

 University of Groningen

Empirically Validating an Analytical Method for Assessing the Impact of Design Patterns on
Software Quality
Ampatzoglou, Apostolos; Avgeriou, Paris; Arvanitou, Elvira Maria; Stamelos, Ioannis

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2013

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Ampatzoglou, A., Avgeriou, P., Arvanitou, E. M., & Stamelos, I. (2013). Empirically Validating an Analytical
Method for Assessing the Impact of Design Patterns on Software Quality: Three Case Studies. University of
Groningen, Johann Bernoulli Institute for Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 12-10-2022

https://research.rug.nl/en/publications/63653b9f-5acc-4c61-ac02-a53041697419

Faculty of Mathematics

and Natural Sciences

 Computer Science

Empirically Validating an Analytical Method for

Assessing the Impact of Design Patterns on

Software Quality: Three Case Studies

APOSTOLOS AMPATZOGLOU, University of Groningen, the Netherlands

PARIS AVGERIOU, University of Groningen, the Netherlands

ELVIRA MARIA ARVANITOU, University of Groningen, the Netherlands

IOANNIS STAMELOS, Aristotle University of Thessaloniki, Greece

Faculty of Mathematics

and Natural Sciences

 Computer Science

Contents

Abstract ... 3
1. Design Quality Metrics ... 3
2. Decorator .. 4

2.1 Design Solutions ... 4
2.2 Results .. 6

Literature Solution .. 6
Alternative Literature Solution ... 7

3. Template Method .. 9
3.1 Design Solutions ... 9
3.2 Results ... 10

Literature Solution .. 10
Alternative Literature Solution ..11

4. Strategy ... 12
4.1 Design Solutions ... 13
4.2 Results ... 14

Literature Solution .. 14
Alternative Literature Solution ... 15

Faculty of Mathematics

and Natural Sciences

 Computer Science

Abstract

This technical report has been created as support material for the paper entitled “Empirically

Validating an Analytical Method for Assessing the Impact of Design Patterns on Software Quality:

A Case Study” that has been submitted in ACM Transactions on Software Engineering. The

corresponding paper aims at validating an analytical approach that can be used for comparing

object-oriented design structures. In this technical report we present in detail the three case studies

that are reported in the paper. The references of the technical report correspond to the papers

reference list.

1. Design Quality Metrics

In [Bansiya and Davis 2002], the authors propose a hierarchical quality model that aims at

quantifying six design quality attributes from measurements on object-oriented design components.

The design quality attributes that are involved in the model are reusability, flexibility,

understandability, functionality, extendibility and effectiveness. The exact definitions of the six

design quality attributes can be found in [Bansiya and Davis 2002]. The object-oriented design

properties that are used in the model are design size, hierarchies, abstractions, encapsulation,

coupling, cohesion, composition, inheritance, polymorphism, messaging and complexity [Bansiya

and Davis 2002]. In addition to that, the model employs several object-oriented design metrics in

order to measure the aforementioned properties. Finally, the components that can be identified in a

design in order to measure their properties are classes, objects and relationships between them.

Furthermore, in [Bansiya and Davis 2002] the authors provide several links for mapping attributes

of a lower level to a higher one. The final outcome of mapping attributes is six mathematical

statements that map the object-oriented design metrics to the aforementioned design quality

attributes. As mentioned above, the QMOOD model involves eleven (11) object-oriented design

properties each one quantified through one object-oriented design metric [Bansiya and Davis 2002].

