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Abstract

In this paper, some new results concerning the modeling and control of distributed parameter

systems in port Hamiltonian form are presented. The classical finite dimensional port Hamiltonian

formulation of a dynamical system is generalized in order to cope with the distributed parameter

and multi-variable case. The resulting class of infinite dimensional systems is quite general, thus

allowing the description of several physical phenomena, such as heat conduction, piezoelectricity and

elasticity. Furthermore, classical PDEs can be rewritten within this framework. The key point is

the generalization of the notion of finite dimensional Dirac structure in order to deal with an infinite

dimensional space of power variables. In this way, also in the distributed parameter case, the variation

of total energy within the spatial domain of the system can be related to the power flow through the

boundary. Since this relation deeply relies on the Stokes theorem, these structures are called Stokes–

Dirac structures. As far as concerns the control problem, it seems natural that also finite dimensional

control methodologies developed for finite dimensional port Hamiltonian systems can be extended

in order to cope with infinite dimensional systems. In this paper, the control by interconnection

and energy shaping methodology is applied to the stabilization problem of a distributed parameter

system by means of a finite dimensional controller interconnected to its boundary. The key point

is the generalization of the definition of Casimir function to the hybrid case, that is the dynamical

system to be considered results from the power conserving interconnection of an infinite and a finite

dimensional part. A simple application concerning the stabilization of the one-dimensional heat

equation is presented.

1 Introduction

Following the same ideas behind the bond graph formalism [17], a finite dimensional physical system
can be modeled as the result of the interconnection of a small set of atomic elements, each of them
characterized by a particular energetic behavior (e.g. energy storing, dissipation or conversion). Each
element can interact with the environment by means of a port, that is a couple of input and output
signals whose combination gives the power flow. The network structure allows a power exchange between
these components and describes the power flows within the system and between the system and the
environment. This network can be mathematically described by means of a Dirac structure [1, 2, 11, 22],
generalization of the well-known Kirchoff laws of circuit theory, [12].

Once the Dirac structure is defined, the dynamics of the system is specified when the space of energy
(state) variables and the energy (Hamiltonian) function are given. The port Hamiltonian formalism
[11, 22] is based on these ideas and allows the description of a wide class of finite dimensional non-linear
systems, such as mechanical, electro-mechanical, hydraulic and chemical ones.
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The port Hamiltonian representation of a finite dimensional system has been recently extended in order
to cope with the infinite dimensional case, [23], thus generalizing the classical Hamiltonian formulation
of a distributed parameter system which is a well-established mathematical result, [14, 21]. From the
network modeling perspective, the dynamics of an infinite dimensional system with spatial domain Z
and boundary ∂Z is the result of the interaction among (at least) two energy domains within Z and/or
between the system and its environment through ∂Z. This interaction is mathematically described by
a generalization of the Dirac structure to the distributed parameter case. Since this new class of power
conserving interconnection deeply relies on the Stokes theorem, we speak about Stokes–Dirac structure.

In [23], a simple Stokes–Dirac structure has been introduced and it has been shown that it is can be
the starting point for the description in port Hamiltonian form of the telegrapher equation, of Maxwell’s
equations and of the vibrating string equation. Moreover, in [13], this Stokes-Dirac structure has been
modified in order to model fluid dynamical systems and in [3, 9] to model the Timoshenko beam equation.
In any case, it is not completely clear how a general formulation of a multi-variable distributed parameter
system within the port Hamiltonian formalism could be obtained.

In this paper, some new results in this direction are presented. In particular, a novel class of Dirac
structures over an infinite dimensional space of power variables are introduced. The interconnection,
damping and input/output matrices are replaced by matrix differential operators which are assumed to
be constant, that is no explicit dependence on the state (energy) variables is considered. As in finite
dimensions, given the Stokes–Dirac structure, the model of the system easily follows once the Hamiltonian
function is specified. The resulting class of infinite dimensional systems in port Hamiltonian form is quite
general, thus allowing the interpretation of classical PDEs within this framework and the description of
several physical phenomena, as the heat conduction, piezo electricity and elasticity.

From the control perspective, one of the main advantages in adopting the port Hamiltonian approach
in both the finite either the infinite dimensional case is that the energy (Hamiltonian) function, which
is usually a good Lyapunov function, explicitly appears in the dynamics of the system. Given a desired
state of equilibrium, if the Hamiltonian of the system assumes its minimum at this configuration, then
asymptotic stability can be assured by introducing a dissipative effect with the controller. In this way,
energy decreases until the minimum of energy or, equivalently, the desired equilibrium configuration is
reached. This control methodology is called control by damping injection, [20, 22].

On the other hand, if the Hamiltonian function of the system does not assume its minimum in the
desired equilibrium state, it is necessary to shape the open-loop energy function and to introduce a new
minimum in the desired configuration. The idea is to interconnect a controller to the plant and to choose
the Hamiltonian of the regulator in order to properly shape the total (closed-loop) energy function. It is
important to note that, in general, there is no a priori relation between the state of the plant and the
state of the controller, so it is not immediate how the controller Hamiltonian function can be chosen in
order to correctly shape the total energy. This problem can be solved by choosing the structure of the
controller, i.e. its interconnection, damping and input/output matrices, in such a way that the state of
the closed-loop system is constrained on certain subspace independently of the energy function of both
the plant either the controller. Equivalently, this can be done by introducing a set of Casimir functions
in the system, [2, 10]. Under some technical hypothesis, then, it is possible to introduce an intrinsic
non-linear state feedback law that will be used in order to choose the energy function of the controller
so that the closed-loop Hamiltonian can be properly shaped. Note that, under these hypothesis, this
energy function depends on the state variables of the plant. This control methodology is called invariant
function method or, within the framework of port Hamiltonian systems, control by interconnection and
energy shaping and it is deeply discussed in [2, 10] and also in [15, 16] for the stabilization of non-linear
port Hamiltonian systems.

In this paper, the control by interconnection and energy shaping is extended and applied to the
regulation problem of an infinite dimensional system by means of a finite dimensional controller that
can act on the system by exchanging power through the boundary. Some preliminary results in this
direction have already been presented in [8, 19] where the infinite dimensional system is given by a set
of transmission lines, while an application to stabilization of the Timoshenko beam has been discussed
in [7, 9]. The main result concerns the necessary and sufficient conditions for a real-valued function
defined over the closed-loop state space to be a structural invariant (Casimir function) for the controlled
system which is an hybrid system since it results from the power conserving interconnection of an infinite
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and of a finite dimensional system. Once these conditions are deduced, by choosing a proper family of
Casimir functions, the control by interconnection and energy shaping methodology can be applied as in
the finite dimensional case. In this way, the open-loop energy function can be shaped by introducing a
new minimum at the desired equilibrium configuration.

This work is organized as follows. After a short background concerning finite dimensional Dirac
structures and port Hamiltonian system in Sect. 2, the infinite dimensional Stokes–Dirac structures are
introduced in Sect. 3 and the corresponding port Hamiltonian formulation of multi-variable infinite di-
mensional system (mdpH systems) is discussed in Sect. 4. In Sect. 5, some simple examples are presented,
the Harry–Dym equation, a classical nonlinear PDE, the heat equation and the general elasticity equa-
tion. Then, in Sect. 6, a short introduction on the control by interconnection and energy shaping for
finite dimensional port Hamiltonian systems is given and, then, the boundary control by interconnection
for infinite dimensional systems is discussed in Sect. 7. Necessary and sufficient conditions for the ex-
istence of Casimir functions in the closed loop system are deduced and their applications in the energy
shaping procedure is described. Finally, a simple example concerning the boundary stabilization of the
heat equation is discussed in Sect. 8, while conclusions are presented in Sect. 9.

2 Dirac structures and finite dimensional port Hamiltonian sys-

tems

2.1 Background on Dirac structures

The interconnection of physical system basically is power exchange. In order to mathematically model
these phenomena, it is necessary to give a definition of power and to introduce a proper set of tools that
will be useful to treat and describe the network structure behind a physical system.

Consider an n-dimensional linear space F and denote by E ≡ F ∗ its dual, that is the space of linear
operator e : F → R. The elements belonging to F are called flows (e.g. velocities and currents), while
the elements in E are called efforts (i.e. forces and voltages). Flows and efforts are the port variables,
that is the input/output signals, whose combination gives the power flowing inside the physical system.
The space F × E is called space of power variables.

Given an effort e ∈ E and a flow f ∈ F , define the associated power P as

P := 〈e, f〉 = e(f) (∈ R)

where 〈·, ·〉 is the dual product between f and e. Based on the dual product, the following linear operator
is well-defined.

Definition 2.1 (+pairing operator). Consider the space of power variables F × E . The following
symmetric bilinear form is well-defined:

� (f1, e1), (f2, e2) � := 〈e1, f2〉 + 〈e2, f1〉 (1)

with (fi, ei) ∈ F × E , i = 1, 2; � ·, · � is called +pairing operator.

