesirable business outcomes [Xiao

and Urban, 2007; van Beest, Szirbik and Wortmann, 2010]. Such outcomes may

refer to repetition of activities that have already been fulfilled by some other pro-

cess (e.g., multiple orders or invoices), proceeding to activities based on obsolete

information (e.g., delivering a product to some address that is not valid anymore),

or disregarding events that call for compensation activities or the process to hold

(e.g., some necessary condition ceases to hold). In [van Beest, Bulanov, Wortmann

and Lazovik, 2010], the authors propose a runtime approach to address the prob-

lems caused by interference in highly dynamic service-oriented environments. The

approach bases on annotating the BP with dependency scopes and triggering pre-

defined intervention processes to recover from inconsistencies that are discovered

during execution. However, this involves a lot of manual configuration, which even

for simple BPs can become particularly time-consuming and error-prone, especially

since one has to ensure that all important intervention cases are correctly taken

into account and designed.

The adoption of domain-independent AI planning appears a natural assistant

142 6. Automatic Runtime Business Process Repair

on this limitation. One can view intervention processes as plans, which can be syn-

thesized dynamically on the fly, by combining activities from the BP and available

compensation operations, based on how the BP’s knowledge about the world evolves

during execution, and how this knowledge affects the next tasks in its workflow. The

workload of the domain designer can be reduced through the specification of some

high-level goals, which describe in a declarative way the desired properties that has

to be fulfilled in case of interference. However, in order to enable this automatic

computation of intervention processes, one has to enrich the BP with appropriate

semantics annotations so that it can be transformed to a planning domain. One of

the questions that arise in that process is how the semantics of workflow constructs

such as XORs, repeat structures etc. can be captured in terms of preconditions and

effects. Following our main requirement for sustaining domain-independence, the

idea is to maintain a common repository of atomic service descriptions, which can

be reused as the building blocks of different BPs. The particular restrictions that

are imposed by the specific control flow of each BP should be inferred automati-

cally, by parsing the syntactic BP specification. Dealing with incomplete knowledge

is also essential, since workflows often involve XOR-splits where the condition de-

pends on the value of a variable which is unknown offline, and becomes known only

at runtime, after an interaction with the operating environment (e.g., requesting

some approval or advice). Moreover, numeric-valued fluents and logical conditions

on them are commonly used in BPs. Given these requirements, the RuG plan-

ner comes forward as a good candidate for enabling the automatic generation of

intervention processes.

6.1 The problem of process interference

Modern private and public organizations are moving from traditional, proprietary

and locally managed Business Process Management Systems to BPMSs where more

and more tasks are outsourced to third party providers and resources are shared

among different stakeholders [Li et al., 2010; Gomaa et al., 2010]. In such a set-

ting, as realized by the emergent paradigms of Service Oriented Architecture and

cloud computing, BPs can no longer be considered in isolation, since disregarding

their interdependencies with external actors and other processes may lead to incon-

sistent situations. The situation where data can be simultaneously accessed and

modified by different processes that are running in parallel is referred to as process

interference [Xiao and Urban, 2007; van Beest, Bulanov, Wortmann and Lazovik,

2010]. Process interference occurs far more often than most people realize. BPs

are developed under the assumption that data are stable, which is generally not

6.1. The problem of process interference 143

true. In a distributed setting where data are accessed and modified by a number of

different parties, changes on important data, that the process relies upon, may pass

unnoticed. These changes often yield wrong results, however, because no immediate

software error occurs, there is no direct sign that something wrong is happening

during the process execution. Therefore, the consequences are often realized only

by end customers [van Beest, Szirbik and Wortmann, 2010], by erroneous orders or

invoices, customer requests that are never handled, etc. Consider, for example, a

business process for approving and delivering a wheelchair for disabled people in the

Netherlands. It takes up to 6 weeks from sending the initial request to receiving an

actual wheel chair. What if in the meantime the person, which requested the wheel

chair, has moved to a different place, e.g., to a care home with nursing support?

The original process has to be adjusted, either by forwarding the wheel chair to a

new place, or by canceling the request, depending on what is more suitable in the

new concrete situation.

Traditional verification techniques for workflow and data-flow (e.g., [Trčka et al.,

2009]) are not sufficient for ensuring the correctness of such BPs, since they assume

a closed environment where no other process can use a service that affects the data

used by that organization. In addition, most work about resolving process interfer-

ence refers to failing processes or concerns design-time solutions [Xiao and Urban,

2008; Urban et al., 2011]. Consequently, neither of these solutions is suitable for a

highly-dynamic and distributed environments. In [van Beest, Bulanov, Wortmann

and Lazovik, 2010; van Beest et al., 2012], a runtime mechanism is proposed, where

vulnerable parts of the process are monitored in order to manage interferences by

employing intervention processes. Dependency scopes (DS) are used to specify crit-

ical sections of the BP, whose correct execution relies on the accuracy of a volatile

process variable, i.e., a variable that can be changed externally during the execution

of the process. If a volatile variable is modified by some exogenous factor during

execution of the activities in the respective DS, an intervention process (IP) is trig-

gered, with the purpose of resolving the potential execution problems stemming

from this change event.

By using DSs, testing for unforeseen data interactions at each activity can be

avoided. As a result, the process designer does not need to know all potential

process interactions in advance. However, a significant amount of manual specifi-

cation of the intervention patterns is required, since the appropriate IPs may differ

considerably depending on the current execution state at which modification of a

volatile variable occurred. For complex processes with numerous activities, it is

very difficult and time-consuming to define IPs at design-time, as the amount of

potential IPs may be particularly high. In addition to that, it is difficult to en-

sure that all important intervention cases are taken into account. Moreover, as

144 6. Automatic Runtime Business Process Repair

the same BP may be deployed and used by more than one organization, different

intervention processes have to be specified for each potential interference case at

each organization.

The workload due to extensive manual configuration can be significantly reduced

by employing the RuG planner to automate the task of IP generation. In that way,

the manual work required by the domain designer is reduced to the specification of

a high-level goal, which describes in a declarative way the desired consistent state

that has to be reached in case of interference. To realize such a level of automa-

tion, additional semantic annotations are required, which capture the functional

aspects of the activities participating in the business domain in terms of precondi-

tions and effects, in spirit with existing process ontologies such as OWL-S [W3C,

2004]. However, as is shown in Section 6.4.2, the semantic annotations reflecting

the BP-specific restrictions and relations between the activities can be derived in an

automatic way. Although the focus of the work presented in this chapter is to ad-

dress process recovery from inconsistencies that result from process interference, the

overall approach of using domain-independent AI planning for BP reconfiguration

is more general, and can be used to react to any kind of events.

6.1.1 Process interference in e-Government: a test case

E-Government is a typical area characterized by multiple concurrently executing

knowledge-intensive processes, which access and modify commonly shared resources

such as citizen data, information reported by external contracted parties, etc. In

such a context, addressing process interference becomes a critical issue, since im-

portant data used by subsequent tasks may become obsolete, and conditions on

which the process relies may not hold anymore. Therefore, a BP has to be continu-

ously informed about changes concerning that data, reason about them, and react

accordingly in order to be able to ensure its consistency with the new state of the

world.

In order to illustrate the effects of process interference and the potential ways

to overcome them, let us consider a real case-study from the Dutch e-Government,

which concerns the process realizing the Dutch Law for Societal Support, known

as the WMO law1. This law is intended to offer support for people with a chronic

disease or a disability, by providing facilities (usually by external parties) such as

domestic care, transportation, a wheelchair or a home modification. Naturally, sev-

eral different instances of the WMO process can be executed concurrently, together

with other governmental processes, which may access and modify the same data.

For example, during the execution of the WMO process, the citizen may move to a

1http://nl.wikipedia.org/wiki/Wet_maatschappelijke_ondersteuning

http://nl.wikipedia.org/wiki/Wet_maatschappelijke_ondersteuning

6.1. The problem of process interference 145

different address, the medical status of the citizen may alter, the eligibility criteria

may change because of some new directive etc. The BP which models the WMO

law, referred to as the WMO process, concerns the handling of the requests from

citizens at one of the 418 municipalities in the Netherlands. Figure 6.1 represents

the WMO process as used by one of the municipalities and is annotated with the

required dependency scopes.

6.1.2 WMO process description

The WMO process starts with the submission of an application for a provision by

a citizen. After receiving the application at the municipality office, a home visit is

executed by an officer, in order to gather a detailed understanding of the situation.

After the home visit, additional information on the citizen’s health may still be

required, which can be obtained via a medical advice provided by e.g., a general

practitioner. Based on this information, a decision is made by the municipality to

determine whether the citizen is eligible to receive the requested provision or not.

In case of a negative decision, the citizen has the possibility for appeal. In case of

a positive decision, the process continues and the requested provision is provided.

For domestic help, the citizen has the choice between “Personal Budget” and “Care

in Kind”. In case of a “Personal Budget”, the citizen periodically receives a certain

amount of money for the granted provision, and in case of “Care In Kind” suppliers

who can take care of the provision are contacted. For obtaining a wheelchair, first

the detailed requirements are acquired before sending the order to the supplier. The

home modification involves a tender procedure to select a supplier that provides the

best offer. If the selected tender is approved by the municipality, the order is sent

to the selected supplier. After delivery of the provision, an invoice is sent by the

supplier to the municipality. Finally, the invoice is checked and paid.

In case of a negative decision (i.e., the application is rejected or the granted

provision is less than the citizen requested), the citizen has the possibility for appeal.

In case of a legitimate appeal, the provision is either granted, or the process is

restarted. In case of a positive decision, the appropriate activities are executed,

depending on the requested provision. For domestic help, the citizen has the choice

between “Personal Budget” and “Care in Kind”. In case of a “Personal Budget”,

the citizen periodically receives a certain amount of money for the granted provision

to pay for workers or supervisors, and decide where the money is spent. In case of

“Care In Kind” suppliers who can take care of the provision are contacted. A home

modification involves a tender procedure to select a supplier, prior to execution of

the actual home modification. A wheelchair is usually provided using a contracted

supplier. After acquiring the detailed requirements, the order is sent to the selected

146 6. Automatic Runtime Business Process Repair

Home visit

Decision

Medical

advice

[Medical

advice]
[No medical

advice]

Intake and

application

[Appeal]

[Affirm

decision]

[Revise

decision]

[No appeal]

[Rejected]

Payment

[Domestic help]

[Approved]

[Else]

[Wheelchair]
[Home

Modification]

Tender

procedure

Check tender

with decision

[Tender not ok]

[Tender ok]

Acquire

requirements

T
e

rm
in

a
te

T
e

rm
in

a
te

Handle invoice

+

Send order to

supplier

Send order

confirmation to

selected supplier

[Personal

budget]

[Care

in kind]

Handle invoice

+

Send request

to supplier

Receive

delivery

confirmation

Handle invoice

[Invoice correct]

Check invoice

with decision

Receive

invoice

Return invoice

to the supplier

[Invoice not correct]

Receive

delivery

confirmation

Figure 6.1: WMO process model

6.1. The problem of process interference 147

supplier, who delivers the provision. After that point, the process is identical for

all provisions. The order is sent to the selected supplier, who delivers the provision

and sends an invoice to the municipality. Finally, the invoice is checked and paid.

6.1.3 Interference examples

The request for a wheelchair or a home modification may take up to 6 weeks until

the delivery of the provision. Evidently, this process depends on other stakeholders

and their processes as well: the processes executed by the suppliers of the provisions

or the citizens requesting the provision can affect the process as executed by the

municipalities, due to their mutual dependence on certain process variables (e.g., the

address or provision specifications). The WMO process depends on the correctness

of some process variables as well. However, these process variables may be changed

by another process running in parallel independently of the WMO process and

are, therefore, volatile. Regardless of whether the WMO process is designed to be

proprietary to the municipality, a change in either of these volatile process variables

is entirely beyond the span of control of the municipality and may potentially have

negative consequences for the WMO process. That is, due to its dependencies

on those variables, these changes may result in undesirable business outcomes.

Consequently, changes in these variables pose a potential risk of interference.

For instance, the activities after the decision until delivery strongly depend on

the accuracy of the citizen’s address. That is, the requirements of the wheelchair

not only depend on the citizen, but also on the residence as this may pose some

constraints to e.g., the width of the wheelchair. Consequently, an address change

after “Acquire requirements” might result in a wheelchair that does not fit the

actual requirements. Similarly, if the citizen moves to a nursing home after “Check

tender with decision”, the home modification is not necessary anymore. However,

the supplier is not notified of this address change and the municipality is notified

through a different process, which is external to the WMO process. Unless some

action is taken to cancel or update the order, the WMO process proceeds with the

home modification. In addition to the address, the process depends on the medical

condition of the citizen, after executing the home visit and obtaining the medical

advice. If the condition of citizen deteriorates, potentially the provision needs to

be adjusted. If, on the other hand, the condition improves, the provision may no

longer be necessary.

In order to guard for changes of the volatile process variables, Dependency

Scopes can be defined covering a section of the process for which such a change poses

a potential risk of interference. In Figure 6.2, a part of the process is annotated

with the appropriate DSs. The section covered by DS1 relies on the accuracy of the

148 6. Automatic Runtime Business Process Repair

[Domestic help][Else]

[Wheelchair][Home Modification]

Tender

procedure

Check tender

with decision

[Tender

not ok]

[Tender ok]

Acquire

requirements

Handle invoice

+

Send order to

supplier

[Personal

budget]

[Care

in kind]

Handle invoice

+

Send request

to supplier

DS2:

{WMO Eligibility Criteria}

DS1:

{Address, Medical Condition}

Receive

delivery

confirmation

Receive

delivery

confirmation

DS3:

{Address,

 Medical Condition}

Send order

confirmation to

selected supplier

Figure 6.2: Dependency scopes in the WMO process.

address as well as the medical condition of the citizen, while the section covered

by DS2 relies on the accuracy of the WMO eligibility criteria. That is, if the legal

criteria that are relevant for the used contract have changed, this might affect the

order itself, or the potential suppliers that are participating in the tender procedure.

Finally, the section within DS3 depends on the address and the medical condition

of the citizen as well. However, it is separate from DS1, because they comprise

different branches of the BP. If a DS is triggered by an external change on some

of the volatile variables it covers, some recovery activities may need to be executed

to restore consistency. This leads to intervention processes, discussed in the next

subsection.

6.1. The problem of process interference 149

6.1.4 Required intervention processes

The required IPs may differ for each situation. Let us consider for example the

DS1 of Figure 6.2. If the provision concerns the delivery of a wheelchair, and the

address change is detected before the order for the wheelchair is sent to the sup-

plier, the following actions have to be performed. First, a new home visit to the

new address has to take place in order to check the new residence and living con-

ditions, which are important for the advice provided by the external consultant.

Subsequently, the medical expert has to provide an updated advice, taking into

account the characteristics of the new residence, and then a new decision has to be

made by the municipality considering the newly acquired information (for exam-

ple, if the user has moved to a nursery home, then the citizen may no longer be

eligible for a wheelchair). If the municipality still approves the citizen’s request,

the requirements concerning the wheelchair have to be updated, and the respective

order has to be sent to the supplier, as shown in Figure 6.3a. However, if the order

was already sent to the supplier before the new information became available, this

order has to be canceled prior to proceeding with the new one (Figure 6.3b). Please

note that if there is an operation that offers the possibility to update the contents

of an order that has already been issued (given that it has not already been deliv-

ered), the IP would include this operation rather than can celling the existing order

and re-issuing a new one. After the execution of the appropriate IP, the process

proceeds from the state just after the DS.

Similarly, in case of a home modification, the form of the appropriate IP depends

on the state at which the address change has occurred as well. If the address changes

before the order is sent, it is sufficient to execute the IP as represented in Figure 6.3c.

Since the specifications on the order for a home modification directly rely on the

physical properties of the house, a change of address implies a cancellation of the

order if an order has already been sent, as shown in Figure 6.3d. However, these

examples assume that the citizen moves within the municipality (in our example

this is ‘Groningen’). If the citizen has moved to another municipality, the order

should be canceled and a notification sent to the city hall. Then, the entire process

should be aborted, regardless of the requested provision, as each municipality has

its own policies and procedures (Figure 6.3e).

It becomes evident from the example that even for a small DS, the complexity

and workload required for specifying the IPs is high. Addressing the consequences of

an address change on a small part of the process requires 5 distinct IPs. Anticipating

and manually specifying the appropriate IP is difficult, time-consuming, and prone

to oversights of possible situations that may arise: different IPs are required not

only depending on the current state, but also on the actual value of the modified

150 6. Automatic Runtime Business Process Repair

S
e

n
d

 o
rd

e
r to

s
u

p
p

lie
r

H
o

m
e

 v
is

it

R
e

c
e

iv
e

d
e

liv
e

ry

c
o

n
firm

a
tio

n

A
c
q

u
ire

re
q

u
ire

m
e

n
ts

a
)

b
)

S
e

n
d

 o
rd

e
r to

s
u

p
p

lie
r

H
o

m
e

 v
is

it
A

c
q

u
ire

re
q

u
ire

m
e

n
ts

C
a

n
c
e

l o
rd

e
r

H
o

m
e
 v

is
it

D
e

c
is

io
n

[N
o

 m
e

d
ic

a
l a

d
v
ic

e
]

[M
e

d
ic

a
l

a
d

v
ic

e
]

H
o

m
e

 v
is

it
C

a
n

c
e

l o
rd

e
r

C
a

n
c
e

l o
rd

e
r

N
o

tify
 c

ity
 h

a
ll

d
)

c
)

e
)

R
e

c
e

iv
e

d
e

liv
e

ry

c
o

n
firm

a
tio

n

[A
p

p
ro

v
e

d
]

[R
e

je
c
te

d
]

T
e

n
d

e
r

p
ro

c
e

d
u

re

C
h

e
c
k
 te

n
d

e
r

w
ith

 d
e

c
is

io
n

S
e

n
d

 o
rd

e
r to

s
u

p
p

lie
r

R
e

c
e

iv
e

d
e

liv
e

ry

c
o

n
firm

a
tio

n

[T
e

n
d

e
r n

o
t o

k
]

[T
e

n
d

e
r o

k
]

T
e

rm
in

a
te

T
e

n
d

e
r

p
ro

c
e

d
u

re

C
h

e
c
k
 te

n
d

e
r

w
ith

 d
e

c
is

io
n

S
e

n
d

 o
rd

e
r to

s
u

p
p

lie
r

R
e

c
e

iv
e

d
e

liv
e

ry

c
o

n
firm

a
tio

n

[T
e

n
d

e
r n

o
t o

k
]

[T
e

n
d

e
r o

k
]

M
e

d
ic

a
l

A
d

v
ic

e

[N
o

 m
e

d
ic

a
l a

d
v
ic

e
]

[M
e

d
ic

a
l

a
d

v
ic

e
]

M
e

d
ic

a
l

A
d

v
ic

e

[N
o

 m
e

d
ic

a
l a

d
v
ic

e
]

[M
e

d
ic

a
l

a
d

v
ic

e
]

M
e

d
ic

a
l

A
d

v
ic

e

D
e

c
is

io
n

[N
o

 m
e

d
ic

a
l a

d
v
ic

e
]

[M
e

d
ic

a
l

a
d

v
ic

e
]

[A
p

p
ro

v
e

d
]

[R
e

je
c
te

d
]

T
e

rm
in

a
te

M
e

d
ic

a
l

A
d

v
ic

e

D
e

c
is

io
n

[A
p

p
ro

v
e

d
]

[R
e

je
c
te

d
]

T
e

rm
in

a
te

D
e

c
is

io
n

[A
p

p
ro

v
e

d
]

[R
e

je
c
te

d
]

T
e

rm
in

a
te

F
ig
u
re

6
.3

:
R

eq
u

ired
in

terven
tion

p
ro

cesses
corresp

o
n

d
in

g
to

D
S

1
,

in
ca

se
o
f

a
n

a
d

d
ress

ch
an

ge

6.1. The problem of process interference 151

variable. As a result, for each possible state in a DS and type of change to the

modified variable, a different IP may be required. Moreover, since the same BP

may be used by more than one municipality, different IPs have to be specified

for each of the different cases, as they may have access to different compensation

services or comply with different rules.