• “Design Size” property - DSC (Design Size in Classes) metric. This metric is a count of

the total number of classes in the design. Range of values [0, +∞)

• “Hierarchies” property - NOH (Number of Hierarchies) metric. This metrics is a count of

the number of class hierarchies in the design. Next, the “Abstraction” property is measured

through the ANA (Average Number of Ancestors) metric, which signifies the average

number of classes from which a class inherits information. Range of values [0, +∞)

• “Encapsulation” property - DAM (Data Access Metric) metric. This metric is the ratio of

the number of private attributes to the total number of attributes. Range of values [0, 1]

• “Coupling” property - DCC (Direct Class Coupling) metric. This metric is a count of the

Faculty of Mathematics

and Natural Sciences

 Computer Science

different number of classes that a class is directly related to. Direct relations are considered

to be attribute declarations and message passing in methods. Range of values [0, +∞)

• “Cohesion” property - CAM (Cohesion Among Methods of Class) metric. The metric

computes the relation among methods of a class based upon the parameter list of the

methods. Range of values [0, 1]

• “Composition” property - MOA (Measure of Aggregation) metric. This metric counts the

number of data declarations whose types are user defined classes. Range of values [0, +∞)

• “Inheritance” property - MFA (Measure of Functional Abstraction) metric. This metric, is

the ratio of the number of methods inherited by a class to the total number of methods

accessible by member methods of the class. Range of values [0, 1]

• “Polymorphism” property - NOP (Number of Polymorphic Methods) metric. This metric

counts the methods that can exhibit polymorphic behavior. Range of values [0, +∞)

• “Messaging” property - CIS (Class Interface Size) metric. This metric is a count of the

number of public methods in a class. Range of values [0, +∞)

• “Complexity” property - NOM (Number of Methods) metric. This metric is a count of all

the methods defined in a class. Range of values [0, +∞)

The majority of the metrics are calculated at class level. In order to avoid correlations between the

independent variables of our study, we have used the average function so as to aggregate the results

at system level. Had we used summation, all variables would be correlated to the DSC metric.

2. Decorator

The aim of this section is to present the results of performing the enhanced analytical method on the

Decorator pattern. Decorator is used when “you want to add behavior or state to individual objects

at run-time” [Gamma et al. 1995]. In section 2.1 we present the structure on the Decorator pattern

and two alternatives design solutions. In section 2.2 we present the results of applying the method.

2.1 Design Solutions

The class diagram of a typical Decorator instance is presented in Figure 1. The alternative design

solution is presented in Figure 2. In the Decorator design pattern we have identified four axes of

change, based on two class hierarchies and one pattern-related method.

Hierarchies:

• Let n to be the number of Leafs in the design.

• Let p to be the number of ConcreteDecoratorA (those that provide additional methods than

the ones provided by the given methods of the hierarchy)

• Let q to be the number of ConcreteDecoratorB (those that only exhibit different behavior

on the given methods of the hierarchy, without providing additional methods)

Faculty of Mathematics

and Natural Sciences

 Computer Science

Methods:

• Let m to be the number of operation methods, i.e. the number of abstract methods in the

decorator class hierarchy.

 Figure 1. Decorator Design Pattern Class Diagram

The Decorator alternative design holds different array lists for each type of Leaf, in order to provide

equal functionality on the aggregation to Component class in the design pattern. In order for the

decorator to change type during run-time, the Decorator class holds a decoratorType attribute that

can take (p+q) possible values. In this design, inside the m operations, we have placed (p) if

statements, in order to handle all possible implementations of Concrete Decorators.

Figure 2. Decorator Design Alternative Class Diagram

Faculty of Mathematics

and Natural Sciences

 Computer Science

2.2 Results

By taking into account the identified axes of change and the definition of the used metrics, we

create the follow functions:

Pattern Solution

The number of classes in the system is the sum of the number of Leafi classes (n), the number of

ConcreDecoratorAi classes (p), the number of ConcreDecoratorΒi classes (q), plus 3 (Decorator,

Component and Client). Thus,

��� � 3 � � � � � 	

The NOH in classes Component and Decorator equals 1, because they inherit from other classes, at

the first level. The other classes do not inherit from any others, so their NOH equals 0. Thus,

�� � 2

The (p) ConcreDecoratorAi classes do not inherit two methods, i.e. addParts(c) and removeParts(c),

from the Decorator class, so its MFA equals (
�

�∗�	���. The (q) ConcreDecoratorBi classes also do

not inherit the same two methods from the Decorator class, so its MFA equals � �
�∗�	��). Thus,