Consider a linear subspace S ⊂ F × E of dimension m and denote by S
⊥ its orthogonal complement

with respect to the +pairing operator (1), which is again a linear subspace of F × E with dimension
2n−m since (1) is a non-degenerate form. Based on the +pairing operator (1), it is possible to give the
fundamental definition of Dirac structure, that is the basic mathematical tool that is used to describe
the interconnection structure between physical systems.

Definition 2.2 (Dirac structure). Consider the space of power variables F × E and the symmetric
bilinear form (1). A (constant) Dirac structure on F is a linear subspace D ⊂ F × E such that

D = D
⊥

Note 2.1. It is possible to prove that the dimension of a Dirac structure D on an n-dimensional space F
is equal to n. This result is related to an interesting property of physical systems. Consider, for example,
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the interconnection of electrical networks: it is well known that it is not possible to impose both currents
and voltages. By generalization, a physical interconnection cannot determine both the flow either the
effort.

Moreover, suppose that (f, e) ∈ D; from (1), we have that

0 =� (f, e), (f, e) �= 2 〈e, f〉

Then, it can be deduced that, for every (f, e) ∈ D,

〈e, f〉 = 0

or, equivalently, that every Dirac structure D on F defines a power-conserving relation between power
variables (f, e) ∈ F × E .

With the following proposition, a quite general class of Dirac structures is introduced, [22].

Proposition 2.1. Consider the space of power variables F×E and denote by X an n-dimensional space,
the space of energy variables. Suppose that F := (Fs,Fr,Fe) and that E := (Es, Er, Ee), with dimFs =
dim Es = n, dimFr = dim Er = nr and dimFe = dim Ee = m. Moreover, denote by J(x) a skew-
symmetric matrix of dimension n and by Gr(x) and G(x) two matrices of dimension nr × n and m × n

respectively. Then, the set

D := { (fs, fr, fe, es, er, ee) ∈ F × E | fs = − J(x)es − Gr(x)fr − G(x)fe

er = GT
r (x)es

ee = GT(x)es }

(2)

is a Dirac structure on F

Note 2.2. In Def. 2.2, the pairs (fs, es) and (fr, er) represent the port variables of the storage and
dissipative elements respectively, while (fe, ee) are the port variables through which the environment can
exchange power with the system. Given the interconnection structure (2), the dynamics of the system can
be specified once the port behavior of the energy storage elements is specified and when the dissipative
ports are terminated.

2.2 Finite dimensional port Hamiltonian systems

The Dirac structure introduced in Def. 2.2 is quite general. Based on that, a general formulation of non-
linear system in port Hamiltonian form can be easily given. As discussed in Note 2.2, a dynamical system
can be interpreted as the result of the combination of the Dirac structure (2) with the port behavior of
the energy storing and of the dissipative elements.

Under the same hypothesis of Prop. 2.1, denote by H : X → R a real valued function bounded from
below defined over the space of energy variables X . Then, define the port behavior of the energy storing
elements as:

fs = −ẋ es =
∂H

∂x
(3)

where the minus sign is necessary in order to have a consistency in the power flow. If restricted to
the linear case, dissipative effects can be taken into account by imposing the following relation on the
variables (fr, er) of the Dirac structure (2):

fr = −Yrer (4)

where Yr = Y T
r ≥ 0. By substitution of (3) and (4) in (2), the representation of a port Hamiltonian

system with dissipation can be deduced [11, 22] and the following definition makes sense.

Definition 2.3 (port Hamiltonian systems). Denote by X an n-dimensional space of state (energy)
variables and by H : X → R a scalar energy function (Hamiltonian) bounded from below. Denote by
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U ≡ Fe an m-dimensional (linear) space of input variables and by its dual Y ≡ Ee the space of output
variables. Then, 





ẋ = [J(x) − R(x)]
∂H

∂x
+ G(x)u

y = GT(x)
∂H

∂x

(5)

with J(x) = JT(x), R(x) = RT(x) ≥ 0 and G(x) matrices of proper dimensions, is a port Hamiltonian
system with dissipation. The n × n matrices J and R are called interconnection and damping matrix
respectively.

Note 2.3. Given a dynamical system in port Hamiltonian from (5), the variation of internal energy equals
the dissipated power plus the power provided to the system by the environment, that is:

dH

dt
= −

∂TH

∂x
R(x)

∂H

∂x
+ yTu ≤ yTu

This relation expresses a fundamental property of port Hamiltonian systems, their passivity. Roughly
speaking, the internal energy of the unforced system (u = 0) is non-increasing along system trajectories
or, if the port variable are closed on a dissipative element, that is a relation similar to (4) is imposed
between u and y, then the energy function is always a decreasing function. If the definition of Lyapunov
stability is recalled, together with the sufficient condition for the stability of an equilibrium point, then
it can be deduced that the Hamiltonian is a good candidate for being a Lyapunov function.

3 Power conserving interconnections in infinite dimensions

3.1 Constant matrix differential operators

In the finite dimensional formulation (5) of a port Hamiltonian system, an important role is played by
the interconnection, damping and input matrices. These operators are strictly related to the properties
of the Dirac structure defining the power flows within the dynamical system and between the system
and its environment. In infinite dimensions, these objects are generalized and they are mathematically
described by matrix differential operators. In this paper, only the constant case is taken into account. In
the finite dimensional framework, this means that the dependence on the x variable of the elements of
the Dirac structure (2) is neglected.

Denote by Z a compact subset of R
d representing the spatial domain of the distributed parameter

system. Then, denote by U and V two sets of smooth functions from Z to R
qu and R

qv respectively.

Definition 3.1 (constant matrix differential operator). A constant matrix differential operator of
order N is a map L from U to V such that, given u = (u1, . . . , uqu) ∈ U and v = (v1, . . . , vqv ) ∈ V

v = Lu ⇐⇒ vb :=

N∑

#α=0

Pα
a,bD

αua (6)

where α := {α1, . . . , αd} is a multi-index of order #α :=
∑d

i=1 αi, Pα are a set of constant qu×qv matrices
and Dα := ∂α1

z1
· · · ∂αd

zd
is an operator resulting from a combination of spatial derivatives. Note that, in

(6), the sum is intended over all the possible multi-indexes α with order 0 to N and, implicitly, on a from
1 to q.

Definition 3.2 (formal adjoint). Consider the constant matrix differential operator (6). Its formal
adjoint is the map L∗ from V to U such that

u = L∗v ⇐⇒ ub :=

N∑

#α=0

(−1)#αPα
b,aDαva (7)
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Definition 3.3 (skew-adjoint differential operator). Denote by J a constant matrix differential
operator. Then, J is skew-adjoint if and only if

J = −J∗

Note 3.1. It is easy to prove that, L is a skew-adjoint matrix differential operator if and only if

Pα
a,b = (−1)#α+1Pα

b,a

for every multi-index α from order 0 to N .

An important relation between a differential operator and its adjoint is expressed by the following
lemma, which generalizes an analogous result presented in [18] to the multi variable case. As it will be
discussed in Sect. 3.2, this result is fundamental in the definition of Stokes–Dirac structure and, basically,
it generalizes the well-known integration by parts formula.

Lemma 3.1. Consider a matrix differential operator L and denote by L∗ its formal adjoint. Then, for
every functions u ∈ U and v ∈ V, we have that

∫

Z

[
vTLu − uTL∗v

]
dV =

∫

∂Z

BL(u, v) · dA (8)

where BL is a differential operator induced on ∂Z by L.

Note 3.2. Given u ∈ U and v ∈ V, from the Stokes’ theorem, it is well known that relation (8) can be
equivalently written as

vTLu − uTL∗v = div BL(u, v)

that is vTLu − uTL∗v can be expressed in divergence form. From (6) and (7), we have that

vTLu − uTL∗v =

N∑

#α=0

Pα
a,b

[
(Dαua) vb − (−1)#α

(
Dαvb

)
ua
]

(9)

whose divergence form is

∑

#β=1

Dβ
N∑

α≥β

∑

γ≤α−β

(−1)#γPα
a,b

(
Dγvb

) (
Dα−β−γua

)
(10)

in which the first sum is extended to all the multi index β of order 1.

Note 3.3. It is important to note that BL is a constant differential operator. The quantity BL(u, v) is
a constant linear combination of the functions u and v together with their spatial derivatives up to a
certain order and depending on L. Consequently, denote by BZ an operator providing a vector with all
the spatial derivatives in (10) and by Bi

L, i = 1, . . . , d, a set of constant square matrices of a certain order
given by a proper combinations of all the P α matrices. Then, (8) can be equivalently written as

∫

Z

[
vTLu − uTL∗v

]
dV =

∫

∂Z

BT
Z(u)

[
B1

LBZ(v) · · · Bd
LBZ(v)

]
· dA

or, with some abuse in notation, as
∫

Z

[
vTLu − uTL∗v

]
dV =

∫

∂Z

BL(BZ(u), BZ(v)) · dA

The last representation is the one that will be more often used in the remaining part of this paper.