6.1.5 Automatic intervention process generation

Instead of relying on a procedural specification of IPs (or equivalently a composite

IP with a huge number of conditional branches to take into account all possible

combination of situations), we propose to assign the task of computing the appro-

priate IP to an AI domain-independent planner. The task of the BP designer in

this case is reduced to a declarative specification of the properties that have to be

fulfilled at a higher level of abstraction, considering some general, more intuitive

cases. This way, it is not necessary to specify explicitly how these properties can be

achieved under all possible combinations of environmental conditions and execution

states of the BP. In this case the desired properties are captured by a goal. The

goal represents the desired conditions that should hold in the state after the end of

the DS, along with some (optional) features to be achieved. For example, consid-

ering the case of DS1 where the address change indicates that the user has moved

to a new home within the range of the municipality, all that has to be captured

by the goal is that at the end “the order of the citizen has to be delivered”. The

goals accompanying DS1 are presented in Section 6.3.3. In this respect, the BP

designer does not have to be concerned with which service operations are available,

what provision is requested, whether the order has already been sent or not, which

activities have to be performed and in what order.

The approach adopted herein, leaves it to the domain-independent RuG planner

to automatically generate the IP, whenever possible, based on semantically enriched

services and BP specifications, the current state and the value of the volatile process

variable. The assumption is that appropriate semantic annotations are available:

the semantics accompanying the pool of services used by the BP have to be specified

once and are reused by different BPs, while the BP-specific semantics represent

the BP structure in a BPEL-like way, along with the direct dependency of some

variables on the validity of some other variables (see Section 6.3). In the next

section, the architecture of the framework supporting the automatic generation of

IPs is presented, and the interplay between the different constituent modules is

explained.

152 6. Automatic Runtime Business Process Repair

6.2 Architectural overview

Figure 6.4 provides an overview of the main components of our framework, along

with their basic interactions. A Process Modeler (PM) is used to assist with the task

of the graphical modeling of the BP, providing a selection of standard control blocks

like sequence, flow, XOR etc., and design tools for modeling DSs, in accordance

with their definition provided in Section 6.3. DSs include the specification of some

high-level goals of declarative nature, which have to be fulfilled by the respective

intervention process in case the conditions indicating an inconsistency are fired.

Figure 6.4: Main components of the framework and their basic interactions

The BP modeled by the PM uses activities that are available in the Service

Repository (SR) by means of service operations. The SR keeps a list of service

6.2. Architectural overview 153

instances (providers) that offer a set of service operations. Each service instance

implements a service description, which specifies the interface of the service anno-

tated by some extra semantics. These semantics allow each service operation to be

represented as a planning action, reflecting its functional behavior in terms of pre-

conditions and effects, which are necessary for enabling the automatic generation of

intervention processes. A subset of the service operations are referenced by the BP

specification, whereas operations offered by other service instances can be marked

as pertinent compensation actions, and can become part of an IP if necessary.

The Process Executor (PE) is responsible for executing the BP step by step

(i.e., the normal course of events as specified during design-time), and takes care

of discovering, binding and invoking the respective service operations residing in

the Environment, according to their specification as included in the SR. Some of

the variables describing the state of the environment can be directly changed by

the process being executed by the PE, through the invocation of services it has

access to, or can be modified by some external process. In the latter case, the PE

receives a modification event, and updates its current internal state accordingly. In

addition to process execution, the PE supports the use of DSs. Before execution of

each activity, the PE checks whether the current state indicates a modification of

the volatile variables that are guarded by a DS that covers this activity. If so, it

verifies whether any of the conditions specified in the DS hold. If a condition holds

(e.g., the new address is outside the current municipality), then the PE interrupts

the execution and invokes the RuG planner. The RuG Planner requires as input

(i) the Planning Domain (ii) the initial planning state (i.e., the values of all process

variables at the current execution step and a set of variable interdependencies), and

(iii) the goal describing the desired properties to it be achieved (e.g., a notification

should be sent to the city hall).

The Planning Domain is computed by the Domain Generator (DG) only once for

a certain process instance, namely the first time that the PE identifies the need for

automatic IP generation. In order to form the Planning Domain, the PE passes the

Atomic Actions (AA) and the BP specification (provided as output by the PM) to

the DG. The AA represent the BP-pertinent action descriptions as kept in the SR,

i.e. the ones referenced by the BP along with the available compensation operations.

Given these two inputs, the DG can generate the encoding of the Planning Domain,

by enriching the generic action descriptions of the AA with extra preconditions

and effects that reflect the BP-specific interdependencies between the actions (e.g.,

sequence, flow and switch).

Given the Planning Domain, the initial state and the goal, the RuG planner

generates the appropriate IP that achieves the associated goal. The generated IP is

then returned to the PE. After the execution of the IP, the PE either proceeds with

154 6. Automatic Runtime Business Process Repair

the execution of the original BP, starting from the state right after the triggered DS

(as in Figures 6.3a-d, where the original BP execution resumes after ”Delivery”),

or aborts if the IP leads to a state that indicates the termination of the BP (as

in Figure 6.3e). If the former is the case, potential branches that were running

in parallel are also resumed from the point they were interrupted, otherwise the

entire process is interrupted. In case of nested DSs, as for example DS1 and DS2 of

Figure 6.2, the PE checks first whether the conditions specified by the outermost

DS are true, and if not, it proceeds by checking the inner DS. The generated IP is

executed within the scope of the DS it was triggered from and the parent DSs, i.e.,

variable modifications that are received during the execution of an IP are covered

by the same set of DSs that covered the action before which the planner was fired.

If no plan can be found, i.e., there is no way to overcome the inconsistencies caused

by the volatile variable modification using the activities it has access to, then the

BP is canceled, and a request for manual inspection is issued.

6.3 Basic concepts

In order to automate the task of intervention process generation, the original BP

should be represented in a format which embraces the appropriate semantic an-

notations, namely the demarcation of the dependency scopes along with their ac-

companying goals, and the formalization of the participating activities in terms of

preconditions and effects. The BP-specific information, concerning its structural

constituent elements, is kept separate from the generic, BP-independent service de-

scriptions, which are maintained in a separate repository, and can be referenced by

different BPs. The basic syntactic structure of the BP builds upon the standard-

ized executable language for describing BPs with Web Services, WS-BPEL[OASIS,

2007].

6.3.1 Service Repository

In the followings, we first define the Service Repository, which plays the role of a pool

of services that are used as the building elements of different process specifications.

The repository consists of a set of service descriptions and a set of service instances.

Service descriptions model the logic of some abstract functionality (e.g., delivering

some product), while service instances this realize some well-defined functionality

by grounding it to some specific provider (e.g., a specific delivery company). Thus,

the service descriptions comprise semantics which specify the operations provided

by a service type, while the service instances specify the way to invoke a certain

service in conformance with a service description.

6.3. Basic concepts 155

Definition 13 (Service Type (st)). A service type is a tuple st = (stid ,O ,SV),

where stid is a unique identifier, O is a set of service operations, and SV is a list

of variables, each ranging over a finite domain. These variables correspond to state

variables internal to the service, whose value can be changed by the operations

of the service. Each service operation o ∈ O is a tuple o = (id(o), in(o), out(o),

prec(o), eff (o)) where:

� id(o) is the identifier of the operation.

� in(o) is a list of variables that play the role of input parameters to o, ranging

over finite domains.

� out(o) is a list of variables that play the role of output parameters to o,

ranging over finite domains.

� prec(o) is a set of preconditions and eff (o) a set of effects (as defined in

Definition 1 with Var = in(o) ∪ out(o) ∪ SV).

For example, the service type related to home modification services has stid =

hm, three operations (TenderProcedure, CheckTender , SendOrderToSelSupplier),

and two state variables (orderId and orderContents). Each of the three operations

has its own input and output parameters. E.g., TenderProcedure has two input

(tpIn cid and tpIn homeInfo) and one output parameter (tpOut tenderSelected).

More details about the specifications of the service operation can be found in Ap-

pendix A.2.2.

Definition 14 (Service Instance (si)). A service instance is a tuple si = (iid(si),

st(si)), where:

� st(si) refers to the identifier of the service type st ∈ ST this instance is com-

pliant with.

� iid(si) is the instance’s unique identifier. For each pair of service instances

si1 , si2 that have the same service type identifier st(si1) = st(si2),

iid(si1) 6= iid(si2).

Different service instances realizing the same service type have their own lo-

cal variables and operations, which conform with the declarations specified in

the respective service type. For example, service instance with iid = “prov1 ”,

which implements HomeModification, keeps its own local variables orderId and

orderContents, with the same names and domains as in the respective service type.

156 6. Automatic Runtime Business Process Repair

As is later shown in Section 6.3.2, BP activities refer to operations and variables of

specific service instances through a unique identifier, consisting of the stid , the iid

and the respective operation or variable name as defined in the service type. We

can give the definition of the Service Repository:

Definition 15 (Service Repository (SR)). A Service Repository SR = (ST ,SI) is

a storage, which keeps a set of Service Types ST and a set of Service Instances SI .

6.3.2 Business Process

In the followings, we provide the definition of a Business Process, which includes the

basic activities and control structures such as sequence, flow and switch, and refers

to services included in the SR. The BP is enriched with DSs, which also constitute

parts of the process. Although the WMO process in Figure 6.1 is represented in

BPMN-notation for readability reasons, the BP specification used in this paper is

block-structured [Ouvans et al., 2006; Kopp et al., 2008], and is based on the basic

constructs of BPEL. The BP specification can thus be directly parsed and executed

by the Process Executor (see Section 6.5.2), and allows for its automatic transfor-

mation to a representation usable by the planner. The BP syntax is ultimately a

tree structure where a block can have other blocks as children, and for each block

its parent can be obtained. The definition is recursive, so that control structures

and DSs can be nested within each other.

Definition 16 (Business Process (BP)). Given a Service Repository SR = (ST ,

SI), a Business process is a tuple BP = (PV ,E), with E being a process ele-

ment E = ACT | SEQUENCE | FLOW | SWITCH | REPEAT |WHILE | DS ,

where:

� PV = PVi ∪ PVe is a set of variables ranging over finite domains.

- PVi is a set of internal variables, which are BP-specific. A subset of these

variables are passed as input parameters to the entire BP, and can be ini-

tialized with specific values at execution time.

- PVe is a set of external variables, which refer to state variables declared

in the SR. An external variable v ∈ PVe is a reference stid .iid .vid , where

stid is the identifier of a service type st = (stid ,O ,SV) ∈ ST , iid is the

identifier of a service instance si = (iid , stid) ∈ SI , and vid is the identifier

of some state variable v ∈ SV .

� ACT is a process activity, as defined in Definition 17.

6.3. Basic concepts 157

� SEQUENCE represents a totally ordered set of process elements, which are

executed in sequence: SEQUENCE{e1 . . . en}, where ek ∈ E .

� FLOW represents a set of process elements, which are executed in parallel:

FLOW {e1 . . . en}, where ek ∈ E .

� SWITCH is a set of tuples {(c1 , e1), . . . , (cn , en)}, where ek ∈ E and ck is

a propositional formula, with all variables ∈ PV . All ck participating in a

SWITCH are mutually exclusive, i.e. for any given assignment to PV , only

a single ck evaluates to true, and ek will be executed if ck evaluates to true.

� REPEAT represents a loop structure, and is defined as a tuple (pe, c{pek}),
where c is a propositional formula (see Definition 1), and pe, pek ∈ E . c is

evaluated just after the end of pe, and if it holds, then pe is repeated, after

the execution of the optional pek .

� WHILE is similar to REPEAT , with c being evaluated before pe starts.

� DS is a dependency scope as defined in Definition 18.

Definition 17 (Activity (ACT)). Given a Service Repository SR = (ST ,SI), an

activity is a process element E which represents one of the following constructs:

� the invocation of a service instance, with act = (id(act), in(act), out(act)),

where:

– id(act) is a reference stid .iid .oid , with stid being an identifier of a ser-

vice type st = (stid ,O ,SV) ∈ ST , iid the identifier of a service instance

si =(iid , stid) ∈ SI , and oid is the identifier of some operation o ∈ O .

– in(act) = in(oid).

– out(act) = out(oid).

In BPEL, it may correspond to an invoke, receive, reply , etc.

� the idle activity no-op, which corresponds to empty in BPEL.

� the special activity exit , whose execution causes the entire BP to halt (corre-

sponding to exit in BPEL).

The syntax we use to represent the BP is in line with the XML-based BPEL,

and is presented by example in Appendix A.2.1.

158 6. Automatic Runtime Business Process Repair

For example, an activity act referring to operation SendOrderToSelSupplier

provided by the service instance with iid = prov1 is characterized by the iden-

tifier id(act) = hm.prov1 .SendOrderToSelSupplier . State variables of service in-

stances, which form the PVe set, are accessed from the BP through the vari-

able’s unique reference, e.g., hm.prov1 .orderId . These variables can be accessed

and changed by different BPs through the respective service instance operation

calls, e.g., hm.prov1 .orderId ’s value is modified through the invocation of the

hm.prov1 .SendOrderToSelSupplier . The input and output parameters of activities,

on the other hand, are local to each different BP instance, and can be assigned with

constant values or other process variables: id(act)(ipar1 := v1 , . . . , iparn := vn),

where ipark ∈ in(act), and vk ∈ PV or vk is a value compliant with ipark ’s do-

main. The activity outputs can be stored in some process variable pvk ∈ PV :

pvk := opark , where opark ∈ out(a). the ultimate set of variables, including the

input and output parameters to the operations of the service instances used by the

planner, is described in detail in Section 6.4.1.

6.3.3 Dependency scope

A DS is a guard-verify structure, where the critical part of the BP is included in

the guard block, while the verify block specifies the types of events that require

intervention. Whenever such an event occurs, the control flow is transferred to the

verify block, and the respective goal is activated. Once the resulting IP finishes

its execution in the updated environment, the control flow of the BP continues

from the point following the guard-verify structure, unless it is explicitly forced to

terminate.

Definition 18 (Dependency Scope (DS)). Given a SR = (ST ,SI) and a BP =

(PVi ∪ PVe , E), a Dependency Scope is defined as a tuple DS = 〈guard(VV){CS},
verify({(case(Ck) : Gk | BPip | terminate(Gk) | terminate(BPip))})〉, where:

� guard(VV) indicates the set of volatile variables VV ⊂ PVe whose modifica-

tion triggers the verification of the DS, and CS a process element of E, which

is called the Critical Section. Whenever during the execution of CS an event

is received indicating a change in the value of a volatile variable vv ∈ VV , the

verify part of the DS is triggered, and the execution of the BP is interrupted.

� verify({(case(ck) : Gk | BPip)}) comprises a set of tuples consisting of a case-

condition ck and a goal Gk or pre-specified intervention process BPip to be

pursued if ck holds.

6.3. Basic concepts 159

– ck is a propositional formula (see Definition 1). Providing a case condi-

tion is optional, with the default interpretation being ck = TRUE .

– Gk specifies a goal, which ensures the satisfaction of the properties that

reflect the state right after the final activity of CS . Gk is specified in

the goal language supported by the RuG planner. After interrupting

the BP execution, the plan that satisfies the respective Gk is executed.

When the execution of the plan is completed, the BP is resumed at the

state after CS and from any other parallel branches of the BP that were

interrupted.

– If a BPip is pre-specified to be executed in case Ck holds, then the

execution of BP is interrupted, BPip is executed. After its completion,

BP resumes from the end of CS .

� terminate(Gk) (terminate(BPip)) forces the process to terminate, i.e. abort

the rest of the execution of BP , after fulfilling Gk (completing the execution

of BPip).

The complete specification of the full WMO process, annotated with all DSs, is

provided in A.2.1. Following Definition 18, the DS specification representing DS1

of Figure 6.2 is the following:

<DS>

<guard>

<variables >

<variable name="bpAddress"/>

<variable name="bpMedCond"/>

</variables >

<!-- Subprocess covered by DS1 as in Figure 2 -->

</guard >

<verify >

<case condition="bpAddress.county!=’Groningen ’">

<terminate >

<achieve -maint>

<eq-val var="notifiedCityHall" value="TRUE"/>

<eq-val var="messagePar" value="countyChange"/>

<invalid var="orderId"/>

</achieve -maint>

</terminate >

</case>

<case condition="bpAddress.county=’Groningen ’ AND bpMedCond!=’deceased ’">

<achieve -maint>

<known variable="dlOut_conf"/>

</achieve -maint>

</case>

<case condition="bpMedCond=’deceased ’">

160 6. Automatic Runtime Business Process Repair

<terminate >

<achieve -maint>

<invalid variable="orderId"/>

</achieve -maint>

</terminate >

</case>

</verify >

</DS>

According to DS1 , if a modification in the address or the medical condition

occurs within the scope of the guarded subprocess, the following goals are pursued:

� If the address change indicates that the citizen has moved outside of the

municipality, the goal ensures that the intervention plan leads to a state,

where the order for a wheelchair or home modification (depending on the

value of the “provision” variable, which is determined by the activity “Intake

and Application”) has been canceled, and a respective notification is sent to

the city hall. The plan is equivalent to IP (e) of Figure 6.3.

� If the new address of the customer is still within the range of the municipality

or/and the medical condition has changed to some new value that does not

indicate “deceased”, the final desired goal is that the delivery of wheelchair

or home modification is performed by taking into account the new situation

(the new medical condition and/or address). Depending on the state at which

the modification occurs and the kind of the modification, the generated plan

is one of the IPs (a) to (d) of Figure 6.3. After the plan’s execution the BP

execution resumes to handle the invoice.

� If the new value of medical condition indicates “deceased”, then the goal

specifies that the order should be invalidated.

Depending on the state of the DS in the original BP, at which the relevant

volatile variable modification was identified, the generated plan may vary consider-

ably for the same goal. This way, one DS definition covers all forms of IPs specified

in Figure 6.3, which are generated automatically by the AI Planner. The domain

designer just prescribes in the goal what properties have to be satisfied during re-

covery, but is not required to know the combinations of actions that can achieve the

goal. The conservative action selection strategy used by the RuG planner promotes

shorter plans. Considering, for example, an address change after an order has been

sent in DS1 in Figure 6.2, if the supplier service offers an updateOrder operation,

the planner will advocate an update in the order address information, instead of

canceling the existing order and sending a new one.

Interdependencies between variables are also defined on top of the BP specifi-

cation, prescribing the direct dependency of some variables on the validity of some

6.4. The BP as a planning domain 161

other variable. The dependsOn relation is used for this purpose: dependsOn(v) =

{v1 , . . . , vn}. Whenever a change in variable v is discovered or whenever v is inval-

idated (by transitivity, as an effect of some other variable interdependency) by the

PE, the direct invalidation of the current values of v1 , . . . , vn is automatically im-

plied, without the need of some special-purpose process to take care of that. For ex-

ample, dependsOn(bpAddress address) = {hvOut homeInfo}, since hvOut homeInfo

refers to the information retrieved for the specific hvIn address. Thus, if the per-

son moves to some other address, the collected information is not valid anymore.