MFA � 	
2

�2 ∗ �� � 2 �
2

� � 2
3 � � � � � 	

The Client class includes an object, of type Component, so its DCC equals 1. The Component class

is abstract and does not reference any other object, so its DCC equals 0. The Decorator class

includes an object type Component, so its DCC equals 1. The (n) Leafi classes inherit from the

Component class, so their DCC equals 1. The (p) ConcreDecoratorAi classes inherit from the

Decorator class, so their DCC equals 1, whereas the (q) ConcreDecoratorBi classes inherit from the

Decorator class, so their DCC equals 1. Thus,

��� � 	2 � �1 ∗ �� � �1 ∗ �� � �1 ∗ 	�
3 � � � � � 	

The Decorator class has one parameter type and (m+2) methods, thus its CAM equals (
�

���� . For

the other classes CAM is not defined.

��� � 	 2
� � 2

The Decorator class includes an object of type Component, so its MOA equals 1. The Client class

includes an object, of type Component, so its MOA equals 1. All other classes do not include any

aggregations or compositions to other classes, so their MOA equals 0. Thus,

Faculty of Mathematics

and Natural Sciences

 Computer Science

��� � 	 2
3 � � � � � 	

Considering NOP, the Component and Decorator classes involve polymorphism. More specifically,

they both have (m) virtual functions. Thus in system level,

�� � 	 �2 ∗ ��
3 � � � � � 	

The Decorator class inherits from the Component class, so its ANA equals 1. The number of

ancestors for the (n) classes that represent Leafi equals 1, for the (p) classes that represent

ConcreDecoratorAi equals 1, and for the (q) classes that represent ConcreDecoratorBi equals 1.

Thus,

�
� � 	1 � �1 ∗ �� � �2 ∗ �� � �2 ∗ 	�
3 � � � � � 	

Furthermore, Client and Decorator have one private attribute (DAM=1). For all the other classes,

DAM is not defined. Thus,

��� � 1

The Client and Component classes hold (m) public methods. The Decorator class holds (m+2)

public methods, the (n) Leafi classes hold (m) public methods, the (p) ConcreDecoratorAi classes

hold (2*m) public methods and the (q) ConcreDecoratorBi classes hold (m) public methods. Thus

at system level,

��� � 	 �3 ∗ �� � 2 � �� ∗ �� � �2 ∗ � ∗ �� � �� ∗ 	�
3 � � � � � 	

Finally, since the system does not contain any private or protected methods, the score of the NOM

metric equals the score of the CIS metric. Thus,

�� �	 �3 ∗ �� � 2 � �� ∗ �� � �2 ∗ � ∗ �� � �� ∗ 	�
3 � � � � � 	

Alternative Literature Solution

The number of classes in the system is the sum of the number of Leafi classes (n), plus 3

(Decorator, Component and Client). Thus,

��� � 3 � �

The NOH in Component class equals 1, because it inherits from other classes, at the first level. The

other classes do not inherit from any others, so their NOH equals 0. Thus,

�� � 1

Faculty of Mathematics

and Natural Sciences

 Computer Science

The Decorator and Leaf classes inherit all the methods from the Component class, so its MFA

equals 0. For all the other classes, MFA is not defined. Thus,

��� � 	0

The Client class includes an object, of type Component, so its DCC equals 1. The Component class is

abstract and does not reference any other object, so its DCC equals 0. The Decorator class inherits from

the Component class and includes (n) objects, of type Leafi, so its DCC equals (n+1). Thus,

��� � 	2 ∗ � � 2
3 � �

The Decorator class has one parameter type to (n) sets of methods addLeafi and removeLeafi

(CAM=
�

�∗!���	"∗�). Concerning the Client, Component and Leafi classes, CAM is not defined.