Corollary 3.2. Consider a skew-adjoint matrix differential operator J . Then, for every functions u ∈ U
and v ∈ V with qu = qv, we have that

∫

Z

[
vTJu + uTJv

]
dV =

∫

∂Z

BJ(u, v) · dA (11)

where BJ is a symmetric operator on ∂Z depending on the differential operator J .
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Proof. It is immediate from Def. 3.3 and the previous lemma. �

Note 3.4. From Note 3.3, relation (11) can be alternatively written as

∫

Z

[
vTJu + uTJv

]
dV =

∫

∂Z

BT
Z(u)

[
B1

JBZ(v) · · · Bd
JBZ(v)

]
· dA

=

∫

∂Z

BJ(BZ(u), BZ(v)) · dA

3.2 Constant Stokes–Dirac structures

As in finite dimensions, the definition of a power conserving interconnection structure is possible once
the notion of power is properly introduced. Denote by F the space of flows and assume that F is the
space of smooth functions from the compact set Z ⊂ R

d to R
q. As far as concerns the space of efforts E ,

assume for simplicity that E ≡ F . Then, given f = (f 1, . . . , fq) ∈ F and e = (e1, . . . , eq) ∈ E , define the
dual product as follows:

〈e, f〉 :=

∫

Z

q
∑

i=1

eif i dV =

∫

Z

eTf dV

From Def. 2.1, the +pairing operator on F × E is given by

� (f1, e1), (f2, e2) � :=

∫

Z

[
eT
1 f2 + eT

2 f1

]
dV

where (f1, e1), (f2, e2) ∈ F × E .
Denote by J a skew-adjoint differential operator and consider the following subset of the space of

power variables:
D̃ := { (f, e) ∈ F × E | f = −Je } (12)

Then, for every (fi, ei) ∈ D̃, i = 1, 2, we have that

� (f1, e1), (f2, e2) �=

∫

Z

[
eT
1 f2 + eT

2 f1

]
dV = −

∫

Z

[
eT
1 Je2 + eT

2 Je1

]
dV

= −

∫

∂Z

BJ(e1, e2) · dA

(13)

If only the elements of D̃ with compact support on Z are considered, then the resulting subset of F × E
is a Stokes–Dirac structure on F , as it can be directly deduced from Def. 2.2 since the integral over
∂Z is equal to 0. In general, when an exchange of power between system and environment through the
boundary of the spatial domain is present, (12) is not a Stokes–Dirac structure because also the boundary
terms have to be taken into account. These boundary terms are the restriction of the efforts and their
spatial derivatives on ∂Z.

Denote by w := BZ(e) the boundary terms, where BZ the operator providing the restriction on ∂Z
of the effort e and of its spatial derivatives of proper order as discussed in Note 3.3 and Note 3.4. In this
way, it is possible to write (with some abuse in notation):

∫

∂Z

BJ(e1, e2) · dA =

∫

∂Z

BJ(w1, w2) · dA

with wi = BZ(ei), i = 1, 2 and where, in the last integral, BJ is the operator based on the square
constant matrices Bi

J introduced in Note 3.4, i = 1, . . . , d. Furthermore, based on BZ , the following set
representing the space of boundary conditions can be introduced:

W := {w | w = BZ(e), ∀ e ∈ E} (14)

Then, the following proposition can be proved.
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Proposition 3.3. Consider the extended space of power variables F × E ×W and denote by J a skew-
adjoint differential operator. Then, the following subset

DJ := { (f, e, w) ∈ F × E ×W | f = −Je, w = BZ(e) } (15)

is a Stokes–Dirac structure on F with respect to the pairing

� (f1, e1, w1), (f2, e2, w2) �J :=

∫

Z

[
eT
1 f2 + eT

2 f1

]
dV +

∫

∂Z

BJ(w1, w2) · dA (16)

where BJ is a symmetric operator on ∂Z.

Proof. The proof is immediate from (13) and (14). The symmetry of BJ follows from Corollary 3.2. �

Note 3.5. From the properties of a Stokes–Dirac structure, summarized in Note 2.1 for the finite dimen-
sional case, if (f, e, w) ∈ D, then � (f, e, w), (f, e, w) �J= 0, that is

−

∫

Z

eTf dV =
1

2

∫

∂Z

BJ(w,w) · dA

This relation, beside expressing the power conservation property of the Stokes–Dirac structure, is able
to relate the variation of internal energy (the integral on the spatial domain Z) with the power flowing
inside the domain through the boundary (the integral on ∂Z).

The Stokes–Dirac structure introduced in Prop. 3.3 is developed around a skew-adjoint differential
operator which induces a non-degenerate differential operator on the boundary. In finite dimensions, this
situation can be obtained by assuming Gr = G = 0 in the Dirac structure of Prop. 2.1, that is by assuming
that the power conserving network interconnects only a set of energy storing elements. It is interesting
to completely generalize the result of Prop. 2.1 to the distributed parameter case or, equivalently, to
properly modify the Stokes–Dirac structure (15) of Prop. 3.3 in order to take into account dissipative
effects and an interaction between system and environment along the spatial domain Z and not only
through the boundary ∂Z. The last situation can be encountered, for example, in the case of Maxwell’s
equations when a current density different from 0 is present, [5, 23].

Theorem 3.4 (constant Stokes–Dirac structure). Denote by Z ⊂ R
d a compact set and by F =

(Fs,Fr,Fd) a space of vector values smooth functions on Z, the space of flows. For simplicity, suppose
that E = (Es, Er, Ed) ≡ F is the space of efforts. Moreover, assume that J , Gr and Gd are constant matrix
differential operator such that J : Es → Fs and J = −J∗, Gr : Fr → Fs and Gd : Fd → Fs. Then,

D := { (f, e, w) ∈ F × E ×W | fs = −Jes − Grfr − Gdfd

er = G∗
res

ed = G∗
des

w = BZ(es, fr, fd) }

(17)

is a Stokes–Dirac structure with respect to the pairing

� (f1, e1, w1), (f2, e2, w2) �{J, Gr, Gd} :=

∫

Z

[
eT
1 f2 + eT

2 f1

]
dV

+

∫

∂Z

B{J, Gr, Gd}(w1, w2) · dA

(18)

where BZ is the analogous of the boundary operator of Prop. 3.3 and B{J,Gr,Gd} is the boundary differential
operator induced by J , Gr and Gd on ∂Z.

8



Proof. Consider (fi, ei) ∈ F × E , i = 1, 2. Then,

∫

Z

[
eT
1 f2 + eT

2 f1

]
dV =

∫

Z

[
eT
s,1fs,2 + eT

s,2fs,1 + eT
r,1fr,2 + eT

r,2fr,1 + eT
d,1fd,2 + eT

d,2fd,1

]
dV

= −

∫

Z

[
eT
s,1 (Jes,2 + Grfr,2 + Gdfd,2) + eT

s,2 (Jes,1 + Grfr,1 + Gdfd,1)
]

dV

+

∫

Z

[
fT

r,2G
∗
res,1 + fT

r,1G
∗
res,2 + fT

d,2G
∗
des,1 + fT

d,1G
∗
des,2

]
dV

= −

∫

Z

[
eT
s,1Jes,2 + eT

s,2Jes,1

]
dV

−

∫

Z

[(
eT
s,1Grfr,2 − fT

r,2G
∗
res,1

)
+
(
eT
s,2Grfr,1 − fT

r,1G
∗
res,2

)]
dV

−

∫

Z

[(
eT
s,1Gdfd,2 − fT

d,2G
∗
des,1

)
+
(
eT
s,2Gdfd,1 − fT

d,1G
∗
des,2

)]
dV

From Lemma 3.1 and its Corollary 3.2, all the quantities under integration can be expressed in divergence
form, that is as the divergence of some differential form which is non-degenerate. In particular, denote
by BJ , BGr

, B−G∗

r
, BGd

and B−G∗

d
the differential operators induced on ∂Z by J , Gr and Gd and their

adjoint. Then,
∫

Z

[
eT
1 f2 + eT

2 f1

]
dV = −

∫

∂Z

eT
s,1

[
B1

Jes,2 · · · Bd
Jes,2

]
· dA

−

∫

∂Z

{

eT
s,1

[
B1

Gr
fr,2 · · · Bd

Gr
fr,2

]
+ fT

r,1

[

B1
−G∗

r
es,2 · · · Bd

−G∗

r
es,2

]}

· dA

−

∫

∂Z

{

eT
s,1

[
B1

Gd
fd,2 · · · Bd

Gd
fd,2

]
+ fT

d,1

[

B1
−G∗

d
es,2 · · · Bd

−G∗

d
es,2

]}

· dA

If wi = (es,i, fr,i, fd,i), i = 1, 2, and

Bi
{J, Gr, Gd}

=





Bi
J Bi

Gr
Bi

Gd

Bi
−G∗

r
0 0

Bi
−G∗

d
0 0





with i = 1, . . . , d, then it is possible to write that
∫

Z

[
eT
1 f2 + eT

2 f1

]
dV +

∫

∂Z

wT
1

[

B1
{J, Gr, Gd}

w2 · · · Bd
{J, Gr, Gd}

w2

]

· dA = 0

or, in a more compact way (see Note 3.3), that

∫

Z

[
eT
1 f2 + eT

2 f1

]
dV +

∫

∂Z

B{J, Gr, Gd}(w1, w2) · dA = 0

which, beside providing the expression (18) of the pairing � ·, · �{J, Gr, Gd}, proves that the set defined
in (17) is Stokes–Dirac structure on F with respect to the bilinear form (18). �

Note 3.6. The previous theorem is the generalization of the result presented in Prop. 2.1 to the constant
infinite dimensional case. It is possible, eventually, to introduce the dependence on the energy variables
and their spatial derivatives in the differential operators J , Gr and Gd. The result is the definition
of nonlinear and state modulated Dirac structure in infinite dimensions. The way in which this result
can be obtained relies on the generalization to the nonlinear case of matrix differential operator and, in
particular, of the result expressed by Lemma 3.1.