In turn, a set of variables, like arOut requirements reflecting the acquired require-

ments concerning the wheelchair, are directly dependent on hvOut homeInfo. On

the other hand, an orderId is not directly dependent on the address, since it re-

mains valid after these variables change, unless some other course of interaction

actively cancels it. These additional statements are of particular relevance when

the change of a volatile variable is discovered, so that all information directly de-

pendent on the consistency of the volatile variable also becomes obsolete, as shown

in Section 6.4.3. The full set of variable interdependencies that accompany the

WMO process specifications are provided in A.2.1.

6.4 The BP as a planning domain

Given a BP specification and the BP-independent semantics of atomic services

defined in the SR, the PE constructs a planning domain in conformance with Def-

inition 1. The service operations stored in the SR in many cases do not include

any preconditions, since many of them can be invoked individually at any time.

On the other hand, the majority of the atomic-level effects are sensing effects, rep-

resenting the outputs that the respective operation produces. For example, the

result of the “Decision” action in Figure 6.1 is captured via an effect of the form

sense(dcOut confirm). To model the behavior of some compensation actions, the

use of the invalidate type of effects is necessary (see Definition 1), in order to in-

dicate that the value of a variable is not valid anymore. For instance, the action

cancelOrder(orderId) has as an invalidate(orderId) effect, which entails that the

orderId of an order that was processed is no longer valid.

To construct the PD which corresponds to a specific BP , the atomic-level se-

mantics kept in the SR are enriched with extra preconditions and effects that are

derived depending on the interrelations between the activities as specified in the BP

structure. Different constructs in the BP description lead to different preconditions

and effects. For example, conditional effects of the type sense-cond effect are added

to model XOR-splits, so that different effects are materialized depending on the

162 6. Automatic Runtime Business Process Repair

outcome of some knowledge-providing action. e.g., a negative effect of the “Check

Tender with Decision” activity (if the tender selection is not approved by the munic-

ipality) entails the invalidation of the “Tender Procedure” outcome for selecting the

company to undertake the home modification process (because of the loop, as shown

in Figure 6.1). As a result, the effect sense-cond effect(tsOut tenderSelOK = false,

invalidate(ctOut tenderSel)) is automatically generated and added to the effects of

CheckTender, as shown in Appendix A.2.1.

6.4.1 Formation of the atomic actions

The semantic specifications stored in the Service Repository are process-indepen-

dent, and capture the generic functionality of the respective service operations in

terms of preconditions and effects, so that they can be used in the context of various

BPs. Usually these preconditions and effects concern the set of inputs and outputs

of the respective operations and some additional aspects that are internal to the

particular service.

For each BP , the operations of a subset of service instances in the Service Repos-

itory are marked as pertinent compensation methods. These methods can be part

of the intervention processes for repairing the BP , and are annotated by the domain

designer. If a permissive approach is adopted, the entire set of service instances in

the SI part of the SR is allowed to be used by the IP. These compensation methods,

along with the invocation methods referenced by the activities in the BP , form the

BP-Pertinent Methods (BPPM) set. For each method stid .iid .oid ∈ BPPM of a ser-

vice instance si = (iid , stid) ∈ SI , whose service description includes an operation

o with id(o) = oid , the PE generates some instance-level variables, preconditions,

and effects, based on its iid and the operation description o this method realizes.

The resulting set of instance-level method descriptions forms the Atomic Actions.

Atomic Actions (AA) Given a Service Repository SR = (SD ,SI), a BP , and

a set of BP-pertinent Methods BPPM, the Atomic Actions (AA) are formed as

follows:

� When the PE receives a request to execute the BP , a unique instance reference

bp-iid is assigned.

� For each method bpo = sdid .iid .oid ∈ BPPM , the service description

sd = (sdid ,O ,SV) ∈ SD is found, and the operation

o = (id(o), in(o), out(o), prec(o), eff (o)) ∈ O with id(o) = oid is retrieved.

� For each input parameter ipi ∈ in(o), a new input variable is created for

sdid .iid .oid , with name bp-iid .sd .iid .oid .ipi and a domain identical to ipi .

6.4. The BP as a planning domain 163

Similarly, for each output parameter opi ∈ out(o), a new output variable is

created, with name bp-iid .sd .iid .oid .opi and a domain identical to opi . The

resulting instance-level input and output parameters form the sets in(bpo)

and out(bpo) respectively.

� Based on the preconditions and effects of o, the sets prec(bpo) and eff (bpo)

are generated, by substituting each input and output parameter with name

v appearing in prec(o) and eff (o) by the reference bp-iid .sdid .iid .oid .v . In

case of a service state variable var ∈ SV with local name v , the reference is

substituted with the universal name sdid .iid .v , which is BP independent.

If sdid .iid .v has not been met before, the respective variable with name

sdid .iid .v and with domain identical to var is created.

Atomic Actions (AA) Given a Service Repository SR = (ST ,SI), a BP , and

a set of BP-pertinent Methods BPPM, the Atomic Actions (AA) are formed as

follows:

� When the PE receives a request to execute the BP , a unique instance reference

bp-iid is assigned.

� For each method bpo = stid .iid .oid ∈ BPPM , the service type

st = (stid ,O ,SV) ∈ ST is found, and the operation

o = (id(o), in(o), out(o), prec(o), eff (o)) ∈ O with id(o) = oid is retrieved.

� For each input parameter iparj ∈ in(o), a new input variable is created for

stid .iid .oid , with name bp-iid .stid .iid .oid .iparj and a domain identical to

iparj . Similarly, for each output parameter oparj ∈ out(o), a new output

variable is created, with name bp-iid .stid .iid .oid .oparj and a domain identi-

cal to oparj . The resulting instance-level input and output parameters form

the sets in(bpo) and out(bpo) respectively.

� Based on the preconditions and effects of o, the sets prec(bpo) and eff (bpo)

are generated, by substituting each input and output parameter with name

v appearing in prec(o) and eff (o) by the reference bp-iid .stid .iid .oid .v . In

case of a service state variable var ∈ SV with local name v , the reference is

substituted with the universal name stid .iid .v , which is BP independent.

This way, the invocation method description tuple imd = (bp-iid .stid .iid .oid ,

in(act), out(act), prec(act), eff (act)) is created by the PE for each action act =

stid .iid .oid ∈ BPPM . Each imd is converted to a planning action (see in Defi-

nition 1) a = (id(a) = (bp-iid .stid .iid .oid , in(ai) = in(act)), prec(a) = prec(act),

164 6. Automatic Runtime Business Process Repair

eff (a) = eff (act)). These actions form the AA. The set of the instance-level inputs

and outputs of all bpo ∈ BPPM form the AtomicInputs(AI) and the AtomicOutputs

(AO) respectively, while the service state variables involved in the preconditions or

effects of the service types of all bpo ∈ BPPM form the Atomic Service Variables

(ASV).

The AA together with the set of variables AI ,AO ,ASV formed as described in

the definition above, reflect only the atomic-level semantics of the actions. In the

context of a certain BP structure, the universal action descriptions in the AA have

to be enriched with extra preconditions and/or effects, which reflect the process-

specific interdependencies, and which can be automatically inferred from the struc-

ture of the BP.

6.4.2 Generation of the planning domain

The Domain Generator is responsible for transforming the AA to a Planning Do-

main that comprises a process-specific representation of actions participating in the

particular BP, which restricts their use according to the BP structure, as well as the

compensation activities that are allowed to be used by the respective IPs. The DG

is called only once by the PE, the first time it needs to call the RuG Planner. In

this section, it is explained how these additional semantics are added to the atomic

descriptions of the actions, in order to capture process-specific constraints.

Some additional assumptions regarding the BP definition given in Definition 16

have to be made, which allow us to derive all process-specific preconditions and

effects in an automatic way from the BP specification. Given a repeat structure

repeat = (pe, c{pei}), if the optional intermediate pei is empty, it is assumed that

in case c holds, the outcomes of the activities in pe are automatically invalidated,

in order to enforce the repetition of firstAct(pe). For example, if the outcome of

“Check tender with decision” is negative, the previous supplier selection made by

the “Tender Procedure” becomes directly invalid, and another tender has to be

selected. On the other hand, in case a pei is intervened before pe, some activity

in pei should take care of the invalidation of the relevant outcomes of the actions

in pe (as e.g., is the case with “Return invoice to the supplier”). These additional

restrictive assumptions are not necessary if the extra preconditions and effects are

added explicitly by the domain designer.

Algorithm 3 takes as input the BP specification, and the set of atomic actions

AA (which comprise the activities participating in the BP plus the allowed com-

pensation actions). By parsing the BP, it constructs the appropriate preconditions

and effects for each activity that is part of the BP. These preconditions and effects

are added on top of the atomic functional preconditions and effects of the respective

6.4. The BP as a planning domain 165

action in the AA.

Algorithm 3 Automatic addition of BP-specific preconditions and effects given a

BP specification and a set of atomic actions AA. The resulting set of BP-specific

action descriptions constitutes the Planning Domain.

procedure PD(BP ,AA)

while hasNext(BP) do

e = getNextElement(BP) //depth-first parsing of the BP tree

match type(e)

case activity :

while hasNextInput(e) do //parse input assignments

(ipari := v) = parseNextInput(e)

addPrec(getAction(id(e),AA), ‘ipari = v ’)

end while

while hasNextOutAssign(e) do //parse possible assigns of outputs to vars

(bpVar := eOut v) = parseNextOutAssign(e)

addEffect(getAction(id(e),AA), ‘assign(bpVar , eOut v)’)

end while

addPrec(getAction(id(e),AA), seqPrec(prevElem(e), BP))

case switch{(c1 , e1), . . . , (cn , en)}:
while hasNextBranch(e) do //parse all branches of the switch

(ci , ei) = getNextBranch(e) //precs for all actions at beginning of switch

∀ai ∈ firstAct(ei): addPrec(getAction(id(ai),AA), ‘ci ’)

end while

case repeat(pe, c): //e is a repeat without an intermediate pei
∀ai ∈ lastAct(pe): //effects for all actions after the loop pe:

//invalidate the outputs of all actions in the repeat loop

addEffect(getAction(id(ai), AA), ‘c ⇒ ∧aj∈pe,ok∈out(aj)invalidate(ok)’)

case otherwise: continue

end while

end procedure

The BP is treated as a tree (represented as an XML tree), where the root is

the outer-most element in the specification, and the leaves are the activities. For

each element, its parent can be obtained, and given an element one can reach its

children. The parsing starts from the root and gets the next element in a depth-

first way. If the element is an activity a, first its inputs are parsed: for each

assignment to an input parameter, the respective equality proposition is added to

a’s preconditions. Next, possible assignments of the outputs of a to BP variables

of the form bpVar := eOut v are parsed, and the respective assign effect is added

166 6. Automatic Runtime Business Process Repair

to the effects of a.

Algorithm 4 Functions for computing preconditions capturing sequence relations.

The computed preconditions are added to the action that follows in the BP.

function seqPrec(e,BP): Precondition

match type(e)

case activity :

return ‘∧oj∈out(e) known(oj)’ //action’s outputs are valid

case seq{e1 , . . . , en}: seqPrec(en ,BP)

case repeat{pe, c{ei}}: return ¬c ∧ seqPrec(pe,BP)

case switch{(c1 , e1), . . . , (cn , en)}: //ei of switch-branch ci is valid if ci
return ‘∧i (¬ci ∨ seqPrec(ei ,BP))’

case flow{e1 , . . . , en}: //all parallel eis are valid

return ‘∧i seqPrec(ei)’

case empty :

if prevAct(e) 6= ∅ then

seqPrec(prevAct(e,BP))

else

return true

end function

function prevElem(e,BP): Element //Returns the previous element of e

match type(parent(e,BP))

case seq{e1 , . . . , en}:
if e = ei ∧ i 6= 1 then

return ei−1 //if e = ei not last in seq, return ei−1

else //if last, the previous is the previous of the parent

prevElem(parent(e,BP))

case otherwise:

if parent(e,BP)=∅ then //if root

return ∅
else //in all other cases, previous is the previous of the parent

prevElem(parent(e,BP))

end function

The preconditions enforcing a’s sequence relation with respect to its preceding

process element e, as computed by the prevElem function in Algorithm 4, are re-

turned by the function seqPrec. These preconditions ensure that the appropriate

preceding actions are executed prior to a, depending on the type of e. More specifi-

cally, seqPrec obtains the preconditions corresponding to all execution paths that

6.4. The BP as a planning domain 167

Algorithm 5 Auxiliary functions used for adding switch and repeat conditions as

preconditions.

function firstAct(e,BP): Set[Element] //Find the first action(s) of an element

match type(e)

case switch = {(c1 , e1), . . . , (cn , en)}:
return firstAct(e1 ,BP) ∪ . . .∪ firstAct(en ,BP)

case repeat = {pe, c{pei}}: return firstAct(pe,BP)

case flow{e1 , . . . , en)}:
return firstAct(e1 ,BP) ∪ . . .∪ firstAct(en ,BP)

case seq{e1 , . . . , en}: return firstAct(e1 ,BP)

case activity : return e

end function

function lastAct(e,BP): Set[Element] //Find the last action(s) of an element

match type(e)

case switch = {(c1 , e1), . . . , (cn , en)}:
return lastAct(e1 ,BP) ∪ . . .∪ lastAct(en ,BP)

case repeat = {pe, c{pei}}: return lastAct(pe,BP)

case flow{e1 , . . . , en)}:
return lastAct(e1 ,BP) ∪ . . .∪ lastAct(en ,BP)

case seq{e1 , . . . , en}: return lastAct(en ,BP)

case activity : return e

end function

may lead to a, by finding the last action(s) of the respective execution paths, and

the possible respective conditions on which this path is depending. The function

prevElem(a, BP) returns either the previous element of a in a sequence relation

if such one exists. Otherwise it recursively goes back to the ancestors of a, until it

reaches a sequence relation. If no sequence exists in its roots, there is no activity

preceding a. If e=prevElem(a, BP) is an activity, the precondition states that the

outputs of e have to be known. If e is a sequence, then seqPrec is computed on

the last element in that sequence. In case of a repeat, seqPrec is called recursively

on the loop element. Moreover, the negation of the condition at the end of the loop

should hold for the control flow to proceed to a’s execution. For multiple incoming

branches in case of flow, the sequence preconditions modeling all elements in the

flow are obtained. If the e is of type XOR={(c1 , e1), . . . , (cn , en)), the precondi-

tions state that the element ei should be executed prior to a only if the respective

branch was taken, i.e., if condition ci holds. Finally, if e, i.e., the previous element

with respect to the parent element of a, is the empty activity, and parent(a) is

168 6. Automatic Runtime Business Process Repair

not the root of the BP, then the algorithm proceeds recursively in computing the

sequence preconditions entailed by the ancestors of e.

After taking care of the sequence preconditions, Algorithm 3 proceeds with

checking the case where the current element in the tree is of type XOR. In this situ-

ation, for each branch(ci , ei) of the XOR the condition ci is added as a precondition

to the first activity(ies) of ei. These first activities are computed by the function

firstAct in Algorithm 5. firstAct recursively obtains the first element(s) of ei,

depending on the type of ei, until this element is an activity. In the next step, if

e = repeat(pe, c), a conditional effect is added, which invalidates the results of all

actions in the loop element pe, in case the repeat condition c holds, in order to

compel their repetition. In Appendix A.2.1 the final planning domain representing

the WMO BP, as produced by the application of Algorithm 3, is presented.

The outcome of the algorithm is a BP-specific Actions Set (BPAS), which is the

original AA enriched with the extra preconditions and effects. Together with the set

of variables consisting of the variables AI ,AO ,ASV as described in Section 6.4.1

and the internal process variables PVi declared in the BP , they constitute the plan-

ning domain considered by the planner. The BP-specific planning domain is thus

defined as PD = 〈Var ,Par ,Act〉 (see Definition 1), with Var = PVi ∪AO ∪ASV ,

Par = AI , and Act = BPAS .

6.4.3 Formation of the initial planning state

The initial planning state comprises the values of all variables at the current state

of execution and the knowledge level with respect to the variables interdependency

rules. Given the manually specified variable interdependencies in terms of the

dependsOn sets, these are enriched during execution of the BP by the PE: if an

action comprising an assignment effect assign(v ′, v) or an increase(decrease) effect

increase(v ′, v) (decrease(v ′, v)), has been executed, variable v′ is added automati-

cally to the dependsOn(v) set (if the set does not already exist, it is created). Each

time the RuG planner is called by the PE, the initial planning state is formulated

as follows.

� Each variable var ∈ PV is equal to a value corresponding to the state of ex-

ecution, i.e., considering the assignments to the BP input parameters, the

outputs of the service invocations, the assignments to variables, and the re-

ceived external events (for more details see Section 6.5).

� For each variable var , for which no specific value has been acquired yet, the

respective knowledge variable known var is set to false at the initial state

(known var(0) = false).

6.4. The BP as a planning domain 169

� Given a change event on a volatile variable vv, the interdependency rules are

parsed. For each var ∈ dependsOn(vv), known var(0) = false, i.e., the value

of var as reflected by the current state of execution is not valid. The same is

done recursively for each var ′ ∈ dependsOn(var), for all var ∈ dependsOn(vv).

6.4.4 Generating the intervention process

By starting from the initial state as delivered by the PE, and depending on the goal,

the IP can be generated by the RuG planner using the planning domain. This IP

may include the re-invocation of activities with the up-to-date input parameters, if

this is required to achieve the goal (e.g., pay a visit to the new address to acquire the

informed requirements), or try to find a sequence of “undo” actions that actively

lead to the invalidation of some variables (e.g., try to cancel an order that has been

sent if possible). In case of deferred choices (i.e., XOR-constructs where the value of

a variable participating in the respective condition is unknown offline) it has to be

ensured that the right branch is followed at runtime. Given that sensing outcomes

may well range over numeric-valued domains, we resort to a simple replanning from

scratch mechanism to model deferred choices, when the value of the condition is

acquired during runtime.

The plan originally returned by the RuG planner is optimistic, and the plan-

ner tends to choose the values which lead to the shortest plan. Thus, in case of

the IP Figure 6.3c, it generates the plan that corresponds with the assumption

that the output of “HomeVisit” hvOut maRequired = false, which indicates that

the home inspection does not entail the need for a medical advice, that the decision

is positive, and that the supplier selected by the customer is approved. Whenever

a knowledge-providing activity is executed by the PE, and the initially unknown

variable is instantiated, the outcome is compared with the value assumed by the

plan. That is, it is checked whether the new knowledge incorporated in the CSP

violates any constraint. If no violation is detected, then the execution of the IP may

proceed according to the initial plan. Otherwise the planner is invoked again with

the same goal and a new initial state, including the value of the sensed variable.