Thus,

��� � 	 2
2 ∗ � � 	� � � ∗ �

The Client class includes an object, of type Component, so its MOA equals 1. The Decorator class

includes (n) objects, of type Leafi, so its MOA equals (n). All other classes do not include any

aggregations or compositions to other classes, so their MOA equals 0. Thus,

��� � 	� � 1
3 � �

Considering NOP, the Component class involves polymorphism, so the Component class has (m)

virtual functions. Thus in system level,

�� � 	 �
3 � �

The Decorator class inherits from the Component class, so its ANA equals 1. The number of ancestors

for the (n) classes that represent Leafi equals 1. For all the other classes, ANA equals 0.Thus,

�
� � 	1 � �1 ∗ ��
3 � �

Furthermore, Client has one private attribute, so its DAM equals 1. The Decorator class has (n+1)

private attributes, so its DAM equals 1. For all the other classes, its DAM is not defined. Thus,

��� � 1

The Client and Component classes hold (m) public methods. The Decorator class holds

(m+2*n+p*m) public methods and the (n) Leafi classes hold (m) public methods. Thus at system

level,

Faculty of Mathematics

and Natural Sciences

 Computer Science

��� � 	 �3 ∗ �� � �2 ∗ �� � �� ∗ �� � �� ∗ ��
3 � �

Finally, since the system does not contain any private or protected methods, the score of the NOM

metric equals the score of the CIS metric. Thus,

�� �	 �3 ∗ �� � �2 ∗ �� � �� ∗ �� � �� ∗ ��
3 � �

3. Template Method

In this section we investigate the design quality of Template Method pattern. Template Method is

used when “you want to define the skeleton of an algorithm in an operation, deferring some steps to

client subclasses” [Gamma et al. 1995]. In section 3.1 we present the structure on the Template

Method pattern and one alternatives design solution. In section 3.2 we present the results of

applying the method.

3.1 Design Solutions

The class diagram of a typical Template Method instance is presented in Figure 3. The alternative

design solution is presented in Figure 4.

Figure 3. Template Method Design Pattern Class Diagram

Figure 4. Template Method Design Alternative Class Diagram

Faculty of Mathematics

and Natural Sciences

 Computer Science

We have identified three axes of change, based on one class hierarchy and two pattern-related

methods.

Hierarchies:

• Let n to be the number of Concrete Classes in the design.

Methods:

• Let the system have m template methods

• Let p to stand for the primitive operations used by the template methods

The Template Alternative class holds direct references to every one of the (n) Concrete Classes and

directly calls the set of methods that it desires. The notions (n), (m) and (p) are exactly the same as

in the design pattern solution

3.2 Results

By taking into account the identified axes of change and the definition of the used metrics, we

create the follow functions:

Pattern Solution

The number of classes in the system is the sum of the number of ConcreteClassi classes (n), plus 2

(TemplatePattern and AbstractClass). Thus,

��� � 2 � �

The NOH in AbstractClass class equals 1 because it inherits from other classes, at the first level. The

other classes do not inherit from any other, so their NOH equal 0. Thus,

�� � 1

The (n) ConcreteClassi classes inherit only the primitiveOperation() method from the AbstractClass

class, so its MFA equals # �
��"$. For the other classes MFA equals 0. Thus,

��� � 	 � ∗ �
�� � �� ∗ �� � 2�

The TemplatePattern class includes one objects, of type AbstractClass, and creates objects of (n)

ConcreteClassi, so its DCC equals (n+1). The AbstractClass class is abstract and does not reference

any other object, so its DCC equals 0. The (n) ConcreteClassi classes inherit from the AbstractClass

class, so its DCC equals 1. Thus

��� � 	1 � �2 ∗ ��
2 � �

CAM cannot be defined for all system classes. Thus,

Faculty of Mathematics

and Natural Sciences

 Computer Science

��� � 	
/�

The TemplatePattern class includes an object of type AbstractClass, so its MOA equals 1. All other

classes do not include any aggregations or compositions to other classes, so their MOA equals 0.