Note 3.7. Suppose that (f, e, w) ∈ D. From (18), we have that

−

∫

Z

eT
s fs =

∫

Z

eT
r fr dV +

∫

Z

eT
d fd dV +

1

2

∫

∂Z

B{J, Gr, Gd}(w1, w2) · dA (19)

9



This relation, which is a direct consequence of the definition of Dirac structure, expresses the property
that the variation of internal energy is equal to the sum of the dissipated power with the power provided
to the system through the domain Z and the boundary ∂Z.

Note 3.8. The boundary differential operator B{J, Gr, Gd} introduced in (29) is symmetric. In fact, from
Corollary 3.2 and relation (28), but see also Prop. 3.3, it is induced on the boundary by the operator J
on Z defined in the Dirac structure (28) as follows:





fs

er

ed



 = −





J Gr Gd

−G∗
r 0 0

−G∗
d 0 0





︸ ︷︷ ︸

J





es

fr

fd





which is skew-adjoint in the sense of Def. 3.3.

4 Multi-variable infinite dimensional port Hamiltonian systems

4.1 General definition

As in finite dimensions, the dynamics of a distributed parameter system can be obtained from its Stokes–
Dirac structure once the power ports are terminated on the corresponding elements, that is the in-
put/output behavior of the components are specified.

Denote by X the space of smooth real valued functions on [0, +∞) × Z representing the space of
energy configuration. The total energy is a functional H : X → R such that

H(x) =

∫

Z

H(z, x) dV

where H is the energy density. As proposed in [23], the port behavior of the energy storing element is
given by

fs = −
∂x

∂t
es = δxH (20)

where δxH is the variational derivative of the Hamiltonian with respect to the energy configuration.
Linear dissipation can be introduced by imposing that

fr = −Yrer, with

∫

Z

eT
r Yrer dV ≥ 0 (21)

where Yr : Er → Fr is a linear operator. If B̃Z is the boundary operator introduced in (17), from (20)
we have that

B̃Z(es, fr, fd) = B̃Z(es,−YrG
∗
res, fd) =: BZ(es, fd) (22)

and then the boundary terms can be computed as w = BZ(es, fd). Consequently, taking into account
(17), (20), (21) and (22), the following definition makes sense.

Definition 4.1 (mdpH system). Denote by X the space of vector value smooth functions on [0, +∞)×
Z (energy configurations), by Fd the space of vector value smooth functions on Z (distributed flows) and
assume that Ed ≡ Fd is its dual (distributed efforts) and by W the space of vector value smooth functions
on ∂Z representing the boundary terms. Moreover, denote by J a skew-adjoint differential operator,
by Gd a differential operator and by BZ the boundary operator defined in (22). If H : X → R is the
Hamiltonian function, the general formulation of a multi-variable distributed port Hamiltonian system
with constant Stokes–Dirac structure is







∂x

∂t
= (J − R) δxH + Gdfd

ed = G∗
d δxH

w = BZ(δxH, fd)

(23)

where R :=GrYrG
∗
r is a differential operator taking into account energy dissipation and (fd, ed) ∈ Fd×Ed.

10



Note 4.1. It is important to note that there is no a priori distinction between flows and efforts in the
boundary terms w. These variables result from the restriction on ∂Z of the variational derivative of H and
of its spatial derivatives and, consequently, they are not characterized by an explicit physical meaning. In
other words, given a generic multi-variable distributed port Hamiltonian system, the classical structure
of power port, i.e. a couple of signals (flow and effort) whose combination gives the power flow, has been
lost on the boundary. Only if the boundary operator B{J, Gr, Gd} has a particular structure, it is possible
to split the boundary variable w into two components, that is into a flow and an effort.

Note 4.2. Consider the operator B{J, Gr, Gd} introduced in Theorem 3.4, which is symmetric, as discussed
in Note 3.8. As in (22) for the boundary operator BZ , it is possible to define a new operator B{J, R}

on ∂Z based on B{J, Gr, Gd} and taking into account relation (21), which introduces and describes the
dissipative effects in the system. Since fr,i = −YrG

∗
res,i, i = 1, 2, it is possible to define this new operator

as follows:

B{J, R}(w1, w2) := B{J, Gr, Gd}(B̃Z(es,1,−YrG
∗
res,1, fd,1), B̃Z(es,2,−YrG

∗
res,2, fd,2))

where wi = BZ(es,i, fd,i), i = 1, 2, as introduced in (22). From the symmetry property of B{J, Gr, Gd}, we
deduce that also B{J, R} is symmetric.

Proposition 4.1. Consider the mdpH system (23). Then, the following energy balance inequality holds:

dH

dt
= −

∫

Z

(δxH)
T
R δxH dV +

∫

Z

eT
d fd dV +

1

2

∫

∂Z

B{J, R}(w,w) · dA

≤

∫

Z

eT
d fd dV +

1

2

∫

∂Z

B{J, R}(w,w) · dA

(24)

Proof. From (20), we have that

−

∫

Z

eT
s fs dV =

∫

Z

(δxH)
T ∂x

∂t
dV =

dH

dt

Then, (24) is immediate from (19), (21) and Note 4.2. �

Note 4.3. Relation (24) expresses an obvious property of physical systems, that is the variation of internal
energy is less or equal (if no dissipation is present) to the power provided to the system. In the case of
distributed parameter system, the power can flow inside the system either through the boundary and/or
the spatial domain.

5 Simple examples

5.1 Harry–Dym equation

The Harry–Dym equation is
∂x

∂t
=

∂3

∂z3

(

x−1/2
)

(25)

Denote by Z = [0, 1] the spatial domain and by X = L2([0,+∞)×Z) the space of energy configurations.

The differential operator J = ∂3

∂z3 is skew-adjoint and, then, it is possible to define a Stokes–Dirac
structure based on J as discussed in Prop. 3.3. We give the following proposition.

Proposition 5.1. Denote by Z = [0, 1] the spatial domain and by F = L2(Z) the space of flows and
assume that E ≡ F is the space of efforts. Then

DHD :=
{

(f, e, w) ∈ F × E ×W | f = ∂3
ze, w = BZ(e) = (e |∂Z , ∂ze |∂Z , ∂2

ze |∂Z)
}

is a Stokes–Dirac structure with respect to the pairing

� (f1, e1, w1), (f2, e2, w2) �HD :=

∫ 1

0

[e1f2 + e2f1] dz + wT
1 BJw2

∣
∣
1

0

11



with

BJ =





0 0 1
0 −1 0
1 0 0





and W = R
3.

Proof. Since ∂3
z is a skew-adjoint differential operator, from Prop. Prop. 3.3 we deduce that it can define

a Stokes–Dirac structure. Then, it is necessary only to compute BZ and BJ . Given (fi, ei) ∈ F × E ,
i = 1, 2, we have that

e1f2 + e2f1 = −

(

e1
∂3e2

∂z3
+ e2

∂3e1

∂z3

)

= −
∂

∂z

(

e1
∂2e2

∂z2
−

∂e1

∂z

∂e2

∂z
+ e2

∂2e1

∂z2

)

which gives BZ and BJ thus concluding the proof. �

The mdpH formulation of the Harry–Dym equation is completed once the Hamiltonian function is
specified. In this case, we have that

H(x) := 2

∫ 1

0

x1/2(z) dz

then (25) can be obtained if, as in (20), we assume that f = −ẋ and e = δxH = x−1/2. Clearly, the
following energy balance relation holds:

dH

dt
=

[

δxH
∂2δxH

∂z2
−

1

2

(
∂δxH

∂z

)2
]1

0

Note that, in this case, it is not possible to define a pair of flow and effort variables on the boundary of
the spatial domain (see Note 4.1) and that the model is nonlinear.

5.2 Heat equation

The one-dimensional heat equation is
∂x

∂t
=

∂2x

∂z2
(26)

This system is not Hamiltonian in the classical sense [4], but it can be written in mdpH form.
Denote by Z = [0, 1] the spatial domain and by X = L2([0,+∞) ×Z) the space of energy configura-

tions. The differential operator R = ∂2

∂z2 is not skew-adjoint and, then, it is not possible to refer to the
result of Prop. 3.3 in order to define a Stokes–Dirac structure.

Define the energy H of the system as

H(x) =
1

2

∫ 1

0

x2(z) dz (27)

and then

dH

dt
=

∫

Z

xẋdz =

∫

Z

x
∂2x

∂z2
dz =

∫

Z

∂

∂z

(

x
∂x

∂z

)

dz −

∫

Z

(
∂x

∂z

)2

dz

≤ x
∂x

∂z

∣
∣
∣
∣

L

0

(28)

This relation can be interpreted as an energy balance equation: the variation of internal energy is less or
equal to the power provided to the system through the boundary. In this way, the diffusion phenomenum
modeled by (26) can be described as pure dissipation. Clearly, a mdpH formulation of (26) is possible
only once a proper Stokes–Dirac structure is determined.

We give the following proposition:

12



Proposition 5.2. Denote by Z = [0, 1] the spatial domain and by F = (L2(Z))2 the space of flows and
suppose that E ≡ F is the space of efforts. Then, the set

DH := { (fs, fr, es, er, w) ∈ F × E ×W | fs = − ∂zfr

er = − ∂zes

w = (es |∂Z , fr |∂Z) }

(29)

is a Stokes–Dirac structure on F with respect to the pairing

� (f1, e1, w1), (f2, e2, w2) �H =

∫

Z

[
eT
1 f2 + eT

2 f1

]
dz + wT

1

[
0 1
1 0

]

w2

∣
∣
∣
∣

1

0

(30)

where W = R
2.

Proof. The proof can be found in [23] since (29) is the same Stokes–Dirac structure of the telegrapher
equation or, equivalently, it can be deduced from Theorem 3.4 if J = 0, Gr = ∂z and Gd = 0. �

The heat equation (26) can be obtained from the Stokes–Dirac structure by imposing that fs = −ẋ

and es = δxH = x, where the Hamiltonian function is given in (27). Moreover, it is necessary to properly
terminate the resistive port (fr, er) in (29) by supposing that

fr = −er

Finally, the energy balance relation (28) can be obtained from (30) since given

(fs, fr, es, er;w) =

(

−ẋ,
∂δxH

∂z
, δxH,−

∂δxH

∂z
; δxH |∂Z ,

∂δxH

∂z

∣
∣
∣
∣
∂Z

)

∈ DH

then � (fs, fr, es, er;w), (fs, fr, es, er;w) �H= 0.

5.3 General elasticity equation

Denote by Z a spatial domain of dimension p and by u ∈ Z → R
q a vector valued smooth function. The

general elasticity equation [14] is

∂2uα

∂t2
=

p
∑

i=1

∂

∂xi

(
∂W

∂uα
xi

)

, with α = 1, . . . , q and uα
xi

=
∂uα

∂xi
, (31)

where W (z,∇u1, . . . ,∇uq) is a potential. The energy (Hamiltonian) of the system is given by

H(u̇;∇u1, . . . ,∇uq) =

∫

Z

[
1

2
‖u̇‖

2
+ W (z,∇u1, . . . ,∇uq)

]

dV (32)

thus suggesting that the energy variables are given by uα
xi

and u̇α, with α = 1, . . . , q and i = 1, . . . , p.
The flow and effort variables are assumed to be

f = [f1,1 · · · f1,p · · · fq,1 · · · fq,p; f1 · · · fq]
T

e = [e1,1 · · · e1,p · · · eq,1 · · · eq,p; e1 · · · eq]
T

and, then, the corresponding spaces of flows and effort are F = (L2(Z))q(p+1) ≡ E . Since no dissipative
effect is present, the Stokes–Dirac structure corresponding to (31) should have the structure (15) of
Prop. 3.3. In particular, only the skew-adjoint matrix differential operator J has to be computed, since
both the operators BZ and BJ , together with the space of boundary variables W, follow automatically
once J is specified. Furthermore, (16) is given by

� (f1, e1, w1), (f2, e2, w2) �GE=

∫

Z

[
eT
1 f2 + eT

2 f1

]
dV +

∫

∂Z

BJ(w1, w2) · dA

13



More precisely, once the correct differential operator J is determined, the bilinear form BJ results from
〈e, f〉 if expressed in terms of the boundary variables. In this simpler way, also BZ is computed.

Assume that J is characterized by the following structure:

J =

[
0 J̃

−J̃∗ 0

]

, with J̃ =
















∂x1
· · · 0

...
. . .

...
∂xp

· · · 0
...

. . .
...

0 · · · ∂x1

...
. . .

...
0 · · · ∂xp
















Clearly, J is skew-adjoint and then, from Prop. 3.3, it is possible to define the corresponding Stokes–Dirac
structure DGE . Given (f, e) ∈ F × E , the associated power is equal to

−

∫

Z

eTf dV =

∫

Z





q
∑

i=1

p
∑

j=1

eijfij +

q
∑

i=1

eif j



 dV

=

∫

Z





q
∑

i=1

p
∑

j=1

eij
∂ei

∂xj
+

q
∑

i=1

ei

p
∑

j=1

∂eij

∂xj



 dV

=

∫

Z

q
∑

i=1

p
∑

j=1

(

eij
∂ei

∂xj
+ ei ∂eij

∂xj

)

dV =

∫

Z

q
∑

i=1

p
∑

j=1

∂

∂xj

(
eije

i
)

dV

=

∫

Z

p
∑

j=1

∂

∂xj

(
q
∑

i=1

eije
i

)

dV

(33)

where the last quantity under integration is expressed in divergence form. Consequently, in (15) it makes
sense to assume

w = BZ(e) = e |∂Z , with W = {w | w = BZ(e), ∀ e ∈ E} ⊂ (L2(∂D))p, (34)

and
1

2
BJ(w,w) =

[
q
∑

i=1

ei1e
i · · ·

q
∑

i=1

eipe
i

]

(35)

From (33) and (35), if (f, e, w) ∈ F × E × W, the following relation expressing the power conservation
property holds: ∫

Z

eTf dV +
1

2

∫

∂Z

BJ(w,w) · dA = 0 (36)

where
1

2

∫

∂Z

BJ(w,w) · dA =

∫

∂Z

[
q
∑

i=1

ei1e
i · · ·

q
∑

i=1

eipe
i

]

· dA

In (34), write the boundary terms w as (eb,1, . . . , eb,q, fb,1, . . . , fb,q), where

{

fb,i = ei |∂Z

eb,i = [e1i |∂Z · · · epi |∂Z ]
T

, i = 1, . . . , q (37)

Then,

1

2
BJ(w,w) =

q
∑

i=1

eT
b,ifb,i

14



that is, the boundary power flow can be expressed as a combination of boundary variables that are
suitable of a physical interpretation.

Since (32) is the Hamiltonian function, the dynamics of the system can be obtained by defining






fij = −
∂ui

xj

∂t

f i = −
∂u̇i

∂t

and







eij = δui
xj
H

(

=
∂W

∂ui
xj

)

ei = δu̇iH
(
= u̇i

)

The boundary terms defined in (37) become






fb,i = u̇i
∣
∣
∂Z

eb,i =

[

∂W

∂ui
x1

∣
∣
∣
∣
∂Z

· · ·
∂W

∂ui
xp

∣
∣
∣
∣
∣
∂Z

]T
, i = 1, . . . , q

and the power balance relation (36)

dH

dt
=

∫

∂Z

q
∑

i=1

u̇i
∣
∣
∂Z

︸ ︷︷ ︸

vi

[

∂W

∂ui
x1

∣
∣
∣
∣
∂Z

· · ·
∂W

∂ui
xp

∣
∣
∣
∣
∣
∂Z

]

· dA

︸ ︷︷ ︸

Fi

where vi represent the i-th component of the speed of a point on ∂Z and Fi the i-th component of
the force acting on ∂Z along the normal to the boundary surface. Note that forces and velocities are
quantities in duality, whose dual product gives power: this is the physical interpretation of the boundary
variables introduced in (37).

Note that the general elasticity equation can be also written in Hamiltonian form as follows:

d

dt

[
u

u̇

]

=

[
0q Iq

−Iq 0q

] [
δuH
δu̇H

]

(38)

with Hamiltonian

H(u, u̇) =

∫

Z

[
1

2
‖u̇‖

2
+ W (z,∇u)

]

dV

depending on u and u̇, as in classic mechanics, and where (see [14])

δuH = −

[
p
∑

i=1

∂

∂xi

∂W

∂u1
xi

. . .

p
∑

i=1

∂

∂xi

∂W

∂u
q
xi

]T

(39)

The resulting Hamiltonian formulation is quite similar to the classical Hamiltonian description of a finite
dimensional mechanical system. From (38), the differential operator defining the Stokes–Dirac structure
of this formulation of the general elasticity equation is given by

J = −

[
0 −Iq

Iq 0

]

that is a skew-symmetric matrix and then a skew-adjoint differential operator of order 0. Consequently,
the power conservation property of a Dirac structure is satisfied without taking into account the boundary
terms, thus implying that in (38) the boundary conditions are not clearly specified by the (differential)
operators involved in the definition of the Stokes–Dirac structure.

In conclusion, it is important to understand what are the differences between the proposed mdpH
formulation of (31) and the classical one presented in (38). Formally, both the Hamiltonian descriptions
are equivalent to (31), but relation (39) is valid only under the assumption of zero boundary conditions
and, then, zero boundary conditions are implicitly assumed in (38). As discussed in Sect. 1, this is the
strongest limitation in the classical Hamiltonian description of a distributed parameter systems. This
limitation can be removed within the mdpH systems framework: basically, in this case, it is enough to
choose the right state variables, that is to express the Hamiltonian of the system as a function of physical
energy variables.
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6 Control by interconnection in finite dimensions

Consider the finite dimensional port Hamiltonian system (5) that has to be asymptotically stabilized
around the configuration x∗ ∈ X by means of the following dynamical controller in port Hamiltonian
form: 





ẋc = [Jc(xc) − Rc(xc)]
∂Hc

∂xc
+ Gc(xc)uc

yc = GT
c (xc)

∂Hc

∂xc

(40)

Denote by Xc the controller state space, with dimXc = nc, and by Hc : Xc → R the Hamiltonian
function, bounded from below. Moreover, suppose that Jc(xc) = −JT

c (xc) and Rc(xc) = RT
c (xc) and

that dimUc = dimYc = m.
If systems (5) and (40) are interconnected in power conserving way, that is if

{

u = −yc

y = uc

(41)

the resulting dynamics is given by the following autonomous port Hamiltonian systems, with state space
X × Xc and Hamiltonian H + Hc:

[
ẋ

ẋc

]

=

[
J(x) − R(x) −G(x)GT

c (xc)
Gc(xc)G

T(x) Jc(xc) − Rc(xc)

] [
∂xH

∂xc
Hc

]

(42)

Given a generic port Hamiltonian system, it is possible to give the following fundamental definition
of structural invariant or, equivalently, of Casimir function, [2, 10, 22].

Definition 6.1 (Casimir function). Consider the port Hamiltonian system (5) with state space X and
Hamiltonian function H : X → R. A function C : X → R is a Casimir function for (5) if and only if

dC

dt
= 0

for every possible choice of Hamiltonian H.

From Def. 6.1, a scalar function C : X × Xc → R is a Casimir function for (42) if and only if the
following relations are satisfied:

∂TC

∂x
(J − R) +

∂TC

∂xc
GcG

T = 0 (43a)

∂TC

∂xc
(Jc − Rc) −

∂TC

∂x
GGT

c = 0 (43b)

These conditions are direct consequence of the interconnection law (41).
The existence of Casimir functions for the closed-loop system (42) plays an important role in the

control by interconnection and energy shaping methodology. If x∗ ∈ X is the desired equilibrium config-
uration for (5), asymptotic stability in x∗ can be achieved by properly choosing the Hamiltonian function
of (40) in order to shape the closed-loop energy H+Hc so that a (possibly) global minimum in the desired
equilibrium configuration can be introduced. It is important to note that there is no relation between
the state of the controller and the state of the system to be controlled. Then, it is not clear how the
controller energy, which is freely assignable, has to be chosen in order to solve the regulation problem.

A possible solution can be to constrain the state of the closed-loop system (42) on a certain subspace
of X × Xc, for example given by:

Ωc := {(x, xc) ∈ X × Xc |xc = S(x) + c}

where c ∈ R
nc and S : X → Xc is a function to be computed. In other words, we are looking for a set of

Casimir functions Ci : X × Xc → R, i = 1, . . . , nc for the closed-loop system (42) such that

Ci(x, xc) := Si(x) − xc,i (44)
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where [S1(x), . . . , Snc
(x)]

T
= S(x). Due to the nature of a Casimir function, it is possible to introduce

an intrinsic non-linear state feedback law that will be used in order to choose the energy function of the
controller so that the closed-loop Hamiltonian can be properly shaped. Note that, under these hypothesis,
this energy function depends on the state variables of system (5). This control methodology is called
invariant function method, [2, 10].

From (43), the set of functions (44) are Casimir functions for (42) if and only if

−
∂TS

∂x
GGT

c = Jc − Rc

∂TS

∂x
(J − R) = GcG

T

Then, the following proposition can be proved, [16, 22].

Proposition 6.1. The functions Ci, i = 1, . . . , nc, defined in (44) are Casimir functions for the system
(42) if and only if the following conditions are satisfied:

∂TS

∂x
J(x)

∂S

∂x
= Jc(xc) (45a)

R(x)
∂S

∂x
= 0 (45b)

Rc(xc) = 0 (45c)

∂TS

∂x
J(x) = Gc(xc)G

T(x) (45d)

Suppose that (45) are satisfied. Then, from (44), the state variables of the controller are robustly
related to the state variable of the system to be stabilized since

xc,i = Si(x) + ci, i = 1, . . . , nc (46)

with ci ∈ R depending on the initial conditions. Moreover, the closed-loop dynamics (42) evolves on the
foliation induced by the level sets

Lci

Ci
= {(x, xc) ∈ X × Xc |xc,i = Si(x) + ci} (47)

with i = 1, . . . , nc, which can be expressed as a function of the x coordinate. If conditions (45b) and
(45d) are taken into account, the reduced dynamics of (42) on these level sets is given by

ẋ = [J(x) − R(x)]
∂H

∂x
− G(x)GT

c (xc)
∂Hc

∂xc

= [J(x) − R(x)]

(
∂H

∂x
+

∂S

∂x

∂Hc

∂xc

) (48)

From (46), we have that Hc(xc) ≡ Hc(S(x) + c): the controller energy function is finally dependent from
xb through the non-linear feedback action S(·). If

Hd(x) := H(x) + Hc(S(x) + c) (49)

then (48) can be written as

ẋ = (J − R)

(
∂H

∂x
+

∂S

∂x

∂Hc

∂xc

)

= (J − R)
∂Hd

∂x
(50)

In conclusion, the following proposition has been proved, [16, 22].

Proposition 6.2. Consider the closed-loop port Hamiltonian system (42) and suppose that the vector

function S(x) = [S1(x), . . . , Snc
(x)]

T
satisfies conditions (45). Then, the reduced dynamics on the level

sets (47) is given by (50), where the closed-loop energy function Hd is given by (49).

By properly choosing the controller energy function Hc, it is possible to shape the closed-loop energy
function Hd defined in (49) so that a new minimum in x∗ is introduced. Then, the desired configuration
can be reached with the dynamics given by (50).
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7 Boundary control by interconnection of mdpH systems

7.1 Introduction

In this section, the control by interconnection and energy shaping, discussed in Sect. 6 for the finite
dimensional case, is generalized to distributed parameter systems in port Hamiltonian form. In particular,
it is shown how it is possible to shape the open loop energy function of a distributed parameter system
by interconnecting a finite dimensional controller to its boundary. The structure of the controller has to
be chosen so that a proper set of structural invariants (Casimir functions) are introduced in the closed
loop system. In this way, the energy variables of the distributed parameter system can be robustly
related to the state variables of the controller, thus introducing an implicit state feedback law. Then,
the energy (Hamiltonian) function of the controller, which is freely assignable, can be chosen in order to
introduce a new (possibly global) minimum at the desired configuration and, by damping injection, this
new configuration can be reached.

7.2 Existence of Casimir functions

Consider the following multi-variable distributed port Hamiltonian system with spatial domain Z ⊂ R
d

(closed and compact):






∂x

∂t
= (J − R) δxH

w = BZ(δxH)
(51)

where x ∈ X is the configuration variable, w ∈ W are the boundary terms defined by the boundary
operator BZ , H : X → R is the Hamiltonian function, J is a skew adjoint differential operator and R is a
self-adjoint differential operator taking into account the dissipative effects. Both X either W are spaces of
vector value smooth functions of proper dimension. From Prop. 4.1, the following energy balance relation
holds:

dH

dt
= −

∫

Z

(δxH)
T
RδxH dV +

1

2

∫

∂Z

B{J, R}(w,w) · dA ≤
1

2

∫

∂Z

B{J, R}(w,w) · dA (52)

Suppose that (51) has to be stabilized in the configuration x∗ ∈ X by means of the finite dimensional
controller (40) that has to be interconnected to the system (51) in power conserving way. Then, relation
(41) has to be generalized in order to deal with a situation in which the power port of the system to be
stabilized is not a finite dimensional vector space. A possible solution can be the following. Denote by
Ψu(z) and Ψy(z) a couple of matrices depending eventually on z ∈ ∂Z and suppose that it is possible to
write the boundary terms in (51) as follows:

w = Ψuuc − Ψyyc (53)

The interconnection law expressed in (53) is power conserving if and only if

yT
c uc +

1

2

∫

∂Z

B{J, R}(w,w) · dA = 0

where, from (53), we have that

∫

∂Z

B{J, R}(w,w) · dA =

=

∫

∂Z

[
B{J, R}(Ψuuc,Ψuuc) + B{J, R}(Ψyyc,Ψyyc) − 2B{J, R}(Ψuuc,Ψyyc)

]
· dA

=

m∑

i,j=1

[∫

∂Z

B{J, R}(Ψu,i,Ψu,j) · dA

]

uc,iuc,j +

m∑

i,j=1

[∫

∂Z

B{J, R}(Ψy,i,Ψy,j) · dA

]

yc,iyc,j

− 2
m∑

i,j=1

[∫

∂Z

B{J, R}(Ψu,i,Ψy,j) · dA

]

uc,iyc,j
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and, then, relation (53) can be satisfied if and only if
∫

∂Z

B{J, R}(Ψu,i,Ψu,j) · dA =

∫

∂Z

B{J, R}(Ψy,i,Ψy,j) · dA = 0 (54a)

∫

∂Z

B{J, R}(Ψu,i,Ψy,j) · dA = δij (54b)

for every i, j = 1, . . . ,m and where δ is the Kronecker symbol. Note that, given w ∈ W

uc,i =

∫

∂Z

B{J, R}(w,Ψy,i) · dA ⇐⇒ uc = By
{J, R}(w) (55a)

and

yc,i = −

∫

∂Z

B{J, R}(w,Ψu,i) · dA ⇐⇒ yc = −Bu
{J, R}(w) (55b)

where the linear operators By
{J, R} : W → Uc and Bu

{J, R} : W → Yc are defined as:

Bu
{J, R}(w) :=

[∫

∂Z

B{J, R}(Ψu,1, w) · dA · · ·

∫

∂Z

B{J, R}(Ψu,m, w) · dA

]T

By
{J, R}(w) :=

[∫

∂Z

B{J, R}(Ψy,1, w) · dA · · ·

∫

∂Z

B{J, R}(Ψy,m, w) · dA

]T

Consider a function C : X × Xc → R defined over the state space of the closed loop system resulting
from the power conserving interconnection (53) of (51) and (40). From Def. 6.1, we can say that C is a
Casimir function if and only if:

dC

dt
=

∂TC

∂xc
ẋc +

∫

Z

(δxC)
T
ẋdV

=
∂TC

∂xc
(Jc − Rc)

∂Hc

∂xc
+

∂TC

∂xc
GcB

y
{J, R}(w) +

∫

Z

(δxC)
T
(J − R) δxH dV

= 0

for every Hamiltonian functions H and Hc, where uc is expressed as a function of the boundary terms as
in (55). Since J and R are a skew adjoint and a self adjoint differential operator respectively, we have
that:

(δxC)
T

(J − R) δxH = −(δxH)
T

(J + R) δxC + div B{J, R}(BZ(δxC), w)

and then

dC

dt
= −

∂THc

∂xc
(Jc + Rc)

∂C

∂xc
−

∫

Z

(δxH)
T

(J + R) δxC dV

+

∫

∂Z

B{J, R}

(

BZ(δxC) + ΨyGT
c

∂C

∂xc
, w

)

· dA

that has to be 0 for every Hamiltonian function of the closed loop system. This is true if

(Jc + Rc)
∂C

∂xc
= 0 (56a)

(J + R) δxC = 0 (on Z) (56b)

BZ(δxC) + ΨyGT
c

∂C

∂xc
= 0 (on ∂Z) (56c)

where, from (55), (56c) can be written as:

By
{J, R}(BZ(δxC)) = 0 (57a)

and

GT
c

∂C

∂xc
= −Bu

{J, R}(BZ(δxC)) (57b)

In conclusion, the following proposition has been proved.
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Proposition 7.1. Consider the closed loop system resulting from the power conserving interconnection
(53) of the infinite dimensional system (51) with the finite dimensional controller (40). Denote by X
and Xc the state space of the distributed parameter system and of the controller respectively. Then, a
real value function C : X × Xc → R is a Casimir function for the closed loop system with respect to the
interconnection law (53) if and only the set of conditions (56) are satisfied, where (56c) can be written
in integral form as in (57).

Note 7.1. The set of necessary and sufficient conditions (56) concerning the existence of structural in-
variants in the closed loop system are the generalization of the analogous conditions (43) in the finite
dimensional case. In the hybrid case described in Prop. 7.1, the structural invariants have to satisfy
the PDE (56a) in the controller variables and the PDE (56b) in the spatial variable of the distributed
parameter system providing the variational derivative of the candidate Casimir function with respect
to the configuration variable. The connection between these PDEs is given by (56c) that relates the
boundary conditions required for the solution of (56a) and (56b) and that deeply depends on the (power
conserving) interconnection law (53).

7.3 Energy shaping via structural invariants

As discussed in finite dimensions, the existence of a particular class of Casimir functions in the controlled
system can be of great interest in the energy shaping procedure. In this situation, it is the energy
function Hc of the controller that plays an important role since the closed loop Hamiltonian function
is Hcl = H + Hc. On the other hand, there is no relation between the state of the controller and the
configuration of the distributed parameter system and then it is not clear how the controller energy has
to be chosen in order to introduce a minimum at the desired configuration x∗ ∈ X .

A possible solution can be to choose the structure of the controller (40) in order to introduce a set of
n̄ ≤ nc structural invariants in the closed loop system in the form

Ci(x, xc) = Si(x) − xc,i, where Si(x) =

∫

Z

Si(z, x) dV (58)

and i = 1, . . . , n̄. These functions are Casimir function for the closed loop system if and only if the
set of conditions (56) are satisfied. In particular, denote by J̄c, R̄c and Ḡc the sub-matrices of the
interconnection, damping and input matrices of (40) corresponding to the first n̄ state variables and

define S : X ×Xc → R
n̄ as S = [S1 · · · Sn̄ ]

T
. Then, from (56a), (56b) and (57), we obtain the following

set of conditions:

J̄c + R̄c = 0 (59a)

(J + R) δxSi = 0 (i = 1, . . . , n̄) (59b)

By
{J, R}(BZ(δxSi)) = 0 (i = 1, . . . , n̄) (59c)

[

By
{J, R}(BZ(δxS1)) · · · Bu

{J, R}(BZ(δxSn̄))
]

= ḠT
c (59d)

Note that, from (59a), it is necessary that J̄c = R̄c = 0, while (59d) gives the expression of the input
sub-matrix Ḡc. Clearly, Ḡc depends on S that can be deduced from the solution of the PDE (59b) whose
boundary conditions have to be chosen in such a way that (59c) is satisfied. If the set of conditions (59)
can be satisfied, then the closed loop Hamiltonian function becomes

Hcl(x, xc) =H(x) + Hc(xc,1, . . . , xc,nc
)

=H(x) + Hc(S1(x), . . . ,Sn̄(x), . . . , xc,nc
)

(60)

thus depending explicitly on the configuration variable of the distributed parameter system.
If n̄ = nc, then (58) are Casimir functions of the closed loop system if and only if the controller

structure is chosen as follows:

Jc = Rc = 0 (61a)

GT
c =

[

By
{J, R}(BZ(δxS1)) · · · By

{J, R}(BZ(δxSnc
))
]

(61b)
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where the functionals Si, i = 1, . . . , nc, results from the solution of the PDEs (59b) with boundary
conditions satisfying (59c). Note that, from (61a), the controller reduces to a set of nonlinear integrators,
since, in this case, (40) becomes:







ẋc = Gcuc

yc = GT
c

∂Hc

∂xc

with uc = Bu
{J, R}(w) and Hc freely assignable. In this case, the closed loop Hamiltonian becomes

Hcl(x, xc) = H(x) + Hc(S1(x), . . . ,Snc
(x))

and then it is only a function of the configuration variable of the distributed parameter system. By
properly choosing the controller energy function, it is possible to introduce a minimum at the desired
equilibrium configuration that can be reached is some dissipative effect is present in the system. In par-
ticular, if in (51) R = 0, that is no dissipative/diffusion phenomena are present in the infinite dimensional
plant, it is convenient to chose the controller structure in order to have n̄ < nc Casimir function in the
form (58) and then to introduce energy dissipation by acting on the remaining energy variables.

It is interesting to investigate what are the configuration in which the mdpH system can be stabilized
by means of the proposed control technique. Suppose that a set of n̄ ≤ nc Casimir functions in the form
(58) have been introduced in the closed loop system, that is the interconnection, damping and input
matrices of the controller (40) are chosen as follows:

Jc =

[
0 0

0 J̃c

]

Rc =

[
0 0

0 R̃c

]

Gc =

[
Ḡc

G̃c

]

(62)

where Ḡc is given in (59d) and J̃c = −J̃T
c and R̃c = R̃T

c ≥ 0 are freely assignable. Denote by x̄c the

first n̄ controller state variables and by x̃c the remaining ones, that is xc = [ x̄c, x̃c ]
T
. Since x∗ ∈ X is

the desired equilibrium configuration for (51), from (58) define x̄∗
c as x̄∗

c,i :=Si(x
∗), i = 1, . . . , n̄. The

existence of a set of Casimir functions in the form (58) allows to shape the open loop energy function
H of (40) in such a way that x∗ becomes a minimum of the closed loop Hamiltonian function (60). In
particular, it is necessary that (x∗, x̃∗

c) becomes a critical point of Hcl, that is

∇Hcl =








δxH +

n̄∑

i=1

∂Hc

∂xc,i
δxSi

∂Hc

∂x̃c








= 0 (63a)

for x = x∗ and some x̃c = x̃∗
c . Note that, if x∗ satisfies the first condition in (63a), then it is an equilibrium

configuration of ẋ = (J − R) δxH. In fact, from condition (59b), we have that:

0 = (J − R)

(

δxH(x∗) +
n̄∑

i=1

∂Hc

∂xc,i
(x̄∗

c , x̃
∗
c) δxSi(x

∗)

)

= (J − R) δxH(x∗)

Furthermore, the same condition assures that input and output signals of the controller are compatible
with the boundary conditions w∗ := BZ(δxH(x∗)) at the desired equilibrium. In particular, from (59c)
and (63a), it is possible to deduce that uc = 0 when x = x∗. In order to have a minimum in the desired
configuration, it is also necessary that:

∇2Hcl(x
∗, x̃∗

c) ≥ 0 (63b)

It can be deduced that the Hamiltonian function of the controller (40) has to be chosen in such a way that
the couple of relations (63) is satisfied. Moreover, it is easy to prove that the following energy balance
relation holds:

dHcl

dt
= −

∫

Z

(δxH)
T
R δxH dV −

∂THc

∂x̃c
R̃c

∂Hc

∂x̃c
≤ 0 (64)
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If the hypothesis of the La Salle’s theorem in infinite dimensions hold (see [6]), from (64) we deduce
that the trajectories of the system approach the maximal invariant contained in the set defined by the
following equations:

R δxH = 0 (65a)

R̃c
∂Hc

∂x̃c
= 0 (65b)

Consequently, (x∗, x̃∗
c) is asymptotically stable if it is the only invariant solution compatible with (65).

Note that a desired equilibrium configuration for the mdpH system has to necessarily satisfy the couple of
relations (65), which is a system of integro–differential equations in the x and x̃c variables. In particular,
relation (65b) defines the boundary conditions that the set of PDEs (65a) have to satisfy. It is important
to note that the fundamental problem of the existence of solution for the closed loop system, which is an
hybrid system, has not been approached in the previous discussion.

8 Example: stabilization of the heat equation

Consider the heat equation (26) that can be written in mdpH form as:







∂x

∂t
=

∂2

∂z2
δxH

w =

[
δxH

∂
∂z δxH

]∣
∣
∣
∣
{0, 1}

(66)

where Z = [ 0, 1] is the spatial domain, X = L2(Z) is the space of energy variables,

H(x) =
1

2

∫ 1

0

x2 dz

is the Hamiltonian function and

B =

[
0 1
1 0

]

is the constant matrix representing the operator which gives the power through the boundary as in (52).
Denote by x∗ ∈ X a desired equilibrium configuration of (66) that the following one dimensional controller
should render asymptotically stable. 





ẋc = Gcuc

yc = GT
c

∂Hc

∂xc

(67)

Suppose that xc ∈ R and that uc, yc ∈ R
2. From (28), (66) and (67) are interconnected in a power

conserving way if

uc =

[
∂
∂z δxH(0)
∂
∂z δxH(1)

]

=

[
∂x
∂z (0)
∂x
∂z (1)

]

and yc =

[

x(0)

−x(1)

]

(68)

since, in this way,
1

2

∫

∂Z

wTBw · dA = x(1)
∂x

∂z
(1) − x(0)

∂x

∂z
(0) = −yT

c uc

The first step in the control by interconnection and energy shaping is to choose the controller structure
in order to have a set of structural invariants in the form (58). In this case, since the controller is a
dynamical system of order 1, it is necessary to determine Gc such that the function

C(x, xc) = xc − S(x) = xc −

∫ 1

0

S(z, x)dz (69)
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is a Casimir function for the closed loop system, that is Ċ = 0 for every H and Hc. We have that

dC

dt
=Gc

[
∂zx(0)
∂zx(1)

]

−

∫ 1

0

(δxS)
∂2x

∂z2
dz

= (Gc + [ δxS(0) − δxS(1) ])

[
∂zx(0)
∂zx(1)

]

−

∫ 1

0

x
∂2

∂z2
(δxS)dz

− [ ∂zδxS(0) ∂zδxS(1) ] GT
c

∂Hc

∂xc

Consequently, (69) is a Casimir function for the controlled system if and only if

∂2

∂z2
δxS = 0 (70a)

and {

Gc + [ δxS(0) − δxS(1) ] = 0

[ ∂zδxS(0) ∂zδxS(1) ] GT
c = 0

(70b)

Condition (70a) provides the admissible functionals S, while (70b) the input matrix Gc of the controller.
From (70a), δxS = az + b, with a, b ∈ R, while, in order to satisfy (70b), it is necessary that a = 0 and it
is possible to choose b = 1. Consequently,

Gc =
[
−1 1

]
(71)

and

C(x, xc) = xc −

∫ 1

0

x(z) dz (72)

is a Casimir function for the closed loop system. From (71), the controller (67) becomes







ẋc =
∂x

∂z
(1) −

∂x

∂z
(0)

yc =

[
−∂xc

Hc

∂xc
Hc

]

and then, from (68),

x(0) = x(1) = −
∂Hc

∂xc
(73)

that is the controller acts on the system by imposing the same temperature on both the extremities of
the infinite dimensional system. Moreover, the controller internal energy changes, that is ẋc 6= 0, only if
there is a difference in the gradient of temperature at the extremities of the domain. As a consequence,
the controller can stabilize the distributed parameter system only in the configurations for which the
temperature is constant along the domain, that is x∗(z) = x∗ for every z ∈ Z. Under the hypothesis
that the initial configuration of the system is known, from (72) and from the properties of the Casimir
functions, we have that

xc = xc(x) =

∫ 1

0

x(z) dz

for the closed loop system. Define x∗
c = xc(x

∗) = x∗. The configuration x∗ is asymptotically stable if the
controller Hamiltonian is Hc(xc) = −xcx

∗
c − xcx

∗. In fact, if Hcl(x, xc) = H(x) + Hc(xc) is the energy
function of the closed loop system, taking into account (73), we have that

dHcl

dt
= −

∫ 1

0

(
∂x

∂z

)2

dz + x(1)
∂x

∂z
(1) − x(0)

∂x

∂z
(0) − x∗

c

(
∂x

∂z
(1) −

∂x

∂z
(0)

)

= −

∫ 1

0

(
∂x

∂z

)2

dz ≤ 0
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Then, Ḣcl = 0 if ∂zx = 0 on Z, that is if x(z) is constant on Z. Since x(0) = x(1) = x∗, the only
admissible configuration is x∗ that results to be asymptotically stable. The asymptotic stability of x∗

can be alternatively proved by looking at the expression of the closed loop Hamiltonian. We have that

Hcl(x, xc) =
1

2

∫ 1

0

x2 dz − xcx
∗ =

1

2

∫ 1

0

x2 dz − x∗

∫ 1

0

xdz

=
1

2

∫ 1

0

(x − x∗)2 dz + cons.

which has a global minimum in x∗.

9 Conclusions

In this paper, the classical finite dimensional port Hamiltonian formulation of a dynamical system is
generalized in order to cope with the distributed parameter and multi-variable case and some new results
concerning modeling and control of distributed parameter systems in port Hamiltonian form have been
presented. In this way, the description of several physical phenomena, such as heat conduction, is now
possible within this new port-based framework. The central result is the generalization of the notion
of finite dimensional Dirac structure to the distributed parameter case in order to deal with an infinite
dimensional space of power variables. Moreover, a novel technique for the boundary control of distributed
parameter systems in port Hamiltonian form has been developed by extending the well known control by
interconnection and energy shaping methodology. The basic result is the generalization of the conditions
for obtaining a particular set of Casimir function to the hybrid case, that is the dynamical system to
be considered results from the power conserving interconnection of an infinite dimensional system (the
plant) and of a finite dimensional one (the controller). A simple application concerning the stabilization
of the one-dimensional heat equation has been presented.
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