As a result, a request for a Home Modification may require the following series of

interactions when planning for Goal achieve-maint(known(delOut delId)) (see Sec-

tion 6.3.3), in order to obtain the IP shown in Figure 6.3c (the input parameters

are omitted for brevity):

Initial plan: {HomeVisit,Decision,TenderProcedure,CheckTender ,SendOrder ,Delivery}

Execute HomeVisit Output: hvOut maRequired = true, constraint violation, re-plan

New plan: {MedicalAdvice,Decision,TenderProcedure,CheckTender ,SendOrder ,Delivery}

170 6. Automatic Runtime Business Process Repair

Execute: MedicalAdvice maOut medInfo =‘Document 12A’

Execute Decision Output: dcOut approvalCheck = true

Execute TenderProcedure Output: tpOut tenderSelection =‘ACM Frizian Constructions’

Execute CheckTender Output: ctOut tenderOK = false, constraint violation, re-plan

New plan: {TenderProcedure,CheckTender ,SendOrder ,Delivery}
Execute TenderProcedure Output: tpOut tenderSelection =‘van der Meer Elevators’

Execute CheckTender Output ctOut tenderOK = false

Execute SendOrderToSelSupplier Output: soOut orderId =‘14578AS’

Execute Delivery Output: dlOut conf =‘Delivered’

If the output of “Decision” is negative, then no plan exists that satisfies the

goal. In that case, the planner returns a message indicating that the goal is not

satisfiable, causing the BP execution to be aborted. In total 9 service operations

are invoked as part of the IP.

6.5 The prototype

The proposed approach for automatic process recovery upon data changes has been

implemented in a prototype, comprising the components of the architecture outlined

in Figure 6.4.

6.5.1 Process Modeler

The Process Modeler (PM) is implemented in Java, by the use of standard Java 2D

graphical libraries. It supports all basic BP modeling constructs, including flows,

XOR splits etc., with an added support for DS modeling. Furthermore, the PM

provides for the declaration of the process variables, i.e., the definition of their name

and type. However, the actual object creation is handled by the PE, which keeps

and manages a local database as described in Section 6.5.2. The PM is connected

to the Service Repository, so that the BP designer can use service operations that

exist in the SR as activities in the BP being modeled.

Figure 6.5 presents a screenshot of the PM, showing the graphical representation

of DS1 and DS2 of the WMO process from Figure 6.2. The DSs are saved along with

the process specification itself. The final output of the PM is an XML representation

of the BP, which conforms to Definition 16. This representation is passed to the

PE for execution, as described in the next subsection.

6.5.2 The Process Executor

The Process Executor (PE) is responsible for executing a BP as specified by the

PM. The PE takes as an input a BP specification in conformance with an XML

6.5. The prototype 171

Check Tender

Tender

Procedure

Send Order to

Supplier

Send Order to

Supplier

Acquire

Requirements

Delivery

Confirmation

DS2: {WMO Eligibility Criteria}

Delivery

Confirmation

Send Request to

Supplier

Handle Invoice

DS1: {Address, Medical Condition}

ctOut_tenderOK

= TRUE

ctOut_tenderOK

= FALSE

itOut_provision =

‘home modification’

itOut_provision =

‘wheelchair’

itOut_provision =

‘care in kind’

itOut_provision =

‘personal budget’

Figure 6.5: Screenshot of the Process Modeler.

schema that represents Definition 16, and with the BP input parameters instanti-

ated to specific values. The PE works in cooperation with the Service Repository as

described in Definition 15. The details of Service Instances implementation are out

of scope of this work, and for the purposes of the testing presented in Section 6.6

the service invocations are simulated.

The activities included in the BP specification must refer to method invocations

that can be retrieved from the SR. Given a fully qualified reference to an invocation

method stid.iid.oid specified by an activity in the BP specification, the PE retrieves

the respective description kept in the SR. For example, the activity “Send Order” in

Figure 6.6 refers to “HomeModification.iid.sendOrderToSel-Supplier”, which corre-

sponds to the method “sendOrderToSelSupplier” of the “HomeModification” service

type, and is provided by the service instance with identifier “WMO hm GR” (see

Definition 15). The service type of “HomeModification” as well as the service in-

stance (provider) “WMO hm GR” are kept in the SR, as shown in Figure 6.6. It

172 6. Automatic Runtime Business Process Repair

Check Tender

Tender

Procedure

Process Instance

Send Order

Service Repository

HomeModification

CheckTender

SendOrderToSelSupplier

TenderProcedure

HomeModification.iid.CheckTender

HomeModification.iid.TenderProcedure

HomeModification.iid.SendOrderToSelSupplier

...

Service Types:

Service Instances:

(“WMO_hm_GR”, “HomeModification”)

...

Figure 6.6: Example of a Service Description and a Service Instance.

should be noted that the value of the variable iid in the BP specification may be

unknown before a process is actually started, and an assignment to another value

iid = iv can be used instead of a predefined value. The value of iv can be provided

by the user at execution time, or retrieved by the PE as an output value of a ser-

vice method call. In the example in Figure 6.6 the value “WMO hm GR” for the

variable iid is provided at the time the process instance execution starts.

In the current implementation, an activity is executed by directly invoking the

respective method, without checking whether the preconditions prescribed in the

corresponding service instance description in the AA hold. Control flows are treated

as by a typical execution engine. The data flow and knowledge about the environ-

ment are handled by a local storage (LS), which is maintained by the PE and

reflects its knowledge about the environment and the state of the process instance

execution. Some of these variables are specific to a particular BP running instance,

and some are common to multiple BPs. During execution, the PE updates the LS

according to the new information it receives from the environment (from service

method invocations), and to the specifications included in the BP description (as-

signments to variables). When the PE receives a request for executing an instance

of a BP specification BP = (PV ,E), it assigns a unique identifier bp-iid to the

running instance, and constructs the AA along with the instance-level inputs and

outputs AI ∪AO (as described in Section 6.4.1), which are added to the LS. Each

service state variable sv ∈ ASV (see Section 6.4.1) is added to the LS if it does not

already exist. This way, state variables of the AA are shared among running pro-

cess instances, whereas instance-level input and output variables are unique to each

process instance. Moreover, the PE constructs the instance-level internal variables

6.5. The prototype 173

declared in the BP (i.e. for each var ∈ PVi) with name v a variable with name

bp-iid .v and domain identical to var ’s domain is added to the LS. The internal

process variables are also unique to the process instance. The value of an instance-

level variable cannot be changed by any other external factor other than the BP

instance bp-iid it belongs to, while a shared variable can be modified by any other

entity that calls the service operation which affects it.

The distinguishing feature of the PE with respect to other well-known BP ex-

ecution engines is the support for dealing with the DSs specified in a BP. When a

process execution runs into a DS, the PE turns into a special “DS mode”. In that

mode, the PE creates an event listener for each of the volatile variables specified

in the DS. It is assumed that modification events can be captured by subscribing

to specific variables of interest, and that external services that have the permission

to change these variables publish an appropriate event that is caught by the sub-

scribed clients (listeners). It should be mentioned that modern architectures for

distributed and dynamic information systems provide strategies for scalable and

reliable monitoring and notification of changes (e.g., Oracle JMS [Oracle, 2002] or

[Vargas et al., 2005]). The details of event firing and catching are outside the scope

of this paper. However, if there is no support for a publish-subscribe model, then

the PE would have to adopt a “request/response” approach, by actively retriev-

ing the current values of volatile variables before each execution step to check for

changes.

The event handling is deferred until the activity currently being executed fin-

ishes, thus avoiding potential inconsistencies that may result from canceling an

activity in the middle of execution. Therefore, the information conveyed by the

data modification events is stored in a memory list that maintains tuples of the

recently modified variables and their latest values. A new event on the same vari-

able overwrites the old value of the variable kept in the memory list. This list of

recent changes is checked prior to executing the next activity within a DS, and if

it is not empty, the conditions in the verify block of the DS are checked towards

the latest values kept in the list. If a condition evaluates to true, the respective

goal or process element is fired, while the BP execution is suspended. In case of

a flow, all parallel branches are put on hold. The list of recent changes is cleared,

and the LS is updated accordingly, by incorporating the most up-to-date values to

the respective variables.

In case a goal has to be pursued, the planner is invoked in order to create a

plan which is then executed, while in case of a pre-specified element this is directly

executed. After a plan or a pre-specified element is executed the initial process

execution is resumed, starting from the activity which is immediately after the end

of the current DS. In case parallel branches were suspended, these are resumed

174 6. Automatic Runtime Business Process Repair

as well (the underlying assumption is that the execution of the generated IP does

not introduce any inconsistencies in the suspended concurrent branches). The only

exception is when there is a terminate annotation referring to the goal that is

triggered (see Definition 18), in which case the original BP is terminated instead.

In case of nested DSs, the conditions are verified for all active dependency

scopes starting from the most outer one and going inward. When the execution of

a subprocess covered by some DS is finished, then the respective DS is removed from

the list of active DSs, as well as all event listeners associated with it. If the list is

empty, then PE leaves the “DS mode” and does not listen to any data modification

events. Note that while executing an IP, the PE still remains in the same “DS

mode”, and thus treats the modification events it receives during the IP execution

in the same way as it did during execution of the process element covered by the

DS in the BP. This means that an IP “inherits” the DSs that covered the activity

before which the planner was invoked. In case a DS condition is triggered, the

current IP execution is interrupted, a new IP is generated, after whose completion,

the PE returns to the state after the DS in the original BP.

In order to generate a plan, the RuG planner needs a planning domain repre-

sentation (see Definition 1). To this end, the PE calls the Domain Generator, by

passing to it the Atomic Actions (AA), built as described in Section 6.4.1 by in-

cluding all service instances referenced in the BP and a set of eligible compensation

services from the SR. The planning domain is constructed only once for a specific

BP, the first time that a DS is triggered. The goal taken from the DS specification

and the current state, i.e., the values of the variables that are part of the planning

domain as reflected by the updated database, are handed over to the AI planner,

which uses them along with the planning domain to compute a plan. This plan,

which includes only sequence and flow structures, is then passed for execution to

the PE. Loops in the plan are “flattened”, i.e., the plans explicitly include all rep-

etitions in sequence. Deferred choices (such as in the case of XORs) are addressed

indirectly as already described in Section 6.4.4: whenever the PE executes an op-

eration that returns a new value, the constraint solver is called to check whether

this value leads to any inconsistencies with respect to the outcome anticipated by

the plan, and if so, the planner is re-invoked with the current state of execution as

the initial state (and the same goal).

6.6 Evaluation

Unfortunately, there is no commonly agreed benchmark for evaluating and com-

paring existing techniques for runtime BP reconfiguration. Different approaches

6.6. Evaluation 175

depart from different starting points with respect to what is given and what is to

be achieved (e.g., [Bucchiarone et al., 2011] assumes service descriptions and con-

text properties as state transition systems); make different restrictive assumptions

about the expected behavior of the available services (e.g., [de Leoni et al., 2009;

Marrella and Mecella, 2011] assume deterministic service outcomes); and ultimately

can resolve different kinds of inconsistencies (e.g., none of previous approaches ad-

dresses the problem of undesired business outcomes due to obsolete data). As a

result, each approach considers its own test scenarios that fit the particular features

it seeks to demonstrate, evaluation of performance is limited to a proof-of-concept

use-case or not provided at all (e.g., [de Leoni et al., 2007, 2009; Marrella and Me-

cella, 2011] present only a theoretical framework). Due to these reasons, no direct

comparison with previous approaches similar to ours in terms of some well-defined

metrics can be made.

The aim of the evaluation presented in the followings is (i) to demonstrate the

effectiveness of our approach with respect to our working example presented in Sec-

tion 5.4 and (ii) to test the performance with respect to the time that is required

to generate the necessary IPs. The specification of the desired goals and DSs has

been conducted in close cooperation with WMO employees at the municipality of

Groningen. Our experience confirmed that the translation of the requirements as ex-

pressed by non-technical employees to the representation required by our framework

is rather intuitive, and is relatively easily understood when shown to non-experts

for proof-checking.

In the tests presented in the followings, service invocations are simulated, and

the methods provided by the service instances have a predefined behavior, simulated

according to the different situations we want to test. The performance of the

framework has been tested with respect to atomic action repositories of increasing

size, since domains that comprise a large set of actions, may raise concerns of

inefficiency. All tests presented thereafter were performed on a computer with an

Intel® Core�2 Duo processor @2.83GHz running Java 1.6.0 24.

6.6.1 Tests on the WMO-law case study

In order to test the framework we have developed on a real case-study, the WMO

process shown in Figure 6.1 was modeled, along with the DSs shown in Figure 6.2.

The BP specification representing the case-study is as shown in Appendix A.2.1,

while the Planning Domain used by the planner is the output of Algorithm 3, given

this BP specification and the set of atomic actions descriptions.

Table 6.1 provides an overview of the times required to generate the initial

plans for all IPs shown in Figure 6.3, corresponding to DS1 of Figure 6.2, in case

176 6. Automatic Runtime Business Process Repair

of a change in the applicant’s address. In all cases, the time for generating the

respective initial IP is below one second. However all IPs in this example, except

for case (e), comprise one or more deferred choices, which implies that replanning

may be needed. As a result, after the execution of a knowledge-providing action, a

violation check verifies whether the actual output differs from the expected value.

If that is the case, the planner is invoked again with the same goal, but starting

from the updated state corresponding to the newly sensed value(s).

IP Plan length
Time for planning

(in sec)

a 5 0.51

b 6 0.59

c 6 0.60

d 7 0.62

e 2 0.39

Table 6.1: Performance results for generating the IPs of Figure 6.3

.

Tables 6.2i and 6.2ii present the times for computing each updated plan in case

of some possible environmental behavior for the IPs depicted in Figures 6.3b and

6.3c, which have 2 and 3 deferred choices respectively. Replanning is performed

until the goal as specified in Section 6.3 is satisfied, or no solution can be found.

The reported times are the average over 4 separate test runs.

The IP in Figure 6.3b corresponds to the situation where a change in address

occurs when a wheelchair is already ordered but not yet delivered. The initial plan

in Table 6.2i is generated assuming optimistic outcomes for the variables that are

unknown at runtime. Consequently, it is assumed that no extra medical advice

is required (hvOut medAdvReq=FALSE) and that the decision is positive (dcOut -

decision= ‘Approved’). During execution of the initial plan, the PE may find out

that a medical advice is required, in which case it updates the plan accordingly by

including an extra action. If the outcome of the decision is negative, a constraint

violation is encountered by the PE. The new situation (with dcOut decision= ‘Not

Approved’) is sent to the planner for replanning. In that case, however, no plan

can be found that fulfills the goal, and the PE is informed accordingly.

The IP in Figure 6.3c covers the case where the address changes at the stage

where a home modification is requested, but the request is not yet confirmed. Ta-

ble 6.2ii presents the times for the initial plan (assuming no medical advice, a

positive decision, and the selected tender to be approved), and the potential up-

dates as a result of replanning. The actual service invocations may lead to the

6.6. Evaluation 177

following discrepancies: the medical advice is actually required, and the plan is

updated; the decision is negative, in which case no plan can be found that reaches

the goal; the selected tender is not approved and a new plan is computed, asking

the user to make a new selection (see also Section 6.4.4 for a possible execution

behavior showing the exact service invocations that take place).

State when planner
Plan length

Time for violation check

is called and planning (in sec)

Initial state 6 0.6 (optimistic plan)

“Medical Advice required” 5
0.3 (violation,

new plan)

“Rejected” - (no plan)
0.02 (violation,

goal can’t be satisfied)

(i)

State when planner
Plan length

Time for violation check

is called and planning (in sec)

Initial state 6 0.6 (optimistic plan)

“Medical Advice required” 6 0.3 (violation, new plan)

“TenderNotOK” 4 0.2 (violation, new plan)

“Rejected” - (no plan)
0.02 (violation,

goal can’t be satisfied)

(ii)

Table 6.2: Replanning times for (i) the IP of Figure 6.3b and (ii) the IP of Fig-

ure 6.3c

6.6.2 Scalability in a simulated domain

In case of the WMO process, the planning domain comprises 16 actions (i.e., the

BP-pertinent methods including the actions that are part of the BP as well as the

compensation actions), while the largest IP consists of 7 actions (note that if one

adds up all actions that are executed as part of the replanning process, the total

number of actions that are executed as part of an IP may be significantly larger).

For most BPs, the length of the IPs for recovering from the most usual situations

are relatively short. However, there are occasions where the length of the required

IPs might be significantly larger than the examples presented for the WMO case.

For example, since the planner cannot produce plans with structured loops, many

repetitions of a set of actions may be required to represent the desired pattern.

178 6. Automatic Runtime Business Process Repair

In order to evaluate the scalability of our framework with respect to the size

of the required IPs (i.e. the number of activities they comprise), a number of tests

have been performed with different goals, whose fulfillment requires IPs with an

increasing size from 20 to 100 activities. For the sake of these tests, a virtual set

of 100 atomic actions has been created, comprising the search space of the planner.

The actions in the domain are interconnected through trivial sequence relations,

so that an action’s preconditions are satisfied when the effects of all its preceding

actions are materialized. The results of these tests are summarized in Table 6.3.

They give an impression of how composition time is affected by the size of the

required IP, for a given a business domain that consists only of sequence structures.

The tests show that for a trivial domain, that about a minute is required to generate

an IP consisting of as many as 100 activities.

20 act 40 act 60 act 80 act 100 act

Planning time (in sec) 3.5 8.9 17.7 43.7 63.6

Table 6.3: Time for generating IPs of increasing size (domain size=100)

It should be noted that the simulated BP description imposes rather direct

interdependencies between actions, thus leading to planning domains with quite a

simple structure. Disjunctive propositions, which are known to add an extra burden

to the constraint solver, result mainly from nested XORs (switches) with many

branches (see Algorithm 4) and to a less extent from the repeat structures leading

to a disjunctive effect (see Algorithm 3). However, given the predominance of the

sequence construct, even in complex BPs the domain filtering during constraint

solving proceeds fast. The experimental evaluation on a realistic BP taken from

the Dutch e-government confirms that the time for generating IPs under different

circumstances is a matter of a few seconds, which is an acceptable performance

considering the average throughput time of long-running BPs (varying between 1

and 6 weeks for the WMO case). In case of a real time process, which requires a

response within a few milliseconds, even a few seconds of planning time may not be

acceptable. In such a situation, it is more efficient to specify DSs with predefined

IPs, which can be directly passed for execution.

Chapter 7

Conclusions

The work presented in this thesis is driven by the interest to investigate the role

that domain-independent automated planning can be reserved in service-oriented

environments. Such environments pose many interesting problems to the AI plan-

ning community, whose tools and techniques can contribute towards leveraging the

degree of adaptability and automation in a number of practical tasks, such as the

coordination of smart devices and sensors in domotic settings and the recovery

of Business Processes from undesirable situations. The common general objec-

tives underlying these applications is the necessity to reason about the ways that

functionalities offered by diverse services can be combined in a just-in-time and

context-aware manner.

7.1 Recapitulation

In order to function in service domains, a planning system should be equipped with

a number of special features that enable it to dispose of the uncertainty deriving

from the open world assumption as well as from unexpected service behaviors, deal

with the abundance of data-intensive operations, and overcome inconsistencies due

to changes caused by exogenous factors. Most importantly, the applicability of the

planning system should not be tailored to the specifics of some particular domain

and task, but rather be in the position to fulfill a variety of diverse objectives with

minimal manual reconfiguration.

To meet these requirements, we have described a planning framework which

uses constraint satisfaction techniques and accommodates for complex goals, a

knowledge-level representation to model lack of information, proactive sensing in

the presence of variables that range over large domains, as well as an algorithm

for monitoring execution and revising plans in a seamlessly changing environment.

These features put together enhance the extent of scenarios that can be repre-

sented and dealt with compared to previous planning approaches to Web Service

composition.

Recalling Table 2.1, which compares in summary the main planning approaches

180 7. Conclusions

to WSC, it is time to position the capabilities of the RuG planner coupled with the

orchestration algorithm. The assessment with respect to the different dimensions

are illustrated in Table 7.1. The approach relies on a domain-independent represen-

tation, which consists of a set of loosely-coupled atomic service operations described

as planning operators. Data-intensive domains which involve many operations that

work with numeric-valued variables, including the case of numeric-valued sensing

outputs, are effectively dealt with. Regarding goal expressivity, the RuG planner

supports a number of constructs that impose constraints over the state traversal,

but it does not accommodate for preferences. No restrictive assumptions about the

interdependencies between sensing and word-altering actions in the composition are

made, and sensing actions are proactively planned for. The approach performs con-

tinuous plan revisions to dispose of failure responses, long responses and timeouts,

and with exogenous events. The orchestration algorithm can address effectively

many problematic situations, under certain assumptions regarding the kind of goal

and the point at which the contingency occurs during execution.

Domain in-

dependence

Support

for data

Goal

expressivity

Sensing Contingencies

FFF

(atomic

actions)

FFF

(numeric-

valued

outputs)

FF

(extended

but no

preferences)

FFF

(proactive,

interleaved

with world

changes)

FF

(failures,

timeouts,

external events,

in certain

situations)

Table 7.1: Assessment of the RuG planner+orchestration framework with respect

to the criteria of Table 2.1.

The practical use of the planning framework has been demonstrated on a num-

ber of scenarios and service platforms, exemplifying how the planning framework

can be used to serve a wide range of objectives under various circumstances. Eval-

uation has been performed to assess the feasibility of the planning system as well

as the overall service architecture within which it operates, including experiments

about the performance of the planning techniques, the effectiveness of the pro-

duced solutions and usability tests. Although our work is inspired by applications

in the field of Web Services, the essence of the planning methodologies we describe

is more general, and touches upon issues that concern a series of problems where

domain-independence, uncertainty and dynamicity are at stake.

7.2. Open issues and future directions 181

7.2 Open issues and future directions

The issues explored in the current thesis are open to further investigation and point

to many directions for additional research developments. From the application point

of view, there is much space for improvement and extensions in order to make the

proposed solutions more practical and user-friendly. To this end, automating the

derivation of planning-level descriptions from a family of standard service semantics

is an important step towards making the use of AI planning a feasible approach to

real-world problems. An interesting follow-up issue concerns how background on-

tologies and associated hierarchies can be incorporated and exploited in the context

of domain-independent planning.

Besides service composition, domain-independent AI planning can also prove

helpful for other tasks that are of particular interest to service-oriented and perva-

sive platforms. For example, planning techniques for automatic plan recognition can

be combined with current sensor- and vision-based recognition systems [Dominici

et al., 2011] to advance the reasoning capabilities of human activity monitoring

in modern ubiquitous environments. Similarly, planning can be used for diagnosis

purposes [Sohrabi et al., 2011] along with standard failure detection mechanisms

to identify and explain aberrant and problematic situations, e.g., to automate and

advance the role of the rule engine discussed in Chapter 4. In the context of Busi-

ness Process reconfiguration, planning can be used not only for repair purposes in

case of some runtime data modifications, but also to automate process adaptation

in case of changes in the business requirements and rules.

There is also much space for improving the performance of the RuG planner,

as well as the quality of the generated plans. The application of some of the

reformulation techniques proposed in [Barták and Toropila, 2008] for the parts

of the domain representation where this is possible can probably prove useful to

speed up search. However, what the planning system is mostly missing is planning-

oriented rather than just CSP-based heuristics, which manage to extract additional

constraints that reflect particular properties of the underlying planning problem,

and are not restricted to propositional encodings.

Extending the planning system to deal with noisy data, i.e. sensing actions which

return a set of possible values, is also an interesting direction for future work. To

that end, it is worth investigating whether an approach similar to the interval-valued

function described in [Petrick, 2011] and the performance of some sort of case-based

reasoning can be adopted by the RuG planner. Regarding goal expressivity, the

support for soft constraints would certainly add to the planner’s power, however

its implications on performance remain to be investigated. The capabilities of the

orchestration framework can also be improved and extended in many ways. For

182 7. Conclusions

example, exploiting techniques used in the context of dynamic CSP for intelligent

solution reuse can probably benefit performance. How to validate an extended

goal towards a complete orchestration run rather than just from the current state

onwards is another interesting question to explore.

Appendix A

Appendix

A.1 Orchestration example of moving robot in grid

In the followings we present the sequence of steps taken by the orchestrator for the

“moving in grid” scenario described in Section 5.5.2. The robot moves around the

3x3 grid depicted in Figure 5.2. At the initial state it resides at location R00 R01,

and the goal is to reach location R22 R21 at the final state, while all doors are

initially closed and unlocked. In order to open the doors leading to R22 it needs

to have a password, which it can retrieve by issuing a senseRoom22Code sensing

operation. During execution, three kinds of contingencies occur: some external

actor locks a door, an opening door operation repeatedly reports success but fails

to open the door, and the senseRoom22Code expires with no response. These sit-

uations ultimately require replanning from scratch, and at the end the goal cannot

be satisfied since the required password cannot be retrieved.

open:doorR00 R01

Context change doorR00 R01 = OPEN

In parallel: {
senseRoom22Code set:robotPlace(R01 R00) }
Context change robotPlace = R01 R00

Short Timeout of senseRoom22Code2

In parallel: {
set:robotPlace(R01 R11)

open:doorR01 R11

}
Context change doorR01 R11 = OPEN

Context change doorR11 R21 = LOCKED //somebody locked doorR11 R21

Context change robotPlace = R01 R11

Refine plan: the current plan cannot be augmented

Replan from scratch //new plan guides robot through R01, R02, R12, R22

In parallel: {

184 A. Appendix

set:robotPlace(R01 R02)

open:doorR01 R02

}
Context change robotPlace = R01 R02

Context change doorR01 R02 = OPEN)

set:robotPlace(R02 R01)

Context change robotPlace = R02 R01

In parallel: {
set:robotPlace(R02 R12)

open:doorR02 R12

}
Context change robotPlace = R02 R12

Refine plan

//re-invoke open:doorR02 R12, since door not opened despite success response

open:doorR02 R12

Disable open:doorR02 R12

Refine plan: the current plan cannot be augmented

Replan from scratch //guides robot through R02, R01, R11, R12

set:robotPlace(R02 R01)

Context change robotPlace = R02 R01

set:robotPlace(R01 R02)

Context change robotPlace = R01 R02

set:robotPlace(R01 R11)

Context change robotPlace = R01 R11

set:robotPlace(R11 R01)

In parallel: {
set:robotPlace(R11 R12)

open:doorR11 R12

}
Context change robotPlace = R11 R12

Context change doorR11 R12 = OPEN

set:robotPlace(R12 R11)

Context change robotPlace = R12 R11

set:robotPlace(R12 R22)

Context change robotPlace = R12 R22

Long timeout for senseRoom22Code2. Disable senseRoom22Code2.

Refine plan: the current plan cannot be augmented

Replan from scratch // not plan can be found

A.2. Representations of WMO BP and respective Planning Domain 185

A.2 Representations of WMO BP and respective

Planning Domain

A.2.1 BP Representation of the WMO Process

For brevity and clarity reasons, aliases are used instead of the full activity or variable

identifiers, i.e., the complete references to service invocation methods, parameters

and state variables which reside in the SR. For instance, the decision activity

name is an alias for the full identifier TenderWCSupplier .12CB .tender - Decision.

Moreover, the declaration of the local process variables that are used for storing

the outputs of activities is omitted (e.g. Temp hvOut homeInfo).

<BusinessProcess name="WMO">

<input>

<parameter name="bpAddress" type="dt:address"/>

<parameter name="bpCid" type="dt:citInfo"/>

<parameter name="bpEligCrit" type="dt:lawInfo"/>

<parameter name="bpMedCond" type="dt:medInfo"/>

</input >

<execute name="intake"

input="itIn_Cid=bpCid;itIn_address=bpAddress"

output="tmp_itOut_prov:=itOut_prov"/>

<sequence >

<repeatUntil >

<sequence >

<execute name="homeVisit"

input="hvIn_Cid=bpCid;hvIn_address=bpAddress"

output="tmp_hvOut_homeInfo:=hvOut_homeInfo;tmp_hvOut_maRequired:=

hvOut_maRequired"/>

<DS name="DS0">

<guard>

<variables >

<variable name="bpAddress"/>

<variable name="bpMedCond"/>

</variables >

<sequence >

<switch >

<case condition="hvOut_maRequired=true">

<execute name="medicalAdvice"

input="maIn_cid=bpCid"

output="tmp_maOut_medInfo:=maOut_medInfo"/>

</case>

<otherwise >

<empty/>

</otherwise >

</switch >

<execute name="Decision"

input="dcIn_cid=bpCid;dcIn_homeInfo=tmp_hvOut_homeInfo;

dcIn_eligCrit=bpEligCrit;dcIn_medInfo=tmp_maOut_medInfo

"

186 A. Appendix

output="tmp_dcOut_approvalCheck:=dcOut_approvalCheck"/>

</sequence >

</guard >

<verify >

<case condition="bpAddress.county!=’Groningen ’">

<terminate >

<achieve -maint>

<eq-val var="notifiedCityHall" value="TRUE"/>

<eq-val var="messagePar" value="countyChange"/>

</achieve -maint>

</terminate >

</case>

<case condition="bpAddress.county=’Groningen ’">

<achieve -maint>

<known var="dcOut_approvalCheck"/>

</achieve -maint>

</case>

</verify >

</DS>

<switch name="rejected">

<case condition="dcOut_approved=false">

<pick>

<onMessage variable="appeal">

<onMessage variable="granted">

<empty/>

</onMessage >

<onMessage variable="notGranted">

<exit/>

</onMessage >

</onMessage >

<onAlarm ><for>’PT14D’</for>

<exit/>

</onAlarm >

</pick>

</case>

<otherwise >

<empty/>

</otherwise >

</switch >

</sequence >

<condition >dcOut_approved=true</condition >

</repeatUntil >

<switch name="selectProvision">

<case condition="itOut_prov=’care in kind ’">

<sequence >

<DS name="DS3">

<guard>

<variables >

<variable name="bpAddress"/>

<variable name="bpMedCond"/>

</variables >

<sequence >

<execute name="sendOrder"

input="sdhrIn_cid=bpCid;sdhrIn_orderInfo=

tmp_hvOut_homeInfo;sdhrIn_address;bpAddress"

A.2. Representations of WMO BP and respective Planning Domain 187

output="orderId:=sdhrOut_orderId;orderContents:=

sdhrIn_orderInfo"/>

<execute name="receiveDeliveryConfirmation"

input="dlIn_cid=bpCid;dlIn_id=orderId;dlIn_address=

bpAddress;dlIn_delContents=orderContents"

output="tmp_dlOut_conf:=dlOut_conf"/>

</sequence >

</guard>

<verify >

<case condition="bpAddress.county!=’Groningen ’">

<terminate >

<achieve -maint>

<eq-val var="notifiedCityHall" value="TRUE"/>

<eq-val var="messagePar" value="countyChange"/>

<invalid var="orderId"/>

</achieve -maint>

</terminate >

</case>

<case condition="bpAddress.county=’Groningen ’ AND bpMedCond!=’

deceased ’">

<achieve -maint>

<known var="tmp_dlOut_conf"/>

</achieve -maint>

</case>

<case condition="bpMedCond=’deceased ’">

<terminate >

<achieve -maint>

<invalid var="orderId"/>

</achieve -maint>

</terminate >

</case>

</verify >

</DS>

<execute name="handleInvoice"

input="hiIn_cid=bpCid;riIn_id=orderId"

output="tmp_hiOut_invId:=hiOut_invId"/>

</sequence >

</case>

<case condition="itOut_prov=’personal budget ’">

<empty/>

</case>

<otherwise >

<sequence >

<DS name="DS1">

<guard>

<variables >

<variable name="bpAddress"/>

<variable name="bpMedCond"/>

</variables >

<sequence >

<switch >

<case condition="itOut_prov=’wheelchair ’">

<sequence >

<execute name="acquireRequirements"

input="arIn_cid=bpCid;adIn_homeInfo=

tmp_hvout_homeInfo"

output="tmp_arOut_requirements:=arOut_requirements"

/>

188 A. Appendix

<execute name="sendOrder"

input="soIn_cid=bpCid;soIn_orderInfo=

tmp_arOut_requirements;soIn_address=bpAddress"

output="orderId:=soOut_orderId;orderContents:=

soIn_orderInfo"/>

</sequence >

</case>

<case condition="itOut_prov=’home modification ’">

<DS name="DS2">

<guard>

<variables >

<variable name="bpEligCrit"/>

</variables >

<sequence >

<repeatUntil >

<execute name="tenderProcedure"

input="tpIn_cid=bpCid;tpIn_homeInfo=

tmp_hvOut_homeInfo"

output="tmp_tpOut_tenderSelected:=

tpOut_tenderSelected"/>

<execute name="checkTender"

input="ctIn_cid=bpCid;ctIn_selTender=

tmp_tpOut_tenderSelected;ctIn_eligCrit=

bpEligCrit"

output="tmp_ctOut_tenderOK:=ctOut_tenderOK"/>

<condition >ctOut_tenderOK=true</condition >

</repeatUntil >

<execute name="sendOrderConfirmation"

input="sosIn_cid=bpCid;sosIn_sid=

tmp_tpOut_tenderSelected;sosIn_orderInfo=

tmp_hvOut_homeInfo;sosIn_address=bpAddress"

output="orderId:=sosOut_orderId;orderContents:=

sosIn_orderInfo"/>

</sequence >

</guard >

<verify >

<achieve -maint>

<known variable="orderId"/>

</achieve -maint>

</verify >

</DS>

</case>

</switch >

<execute name="receiveDeliveryConfirmation"

input="dlIn_cid=bpCid;dlIn_id=orderId;dlIn_address=

bpAddress;dlIn_delContents=orderContents"

output="tmp_dlOut_conf:=dlOut_conf"/>

</sequence >

</guard>

<verify >

<case condition="bpAddress.county!=’Groningen ’">

<terminate >

<achieve -maint>

<eq-val var="notifiedCityHall" value="TRUE"/>

<eq-val var="messagePar" value="countyChange"/>

<invalid var="orderId"/>

</achieve -maint>

</terminate >

A.2. Representations of WMO BP and respective Planning Domain 189

</case>

<case condition="bpAddress.county=’Groningen ’ AND bpMedCond!=’

deceased ’">

<achieve -maint>

<known variable="dlOut_conf"/>

</achieve -maint>

</case>

<case condition="bpMedCond=’deceased ’">

<terminate >

<achieve -maint>

<invalid variable="orderId"/>

</achieve -maint>

</terminate >

</case>

</verify >

</DS>

<execute name="handleInvoice"

input="hiIn_cid=bpCid;riIn_id=orderId"

output="tmp_hiOut_invId:=hiOut_invId"/>

</sequence >

</otherwise >

</switch >

<execute name="payment"

input="pmIn_invId=tmp_hiOut_invId"

output="tmp_pmOut_conf:=pmOut_conf"/>

</sequence >

</BusinessProcess >

Variable interdependencies:

dependsOn(bpAddress) = {hvOut homeInfo}

dependsOn(hvOut homeInfo) = {maOut medInfo, dcOut approvalCheck ,

arOut requirements, tpOut tenderSelection}

dependsOn(tpOut tenderSelection) = {ctOut tenderOK}

dependsOn(betokened) = {maOut medInfo, dcOut approvalCheck ,

arOut requirements, ctOut tenderOK}

dependsOn(bipolarity) = {ctOut tenderOK}

A.2.2 Planning Domain modeling the WMO Process

Intake(itIn cid, itIn address)

Prec:

itIn cid = bpCid ∧ itIn address = bpAddress

Eff:

sense(itOut prov)

HomeVisit(hvIn cid, hvIn address)

Prec:

hvIn cid = bpCid ∧ hvIn address = bpAddress

known(itOut prov)

Eff:

sense(hvOut homeInfo) ∧ sense(hvOut maRequired)

190 A. Appendix

MedicalAdvice(maIn cid)

Prec:

maIn cid = bpCid ∧ known(hvOut maRequired) ∧
hvOut maRequired = true ∧ known(hvOut homeInfo)

Eff:

sense(maOut medInfo)

Decision(dcIn cid, dcIn homeInfo, dcIn eligCrit, dcIn medInfo)

Prec:

dcIn homeInfo = hvOut homeInfo ∧ dcIn cid = bpCid ∧
(¬hvOut maRequired ∨ known(maOut medInfo) ∧
(hvOut maRequired ∨ true) ∧ ¬known(dcOut approvalCheck) ∧
(¬hvOut maRequired ∨ dcIn medInfo = maOut medInfo)

Eff:

sense(dcOut approvalCheck)

AcquireRequirements(arIn cid, arIn homeInfo)

Prec:

(itOut prov = 3 ∨ itOut prov = 4) ∧ itOut prov = 3 ∧
arIn cid = bpCid ∧
arIn homeInfo = hvOut homeInfo ∧
known(dcOut approvalCheck) ∧ dcOut approvalCheck = true

Eff:

sense(arOut requirements)

TenderProcedure(tpIn cid, tpIn homeInfo)

Prec:

(itOut prov = 3 ∨ itOut prov = 4) ∧ itOut prov = 4) ∧
tpIn cid = bpCid ∧ tpIn homeInfo = hvOut homeInfo ∧
known(dcOut approvalCheck) ∧ dcOut approvalCheck = true

Eff:

sense(tpOut tenderSelected)

CheckTender(ctIn cid, ctIn selTender, ctIn eligCrit)

Prec:

ctIn cid = bpCid ∧ ctIn selTender = tpOut tenderSelected, ctIn eligCrit = bpEligCrit

Eff:

sense(ctOut tenderOK) ∧
(ctOut tenderOK = false) ⇒ invalidate(tpOut tenderSelection)

SendOrder(soIn cid, soIn orderInfo, soIn address)

Prec:

soIn cid = bpCid ∧ soIn address = bpAddress ∧
known(arOut requirements) ∧ soIn orderInfo = arOut requirements ∧
¬known(orderId)

Eff:

sense(soOut orderId) ∧ assign(orderId, soOut orderId) ∧
assign(orderContents, soIn orderInfo)

SendOrderToSelSupplier(sosIn cid, sosIn sid, sosIn orderInfo, sosIn address)

Prec:

sosIn cid = bpCid ∧ sosIn sid = tpOut tenderSelected ∧
known(ctOut tenderOK) ∧ ctOut tenderOK = true ∧
sosIn address = bpAddress ∧ sosIn orderInfo = hvOut homeInfo ∧
¬known(orderId)

A.2. Representations of WMO BP and respective Planning Domain 191

Eff:

sense(sosOut orderId) ∧ assign(orderId, sosOut orderId) ∧
assign(orderContents, sosIn orderInfo)

SendDHRequest(sdhrIn cid, sdhrIn orderInfo, sdhrIn address)

Prec:

(itOut prov = 1 ∨ itOut prov = 2) ∧ itOut prov = 2) ∧
sdhrIn cid = bpCid ∧ sdhrIn address = bpAddress ∧
sdhrIn orderInfo = hvOut homeInfo ∧ known(dcOut approvalCheck) ∧
dcOut approvalCheck = true ∧ ¬known(orderId)

Eff:

sense(sdhrOut orderId) ∧ assign(orderId, sdhrOut orderId) ∧
assign(orderContents, sdhrIn orderInfo)

DeliveryConfirmation(dlIn cid, dlIn id, dlIn address, dlIn delContents)

Prec:

dlIn cid = bpCid ∧ dlIn id = orderId ∧
dlIn delContents = orderContents

Eff:

sense(dlOut conf)

ReceiveInvoice(riIn cid, riIn id)

Prec:

riIn cid = bpCid ∧ riIn id = orderId ∧
known(dlOut conf)

Eff:

sense(riOut invId)

CheckInvoice(ciIn invId)

Prec:

known(riOut invId) ∧ ciIn invId = riOut invId ∧
¬known(ciOut invoiceOK)

Eff:

sense(ciOut invoiceOK)

ReturnInvoice(rtiIn invId)

Prec:

known(riOut invId) ∧ riOut invId = rtiIn inveId

∧ciOut invoiceOK = false

Eff:

invalidate(riOut invId) ∧ invalidate(ciOut invoiceOK)

Payment(pmIn invId)

Prec:

(¬(itOut prov = 1 ∨ itOut prov = 2) ∨
((¬itOut prov = 1 ∨ known(dcOut approvalCheck) ∧
(¬itOut prov = 2 ∨ known(ciOut invoiceOK))))

∧ (¬(itOut prov = 3 ∨ itOut prov = 4) ∨ known(ciOut invoiceOK))

∧ pmIn invId = riOut invId

Eff:

sense(pmOut conf)

CancelOrder(coIn orderId)

Prec:

192 A. Appendix

known(orderId) ∧ coIn orderId = orderId

Eff:

invalidate(orderId)

notifyCityHall(nchIn msg)

Prec:

∅

Eff:

sense(nchOut sent)

Bibliography

Agarwal, V., Chafle, G., Dasgupta, K., Karnik, N. M., Kumar, A., Mittal, S. and

Srivastava, B., (2005). Synthy: A system for end to end composition of web

services, Jouranl of Web Semantics 3(4), 311–339.

Agarwal, V., Chafle, G., Mittal, S. and Srivastava, B., (2008). Understanding ap-

proaches for web service composition and execution, in Proc. of the 1st Bangalore

Annual Compute Conference.

Agarwal, V., Dasgupta, K., Karnik, N., Kumar, A., Kundu, A., Mittal, S. and

Srivastava, B., (2005). A service creation environment based on end to end com-

position of web services, in Proc. of the 14th International Conference on World

Wide Web (WWW), ACM, pp. 128–137.

Aiello, M., (2006). The role of web services at home, in Advanced International

Conference on Telecommunications and International Conference on Internet and

Web Applications and Services (AICT/ICIW).

Aiello, M. and Dustdar, S., (2008). A domotic infrastructure based on the web

service stack, Pervasive and Mobile Computing 4(4), 506–525.

Aiello, M., Papazoglou, M., Yang, J., Carman, M., Pistore, M., Serafini, L. and

Traverso, P., (2002). A request language for web-services based on planning

and constraint satisfaction, in VLDB Workshop on Technologies for E-Services

(TES), Vol. LNCS, Springer, pp. 76–85.

Aker, E., Erdogan, A., Erdem, E. and Patoglu, V., (2011). Causal reasoning for

planning and coordination of multiple housekeeping robots, in Proc. of 11th

International Conference on Logic Programming and Nonmonotonic Reasoning

(LPNMR2011), pp. 311–316.

194 BIBLIOGRAPHY

Akkiraju, R., Srivastava, B., Ivan, A.-A., Goodwin, R. and Syeda-Mahmood, T. F.,

(2006). SEMAPLAN: Combining planning with semantic matching to achieve

web service composition, in Proc. of the 21st National Conference on Artificial

Intelligence and the 18th Innovative Applications of AI Conference (IAAI).

Alamri, A., Eid, M. A. and El-Saddik, A., (2006). Classification of the state-of-the-

art dynamic web services composition techniques, International Journal of Web

and Grid Services 2(2).

Albore, A., Palacios, H. and Geffner, H., (2009). A translation-based approach

to contingent planning, in Proc. of the 21st International Joint Conference on

Artificial Intelligence (IJCAI), pp. 1623–1628.

Albore, A., Ramı́rez, M. and Geffner, H., (2011). Effective heuristics and belief

tracking for planning with incomplete information, in Proc. of the 21st Interna-

tional Conference on Automated Planning and Scheduling (ICAPS).

Aloise, F., Schettini, F., Aricò, P., Bianchi, L., Riccio, A., Mecella, M., Babiloni,

F., Mattia, D. and Cincotti, F., (2010). Advanced brain computer interface for

communication and control, in Proc. of the International Conference on Advanced

Visual Interfaces, ACM, pp. 399–400.

Aloise, F., Schettini, F., Aricò, P., Salinari, S., Guger, C., Rinsma, J., Aiello, M.,

Mattia, D. and Cincotti, F., (2011). Asynchronous P300-based BCI to control a

virtual environment: initial tests on end users, Clinical EEG and Neuroscience

42(4), 1–6.

Au, T., Kuter, U. and Nau, D., (2005). Web service composition with volatile

information, in 4th International Semantic Web Conference (ISWC), pp. 52–66.

Baligand, F., Rivierre, N. and Ledoux, T., (2007). A declarative approach for QoS-

aware web service compositions, in Proc. of the 5th International Conference in

Service-Oriented Computing (ICSOC), pp. 422–428.

Barták, R., (2011). A novel constraint model for parallel planning, in Proc. of

the 24th International Florida Artificial Intelligence Research Society Conference

(FLAIRS).

Barták, R., Salido, M. A. and Rossi, F., (2010). New trends in constraint satisfac-

tion, planning, and scheduling: a survey, Knowledge Eng. Review 25(3), 249–279.

Barták, R. and Toropila, D., (2008). Reformulating constraint models for classical

planning, in Proc. of the 21st International Florida Artificial Intelligence Re-

search Society Conference (FLAIRS), pp. 525–530.

BIBLIOGRAPHY 195

Barták, R. and Toropila, D., (2009). Enhancing constraint models for planning

problems, in Proc. of the 22nd International Florida Artificial Intelligence Re-

search Society Conference (FLAIRS), AAAI Press.

Beauche, S. and Poizat, P., (2008). Automated service composition with adaptive

planning, in Proc. of the 6th International Conference on Service Oriented Com-

puting, pp. 530–537.

Beckstein, C. and Klausner, J., (1999). A meta level architecture for workflow

management, Journal of Integrated Design and Process Science 3, 15–26.

Berardi, D., Calvanese, D., Giacomo, G. D., Hull, R. and Mecella, M., (2005).

Automatic composition of transition-based semantic web services with messaging,

in Proc. of the 31st International Conference on Very Large Data Bases, pp. 613–

624.

Berardi, D., Calvanese, D., Giacomo, G. D., Lenzerini, M. and Mecella, M., (2003).

Automatic composition of e-services that export their behavior, in Proc. of the 1st

International Conference on Service-Oriented Computing (ICSOC), pp. 43–58.

Berardi, D., Calvanese, D., Giacomo, G. D., Lenzerini, M. and Mecella, M., (2005).

Automatic service composition based on behavioral descriptions, International J.

Cooperative Inf. Syst. 14(4), 333–376.

Berardi, D., Calvanese, D., Giacomo, G. D. and Mecella, M., (2005). Composition

of services with nondeterministic observable behavior, in Proc. of the 3rd Inter-

national Conference on Service-Oriented Computing (ICSOC), pp. 520–526.

Berardi, D., Cheikh, F., Giacomo, G. D. and Patrizi, F., (2008). Automatic service

composition via simulation, International Journal of Foundations of Computer

Science 19(2), 429–451.

Berardi, D., Giacomo, G. D., Lenzerini, M., Mecella, M. and Calvanese, D., (2004).

Synthesis of underspecified composite e-services based on automated reasoning,

in Proc. of the 2nd International Conference on Service-Oriented Computing,

pp. 105–114.

Bertoli, P. and Cimatti, A., (2002). Improving heuristics for planning as search in

belief space, in Proc. of the 6th International Conference on Artificial Intelligence

Planning Systems (AIPS), pp. 143–152.

Bertoli, P., Kazhamiakin, R., Paolucci, M., Pistore, M., Raik, H. and Wagner, M.,

(2009). Continuous orchestration of web services via planning, in Proc. of the

19th International Conference on Automated Planning and Scheduling (ICAPS).

196 BIBLIOGRAPHY

Bertoli, P., Pistore, M. and Traverso, P., (2006). Automated web service composi-

tion by on-the-fly belief space search, in Proc. of the 16th International Confer-

ence on Automated Planning and Scheduling, pp. 358–361.

Bertoli, P., Pistore, M. and Traverso, P., (2010). Automated composition of web

services via planning in asynchronous domains, Artificial Intelligence 174, 316–

361.

Borrajo, D. and Veloso, M., (2012). Probabilistically reusing plans in determinis-

tic planning, in Proc. of ICAPS-12 Workshop on on Heuristics and Search for

Domain-Independent Planning, pp. 17–25.

Brenner, M. and Nebel, B., (2009). Continual planning and acting in dynamic mul-

tiagent environments, Autonomous Agents and Multi-Agent Systems 19(3), 297–

331.

Bronsted, J., Hansen, K. M. and Ingstrup, M., (2010). Service composition issues

in pervasive computing, IEEE Pervasive Computing 9, 62–70.

Bryce, D., Kambhampati, S. and Smith, D. E., (2006). Planning graph heuristics for

belief space search, Journal of Artificial Intelligence Research (JAIR) 26, 35–99.

Bucchiarone, A., Marconi, A., Pistore, M. and Raik, H., (2012). Dynamic adapta-

tion of fragment-based and context-aware business processes, in Proc. of the 19th

IEEE International Conference on Web Services (ICWS), pp. 33–41.

Bucchiarone, A., Pistore, M., Raik, H. and Kazhamiakin, R., (2011). Adaptation of

service-based business processes by context-aware replanning, in Proc. of the 2011

IEEE International Conference on Service-Oriented Computing and Applications

(SOCA), IEEE, pp. 1–8.

Bultan, T., Fu, X., Hull, R. and Su, J., (2003). Conversation specification: a new

approach to design and analysis of e-service composition, in Proc. of the 12th

International World Wide Web Conference (WWW), pp. 403–410.

Cabezas, P., Arrizabalaga, S., Salterain, A. and Legarda, J., (2008). An agent-

based semantic OSGi service architecture, in Computer and Information Science,

Vol. 131 of Studies in Computational Intelligence, Springer Berlin / Heidelberg,

pp. 97–106.

Cardoso, J. and Sheth, A. P., eds, (2006). Semantic Web Services, Processes and

Applications, Springer.

BIBLIOGRAPHY 197

Caruso, M., Ciccio, C. D., Iacomussi, E., Kaldeli, E., Lazovik, A. and Mecella, M.,

(2012). Service ecologies for home/building automation, in Poc. of the 10th IFAC

Symposium on Robot Control.

Catarci, T., Di Ciccio, C., Forte, V., Iacomussi, E., Mecella, M., Santucci, G. and

Tino, G., (2011). Service composition and advanced user interfaces in the home of

tomorrow: the SM4All approach, in Proc. of 2nd International ICST Conference

on Ambient Media and Systems (AMBI-SYS).

Chan, M., Bishop, J. and Baresi, L., (2007). Survey and comparison of planning

techniques for web services composition. university of pretoria, Technical report,

Polelo Research Group Department of Computer Science, University of Pretoria.

Cimatti, A., Pistore, M., Roveri, M. and Traverso, P., (2003). Weak, strong, and

strong cyclic planning via symbolic model checking, Artificial Intelligence 147(1-

2), 35–84.

Costa, P., Coulson, G., Mascolo, C., Mottola, L., Picco, G. and Zachariadis, S.,

(2007). Reconfigurable component-based middleware for networked embedded

systems, International Journal of Wireless Information Networks 14, 149–162.

Dadam, P. and Reichert, M., (2009). The ADEPT project: a decade of research

and development for robust and flexible process support, Computer Science - -

Research and Development 23, 81–97.

Davidsson, P. and Boman, M., (2005). Distributed monitoring and control of office

buildings by embedded agents, Information Sciences 171, 293–307.

de Leoni, M., De Giacomo, G., Lespèrance, Y. and Mecella, M., (2009). On-line

adaptation of sequential mobile processes running concurrently, in Proc. of the

2009 ACM Symposium on Applied Computing, SAC’09, ACM, pp. 1345–1352.

de Leoni, M., Mecella, M. and De Giacomo, G., (2007). Highly dynamic adapta-

tion in process management systems through execution monitoring, BPM 2007

pp. 182–197.

Do, M. B. and Kambhampati, S., (2001). Planning as constraint satisfaction: Solv-

ing the planning-graph by compiling it into csp, Artificial Intelligence 132, 151–

182.

Dominici, M., Frjus, M., Guibourdenche, J., Pietropaoli, B. and Weis, F., (2011).

Towards a system architecture for recognizing domestic activity by leveraging

a naturalistic human activity model, in Workshop on Goal, Activity and Plan

198 BIBLIOGRAPHY

Recognition (GAPREC) at the International Conference on Automated Planning

and Scheduling (ICAPS).

Duquennoy, S., Grimaud, G. and Vandewalle, J.-J., (2009). The web of things:

Interconnecting devices with high usability and performance, in Proc. of the 6th

International Conference on Embedded Software and Systems (ICESS), IEEE

Computer Society, pp. 323–330.

Dustdar, S. and Schreiner, W., (2005). A survey on web services composition, In-

ternational Journal of Web and Grid Services 1(1), 1–30.

Edelkamp, S. and Hoffmann, J., (2004). PDDL2.2: The language for the classic part

of the 4th international planning competition, Technical Report 195, Institut für

Informatik, Freiburg, Germany.

Eid, M. A., Alamri, A. and El-Saddik, A., (2008). A reference model for dynamic

web service composition systems, International Journal of Web and Grid Services

4(2), 149–168.

Eisenhauer, M., Rosengren, P. and Antolin, P., (2010). HYDRA: A development

platform for integrating wireless devices and sensors into ambient intelligence

systems, in The Internet of Things, The Internet of Things: 20th Tyrrhenian

Workshop on Digital Communications, Springer, pp. 367–373.

Erol, K., Nau, D. S. and Subrahmanian, V. S., (1995). Complexity, decidability

and undecidability results for domain-independent planning, Artificial Intelli-

gence 76(1-2), 75–88.

Etzioni, Z., Keeney, J., Brennan, R. and Lewis, D., (2010). Supporting compos-

ite smart home services with semantic fault management, in Proc. of the 5th

International Conference on Future Information Technology (FutureTech), pp. 1

–8.

Fan, J. and Kambhampati, S., (2005). A snapshot of public web services, SIGMOD

Record 34(1), 24–32.

Fargier, H., Lang, J., Lang, J. M. and Schiex, T., (1996). Mixed constraint satisfac-

tion: A framework for decision problems under incomplete knowledge, in Proc.

of the 13th AAAI Conference on Artificial Intelligence, pp. 175–180.

Ferreira, H. and Ferreira, D., (2006). An integrated life cycle for workflow man-

agement based on learning and planning, International Journal of Cooperative

Information Systems 15, 485–505.

BIBLIOGRAPHY 199

Fikes, R. and Nilsson, N. J., (1971). Strips: A new approach to the application of

theorem proving to problem solving, Artificial Intelligence 2(3/4), 189–208.

Finger, J., (1987). Exploiting constraints in design synthesis, PhD thesis, Stanford

University.

Foss, J., Onder, N. and Smith, D., (2007). Preventing unrecoverable failures through

precautionary planning, in Proc. of ICAPS-07 Workshop on Moving Planning

and Scheduling Systems into the Real World.

Fox, M., Gerevini, A., Long, D. and Serina, I., (2006). Plan stability: Replanning

versus plan repair, in Proc. of the 16th International Conference on Automated

Planning and Scheduling, pp. 212–221.

Fox, M. and Long, D., (2003). Pddl2.1: An extension to PDDL for expressing

temporal planning domains, Journal of Artificial Intelligence Research (JAIR)

20, 61–124.

Friedrich, G., Fugini, M., Mussi, E., Pernici, B. and Tagni, G., (2010). Exception

handling for repair in service-based processes, IEEE Transactions on Software

Engineering 36(2), 198–215.

Gent, I. P., Miguel, I. and Rendl, A., (2007). Tailoring solver-independent constraint

models: A case study with essence’ and minion, in Proc. of the 7th International

Symposium in Abstraction, Reformulation, and Approximation (SARA).

Gerevini, A. and Long, D., (2006). Preferences and soft constraints in PDDL3, in

16th ICAPS Workshop on Planning with Preferences and Soft Constraints.

Gerevini, A., Saetti, A. and Serina, I., (2006). An approach to temporal planning

and scheduling in domains with predictable exogenous events, Journal of Artifi-

cial Intelligence Research (JAIR) 25(1), 187–231.

Ghallab, M., Nau, D. and Traverso, P., (2004). Automated Planning: Theory and

Practice, Morgan Kaufmann, Amsterdam.

Giacomo, G. D., Ciccio, C. D., Felli, P., Hu, Y. and Mecella, M., (2012). Goal-based

composition of stateful services for smart homes, in Proc. of 20th International

Conference on Cooperative Information Systems (CoopIS).

Göbelbecker, M., Gretton, C. and Dearden, R., (2011). A switching planner for

combined task and observation planning, in Proc. of the 25th AAAI Conference

on Artificial Intelligence.

200 BIBLIOGRAPHY

Golden, K., (1998). Leap before you look: Information gathering in the puccini

planner, in Proc. of the 6th International Conference on Artificial Intelligence

Planning Systems (AIPS), pp. 70–77.

Golden, K., (2003). A domain description language for data processing, in ICAPS

Workshop on the Future of PDDL.

Golden, K., Etzioni, O. and Weld, D., (1996). Planning with execution and incom-

plete information, Technical Report 97-11-05, UW CSE.

Golden, K. and Pang, W., (2004). A constraint-based planner applied to data pro-

cessing domains, in Proc. of the 10th International Conference on Principles and

Practice of Constraint Programming (CP), p. 815.

Golden, K. and Weld, D. S., (1996). Representing sensing actions: The middle

ground revisited, in Proc. of the 5th International Conference on Principles of

Knowledge Representation and Reasoning (KR), pp. 174–185.

Gomaa, H., Hashimoto, K., Kim, M., Malek, S. and Menascé, D. A., (2010). Soft-

ware adaptation patterns for service-oriented architectures, in Proc. of the 25th

Symposium on Applied Computing, ACM, pp. 462–469.

Göser, K., Jurisch, M., Acker, H., Kreher, U., Lauer, M., Rinderle, S., Reichert,

M. and Dadam, P., (2007). Next-generation process management with ADEPT2,

in Proc. of the Software Demonstrations of the 5th International Conference on

Business Process Management (BPM).

Gouvas, P., Bouras, T. and Mentzas, G., (2007). An OSGi-based semantic service-

oriented device architecture, in OTM Workshops - International Conference on

On the move to meaningful internet systems, pp. 773–782.

Grau, B. C., Parsia, B. and Sirin, E., (2004). Working with multiple ontologies on

the semantic web, in Proc. of the 3d International Semantic Web Conference,

pp. 620–634.

Gravot, F., Haneda, A., Okada, K. and Inaba, M., (2006). Cooking for humanoid

robot, a task that needs symbolic and geometric reasonings, in Proc. of the 2006

IEEE International Conference on Robotics and Automation (ICRA), pp. 462

–467.

Gregory, P., Long, D. and Fox, M., (2010). Constraint based planning with com-

posable substate graphs, in Proc. of the 19th European Conference on Artificial

Intelligence (ECAI), pp. 453–458.

BIBLIOGRAPHY 201

Greif, I., (1975). Semantics of Communicating Parallel Processes, PhD thesis, MIT.

Guettier, C. and Yorke-Smith, N., (2005). Enhancing the anytime behaviour of

mixed csp-based planning, in Proc. of ICAPS Workshop on Planning under Un-

certainty for Autonomous Systems, pp. 29–38.

Guger, C., Daban, S., Sellers, E. Holzner, C., Krausz, G. Carabalona, R., Gra-

matica, F. and Edlinger, G., (2009). How many people are able to control a

P300-based brain-computer interface (BCI)?, Neuroscience Letters 462, 94–98.

Guinard, D., Trifa, V., Mattern, F. and Wilde, E., (2011). From the internet of

things to the web of things: Resource oriented architecture and best practices,

in Architecting the Internet of Things, Springer, chapter 5, pp. 97–129.

Hassine, A. B., Matsubara, S. and Ishida, T., (2006). A constraint-based approach

to horizontal web, in Proc. of the 5th International Semantic Web Conference

(ISWC2006), pp. 130–143.

Hatzi, O., Vrakas, D., Bassiliades, N., Anagnostopoulos, D. and Vlahavas, I. P.,

(2010). Semantic awareness in automated web service composition through plan-

ning, in 6th Hellenic Conference on Artificial Intelligence (SETN), pp. 123–132.

Helmert, M., (2006). The fast downward planning system, Jourlan of Artificial

Intelligence Research (JAIR) 26, 191–246.

Helmert, M., (2009). Concise finite-domain representations for PDDL planning

tasks, Artificial Intelligence 173, 503–535.

Henneberger, M., Heinrich, B., Lautenbacher, F. and Bauer, B., (2008). Semantic-

based planning of process models, in Multikonferenz Wirtschaftsinformatik

(MKWI).

Hewitt, C., Bishop, P. and Steiger, R., (1973). A universal modular actor formalism

for artificial intelligence, in Proc. of the 3rd International Joint Conference on

Artificial Intelligence (IJCAI).

Hoffmann, J., (2008). Towards efficient belief update for planning-based web ser-

vice composition, in 18th European Conference on Artificial Intelligence (ECAI),

pp. 558–562.

Hoffmann, J., Bertoli, P., Helmert, M. and Pistore, M., (2009). Message-based web

service composition, integrity constraints, and planning under uncertainty: A

new connection, Journal of Artificial Intelligence Research (JAIR) 35, 49–117.

202 BIBLIOGRAPHY

Hoffmann, J., Bertoli, P. and Pistore, M., (2007). Web service composition as plan-

ning, revisited: In between background theories and initial state uncertainty, in

Proc. of the 21st AAAI Conference on Artificial Intelligence, pp. 1013–1018.

Hoffmann, J. and Brafman, R. I., (2005). Contingent planning via heuristic forward

search witn implicit belief states, in Proc. of the 15th International Conference

on Automated Planning and Scheduling (ICAPS), pp. 71–80.

Hoffmann, J. and Nebel, B., (2001). The FF planning system: Fast plan genera-

tion through heuristic search, Journal of Artificial Intelligence Research (JAIR)

14, 253–302.

Hoffmann, J., Weber, I. and Kraft, F., (2010). SAP speaks PDDL, in Proc. of the

4th AAAI Conference on Artificial Intelligence.

Hull, R., Benedikt, M., Christophides, V. and Su, J., (2003). E-services: a look be-

hind the curtain, in Proc. of the 22nd ACM Symposium on Principles of Database

Systems (PODS), pp. 1–14.

Hyafil, N. and Bacchus, F., (2003). Conformant probabilistic planning via CSPs, in

Proc. of the 13th International Conference on Automated Planning and Schedul-

ing (ICAPS), pp. 205–214.

Hyafil, N. and Bacchus, F., (2004). Utilizing structured representations and CSPs

in conformant probabilistic planning, in Proc. of the 16th Eureopean Conference

on Artificial Intelligence (ECAI), pp. 1033–1034.

Iocchi, L., Lukasiewicz, T., Nardi, D. and Rosati, R., (2009). Reasoning about ac-

tions with sensing under qualitative and probabilistic uncertainty, ACM Trans-

actions on Computational Logic 10(1).

Jarvis, P., Moore, J., Stader, J., Macintosh, A., Casson-du Mont, A. and Chung, P.,

(1999). Exploiting ai technologies to realise adaptive workflow systems, in AAAI

Workshop on Agent-Based Systems in the Business Context.

Kaldeli, E., Lazovik, A. and Aiello, M., (2009a). Extended goals for composing

services, in Proc. of the 19th International Conference on Automated Planning

and Scheduling (ICAPS 2009), AAAI Press.

Kaldeli, E., Lazovik, A. and Aiello, M., (2009b). Planning in a smart home: Visual-

ization and simulation., in Application Showcase Proc. of the 19th International

Conference on Automated Planning and Scheduling (ICAPS).

BIBLIOGRAPHY 203

Kaldeli, E., Lazovik, A. and Aiello, M., (2011). Continual planning with sensing

for web service composition, in Proc. of the 25th AAAI Conference on Artificial

Intelligence, AAAI Press.

Kaldeli, E., Warriach, E., Lazovik, A. and Aiello, M., (2013). Coordinating the web

of services for a smart home, ACM Transactions on the Web . To appear.

Kaldeli, E., Warriach, E. U., Bresser, J., Lazovik, A. and Aiello, M., (2010). Inter-

operation, composition and simulation of services at home, in 8th International

Conference on Service Oriented Computing (ICSOC), Vol. LNCS 6470, Springer,

pp. 167–181.

Kambhampati, S., (2000). Planning graph as a (dynamic) CSP: Exploiting EBL,

DDB and other CSP search techniques in graphplan, Journal of Artificial Intel-

ligence Research 12, 1–34.

Kambhampati, S., (2007). Model-lite planning for the web age masses: The chal-

lenges of planning with incomplete and evolving domain models, in Proc. of the

22nd AAAI Conference on Artificial Intelligence.

Kastner, W., Kofler, M. J. and Reinisch, C., (2010). Using AI to realize energy effi-

cient yet comfortable smart homes, in Proc. of 8th IEEE International Workshop

on Factory Communication Systems (WFCS ’10), pp. 169–172.

Kim, S. H., Kim, S. W. and Park, H., (2003). Usability challenges in ubicomp

environment, in Proc. of the International Ergonomics Association (IEA).

Kindberg, T., Barton, J., Morgan, J., Becker, G., Caswell, D., Debaty, P., Gopal,

G., Frid, M., Krishnan, V., Morris, H., Schettino, J. and Serra, B., (2000). People,

places, things: Web presence for the real world, in 3rd IEEE Workshop on Mobile

Computing Systems and Applications (WMSCA), pp. 365–376.

Klusch, M. and Gerber, A., (2005). Semantic web service composition planning with

owls-xplan, in Proc. of the 1st International AAAI Fall Symposium on Agents and

the Semantic Web, pp. 55–62.

Klusch, M. and Gerber, A., (2006). Fast composition planning of OWL-S services

and application, in 4th IEEE European Conference on Web Services (ECOWS),

pp. 181–190.

Klusch, M. and Renner, K.-U., (2006). Fast dynamic re-planning of composite

OWL-S services, in International Conference on Intelligent Agent Technology

(IAT) - Workshops, pp. 134–137.

204 BIBLIOGRAPHY

Knoblock, C. A., (1995). Planning, executing, sensing, and replanning for informa-

tion gathering, in International Joint Conference of Artificial Intelligence (IJ-

CAI), pp. 1686–1693.

Kopp, O., Martin, D., Wutke, D. and Leymann, F., (2008). On the choice between

graph-based and block-structured business process modeling languages, in Mod-

ellierung betrieblicher Informationssysteme (MobIS 2008), Vol. 141 of Lecture

Notes in Informatics (LNI), Gesellschaft für Informatik e.V. (GI), pp. 59–72.

Krause, C., Maraikar, Z., Lazovik, A. and Arbab, F., (2011). Modeling dynamic

reconfigurations in reo using high-level replacement systems, Science of Computer

Programming 76(1), 23–36.

Kuter, U. and Golbeck, J., (2009). Semantic web service composition in social

environments, in International Semantic Web Conference, pp. 344–358.

Kuter, U., Sirin, E., Parsia, B., Nau, D. S. and Hendler, J. A., (2005). Information

gathering during planning for web service composition, J. Web Sem. 3(2-3), 183–

205.

Kster, U., Stern, M. and Knig-Ries, B., (2005). A classification of issues and ap-

proaches in automatic service composition, in First International Workshop on

Engineering Service Compositions at ICSOC-05.

Laborie, P., (2003). Algorithms for propagating resource constraints in AI plan-

ning and scheduling: existing approaches and new results, Artificial Intelligence

143(2), 151–188.

Lazovik, A., Aiello, M. and Gennari, R., (2005). Encoding requests to web service

compositions as constraints, in 11th International Conference on Principles and

Practice of Constraint Programming (CP).

Lazovik, A., Aiello, M. and Papazoglou, M., (2003). Planning and monitoring the

execution of web service requests, in Proc. of the 1st International Conference on

Service-Oriented Computing (ICSOC-03), Springer, p. 335350.

Lazovik, A., Aiello, M. and Papazoglou, M., (2006). Planning and monitoring the

execution of web service requests, Journal on Digital Libraries .

Lazovik, A. and Arbab, F., (2007). Using reo for service coordination, in Proc.

of the 5th International Conference in Service-Oriented Computing (ICSOC),

pp. 398–403.

BIBLIOGRAPHY 205

Lazovik, E., den Dulk, P., de Groote, M., Lazovik, A. and Aiello, M., (2009). Ser-

vices inside the smart home: A simulation and visualization tool, in Demo Ses-

sion of the 7th International Conference on Service-Oriented Computing (ICSOC-

ServiceWave), Vol. 5900 of LNCS, Springer, pp. 651–652.

Lee, C., Ko, S., Kim, E. and Lee, W., (2009). Enriching OSGi service com-

position with web services, IEICE Transactions on Information and Systems

E92.D(5), 1177–1180.

Li, G., Muthusamy, V. and Jacobsen, H.-A., (2010). A distributed service-oriented

architecture for business process execution, ACM Trans. on the Web 4, 2:1–2:33.

Li, Q., Stankovic, J. A., Hanson, M. A., Barth, A. T., Lach, J. and Zhou, G.,

(2009). Accurate, fast fall detection using gyroscopes and accelerometer-derived

posture information, Wearable and Implantable Body Sensor Networks, Interna-

tional Workshop on 0, 138–143.

Liaskos, S., Khan, S. M., Litoiu, M., Jungblut, M. D., Rogozhkin, V. and My-

lopoulos, J., (2012). Behavioral adaptation of information systems through goal

models, Information Systems 37(8), 767–783.

Lin, N., Kuter, U. and Hendler, J. A., (2007). Web service composition via problem

decomposition across multiple ontologies, in IEEE International Conference on

Services Computing, 4th International Workshop on Semantic Web for Services

and Processes (SWSP), pp. 65–72.

Lin, N., Kuter, U. and Sirin, E., (2008). Web service composition with user prefer-

ences, in Proc. of the 5th European Semantic Web Conference (ESWC), pp. 629–

643.

Lopez, A. and Bacchus, F., (2003). Generalizing graphplan by formulating plan-

ning as a CSP, in Proc. of the 18th International Joint Conference on Artificial

Intelligence (IJCAI), pp. 954–960.

Madhusudan, T. and Uttamsingh, N., (2006). A declarative approach to composing

web services in dynamic environments, Decision Support Systems 41(2), 325–357.

Madhusudan, T., Zhao, J. L. and Marshall, B., (2004). A case-based reasoning

framework for workflow model management, Data and Knowledge Engineering

50, 87–115.

Marconi, A., Pistore, M. and Traverso, P., (2006). Specifying data-flow require-

ments for the automated composition of web services, in 4th IEEE International

Conference on Software Engineering and Formal Methods (SEFM), pp. 147–156.

206 BIBLIOGRAPHY

Marrella, A. and Mecella, M., (2011). Continuous planning for solving business pro-

cess adaptivity, in 12th International Working Conference on Business Process

Modeling, Development and Support (BPMDS).

Mart́ınez, E. and Lespérance, Y., (2004). Web service composition as a planning

task: Experiments using knowledge-based planning, in Proc. of the ICAPS Work-

shop on Planning and Scheduling for Web and Grid Services.

Mart́ınez, M., Ferńındez, F. and Borrajo, D., (2012). Variable resolution planning

through predicate relaxation, in Proc. of ICAPS-12 Workshop on Planning and

Plan Execution for Real-World Systems: Principles and Practices (PlanEx).

McDermott, D. and the AIPS-98 Planning Competition Committee, (1998). PDDL:

the planning domain definition language, Technical Report CVC TR98003/DCS

TR1165. URL: www.cs.yale.edu/homes/dvm

McDermott, D. V., (2002). Estimated-regression planning for interactions with web

services, in Proc. of the 6th International Conference on Artificial Intelligence

Planning Systems, pp. 204–211.

McIlraith, S. A., (2004). Towards declarative programming for web services, in 11th

International Symposium on Static Analysis (SAS), p. 21.

McIlraith, S. and Son, T. C., (2002). Adapting golog for composition of semantic

web-services, in D. Fensel, F. Giunchiglia, D. McGuinness and M. Williams, eds,

Conference on Principles of Knowledge Representation (KR).

Mediratta, A. and Srivastava, B., (2006). Applying planning in composition of web

services with a user-driven contingent planner, Technical report, IBM Research

Report RI 06002.

Müller, R., Greiner, U. and Rahm, E., (2004). Agentwork: a workflow system

supporting rule-based workflow adaptation, Data and Knowledge Engineering

51, 223–256.

Murugan, S. and Ramachandran, V., (2012). Aspect oriented decision making model

for byzantine agreement, Journal of Computer Science 8, 382–388.

Nebel, B. and Koehler, J., (1995). Plan reuse versus plan generation: A theoretical

and empirical analysis, Artificial Intelligence 76(1-2), 427–454.

Nielsen, J., (1994a). Enhancing the explanatory power of usability heuristics, in

Proc. of the SIGCHI Conference on Human factors in computing systems: cele-

brating interdependence, ACM, pp. 152–158.

BIBLIOGRAPHY 207

Nielsen, J., (1994b). Heuristic evaluation. Usability inspection methods, John Wiley

and Sons.

Oh, S.-C., Lee, D. and Kumara, S. R. T., (2007). Web service planner (WSPR): An

effective and scalable web service composition algorithm, International Journal

of Web Services Research 4(1), 1–22.

Orriëns, B. and Yang, J., (2006). A rule driven approach for developing adaptive

service oriented business collaboration, in Proc. of the 2007 IEEE International

Conference on Services Computing, pp. 182–189.

Ouvans, C., Dumas, M., ter Hofstede, A. and van der Aalst, W., (2006). From

bpmn process models to bpel web services, in International Conference on Web

Services, pp. 285–292.

Palacios, H. and Geffner, H., (2009). Compiling uncertainty away in conformant

planning problems with bounded width, Journal of Artificial Intelligence Re-

search (JAIR) 35, 623–675.

Papapanagiotou, P. and Fleuriot, J. D., (2011). A theorem proving framework for

the formal verification of web services composition, in 7th International Workshop

on Automated Specification and Verification of Web Systems (WWV), pp. 1–16.

Papazoglou, M., Aiello, M., Pistore, M. and Yang, J., (2002). XSRL: A request

language for web services, IEEE Internet Computing .

Pecora, F. and Cesta, A., (2007). DCOP for Smart Homes: a Case Study, Compu-

tational Intelligence 23(4), 395–419.

Peer, J., (2004). A PDDL based tool for automatic web service composition, in

2nd International Workshop on the Principles and Practice of Semantic Web

Reasoning, Vol. 3208 of Lecture Notes in Computer Science, Springer.

Peer, J., (2005a). A POP-based replanning agent for automatic web service com-

position, in 2nd European Semantic Web Conference (ESWC), pp. 47–61.

Peer, J., (2005b). Web service composition as AI planning - a survey, Technical

report, University of St. Gallen, Switzerland.

Petrick, R. P. A., (2011). An extension of knowledge-level planning to interval-

valued functions, in AAAI Workshop on Generalized Planning.

Petrick, R. P. A. and Bacchus, F., (2004). Extending the knowledge-based approach

to planning with incomplete information and sensing, in Proc. of the 14th Inter-

national Conference on Automated Planning and Scheduling (ICAPS), pp. 2–11.

208 BIBLIOGRAPHY

Pilioura, T. and Tsalgatidou, A., (2009). Unified publication and discovery of se-

mantic web services, ACM Transactions on the Web 3(3), 11:1–11:44.

Pistore, M., Marconi, A., Bertoli, P. and Traverso, P., (2005). Automated compo-

sition of web services by planning at the knowledge level, in 19th International

Joint Conference on Artificial Intelligence, pp. 1252–1259.

Pistore, M., Spalazzi, L. and Traverso, P., (2006). A minimalist approach to se-

mantic annotations for web processes compositions, in Proc. of the 3rd European

Semantic Web Conference (ESWC), pp. 620–634.

Pistore, M., Traverso, P. and Bertoli, P., (2005). Automated composition of web

services by planning in asynchronous domains, in Proc. of the 15th International

Conference on Automated Planning and Scheduling (ICAPS), pp. 2–11.

Pryor, L. and Collins, G., (1996). Planning for contingencies: A decision-based

approach, Journal of Artificial Intelligence Research (JAIR) 4, 287–339.

Rao, J., Dimitrov, D., Hofmann, P. and Sadeh, N. M., (2006). A mixed initiative

approach to semantic web service discovery and composition: SAP’s guided pro-

cedures framework, in Proc. of the 5th International Semantic Web Conference

(ISWC), pp. 401–410.

Rao, J., Küngas, P. and Matskin, M., (2006). Composition of semantic web services

using linear logic theorem proving, Information Systems 31(4-5), 340–360.

Rao, J. and Su, X., (2004). A survey of automated web service composition meth-

ods, in 1st International Workshop on Semantic Web Services and Web Process

Composition, pp. 43–54.

Rao, S. P. and Cook, D. J., (2004). Predicting inhabitant action using action and

task models with application to smart homes, International Journal on Artificial

Intelligence Tools 13, 81–100.

Redondo, R. P. D., Fernandez, V. A., Cabrer, M. R., Arias, J. J. P., Duque, J. G.

and Solla, A. G., (2008). Enhancing residential gateways: A semantic OSGi plat-

form, IEEE Intelligent Systems 23(1), 32–40.

Reichert, M. and Dadam, P., (2009). Enabling adaptive process-aware information

systems with ADEPT2, in J. Cardoso and W. Van Der Aalst, eds, Handbook of

Research on Business Process Modeling, Information Science Reference, Hershey,

New York, pp. 173–203.

BIBLIOGRAPHY 209

Richter, S. and Westphal, M., (2010). The LAMA planner: Guiding cost-based any-

time planning with landmarks, Journal of Artificial Intelligence Research (JAIR)

39, 127–177.

Rodŕıguez-Moreno, M. D., Borrajo, D., Cesta, A. and Oddi, A., (2007). Integrating

planning and scheduling in workflow domains, Expert Systems and Applications

33(2), 389–406.

Rodŕıguez-Moreno, M. D. and Kearney, P., (2002). Integrating AI planning tech-

niques with workflow management system, Knowledge-Based Systems 15(5-

6), 285–291.

Ryu, S. H., Casati, F., Skogsrud, H., Benatallah, B. and Saint-Paul, R., (2008).

Supporting the dynamic evolution of web service protocols in service-oriented

architectures, ACM Transactions on the Web 2, 13:1–13:46.

Sardiña, S., Patrizi, F. and Giacomo, G. D., (2007). Automatic synthesis of a

global behavior from multiple distributed behaviors, in Proc. of the 22nd AAAI

Conference on Artificial Intelligence, pp. 1063–1069.

Shani, G. and Brafman, R. I., (2011). Replanning in domains with partial informa-

tion and sensing actions, in Proc. of the 22nd International Joint Conference on

Artificial Intelligence, pp. 2021–2026.

Shaparau, D., Pistore, M. and Traverso, P., (2006). Contingent planning with goal

preferences, in Proc. of the 21st AAAI Conference on Artificial intelligence, AAAI

Press, pp. 927–934.

Shaparau, D., Pistore, M. and Traverso, P., (2008). Fusing procedural and declar-

ative planning goals for nondeterministic domains, in Proc. of the 23d AAAI

Conference on Artificial Intelligence, pp. 983–990.

Sheshagiri, M., DesJardins, M. and Finin, T., (2003). A planner for composing

services described in DAML-S, in ICAPS Workshop on planning for web services.

Simpson, R. C., Schreckenghost, D., LoPresti, E. F. and Kirsch, N., (2006). Plans

and planning in smart homes, in Designing Smart Homes, pp. 71–84.

Sirbu, A. and Hoffmann, J., (2008). Towards scalable web service composition with

partial matches, in Proc. of the IEEE International Conference on Web Services,

pp. 29–36.

210 BIBLIOGRAPHY

Sirin, E., Hendler, J. A. and Parsia, B., (2003). Semi-automatic composition of

web services using semantic descriptions, in Proc. of the 1st Workshop on Web

Services: Modeling, Architecture and Infrastructure (WSMAI), pp. 17–24.

Sirin, E., Parsia, B., Wu, D., Hendler, J. A. and Nau, D. S., (2004). Htn planning for

web service composition using shop2, Journal of Web Semantics 1(4), 377–396.

Skoutas, D., Sacharidis, D., Simitsis, A. and Sellis, T., (2008). Serving the Sky:

Discovering and selecting semantic web services through dynamic skyline queries,

in 2nd IEEE International Conference on Semantic Computing, pp. 222–229.

Sohrabi, S., Baier, J. A. and McIlraith, S. A., (2011). Preferred explanations: The-

ory and generation via planning, in Proc. of the 25th AAAI Conference on Arti-

ficial Intelligence.

Sohrabi, S. and McIlraith, S. A., (2010). Preference-based web service composition:

A middle ground between execution and search, in International Semantic Web

Conference, pp. 713–729.

Sohrabi, S., Prokoshyna, N. and Mcilraith, S. A., (2006). Web service composi-

tion via generic procedures and customizing user preferences, in Proc. of the 5th

International Semantic Web Conference (ISWC), pp. 597–611.

Sohrabi, S., Prokoshyna, N. and McIlraith, S. A., (2009). Web service composition

via the customization of golog programs with user preferences, in Conceptual

Modeling: Foundations and Applications, Vol. 5600.

Spiess, P., Karnouskos, S., Guinard, D., Savio, D., Baecker, O., de Souza, L. M. S.

and Trifa, V., (2009). Soa-based integration of the internet of things in enterprise

services, in Proc. of the IEEE 7th International Conference on Web Services

(ICWS), pp. 968–975.

Srivastava, B. and Koehler, J., (2003). Web service composition - current solutions

and open problems, in ICAPS Workshop on Planning for Web Services, pp. 28–

35.

To, S. T., Son, T. C. and Pontelli, E., (2011). Contingent planning as and/or

forward search with disjunctive representation, in Proc. of the 21st International

Conference on Automated Planning and Schedulin (ICAPS).

Traverso, P. and Pistore, M., (2004). Automated composition of semantic web ser-

vices into executable processes, in 3d International Semantic Web Conference,

pp. 380–394.

BIBLIOGRAPHY 211

Trifa, V., Guinard, D., Davidovski, V., Kamilaris, A. and Delchev, I., (2010). Web

messaging for open and scalable distributed sensing applications, in Proc. of the

10th International Conference on Web Engineering (ICWE), Springer-Verlag,

pp. 129–143.

Trčka, N., van der Aalst, W. and Sidorova, N., (2009). Data-flow anti-patterns:

Discovering data-flow errors in workflows, in Adv. Inf. Systems Eng., Vol. 5565

of LNCS, Springer Verlag, pp. 425–439.

Urban, S., Gao, L., Shrestha, R. and Courter, A., (2011). The dynamics of process

modeling: New directions for the use of events and rules in service-oriented com-

puting, in The Evolution of Conceptual Modeling, Vol. 6520 of LNCS, Springer

Verlag, pp. 205–224.

van Beest, N., Kaldeli, E., Bulanov, P., Wortmann, J. and Lazovik, A., (2012). Au-

tomatic detection of business process interference, in 1st International Workshop

on Knowledge-intensive Business Processes (KIBP), 13th International Confer-

ence on Principles of Knowledge Representation and Reasoning (KR).

van Beest, N. R. T. P., Bulanov, P., Wortmann, J. and Lazovik, A., (2010). Re-

solving business process interference via dynamic reconfiguration, in Proc. of 8th

International Conference on Service Oriented Computing (ICSOC), pp. 47–60.

van Beest, N. R. T. P., Szirbik, N. B. and Wortmann, J. C., (2010). Assessing

the interference in concurrent business processes, in Proc. of 12th International

Conference on Enterprise Information Systems (ICEIS), pp. 261–270.

van der Krogt, R. and de Weerdt, M., (2005). Plan repair as an extension of plan-

ning, in Proc. of the 15th International Conference on Automated Planning and

Scheduling, pp. 161–170.

Vargas, L., Bacon, J. and Moody, K., (2005). Integrating databases with publish/-

subscribe, in Proc. of the 4th International Workshop on Distributed Event-Based

Systems (DEBS), International Conference on Distributed Computing Systems

Workshops (ICDCSW), IEEE Computer Society, pp. 392–397.

Vidal, V., (2004). Branching and pruning: An optimal temporal POCL planner

based on constraint programming, in Artificial Intelligence, pp. 570–577.

Vukovic, M. and Robinson, P., (2005). Goalmorph: partial goal satisfaction for

flexible service composition, in International Conference on Next Generation Web

Services Practices.

212 BIBLIOGRAPHY

Wallace, R. J. and Grimes, D., (2010). Problem-structure vs. solution-based meth-

ods for solving dynamic constraint satisfaction problems, in Proc. of the 22nd

International Conference on Tools with Artificial Intelligence.

Wallace, R. J., Grimes, D. and Freuder, E. C., (2009). Solving dynamic constraint

satisfaction problems by identifying stable features, in Proc. of the 21st Interna-

tional Joint Conference on Artificial Intelligence.

Wang, H., Tang, P. and Hung, P., (2008). RLPLA: A reinforcement learning algo-

rithm of web service composition with preference consideration, in IEEE World

Congress on Services PArt II (SERVICES-2), pp. 163 –170.

Warriach, E. U., Kaldeli, E., Bresser, J., Lazovik, A. and Aiello, M., (2010). A

tool for integrating pervasive services and simulating their composition, in Demo

Session of the 8th International Conference in Service-Oriented Computing (IC-

SOC), Vol. LNCS, Springer, pp. 726–727.

Weber, I., Hoffmann, J. and Mendling, J., (2010). Beyond soundness: on the veri-

fication of semantic business process models, Distributed and Parallel Databases

27, 271–343.

Weske, M., (2001). Formal foundation and conceptual design of dynamic adapta-

tions in a workflow management system, in Proc. of the 34th Annual Hawaii Inte.

Conference on System Sciences.

Westra, K., (2010). Web service composition: connecting the web cloud, Bachelor’s

thesis, University of Groningen.

Wu, D., Parsia, B., Sirin, E., Hendler, J. A. and Nau, D. S., (2003). Automating

DAML-S web services composition using SHOP2, in Proc. of the 2nd Interna-

tional Semantic Web Conference, pp. 195–210.

Xiao, Y. and Urban, S., (2007). Process dependencies and process interference

rules for analyzing the impact of failure in a service composition environment, in

Business Inf. Systems, Vol. 4439 of LNCS, Springer Verlag.

Xiao, Y. and Urban, S., (2008). Using data dependencies to support the recovery of

concurrent processes in a service composition environment, in Proc. of the 16th

International Conference on Cooperative Inf. Systems.

Yoon, S. W., Fern, A. and Givan, R., (2007). FF-Replan: A baseline for probabilistic

planning, in Proc. of the 17th International Conference on Automated Planning

and Scheduling, pp. 352–.

BIBLIOGRAPHY 213

Yoon, S. W., Fern, A., Givan, R. and Kambhampati, S., (2008). Probabilistic plan-

ning via determinization in hindsight, in Proc. of the 23rd AAAI Conference on

Artificial Intelligence, pp. 1010–1016.

Yu, T., Zhang, Y. and Lin, K.-J., (2007). Efficient algorithms for web services

selection with end-to-end QoS constraints, ACM Transactions on the Web 1.

Yumatov, S., (2011). Web based interface for a smart home, Master’s thesis, Uni-

versity of Groningen.

Zeadally, S. and Kubher, P., (2008). Internet access to heterogeneous home area

network devices with an OSGi-based residential gateway, International Journal

of Ad Hoc and Ubiquitous Computing 3, 48–56.

Zhang, W. and Hansen, K. M., (2008). Semantic web based self-management for a

pervasive service middleware, in Proc. of the 2nd IEEE International Conference

on Self-Adaptive and Self-Organizing Systems (SASO), pp. 245–254.

Zou, G., Chen, Y., Xu, Y., Huang, R. and Xiang, Y., (2012). Towards automated

choreographing of web services using planning, in Proc. of the 26th AAAI Con-

ference on Artificial Intelligence.

Defense Advanced Research Projects Agency (DARPA), (2002). ‘DAML-S 0.7 Draft

Release’. URL: www.daml.org/services/daml-s/0.7/

Organization for the Advancement of Structured Information Standards (OASIS),

(2007). ‘Web services business process execution language’. URL: www.oasis-

open.org/committees/wsbpel

World Wide Web Consortium (W3C), (2004). ‘Semantic markup for web services:

OWL-S’. URL: www.w3.org/Submission/OWL-S

World Wide Web Consortium (W3C), (2005a). ‘Web service modeling ontology

(WSMO)’. URL: www.w3.org/Submission/WSMO

World Wide Web Consortium (W3C), (2005b). ‘Web service semantics: WSDL-S’.

URL: www.w3.org/Submission/WSDL-S

Apache, (n.d.). ‘Jini - apache river project’. URL: river.apache.org

Choco library documentation, (2012). URL: www.emn.fr/z-info/choco-solver

Oracle, (2002). ‘Oracle JMS’. http://docs.oracle.com/javaee/1.3/jms/tutorial/.

214 BIBLIOGRAPHY

OSGi Alliance, (2009). ‘OSGi service platform core specification release 4’. URL:

www.osgi.org

SM4All, (2008-2011). ‘Smart hoMes for All’, STREP Project: FP7-224332. URL:

www.sm4art-project.eu

UPnP Forum, (2008). ‘UPnP� device architecture version 1.1’. URL: www.upnp.org

Samenvatting

Web Services kunnen worden gezien als de fundamentele elementen om gedistri-

bueerde applicaties te bouwen, waarbij de interactie tussen heterogene software

componenten wordt gefaciliteerd op een interoperabele manier. De mogelijkheid

om bestaande services te selecteren en integreren opent nieuwe perspectieven voor

de ontwikkeling van service-georiënteerde applicaties. Zelfs als er geen web ser-

vice beschikbaar is om een bepaald doel te vervullen, zou het mogelijk moeten zijn

om een compositie van verschillende services te genereren, die dat doel tezamen

kunnen verwezelijken. Compositie van services is een zeer complexe taak en de au-

tomatisering daarvan blijft een belangrijke uitdaging. Onderzoek op het gebied van

Artificial Intelligence planning kan een verder inzicht in het probleem verschaffen

en bijdragen aan de geautomatiseerde compositie van services, die zich aan kun-

nen passen aan de veranderende behoefte van gebruikers en omgevingsvariabelen.

In de afgelopen jaren zijn verschillende benaderingen ontwikkeld om het probleem

van service compositie te formuleren als planningstaak. Het algemene uitgangspunt

van deze benaderingen is dat services voorzien zijn van semantische annotaties. In

dit opzicht worden de methoden, die worden aangeboden door services, gezien als

planningsacties, welke zijn beschreven in termen van precondities en effecten, en de

gebruikersdoelstelling wordt gezien als een planningsdoel.

Echter, de meeste bestaande planningsbenaderingen voor service compositie

hebben een of meer van de volgende beperkingen: ze zijn niet domeinonafhan-

kelijk, waardoor de toepasbaarheid van het domein wordt beperkt door een set

voorgedefinieerde procedurele templates; ze zijn niet in staat om op een efficiënte

manier om te gaan met numerieke variabelen, vooral wanneer deze betrekking heb-

ben op observaties of gebruikersinvoer; en ze houden geen rekening met herstel

216 Samenvatting

van onvoorziene runtime omstandigheden als gevolg van foutief gedrag van servi-

ces of externe gebeurtenissen, die interfereren met de uitvoer van het plan. Om

deze tekortkomingen te ondervangen, introduceert dit proefschrift een nieuw do-

meinonafhankelijk planningsframework – genaamd RuG planner –, die gebaseerd

is op het modelleren van een planningstaak als een Constraint Satisfaction Pro-

blem. Dit planningssysteem wordt gebruikt om te voldoen aan de eisen gesteld

door drie verschillende service-georiënteerde platformen: een domein bestaande uit

verschillende services die beschikbaar zijn via internet, een Smart Home voorzien

van intelligente apparaten die als service beschikbaar zijn en een framework voor

herstel van bedrijfsprocessen in het geval van procesinterferentie.

Om aan de eisen te voldoen, die door deze applicatiedomeinen worden gesteld,

wordt de RuG planner voorzien van een aantal speciale eigenschappen, welke, wan-

neer ze worden samengevoegd, het aantal scenarios verhogen dat effectief kan wor-

den ondervangen in vergelijking met voorgaande benaderingen. Deze eigenschappen

omvatten een kennisrepresentatie om onzekerheid omtrent de beginstaat en het re-

sultaat van de observationele acties te modelleren; efficinte omgang met numerieke

variabelen, welke kunnen voorkomen als input voor acties of output van obser-

vationele effecten; generatie van plannen met een hoge graad van parallellisme;

ondersteuning voor een declaratieve taal voor doelen met temporele extensie; en

continue revisie van het plan om observationele uitkomsten, fouten, lange reactie-

tijden en activiteiten van externe actoren te ondersteunen. Al deze eigenschappen

zijn gerealiseerd op een manier zodanig dat de eisen van domeinonafhankelijkheid

worden gerespecteerd.

Het RuG planningsframework is geëvalueerd op verschillende scenarios en ser-

vice platformen, waaronder een aantal tests met betrekking tot de prestaties van de

planningstechnieken, de effectiviteit van de gegenereerde oplossingen en gebruiks-

vriendelijkheid. De tests hebben aangetoond, dat de RuG planner kan worden

gebruikt om verschillende doelen te bewerkstelligen onder uiteenlopende omstandig-

heden. Hoewel de planningsmethodologie focust op toepassingen met web services,

is de essentie meer generiek en worden problemen ondervangen waar domeinonaf-

hankelijkheid, onzekerheid en dynamiek een rol spelen.

	Acknowledgments
	Introduction
	Planning domain representation
	Planning as a Constraint Satisfaction Problem

	Uncertainty about the initial state
	Offline planning and online execution
	A motivation example
	Orchestration through continual plan revisions
	Dealing with dynamic environments

	Thesis scope and organization
	Publications

	Related Work
	Planning for service composition
	Planning domains and goal specifications
	Planning as CSP
	Planning with incomplete information and sensing
	Replanning and interactions with the environment
	Comparative summary
	Service coordination in domotic environments
	The Web of Things
	Service composition and AI Planning in pervasive systems
	Smart Homes projects

	Business Process recovery
	BP adaptation and repair
	Automated planning for BP reconfiguration

	The RuG CSP-based Planner
	Planning as constraint solving
	Planning Domain
	Encoding the Planning Domain into a CSP
	Some action examples
	Implicit predicates in the knowledge base

	Goal language
	Goal syntax
	Some goal examples
	Goals with parameters

	Representing the planning problem
	Semantics of the goal

	Translating the goal into constraints
	Translating a goal example into constraints

	Solving the CSP
	A planning example

	Goal editor

	Planning in a Smart Home
	Smartness via service composition at home
	A day in the Smart Home
	Replanning for basic failure recovery

	Architecture
	The pervasive layer
	The service composition layer
	The user layer

	The home as a planning domain
	The OSGi UPnP-level home domain
	The planning-level home domain
	Incorporating context changes
	User and home goals

	The prototype
	Pervasive and composition layers
	The user layer
	Simulation and visualization
	Sample interaction flow

	Practically engineering a Smart Home
	Technical evaluation
	Replanning scenarios

	User evaluation
	Experimental setup
	Usability evaluation results

	Plan Orchestration via Altering the CSP
	Architectural overview
	Execution-time transition system and orchestration path
	Main policies of the orchestration algorithm
	Plan repair vs. replanning
	Executing parallel actions and dealing with timeouts
	Dealing with erratic behaviors, constraint violations, and persistent information
	The orchestration algorithm

	Implementation
	Running examples
	Entertainment WS marketplace
	``Moving in grid'' scenario

	Empirical evaluation
	Refinement towards replanning from scratch
	Timeout of sensing actions

	Discussion

	Automatic Runtime Business Process Repair
	The problem of process interference
	Process interference in e-Government: a test case
	WMO process description
	Interference examples
	Required intervention processes
	Automatic intervention process generation

	Architectural overview
	Basic concepts
	Service Repository
	Business Process
	Dependency scope

	The BP as a planning domain
	Formation of the atomic actions
	Generation of the planning domain
	Formation of the initial planning state
	Generating the intervention process

	The prototype
	Process Modeler
	The Process Executor

	Evaluation
	Tests on the WMO-law case study
	Scalability in a simulated domain

	Conclusions
	Recapitulation
	Open issues and future directions

	Appendix
	Orchestration example of moving robot in grid
	Representations of WMO BP and respective Planning Domain
	BP Representation of the WMO Process
	Planning Domain modeling the WMO Process

	Bibliography
	Samenvatting