Thus,

��� � 	 1
2 � �

Considering NOP, the AbstractClass involves polymorphism, so the AbstractClass has (p) virtual

functions. Thus in system level,

�� � 	 �
2 � �

The (n) ConcreteClassi classes inherit from the AbstractClass class, so its ANA equals 1. For all the

other classes ANA equals 0. Thus,

�
� � 	 �1 ∗ ��2 � �

Additionally, TemplatePattern class has one private attribute (DAM=1). For all the other classes,

DAM is not defined. Thus,

��� � 1

The TemplatePattern class holds one public method. The AbstractClass class holds (m+p) public

methods and the (n) ConcreteClassi classes hold (p) public methods. Thus,

CIS � 	 �m � p� � �p ∗ n� � 1
2 � n

Finally, since the system does not contain any private or protected methods, the NOM metric equals

CIS. Thus,

�� �	 �� � �� � �� ∗ �� � 1
2 � �

Alternative Solution

The number of classes in the system is the sum of the number of ConcreteClassi classes (n), plus 1

(TemplateAlternative). Thus,

��� � 1 � �

All the classes in the system do not present any hierarchy, so their NOH equal 0. Thus,

�� � 0

MFA equals 0 for all system classes. Thus,

Faculty of Mathematics

and Natural Sciences

 Computer Science

��� � 	0

The TemplateAlternative class includes (n) objects, of type ConcreteClassi, so its DCC equals (n).

The ConcreteClass class does not reference any other object, so its DCC equals 0. Thus,

��� � 	 �
1 � �

CAM cannot be defined for all classes in the system. Thus,

��� � 	
/�

The TemplateAlternative class includes (n) objects of type ConcreteClassi, so its MOA equals 1.

All other classes do not include any aggregations or compositions to other classes, so their MOA

equals 0. Thus,

��� � 	 �
1 � �

The NOP metric for all classes equals 0, because there is no inheritance involved in the system.

�� � 	0

The ANA metric for all classes equals 0, because there is no inheritance involved in the system.

�
� � 	0

Additionally, TemplateAlternative class has (n) private attributes (DAM=1). For all the other

classes, DAM is not defined. Thus,

��� � 1

The TemplateAlternative class holds one public method. The (n) ConcreteClassi classes hold (m+p)

public methods. Thus,

��� � 	 �� ∗ �� � ��� � 1
1 � �

Finally, since the system does not contain any private or protected methods, the NOM metric equals

CIS. Thus,

�� �	�� ∗ �� � ��� � 1
1 � �

4. Strategy

In this section investigate the design quality of the Strategy design pattern. Strategy is used when

“you want to alter the behavior of an algorithm at run-time” [Gamma et al. 1995]. In section 4.1 we

present the structure on the Strategy pattern and one alternative design solution. In section 4.2 we

present the results of methodology.

Faculty of Mathematics

and Natural Sciences

 Computer Science

4.1 Design Solutions

The class diagram of a typical Strategy instance is presented in Figure 5. The alternative design

solution is presented in Figure 6.

Figure 5. Strategy Design Pattern Class Diagram

Figure 6. Strategy Design Alternative Class Diagram

We have identified three axes of change, based on the class hierarchies and two pattern-related

methods.

Hierarchies:

• Let n to be the number of Concrete Strategies.

Methods:

• Let m to be the number of operations, i.e. the number of abstract methods in the strategy

class hierarchy

• Let q to be the number of methods that are inherited and not overridden in the hierarchy.

The Strategy Alternative class holds references to Concrete Strategies. In addition to that the

common behavior (q) methods of Concrete Strategies exists in both classes. It is intuitive that the

higher the number of these methods, the higher the need for using the strategy design pattern. The

notions of (n), (m) and (q) are equal to those of the design pattern solution.

Faculty of Mathematics

and Natural Sciences

 Computer Science

4.2 Results

By taking into account the identified axes of change and the definition of the used metrics, we

create the follow functions:

Pattern Solution

The number of classes in the system equals the sum of the number of ConcreteStrategyi classes (n),

plus 2 (StrategyPattern and Strategy). Thus,

��� � 2 � �

The NOH in Strategy class equals 1 because it inherits from other classes, at the first level. The other

classes do not inherit from any other, so their NOH equal 0. Thus,

�� � 1

The (n) ConcreteStrategyi classes inherit only the doOperation() methods from the Strategy class, so

its MFA equals # ,
��,$. For the other classes MFA equals 0. Thus,

��� � 	 � ∗ 	
�� � 	� ∗ �� � 2�

The StrategyPattern class includes one objects, of type Strategy, and creates objects of (n)

ConcreteStrategyi, so its DCC equals (n+1). The Strategy class is abstract and does not reference

any other object, so its DCC equals 0. The (n) ConcreteStrategyi classes inherit from the Strategy

class, so their DCC equals 1. Thus,

��� � 	1 � �2 ∗ ��
2 � �

For all classes in the system CAM cannot be defined. Thus,

��� � 	
/�

The StrategyPattern class includes an object of type Strategy, so its MOA equals 1. All other

classes do not include any aggregations or compositions to other classes, so their MOA equals 0.

Thus,

��� � 	 1
2 � �

Considering NOP, the Strategy class involves polymorphism, so the Strategy class has (m) virtual

functions. Thus in system level,

�� � 	 �
2 � �

Faculty of Mathematics

and Natural Sciences

 Computer Science

The (n) ConcreteStrategyi classes inherit the Strategy class, so their ANA equals 1. For all the other

classes ANA equals 0. Thus,

�
� � 	 �
2 � �

Additionally, StrategyPattern class has one private variable (DAM=1). For all the other classes,

DAM is not defined. Thus,

��� � 1

The StrategyPattern class holds one public method. The Strategy class holds (m+q) public methods

and the (n) ConcreteStrategyi classes hold (m) public methods. Thus,

��� � 	 �� � 	� � �� ∗ �� � 1
2 � �

Finally, since the system does not contain any private or protected methods, the NOM metric equals

CIS. Thus,

�� �	 �� ∗ �� � �� � 	� � 1
2 � �

Alternative Literature Solution

The number of classes in the system equals the sum of the number of ConcreteStrategyi classes (n),

plus 1 (StrategyAlternative). Thus,

��� � 1 � �

All the classes in the system do not present any hierarchy, so NOH equals 0. Thus,

�� � 0

For all classes in the system MFA equals 0. Thus,

��� � 	0

The StrategyAlternative class includes (n) objects, of type ConcreteStrategyi, so its DCC equals (n).

The ConcreteStrategyi classes do not reference any other object, so their DCC equal 0. Thus,

��� � 	 �
1 � �

For all classes in the system CAM cannot be defined. Thus,

��� � 	
/�

The StrategyAlternative class includes (n) objects, of type ConcreteStrategyi, so its MOA equals

(n). All other classes do not include any aggregations or compositions to other classes, so their

MOA equals 0. Thus,

Faculty of Mathematics

and Natural Sciences

 Computer Science

��� � 	 �
1 � �

The NOP metric for all classes equals 0, because there is no inheritance involved in the system.

�� � 	0

The ANA metric for all classes equals 0, because there is no inheritance involved in the system.

�
� � 	0

Additionally, StrategyAlternative has (n) private variables (DAM=1). For all the other classes,

DAM is not defined. Thus,

��� � 1

The StrategyAlternative class holds one public method. The (n) ConcreteStrategyi classes hold

(m+q) public methods. Thus,

��� � 	 �� ∗ �	 � ��� � 1
1 � �

Finally, since the system does not contain any private or protected methods, the NOM metric equals

CIS. Thus,

�� �	�� ∗ �	 � ��� � 1
1 � �

