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Chapter 1
Introduction

Listen to the trees as they sway in
the wind. Their leaves are telling
secrets...And their roots give
names to all things.

The Perpetual Calendar of Inspiration
Vera Nazarian

One of the most efficient ways to learn a new language is to know how the
words in this language are translated into your mother tongue. The traditional
approach to this is to look up an unknown word in a dictionary. With some
luck, the dictionary might provide several contextual examples of the foreign
word in use, extracted from real texts, i.e. not made up. With even more luck,
the dictionary might provide examples of typical collocations (i.e. words with
wich they often co-occur), and warn the reader against common mistakes.

Although the expert knowledge underlying the construction of a dictionary
is undeniably useful, the fact remains that, as the English linguist John Rupert
Firth famously stated, “You shall know a word by the company it keeps”.
The context-dependent nature of linguistic items (be it morphological units,
words, phrases or sentences) has led to the development of a great variety of
lexicographic resources, each with a different structure. Most of these resources
are now available in some electronic format, something which provides many
advantages over the paper-based versions, such as virtually unlimited space.
It provided to be an enormous advantage to the field to the field of corpus
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linguistics, where large collections of texts called corpora are studied in order to
understand the behaviour of words and text in context.

Both the dedicated language learner and the professional linguist seek to
better understand the structure of human language and how it relates to its
context of use. Learning about the similarities and differences between two
different languages on various levels is a fascinating experience. A corpus goes
a long way in providing contextual information of linguistic items. However, a
parallel corpus - consisting of a selection of bitexts - provides not only the same
information for two or more languages, but allows the translations of the texts
to be compared to each other.

The increasing availability and growth of parallel corpora on the Internet
have led to a significant and very interesting application: statistical machine
translation (MT) systems. MT has a long and fascinating history, but it is only
relatively recently that we have acquired the means to model languages in
parallel for use in the practical application of MT systems.

Depending on the type of domain, it may or may not be possible for an MT
system to translate a given text sufficiently well on its own. However, MT is
seldom used as a tool for high-quality unsupervised generation of the content
of a language in another, but much more often as a way to facilitate the transfer
if the end result merely needs to be sufficient for mutual understanding.

One major economic application is for the professional translator, who
would benefit from any possible means which could help him or her produce
output of a sufficient quality in as little time as possible. In this case, MT is not
merely a facilitator, but a crucial means to increase the productivity of experts.
Translation is big business today, and there is no shortage of work, so that MT
can be regarded as of crucial importance for information technology. Of course,
this economic benefit may also extend to people who write for a living, such as
journalists.

MT also has many other practical applications, such as assisting the traveler
in a foreign country or enabling one to read foreign news websites. Probably
the best known example today is the Google Translate system, which can almost
instantly produce translations for a variety of language pairs. Although the
output quality may vary greatly, there is no denying the usefulness of this
service for millions of Internet users all around the world.

Besides its practical use, MT and the theory surrounding it are also of great
interest to the academic world. There is much research into how a language
should be transferred to and represented in another. How should the languages
be represented? Should we use syntax? How are they to be aligned? Which
machine learning techniques can we apply? What are the most effective ways
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to learn and represent knowledge? What can we learn about the structure and
use of the languages involved, and the interplay between the language pairs
involved? What are the typical errors? The list goes on.

For both the traditional linguist attempting to understand the structure
and behaviour of language as well as the computational linguist who wishes
to model her languages of choice as precisely as possible for practical use, a
treebank is generally considered a rich source of information for various studies
and applications. Here, the syntactic structure of sentences is described in
detail according to any of a wide variety of different grammars. Not surprisingly,
a parallel treebank is to a treebank as a parallel corpus is to a corpus. This
introduces an extra dimension to the study and modeling of bitexts for use in
natural language processing (NLP).

It is generally agreed that parallel treebanks are a very useful resource for
all kinds of tasks. However, producing them manually is very expensive and
time-consuming. For use in NLP applications, the required scale is typically in
the range of hundreds of thousands or even millions of sentence pairs, which
is practically infeasible, unless they are automatically produced.

For this, we have high-quality parsers that can produce accurate syntactic
structures for specific languages. Automatic syntactic analysis remains an
ongoing field of study. A parallel treebank also needs to be aligned automatically,
in order to actually extract the translational units. Typically, the words are
aligned using specialized software that itself is trained on a parallel corpus of
millions of words.

A relatively recent development is the high-quality automatic alignment
of constituents, i.e. linguistically motivated phrases of a language. Phrase
structures are represented as hierarchical structures in the form of trees, where
the non-terminals refer to the constituents, dominating the phrases that are to
be aligned. Figure 1.1 is an example. Recent interest in incorporating syntactic
structure to MT models has led to more research devoted to this area.

The context of this work is a novel syntax-based MT system called Parse
and Corpus-Based Machine Translation (PaCo-MT). Its models are trained on large
parallel treebanks aligned on the word and constituent levels. Our role in the
project was the development and successful application of high-quality tree
alignment software producing such parallel treebanks.

Historically, tree-to-tree alignment suffers from a lack of recall. This means
that too few constituents are aligned. The reason for this is that they are
restricted to the linguistically informed constituents that appear in the trees,
and then only those that happen to be equivalent on both sides. In practice, it
often occurs that monolingual parsers produce trees where many nodes do not

3



Figure 1.1: An example of the alignment of the words and constituents of a
phrase pair. Automatic alignment software, discussed in later chapters, may
assign varying amounts of confidence to links, based on previously calculated
probabilities. Here, solid lines suggest a high confidence, while the dashed line
is seen as less confident.

dominate the same strings as in the trees of the opposing side. For example, one
parser may have a preference to embed phrases, creating deep trees, whereas
another may choose to link more constituents directly to the root node, creating
more shallow trees. This makes it impossible for many higher-up nodes to be
linked, contributing to the recall problem. Another key problem is the existence
of loose translations, as well as idiomatic or idiosyncratic expressions, which
leads to structural deviations between the trees as well.

Statistical MT systems operating on just the raw text do not have these
restrictions, therefore they usually manage to find more instances of equivalent
phrases in comparison with the tree-to-tree approach. On the other hand, these
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systems do not have access to the same pre-existing structural and labeled
information as their tree-based counterparts.

One argument for the use of parallel treebanks in MT is increased trans-
parency. Modeling for pure statistics-based MT is hard to improve, apart from
using more data, more tuning and experimenting with more refined formulae.
Many errors in alignment for syntax-based MT can be traced back to specific
syntactic problems such as structural divergences which can, for example, be
addressed by measures to improve tree alignment.

Finally, the production of parallel treebanks has intrinsic value. Whatever
the practical effect on NLP applications, it also adds to the pool of scientific
resources available for a given language pair.

In thiswork, our focus is on improving constituent (tree-to-tree) alignment in
the process of parallel treebank creation. We leave themore detailed discussions
for and against this approach to chapter 2. This brings us to our first research
question:

Can we improve constituent alignment?

Given the context of our research, answering this question also entails
attempting to improve the proportion of aligned nodes. We show in this work
how we implement various measures in our attempt to answer this question.
To increase accuracy, we implement different machine learning approaches,
build our own training data and experiment using various alignment strategies,
features and parameters. To increase coverage, we experiment with relaxing
certain constraints, applying the union of directional alignment approaches,
and combining different alignment strategies.

One issue that often comes to the fore with the automatic construction of
parallel treebanks is the so-called pipeline problem. Using automatic tools
invariably produces some errors. Using a combination of tools where each one
processes the output of another may lead to a cascade of errors, widening the
gap and increasing the negative effect on performance of the final product.

This and other issues which may affect the quality of constituent alignment
lead us to the second research question:

Canwedeterminewhich factors influence constituent alignment?
If so, can we use this information to improve our alignment ap-
proach?
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To answer this question, we conduct various qualitative and quantitative
analyses to study the effect of various features on alignment quality. We show
how alignment improves as we apply what we learn from these studies.

Finally, we are also interested in the impact of our research on the quality
of machine translation. Specifically, we measure the effect of various different
alignment approaches to the performance of the syntax-based system PaCo-MT
(chapter 3). This brings us to the final research question:

Howdoes thequality of tree alignment influence theperformance
of syntax-based machine translation?

We show that PaCo-MT models trained on parallel treebanks produced
by high-recall alignment models significantly outperform a model trained on
parallel treebanks produced by a high-precision model.

Our research questions demand a flexible frameworkwhere constituents can
be aligned according to a wide variety of needs and constraints. This includes:

• the ability to choose a high-precision or a high-recall alignment approach,
or something in between

• the ability to choose different alignment strategies and apply various
constraints

• the ability to choose from a wide variety and combination of features and
parameters

• the ability to experiment with different learning approaches as well as
heuristics

• the ability to combine different alignment approaches

• a common platform facilitating the interaction of all alignment software

In this work, we take the opportunity to develop the tools necessary in our
attempt to answer these research questions. For this, we investigate two general
approaches to tree alignment: stochastic and rule-based.

We show that stochastic tree alignment can be very flexible in terms of the
options provided for feature and parameter selection, as well as alignment
strategies. The system is able to produce accurate alignments, using a relatively
small training data set that can be manually constructed in a day or two.
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In our experiments, rule-based tree alignment also produces very accurate
alignments. Manual rules are shown to increase both recall and F-score sig-
nificantly, while a transformation-based learning system leads to both high
recall and precision. Moreover, the error analysis procedure for the system is
very transparent, since it can be shown which rules led to which good or bad
alignments.

Both approaches have advantages and disadvantages. We will discuss this,
as well as the extent to which our questions can be answered, in the conclusion.

Our language pair of choice is Dutch to English, even though three other
language pair directions were available from the PaCo-MT project: English to
Dutch, Dutch to French, and French toDutch. Themain reason for our emphasis
on Dutch to English is that our French data produced relatively inferior results,
perhaps in part because of lesser quality French trees produced by the parser.
We felt that it was important to show that we can produce high-quality results
as a proof of concept for our methods and algorithms. This is important as a
baseline for future work on other language pairs.

In addition, there is a practical reason for selecting Dutch to English above
English to Dutch, namely that our first training data set for PaCo-MT was
applied to this direction. It is assumed that very little work would be necessary
to adapt our methods to English to Dutch, hence we have not researched this
language pair to the same degree. We base this assumption on our findings for
the alignment experiments already made for this language pair.

It may be said that the restriction to one language pair does not show the
ability to generalize. However, we believe that the flexible framework for
alignment presented in this work allows for just that, and that with some effort,
we would also be able to obtain a high degree of alignment accuracy with Dutch
to French and vice versa.

During the course of the PaCo-MT project and in the writing of this thesis,
we have manually developed parallel treebanks consisting of over a thousand
sentence pairs. Word alignments and syntax trees were produced automatically,
but all constituent alignments were created or checked by hand. However, we
have also produced versions of the Dutch-to-English and English-to-Dutch
alignment sets used in PaCo-MT where the word alignments were corrected.
Our manually produced parallel treebanks include the following:

• Dutch to English: 940 sentence pairs

• English to Dutch: 150 sentence pairs

• Dutch to French: 158 sentence pairs
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• French to Dutch: 158 sentence pairs1

Most of the text is taken from the proceedings of the European Parliament,2
but the Dutch-to-English parallel corpus also contains the following text:

• 115 sentence pairs from the DGT (Directorate-General for Translation)
translation memories of the JRC (Joint Research Centre) Acquis3

• 335 sentence pairs from the OPUS (Open Parallel corpUS) free online
parallel corpus,4 of which 220 sentence pairs are from OpenSubtitles
(movie subtitles), and 115 comprise documentation from EMEA (the
European Medicines Agency)

Reference to chapters with relevant papers

• In chapter 2, we present the background including some relevant con-
cepts and academic work done in the field, focusing on parallel treebank
construction and tree alignment.

• In chapter 3, we present the PaCo-MT project. We describe the context
within which the system was conceived and designed and its general
architecture. Next, we describe the procedureswe followed in the creation
of the parallel treebanks for the PaCo-MT system. This is followed by a
description of the transduction and target language generation processes.
Much of this work is based on the contents of Vandeghinste et al. (2013)
which provides a detailed description of the workings of the system, as
well as Kotzé et al. (2012) which describes the creation and application of
our parallel treebanks to the system.

• Chapter 4 presents Lingua-Align, a statistical tree-to-tree aligner imple-
menting the maximum entropy machine learning method with the pur-
pose of constructing large parallel treebanks, especially for syntax-based
MT systems such as PaCo-MT. We discuss its general framework of dis-
criminative modeling and present the range of features, parameters and
alignment strategies that can be applied. We run experiments using a

1The actual textual content is the same as for Dutch to French, but alignments differ in some
respects due to the direction chosen.

2http://www.statmt.org/europarl
3http://langtech.jrc.it/DGT-TM.html
4http://opus.lingfil.uu.se
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small trilingual parallel treebank, as well as using data from the PaCo-MT
project. Finally, we conduct a qualitative error analysis. This work is based
on the contents of Tiedemann and Kotzé (2009a), which describes the dis-
criminative approach, and Tiedemann and Kotzé (2009b), which extends
the work in the previous paper to the creation of parallel treebanks for
use in the PaCo-MT system. Some examples in the chapter are based on
similar examples in Tiedemann (2010), in which the Lingua-Align toolbox
is described in more detail.

• In chapter 5, we present a statistical study which shows the correlation
and statistical significance of various features for the performance of
Lingua-Align. The work presented here is based on Kotzé (2011a).

• In chapter 6, we present our experiments in using manual rule-based
heuristics in order to increase the alignment recall of a high-precision
Lingua-Align model. The contents are based on the work presented in
Kotzé (2011b) and Kotzé (2011c). The bottom-up rule-based heuristic
presented in the chapter is reported in Kotzé et al. (2012).

• We present our rule-based tree aligner in chapter 7. It implements the
transformation-based learning method. We discuss how we adapted the
method for use in tree alignment, the features and parameters that can
be applied, experiments, results and a qualitative error analysis. This
chapter was adapted for Kotzé (2012).

• In chapter 8, we discuss the results of an extrinsic evaluation of the ap-
plication of our parallel treebanks to the PaCo-MT system. We compare
the results to a state-of-the-art phrase-based statistical MT system, Moses.
We perform a statistical significance test on the results, after which we
discuss a selection of output sentences from the test set. Some of the
extrinsic evaluation results are reported in Vandeghinste et al. (2013) and
Kotzé et al. (2012).

• In chapter 9, we discuss the results with reference to our research ques-
tions. We also discuss the significance of the research, propose future
work and arrive at a number of conclusions.
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Chapter 2
Background and related work

2.1 Introduction

In the introductory chapter, we briefly touched on the concept of a parallel
treebank as an important resource for linguistic study and various natural
language processing tasks. Tree alignment is an important process in the
creation of such a resource. Briefly speaking, it refers to the automatic alignment
of the nodes of the trees that describe the syntactic structure of translationally
equivalent sentences. Such alignments implicate equivalence of phrases which
is a useful resource for tasks such as cross-linguistic studies and, of special
importance for this work, machine translation (MT).

But where does all this come from? How do we get these parallel sentences?
How do we make the trees? How do we align? How do we use the output?
And why is this important? To answer this, we need to provide some context in
whichwe also need to define some crucial concepts that will be used throughout
this work.

2.2 Parallel corpora and treebanks

As mentioned in the previous chapter, language practitioners frequently have
need of large collections of empirical data. The assumption is often made that
more is better, since more data tends to be more representative than a smaller
sample. Of course, a large sample can also be quite skewed in terms of its
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representativeness. Therefore, care is often taken to construct such collections
so that they include many different kinds of data, such as different genres.

The corpus

The data type on which we will focus for the entirety of this thesis is written
text in the form of a corpus. Ideally, a corpus is a balanced selection of texts
which can be seen as somewhat representative of a language or of the domain
one wishes to study. This is especially important if the goal is to apply statistical
tests for later generalizations and conclusions. For any kind of processing it is
of course required for a corpus to be machine-readable.

However, from the point of view of the computational linguist, this goal
may be somewhat different. Often, one simply wishes to train one’s software
to be as accurate as possible when applied to new data. This is often domain
dependent, but not always, or at least not to the same degree than for other
tasks. On the one hand, there are shallow tasks such as part-of-speech tagging
which, although it may be affected by a change of domains, are relatively easy
to implement accurately. On the other hand, there are much harder tasks such
as machine translation, the accuracy of which is very dependent on the domain
in which it operates.

Between linguistic disciplines, there is sometimes debate over the exact
meaning of “corpus”. In this work, we will, for practical reasons, simply call
any collection of texts which are potentially useful to be applied for natural
language processing (NLP) tasks a corpus.

Well-known examples for English are the Brown corpus family (Kučera and
Francis, 1967), the British National Corpus (Burnard, 2000), the Corpus of Con-
temporary American English (Marck, 2008-), The American National Corpus
(Reppen et al., 2005) and the International Corpus of English (Greenbaum and
Nelson, 1996).

The parallel corpus

Simply put, parallel corpora are corpora for two or more languages where each
one is a translation of the other. Just like a corpus is a collection of texts, a
parallel corpus is a collection of bitexts (Tiedemann, 2011). Tiedemann (2011,
p. 1) cites Harris (1988) in defining a bitext as a document with one or more
translations in other languages. Conventionally, one side of a bitext or parallel
corpus is often called the source side and the other side is called the target side,
even though directionality is not necessarily implied.
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Of course, such data can be very useful for any task having to do with
translation: studying the agreements and differences between two languages,
extracting various statistics, constructing translation memories and dictionaries
via alignment processes for aid in manual translation or lexicographic work,
word-sense disambiguation tasks, and so on. Parallel corpora are also success-
fully used as training data for the construction of statistical MT (SMT) systems
such as Moses (Koehn et al., 2007), Hiero (Chiang, 2007) and Joshua (Li et
al., 2009; Weese et al., 2011).

Examples of well-known large parallel corpora are the JRC-Acquis1 Multi-
lingual Parallel Corpus (22 languages) containing legislative texts on the Eu-
ropean Union (Steinberger et al., 2006), the European Parliament Proceedings
(Koehn, 2005) and the OPUS (Open Parallel corpUS) project where documents
from various different domains are collected, aligned and annotated (Tiede-
mann, 2003).

The texts in a parallel corpus can be aligned on a sentential level or they
may be more loosely related. It is not unusual for the same sentence to occur
in a different part of a translated paragraph. For that reason, one may wish to
automatically sentence align a parallel corpus to extract equivalent sentences.

Alignment of parallel corpora

The alignment of parallel corpora often proceeds in a kind of divide-and-
conquer approach. Tiedemann (2011, p. 14) describes what is termed a hi-
erarchical iterative refinement strategy where big chunks of texts, for example
paragraphs or even sections, are first aligned, then smaller chunks, such as
sentences, and finally, if required, the words or lexical segments. Proper seg-
mentation as a pre-processing step is required. For example, sentence alignment
can only be successful if the units to be aligned are actual sentences, instead
of groups or parts of sentences. For each step, one often makes assumptions
and induce some constraints in order to reduce the hypothesis space. This also
reduces the required computing power and may also increase the alignment
accuracy. Wu (2010, p. 373-377), also cited by Tiedemann (2010, p. 12-14), lists
some common constraints that can be used in various alignment approaches:

• One may choose to align textual elements in a one-to-one fashion only.
This is called the bijectivity constraint.

1JRC stands for Joint Research Centre.
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• In directional alignment approaches, the functional constraint dictates that
every source element be aligned to exactly one target element. This is
often applied in word alignment.

• According to the monotonicity constraint, all elements on both sides are
in the same order. This means that links between elements never cross.
This is actually an assumption commonly made by sentence alignment
software (Tiedemann, 2010, p. 37).

• Segmentation constraints are enforced by the type of segmentation done
before the alignment process. For example, if the segments are sentences,
alignment is restricted to the sentential unit.

• Segment size constraints limit the number of segments to which a specific
segment can align.

• Anchors are pairs of segments assumed to be coupled and taken as hard
constraints, where “anchor constraints are bisegment constraints that can
be thought of as confirmed positions within the matrix that represents
the alignment candidate space” (Wu, 2010, p. 373).

• Syntactic constraints may also be imposed. For example, word alignments
can be constrained by the underlying grammar formalism.

• One may also set distortion limits for aligned elements by restricting the
maximum distance of these elements from each other between the posi-
tions in their respective bitext halves.

Sentence alignment

A sentence aligner might return two sentences on one side for a single sentence
on the other side, or even three. This is a regular occurrence for loosely trans-
lated texts. For NLP applications, it is nonetheless often useful and pragmatic
to restrict the hypothesis space to single sentences - in other words, applying
the bijectivity constraint - as is often done for MT systems, although this makes
the disambiguation of certain discourse elements more difficult. This is because
these elements may refer to entities mentioned in other sentences. However,
some research has already been done on the incorporation of so-called discourse
units in MT (Ullah et al., 2009) or the disambiguation of discourse elements
such as connectives which connect different parts of a discourse (words such
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as however, although and indeed) or pronouns - for more accurate MT (Meyer et
al., 2012; Meyer, 2011; Popescu-Belis et al., 2012).

Restricting sentence alignment to one-to-one occurrences is still very useful
for accurate machine translation, and it dramatically reduces the hypothesis
space for required procedures such as word alignment. For this reason, many
MT systems make this sacrifice, with the apparent assumption that the disam-
biguation of discourse elements may be resolved in a separate step if necessary.
All the data that we have used in our experiments rely, at some point, on one-to-
one sentence alignments. We will therefore only focus on such sentence pairs
for the rest of this work.

Word alignment

Word alignment is a crucial process in most forms of machine translation. It
is also a quite difficult task because of the role that semantics is playing in the
alignment process, something that is not directly visible from the data and can
only be deduced by looking at various cues and statistics. Furthermore, specific
languages may differ very much from each other in terms of their orthography,
word order, the way they express certain concepts, nesting of phrases, use
of devices such as ellipsis, discourse elements, and so on, all throwing their
respective spanners in the works which contribute to making word alignment
a very challenging task.

Figure 2.1 is an example of a short word-aligned sentence pair between
Dutch and English. The Dutch sentence literally means You have fever. In
practice, very few translations are exact replicas of each other. This is reflected
in the fact that some alignments link words that are only partially or vaguely
translatable, such as the ones between hebt (have) and is on, as well as the
existence of the unaligned word The. It is in fact debatable whether hebt should
be aligned to is on at all, although is on can be said to share a similar relationship
to The fever and you as hebt has to Je (You) and koorts (fever).

This brings us to our next point, which is that different word alignment
strategies exist depending on what the output will be used for. If the task is
to construct a high quality lexical translation table, it makes sense to opt for
a high-precision approach where only confident links are applied. For some
stochastic processes such as those used in SMT, however, it may be more useful
to adopt a high-recall approach where many alignments are made even though
some of them are likely to be wrong.

Before word alignment, proper tokenization of lexical units is required. Phe-
nomena such as the existence of abbreviations often makes deciding whether or
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Figure 2.1: An example of word alignment between Dutch and English, where
Je hebt koorts literally means You have fever. The solid lines denote confident
links (fully translatable) and the fuzzy lines denote less confident links (partly
translatable).

not a period is the end of a sentence a tricky proposition. In the context of word
alignment, it is useful to choose a tokenization scheme for both languages that
maximises the convergence of alignments between lexical items. For example,
the English string I have can be contracted to I’ve. In tokenized form, it can be
written as I ’ve. The French equivalent is J’ai which can be tokenized as J’ ai. If
English text is to be aligned to French text, it would be useful to be able to align
I to J’ and ’ve to ai, as variants of I/Je and have/ai. If, however, J’ai is tokenized
as J ’ ai, this may affect the quality of MT, since now, if we assume that have is
aligned to both ’ and ai, we have two competing translations for have of which
only one is actually correct. This is also the case if I is aligned to both J and ’,
but here, even aligning I to J can be perceived as incorrect if the apostrophe is
not present, as J may not be perceived as an acceptable translation.

It is often assumed that words - in the sense of tokenized strings separated
by whitespace - represent distinct units of meaning, but the existence of multi-
word units, especially of the idiomatic variation, shows that it is not always the
case. Function words can also denote relations between concepts where the
same can be represented by morphological units in another language.

For these reasons, conventional tokenization is not always a sufficientmethod
to segment lexical items. They may also be grouped together as single mean-
ingful units, as is sometimes done with Chinese, or perhaps one may choose to
write morphemes as separate units.

Segmentation can also be applied on other levels. For example, one may
choose to split bitexts into sentence pairs as the lowest meaningful units, as is
the case in sentence alignment.

The best word alignment software today employs statistical models. There
are two common approaches, generative and discriminative modeling. The
generative approach attempts to, given some hidden parameters, generate
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the observable data, while the discriminative approach constructs a model of
making translation decisions based on the observable data. More formally,
generative models learn the joint probability distribution p(x , y) , where x and
y are the observation and label sequences. Discriminative models learn the
conditional probability distribution p(y|x), where y is the unobserved variable
whose dependence on the observed variable x we are modeling.

While somewhat outdated, Och and Ney (2003) provide an informative
and detailed overview of the word alignment techniques used in classical SMT.
They propose a new method (the so-called Model 6) which performs better
than any other discussed in the paper.

Generally, there is a distinction between heuristic and statistical models.
The authors find that statistical models perform better. One of the inspected
methods implements a machine learning method called Hidden Markov Mod-
els (abbreviated to HMM, see, for example, Jurafsky and Martin (2009), chapter
6) which is a generative modeling approach. Och and Ney combine HMM and
Model 4, which is a model where the assumption is made that “every word is
dependent on the previous[ly] aligned word and on the word classes of the
surrounding words” (Och and Ney, 2003, p. 27), in a directional alignment
approach. Additionally, they implement heuristic refinement methods, apply-
ing the intersection of the source-to-target and target-to-source alignments,
then iteratively adding neighbouring alignments based on certain previously
defined conditions.

The directional approach is implemented in a system called GIZA++ (Och
and Ney, 2003) and the directional heuristics can be applied using the Moses
SMT system (Koehn et al., 2007). We have used these tools forword alignment in
the PaCO-MT project described in the next chapter, as well as in our subsequent
research. Although there are some newer systems that report both better
accuracy and resulting MT evaluation scores (Hermjakob, 2009; Liu et al., 2010;
Lambert and Banchs, 2012), GIZA++ still compares favourably and is still widely
used for experiments reported in the field.

The treebank

A treebank is a corpus where each sentence has been annotated with some
sort of syntactic structure. Since annotating it by hand is not only a time-
consuming process but also a difficult task best left to the expert linguist, the
general preference is to develop software - called parsers - for the accurate large-
scale analysis of specific languages. Nevertheless, since manually constructed
treebanks are such a precious resource for the training of this software, there
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have been a number of efforts to create large manually crafted treebanks for
various different languages.

The formal description of language is an ongoing process and has resulted
in a range of different fields of study, each attempting in its own way to better
understand the structure of the language it is trying to describe. There are
many different grammars and grammar formalisms as a result, the scope of
which is decidedly too large to discuss in this work. However, one can generally
distinguish two main types of grammars: phrase structure and dependency
grammars.

Phrase-structure grammars, chunking and predicate-argument structure

Phrase-structure grammars (synonym: context-free grammars (CFGs)) are based
on the assumption that words in natural language tend to cluster together in
groups called constituents. Examples are noun phrases (the large eland), verb
phrases (trots slowly through the savanna) and prepositional phrases (through the
savanna).

Such a grammar consists of a set of rules or productions, where on the left
side there is the name of the constituent and on the right side one or more
constituents or words that the constituent on the left side produces; as well as a
lexicon, which is the set of all words or symbols that the grammar can produce.
It often assumes a hierarchical structure, where constituents can produce other
constituents which can themselves produce more constituents or symbols. In
the example above, assuming that the words in the sentence comprise the whole
lexicon, we could write down the following grammar:

S -> NP VP Punct
NP -> Det AP
NP -> Det Noun
VP -> Verb ADVP
ADVP -> Adv PP
AP -> Adj Noun
PP -> Prep NP
Det -> the
Adj -> large
Noun -> eland
Noun -> savanna
Verb -> trots
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Figure 2.2: An example of a phrase-structure tree.

NP

VP

S

The large the

Noun PrepVerb Det NounAdjDet

PP

AP

NP

eland trots slowly through savanna .

Adv Punct

ADVP

Adv -> slowly
Prep -> through
Punct -> .

This small grammarwould of course also allow for nonsensical constructions
such as The large savanna trots through the eland. Apart from semantics, a so-called
probabilistic context-free grammar could, based on frequencies extracted from a
treebank, show which productions and sentences occur more typically than
others.

Using the above grammar, we can now produce a syntactic tree for our
sentence (figure 2.2).

Note that each word has a label. These are the part-of-speech tags, such as Adj
for adjective, Adv for adverb, Det for determiner, Prep for preposition and Punct
for punctuation. These nodes are the terminal nodes or terminals, and those on
higher levels dominating the terminals (the set of category labels {S,VP,NP,AP,PP})
are the non-terminal nodes or non-terminals.

There are various ways to represent a phrase-structure parse. Perhaps the
most well-known is the simple bracketing representation which is used in the
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Penn treebank. Brackets are naturally suited to displaying hierarchies of ele-
ments in a left-to-right order. The example sentence above would be displayed
as follows:

(S (NP (Det The) (AP (Adj large) (Noun eland))) (VP (Verb trots) (ADVP (Adv
slowly) (PP (Prep through) (NP (Det the) (Noun savanna))))) (Punct .))

The Stanford parser (Klein and Manning, 2003; Klein and Manning, 2003b)
extends this approach by adding more metadata in the form of co-indexing
and dependency information.

Another representation format that has grown in popularity is TIGER-XML
(Mengel and Lezius, 2000; Lezius et al., 2002). This format is currently assumed
by some of the software packages we are using in our research, such as the
Stockholm TreeAligner.

Chunking, also known as shallow parsing, simplifies the problem by ignoring
the internal structure but simply identifying non-overlapping phrasal segments.
Since this is a much simpler task which can generally be achieved with more
accuracy than full parsing, chunking is useful if that is all that is required for
further processing.

This is a chunked version of the aforementioned example sentence:

[NP The large eland] [VP trots] [ADVP slowly] [PP through] [NP the sa-
vanna]

One may also describe a text with so-called predicate-argument structure. A
predicate is the part of the sentence which modifies the subject. The arguments
are those parts of a predicate which complete its meaning. One may also enrich
an existing phrase or dependency structure (see below for a definition) with
predicate-argument structure.

In an article on annotating the Penn Treebank with predicate-argument
structure, authors Marcus et al. (1994) provide a few examples in bracketing
style, such as:

I consider Kris a fool.

becomes
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consider(I,fool(Kris))

and

What is Tim eating?

becomes

eat(Tim,what).

Dependency grammars

Syntactic dependency grammars rely on the assumption that there exist natural
dependency relations between specific words in a language. In a sentence, some
words can be seen as more important or more crucial to its understanding than
others. A proper sentence usually requires the existence of a main verb which
is called the root. The other words in the sentence are regarded as directly or
indirectly dependent on the root. Between the words themselves, dependencies
exist as well. Except for the root, each word has a single head, while a head may
have one or more dependents.

Figure 2.3 presents an example of two different representations of depen-
dency structure, using the example sentence introduced before. In the first
example, arrows are used which always point away from the heads towards
their dependents. In the second example, heads are always directly above their
dependents. Note that this resembles a phrase structure but with words instead
of non-terminal constituents.

We will not proceed further into any formal theory, explanation of linguistic
concepts or introduction to existing parsers. However, in chapter 3 we will
introduce the parsers that we have used to create our parallel treebanks.

Examples of treebanks

A significant number of treebanks already exist, for both phrase-structure and
dependency grammars. Some are completely manually produced, while others
have been parsed and then corrected and checked for consistency by experts.
Many of them cover a few different domains or textual styles, but some aremore
specialized or limited to a single text. Examples of more specialized treebanks
include the Quranic Arabic Dependency Treebank (Dukes et al., 2010), the Penn
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Figure 2.3: Two different examples of representing dependencies.
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Parsed Corpora of Historical English (Kroch and Taylor, 2000; Kroch et al., 2004;
Kroch et al., 2010) the Diachronic Corpus of Present-Day Spoken English (Aarts
and Wallis, 2006) and the Ancient Greek Dependency Treebank (Bamman et
al., 2009). Other well-known treebanks include the Penn Treebank (Marcus et
al., 1993), the Prague Dependency Treebank (Hajič, 1998), the German TIGER
Treebank (Dipper et al., 2003), the Tübingen Treebank of Written German
(Telljohann et al., 2009) and the French Treebank (Abeillé et al., 2003).

All in all, many languages are covered, including at least the following:
Arabic, Bulgarian, Catalan, Chinese, Croatian, Czech, Danish, Dutch, English,
Estonian, Farsi, Finnish, French, German, Greek, Hebrew, Hindi, Hungarian,
Icelandic, Italian, Japanese, Korean, Latin, Norwegian, Persian, Polish, Por-
tuguese, Romanian, Russian, Slovene, Spanish, Swedish, Thai, Turkish, Urdu
and Vietnamese.

The parallel treebank

We define a parallel treebank as a parallel corpus that is syntactically analysed -
or parsed - on both sides, usually aligned in some way on a subsentential level.

Just like treebanks, parallel treebanks consist of more linguistic informa-
tion and are especially useful for applications that are syntax-based. Just like
parallel corpora, parallel treebanks can serve as a useful resource for transla-
tional studies and the development of MT systems and other NLP applications
dependent on parallel data.

However, parallel treebanks also provide a syntactic and hierarchical struc-
ture to the parallel data. It now becomes possible to extract parallel trees: labeled
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hierarchical structures of nested translational phrases. This is the domain of
tree alignment, discussed in section 2.3.

A good overview of existing parallel treebanks is provided by Zhechev
(2009, p. 9–15). We shortly summarize them here, including some more recent
developments.

The SMULTRON parallel treebank provides parallel data between the lan-
guages of English, Swedish, German (Samuelsson and Volk, 2006) and, in the
latest version at the time of writing (version 3), French and Spanish (Volk et
al., 2010), comprising around 2500 sentences.

A project aiming to align Estonian to German sentences is described by Uibo
et al. (2005). The phrase-structure trees are manually aligned using English as
an intermediary language to obtain translations. However, only NP phrases
are aligned.

The Prague Czech-English Dependency Treebank (PCEDT), containing a
part of the Penn Treebank and its translation into Czech, is described by Cuřín
et al. (2004) and Čmejrek et al. (2004). It is annotated with a type of deep syntax
called tectogrammatical annotationwhich is not compatible with phrase-structure
alignment as we describe it in this work. Since then, a major update has been
released (Hajič et al., 2012) which also includes alignment on the word level.

Uchimoto et al. (2004) present a Japanese-English-Chinese parallel treebank
consisting of news paper articles translated from the Penn Treebank and the
Kyoto University text corpus. It is morphologically and syntactically annotated
and also aligned on a phrasal level. Word alignment has been eschewed in
favour of Japanese minimalistic linguistic units called bunsetsus which are
aligned to their equivalents in Chinese and English.

The Linköping English-Swedish Parallel Treebank (LinES) is a parallel de-
pendency treebank constructed in order to study translational variations of
syntactic constructions from English to Swedish (Ahrenberg, 2007). Word
alignments are automatically produced but manually reviewed.

The CroCo corpus is an English-German translation corpus in eight different
registers for both languages and consisting of one million words (Hansen-
Schirra et al., 2006). The texts are chunked instead of properly parsed. The
main goal was the investigation of the phenomenon of explicitation which is
a tendency that translated texts are made more explicit and clear than the
originals.

The phenomenon of translation shifting occurs when the translation deviates
from a formal correspondence with the source text. Studying this is the main
purpose of the FuSe parallel corpus (Cyrus, 2006). Again, sentences are not
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fully parsed, but annotated with predicate-argument structures which are then
aligned.

An English-Swedish-Turkish parallel treebank of fiction and technical doc-
uments is described by Megyesi et al. (2010). It was created using the Uplug
toolkit (Tiedemann, 2003b), contains about 300,000 tokens in Swedish, 160,000 in
Turkish and 150,000 in English and is used for linguistic research and teaching.

The English-FrenchHomeCentre parallel treebank (Hearne andWay, 2006) is
a hand-crafted resource comprising 810 sentence pairs from aXerox printerman-
ual. Hearne and Way utilize it for Data-Oriented Translation (Poutsma, 2000)
experiments. Zhechev (2009) also uses it in his thesis for training and testing
his unsupervised tree aligner (described in the next section).

Along with HomeCentre, Zhechev (2009) also produces a parallel treebank
from the English/German part of Europarl, the European parliament proceed-
ings (Koehn, 2005), containing 10,000 sentence pairs, for his thesis experiments.

Rios et al. (2009) present a small Spanish/Quechua parallel treebank, con-
sisting of the Universal Declaration of Human Rights (about 100 sentences) as
well as “some information texts, and the FAQ from the website of the Peruvian
Defensoría del Pueblo, which all together contain about 100 sentences” (Rios et
al., 2009, p. 54). The Quechua language is strongly agglutinative, meaning that
affixes tend to correspond to syntactic categories. Therefore, segmentation was
done on the level of the morpheme. A morphological analyzer was developed
to achieve this. The phrase structure nodes were manually aligned using the
Stockholm TreeAligner (Lundborg et al., 2007), which we will describe in the
next chapter.

The Turin University parallel dependency treebank is a small resource
consisting of the Universal Declaration of Human Rights and some text from
the JRC Acquis corpus (Steinberger et al., 2006) for the languages of Italian,
English and French (Sanguinetti and Bosco, 2011). More recently, it “has been
enlarged with an additional corpus extracted from the open licence ’Creative
Commons’ ” (Bosco et al., 2012, p. 1934) amounting to around 100 sentences.
They implement two annotation formats, a native dependency format based
on the Word Grammar theoretical framework (Hudson, 1984), as well as an
enriched (in terms of the annotation of morphology and functional relations)
constituent-based Penn treebank style format.

Göhring and Volk (2011) reports a project in which the parallel versions of
the French and German yearbooks of the Swiss Alpine Club have been scanned
and converted to an electronic parallel corpus, called Text+Berg, consisting of
more than 4 million tokens. A selection of 1000 sentences were made from
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mountaineering reports to build a parallel treebank. This was included in the
latest version of the aforementioned SMULTRON parallel treebank.

Li et al. (2012) present two parallel treebanks, abbreviated to PAT (Parallel
Aligned Treebanks) as part of an investigation on an optimal methodology
for the large-scale creation of such resources under the direction of the Lin-
guistic Data Consortium (LDC). One PAT is Arabic/English and the other
Chinese/English. As with the Spanish/Quechua parallel treebank described
above, segmentation is an issue because of the large differences between the
languages involved. Additional measures are undertaken in this regard such
as the additional splitting of some Arabic tokens and a three-level alignment
approach between English and Chinese. The PATs consist of four different
genres: newswire, broadcast news, broadcast conversation and weblogs. The
data for each language pair consists of just under a million words or characters
(for Chinese).

Colhon (2012) reports the construction an English-Romanian parallel tree-
bank for eventual use in an MT system. Romanian trees are generated by using
information obtained from English parse trees, word alignments and Romanian
POS tags. Through this process, the trees are aligned. Because the Romanian
trees are dependent on the English ones, they may be less representative of the
language and certain constructions may not be well aligned. To deal with this,
the authors propose additional pre- and post-processing of the data. The final
product comprises two data sets, one consisting of 200 sentences and the other
consisting of 1420 sentences.

Finally, Kotzé et al. (2012) present four large sets of automatically produced
parallel treebanks for the language pairs of Dutch to English, English to Dutch,
Dutch to French and French to Dutch. This was a major goal of the Parse
and Corpus-Based Machine Translation project (PaCo-MT), where the parallel
treebanks served as a source of training data for a syntax-based MT system for
all four language pairs. It is in this environment that most of our research was
done. The project will be presented in more detail in the next chapter.

2.3 Tree alignment

Definition

Tree alignment is a type of structure alignment between constituents of a tree pair
in a bitext, such that the resulting output is a strictly compositional, hierarchical
alignment (Wu, 2010, p. 391). This implies what Wu calls the crossing constraint,
where no crossing links are allowed. Hearne et al. (2007) also call it the well-
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formedness constraint, which is the term we will use for the rest of this work.
They define it as follows:

• Descendants of a source-linked node may only be linked to descendants
of its linked node on the target side and vice versa (target to source).

• Similarly, ancestors of a source-linked node may only be linked to ances-
tors of its linked node on the target side and vice versa (target to source).2

The authors also add another constraint, which is that nodes may only be
linked once. We will discuss this in the next chapter.

To understand the logic of the well-formedness constraint, consider that
non-terminal nodes dominate specific phrases. If the non-terminal nodes are
aligned, it implies that the phrases are aligned. Let’s call these non-terminals
A and B. It would follow that any children of A and B dominate part of the
phrases that A and B dominate respectively. Let’s say C is a non-terminal child
of A and D a non-terminal child of B. C now dominates a part of the phrase that
A dominates and similar with D with respect to B. Since A and B are aligned,
the phrases are considered equal. But unless C and D are aligned, the phrases
that they dominate are not considered equal.

Now imagine that the child C is aligned to a node, G, that does not have B
as an ancestor (direct or indirect parent), but F. F dominates a different phrase
than B does. G, as a child of F, dominates a part of the phrase that F dominates.
Since C is linked to G, it must logically follow that a part of the phrase that A,
the parent of C, dominates, is the same as a part of the phrase that F dominates.
However, this is not the case. As a result, either the alignment between A and
B is wrong or the alignment between C and G is wrong.

The same argument can be applied to parents or ancestors that link to nodes
outside the trees instead of children or descendents. To clarify this a bit more,
figure 2.4 presents an example of an aligned Dutch/English subtree pair which
is well-formedwith respect to its alignments. TheNP non-terminals are aligned,
implying that de Europese Commissie is translationally equivalent to the European
Commission, since those are the phrases that the NPs dominate.

A useful way to understand the concept of well-formedness is to draw an
imaginary boundary around the trees, where all other subtrees are outside the
lines. If any of the alignment lines ends up outside the boundary, the trees are
not well-formed and the crossing constraint has been violated. The outside of

2One side is often called the source side and the other the target side, even if eventual translation
from the former to the latter is not the end application one has in mind.
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Figure 2.4: An example of a well-formed tree pair, aligning corresponding
phrases in Dutch and English. An alignment ending up in a grey block would
violate the well-formedness constraint.

these boundaries are represented by the grey blocks in the figure. Note that the
lines may travel through the grey areas as long as they do not end up in them.
In short, any alignments between two trees must stay between these two trees.

It may sometimes be useful to violate the well-formedness constraint, at
least on the word level, such as with high-recall alignment approaches where a
certain amount of error is tolerated. We describe our experiments with this in
chapters 6 and 7.

Related work in tree alignment

Some of the earliest work in the field has been in the context of example-based
machine translation (EBMT). In Nagao’s approach (Nagao, 1984), syntactic
patterns are found via analogy from which corresponding word and phrase
lists can be constructed.

Kaji et al. (1992) present a language-independent system that extracts trans-
lation templates for EBMT systems, tested on English-Japanese, using a greedy
algorithm. A bilingual dictionary is used for word alignment and solutions are
offered to resolve certain kinds of ambiguities. However, no actual trees are pro-
duced since the purpose of the system is the extraction of the aforementioned
templates.
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Matsumoto et al. (1993) also work on English-Japanese. The trees are
produced by Lexical-Functional Grammars (LFG) and then converted to depen-
dency structures. Clusters of connected tokens - subgraphs - in the dependency
structure called decompositions are aligned to their equivalents in the other
language.

Meyers et al. (1998) present a system, based on work by Grishman (1994)
and Meyers et al. (1996), aligning nodes in so-called regularized parses, a type
of predicate-argument structure. No actual output in the form of parallel
treebanks is produced, but instead, the alignments are directly used as transfer
rules for a rule-based MT (RBMT) system.

Instead of utilizing monolingual parsers, Wu (2000) implements stochastic
inversion transduction grammars, or STIDs (Wu, 1997) where a common structure
for both sides is obtained. Phrase-structure like trees are then constructed,
where the non-terminals are category labels and the leaves are pairs of corre-
sponding words or phrases for both sides. One problem with this approach is
that it assumes the same syntactic structure for corresponding sentences in both
languages. In reality, sentences may be more loosely translated and segments
may not always correspond precisely. This is also suggested byWellington et al.
(2006) who report experiments showing that bitexts exhibit translational pat-
terns that are more complex than reported in the literature. Based on this, they
suggest that STIDs do not have the ability to generate some of these equivalence
relations.

Although their criticism extends to tree-to-tree alignment, we argue in this
work for the potential merit in using specialized monolingual parsers if those
are available, after which trees could be post-processed to improve convergence
(see, for example, Ambati and Lavie (2008) and Burkett and Klein (2012)).

Lü et al (2001) use so-called bracketing inversion transduction grammars for
the extraction of translation templates, similar to the approach of Wu but
more simplified. To counter the extraction of ungrammatical phrase pairs,
they experiment with parsing one or both sides using monolingual parsers for
Chinese and English and using the resulting structures as constraints. For their
tree-to-tree alignment experiments, an accuracy of 88.25% is reported, although
they admit that the corpus is somewhat small and “normative”.

Menezes and Richardson (2001) align nodes in logical form structures (LFs)
in the context of the extraction of transfer mappings for MT, using rule-based
heuristics (18 rules in total). The words in the LFs are aligned using a pre-
existing bilingual dictionary. On the word level, coverage is extended by ag-
gressively matching tentative correspondences and with the help of a deriva-
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tional morphology component. Constituent alignment is done by following a
best-first strategy and using the best alignments as anchor points.

Groves et al. (2004) present a similar work but using phrase-structure trees
instead, produced by Data-Oriented Parsing (DOP) grammars. They also make
use of a probabilistically derived bilingual dictionary instead of a pre-existing
one. Interestingly, they only use five rules whereas Menezes and Richardson
(2001) use 18. Some of the rules make use of specific labels, meaning that
some work has to be done to adapt it for other language pairs. They obtain a
precision of 73.7% and a recall of 67.84% on their data set which they regard
as an indication that their algorithm “provides a serious alternative to manual
alignment”. However, their work only focuses on MT in the Data-Oriented
Translation (DOT) paradigm (Hearne and Way, 2006) which places a number of
additional restrictions on the tree structure and the range of possible alignments,
effectively preventing any meaningful direct comparisons with our approaches.

Imamura (2001) applies a high-recall word alignment approach after which
corresponding subtree candidates are extracted and scored using a structural
similarity measure which they call a phrase score. Conditions for the acceptance
of phrase equivalence include the requirements that the phrases should have
similar enough syntactic categories and that words must correspond seman-
tically as well. Zhechev (2009, p. 23) notes that this relies too much on the
assumption that syntactic categories between the two languages should be the
same, whereas it often happens that verb phrases, for example, are nominalized
in another language.

Eisner (2003) proposes the use of synchronous tree substitution grammars
(STSGs) to train MT systems on tree pairs. Hypotheses of all possible tree
derivations and all the possible alignments between these derivations are gen-
erated, after which various algorithms and machine learning methods are used
to learn the tree probabilities, select the best alignments and find the optimal
translations. Experiments are done on dependency structures, but the system
can also be adapted for phrase structures. However, Zhechev (2009) suggests
that this would be computationally much more complex.

Another dependency tree alignment approach is described by Ding et al.
(2003). In this case, it is presented as aword alignment algorithmwhich uses the
dependency structures as a source of information. The structure is decomposed
into subgraphs called treeletswhich are then also aligned. Experiments are done
on a Chinese-English corpus. Slight improvements on IBM word alignment
models are reported.

Gildea (2003) presents an alignment approach that is integrated into the
translation process, with the possibility of using either a tree-to-tree or a tree-
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to-string module. Cloning and reordering operations are introduced in order
to deal with structural divergence. Instead of precision and recall, results are
reported in terms of alignment error rate (AER). An improvement is measured
according to the AER metric when clones are introduced (.36). It seems like
a promising approach to tackling the problem of non-isomorphism between
trees. However, their parallel corpus (Korean-English) is somewhat limited,
in the sense that it is only represented by a single domain (military) and that
the average Korean sentence length may be a bit short (13 tokens), at least
in comparison with our data sets where the average length often exceeds 20
tokens. Although the 5083 sentence pairs can be considered enough for tree
alignment experiments, tree annotation has been done by hand as opposed to
fully automatically created trees, making it difficult to draw conclusions as to
its applicability for the creation of large parallel treebanks, should it be applied
in this way.

According to Ambati and Lavie (2008), tree-to-tree alignment suffers from
coverage problems because of segmentation issues, whereas tree-to-string ap-
proaches have a higher recall but a lower precision. They propose a solution in
the form of restructuring the target parse trees while simultaneously preserving
the syntactic boundaries of the original trees. On their French to English MT
system, this approach improves their BLEU score, although still doing less well
than a Moses system trained on the same model (Koehn et al., 2007). According
to Zhechev (2009, p. 25-26), their approach is too dependent on correct word
alignment.

Lavie et al. (2008) implement a novel arithmetic mapping algorithm for
phrase-structure tree alignment called Prime Factorization and Alignments
algorithm (PFA). Each aligned leaf node is assigned a unique prime number,
where the unaligned nodes have the value 1. The same is true for the nodes to
which these leaves link. Their constituent parent nodes are assigned a number
that is the product of these numbers. In this way, aligned non-terminals can be
retrieved by simply looking at the values of the numbers. It is quite an elegant
algorithm but is again very dependent on the quality of the word alignment,
while other useful features such as labels are not considered. For Chinese to
English alignment, they report a precision of 81.29 and a recall of 73.25.

Tinsley et al. (2007), Zhechev and Way (2008) and Zhechev (2009) describe
a fast unsupervised approach for the alignment of phrase-structure trees, al-
though it could be adapted for dependency structures as well (Zhechev, 2009,
p. 100-101). Four different modes of operation are presented: tree-to-tree, tree-
to-string, string-to-tree and string-to-string. It makes use of lexical probability
tables of automatic word alignment output in order to guide non-terminal
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alignment and assign further probabilities to the new links. Several differ-
ent alignment strategies can be employed. It is designed to be as language-
independent as possible. Experimenting on the aforementioned manually
created English-French HomeCentre treebank (Hearne and Way, 2006), non-
terminal alignments achieve precision scores ranging between 78.67% and
83.83% and recall scores ranging between 70.17% and 77.91%, depending on
the strategy used (Zhechev, 2009, p. 69). Although there is much merit to this
approach and the system has been used with some success, it does not consider
some features, such as labeled data, which could improve its accuracy.

Liu et al. (2009) propose tree-to-tree alignment using packed forests. As amea-
sure to improve alignment coverage, instead of using 1-best trees produced by
parsers, many candidate trees of the same sentence pairs are aligned. Training
a Chinese-to-English syntax-based MT system using probabilistic synchronous
tree substitution grammars, the use of packed forests increased their BLEU scores
by a good amount (30.59), even slightly better than Moses trained on the same
data (30.43), although not statistically significant (Liu et al., 2009, p. 565). This
is a promising approach which we also discuss in the future work section in
chapter 9.

Macken (2010) presents a subsentential alignment system for the purpose of
bilingual terminology extraction. The alignment units are restricted to words,
word groups or chunks. A bootstrapping approach is described where the
recall of the intersection of GIZA++ alignments is increased without sacrificing
precision. The system is able to align discontiguous chunks, which is an advan-
tage with language pairs such as Dutch and English, where some Dutch verbs
are split and occur in different parts of the sentence. We describe in the next
chapter how we dealt with this probem in the context of full tree alignment.

In the work of Sun et al. (2010), so-called Bilingual Tree Kernels (BTKs)
are proposed for modeling the tree structures. Lexical (from automatic word
alignment) and syntactic features are extracted and used to describe subtree
correspondences using a polynomial kernel, which is then combined with the
BTKs to construct a composite kernel. They then implement a binary classifier
using Support Vector Machines (SVM) in a greedy search algorithm to classify
each node pair as aligned or unaligned. Next, they apply the system on a
Chinese-English parallel treebank, HIT, containing “Chinese-English Machine
Translation evaluation campaigns, English books of Chinese Universities and
Middle Schools as well as dictionaries”.3 The trees and word alignments in
the gold standard are manually checked and the non-terminal alignments

3http://mitlab.hit.edu.cn/index.php/resources.html
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manually produced. After several experiments, the best F-score produced is
85.32, compared to the baseline (65.53) achieved by the tool described by Tinsley
et al. (2007). Running the system on another parallel corpus, FBIS,4 produces a
slightly lower F-score of 82.7, where the baseline system scores a much higher
74.36. Although the gold standard also contains subtree alignments produced
by humans, this resource has been automatically parsed.

Training various MT systems on the FBIS corpus produces decent results
(Sun et al., 2010, p. 313-14). Their alignment evaluation results are comparable
with those of our transformation-based learning system described in chapter
7, where a ten-fold cross validation experiment produces an F-score of 82.5.
Note that we used a set of 350 sentence pairs, which is much less than the
5,000 sentence pairs that the authors used for their experiments on the HIT
corpus. We also only worked on automatically produced and uncorrected
phrase-structure trees and word alignments.

Unfortunately, unless experiments are done on the same data using the
same language pairs, no direct comparison can be made. However, it can be
said that our TBL system does have the advantage over pure stochastic systems
in that error analysis is made much easier because of its rule-based approach.

Araújo and Caseli (2010) attempt to improve the PFA algorithm presented
by Lavie et al. (2008) in the context of aligning Brazilian Portugese and English
trees, by using part-of-speech filtering, a high-precision approach. A word align-
ment gold standard is produced of which all POS tag pairs of aligned words
are stored in a database. Then by appying PFA, only those word pairs for which
the POS tags are to be found as pairs in the database are taken into account.
Experiments are done using both normal PFA and the adapted method, on
data that has been both manually and automatically aligned. Using regular
PFA on manual word alignments, they obtain an F-score of 83.3. However,
when applied on GIZA++ output - whether source-to-target, target-to-source,
or union - the recall drops to the 20s. Applying POS filtering improves the
recall, but it is still very low (in the 30s). Notably, the GIZA++ output is of bad
quality in this case, with a best F-score of 40.3 (Portuguese to English), which
was probably the major contribution to the poor results. However, using POS
filtering increased the precision of GIZA++.

A follow-up paper (Araújo and Caseli, 2011) reports experiments on a differ-
ent data set containing 108 sentence pairs from the Pesquisa FAPESP Brazilian
magazine.5 Much better GIZA++ scores are reported although it is not stated

4http://malt.ml.cmu.edu/mw/index.php/FBIS_corpus
5http://revistapesquisa.fapesp.br
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what the source of the training data is. Generally, accurate word alignments
can only be obtained by training on a very large parallel corpus. The output of
the approaches reported in Tinsley et al. (2007) and the PFA algorithm (Lavie
et al., 2008) are combined in various intersection and union heuristics. The
resulting scores are very high, with a best F-score of 92.18 using POS filters.
Unfortunately, it remains unclear what text type was used, the nature of which
may make a great difference in alignment accuracy. This, along with the fact
that the test set is quite small, may make any definite conclusion premature.
However, the authors intend to apply this method to a larger collection of 16,994
Brazilian Portuguese-English tree pairs (Araújo and Caseli, 2011, p. 172).

Nakazawa and Kurohashi (2011) align dependency subtrees for English-
Japanese in a fashion reminiscent of Matsumoto et al. (1993). In this case,
they implement a Bayesian alignment model which incorporates a tree-based
reordering model. Their experiments achieve a 3.52% better alignment error
rate (AER) than using a state-of-the-art word alignment model (bidirectional
GIZA++ with neighbouring heuristics), suggesting that word alignment incor-
porating dependency structures may improve results.

In the previous section, we have discussed the English-Romanian parallel
treebank reported by Colhon (2012). Romanian trees are generated by using
information obtained from English parse trees, word alignments and Roma-
nian POS tags. Through this process, the trees are aligned. They achieve very
accurate results, with a best precision of 86.9% and a best recall of 84.1%. How-
ever, one should note that the trees are perfectly convergent, since Romanian
trees were built based on the English ones. Moreover, word alignments were
manually produced and the corpus was manually POS tagged, lemmatized
and tokenized. It is clear that the accuracy of Romanian trees is very dependent
on the accuracy of the word alignment as well as the quality of the English
trees. The imposed structural isomorphism leads to the conclusion that no
alignments are possible for more language-specific constructs. For dealing with
this, the authors propose additional pre- and post-processing of the data.

In this work, we present a platform for tree-to-tree alignment for a wide
variety of needs. In particular, we experiment with using 1-best parse tree
pairs in the context of a syntax-based MT project which uses large parallel
treebanks for training data (next chapter). For this project, the assumption is
made that 1-best trees from quality parsers are sufficient for the extraction of
enough transfer rules from parallel treebanks with a few million sentence pairs.
We also believe that tree-to-tree alignment should in theory at least be able to
provide a richer source of information for syntax-based MT than the previously
described string-to-string, tree-to-string or string-to-tree methods. Our systems
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should be able to process forests as well. However, this is an endeavour on
which we hope to be able to work in the future.

Themain issue in tree-to-tree alignment, non-isomorphism or lack of conver-
gence, which leads to a reduction in coverage for the extraction of transfer rules,
is one of the problems which we attempt to tackle in this work. In short, we
increase the recall of alignment by relaxing the well-formedness requirement
for constituent alignment as well as applying various alignment strategies.

Although we aim to improve MT performance, our main concern is improv-
ing alignment quality. With our statistical aligner Lingua-Align (Tiedemann
and Kotzé, 2009a; Tiedemann and Kotzé, 2009b; Tiedemann, 2010), we address a
problem which has been hampering most previously described systems, which
is a lack of flexibility using different features, parameters and alignment strate-
gies. Using maximum entropy modeling with a rich feature set, experiments
show that training data sets as low as 100 sentence pairs may lead to F-scores
close to 80. This system is described in chapter 4.

In chapter 7, we also present a new system (Kotzé, 2012) which uses the
transformation-based learning method (Brill, 1995). We describe experiments
in which we show that rule-based alignment is an effective complement to
statistical alignment and lead to high rates for both precision and recall. Addi-
tionally, this allows for a much simpler error analyis procedure than in the case
of stochastic systems. It also uses a feature set that draws from existing word
and constituent alignments, labels and the tree structure, making this also a
flexible tool for alignment as well as alignment error correction. Here, too, we
show that a few hundred sentence pairs are sufficient to produce very accurate
results.

2.4 Conclusion

We have presented a short introduction to some concepts relevant to this work
and summarized most of the work done in this field. In the next chapter, we
present Parse and Corpus-Based Machine Translation (PaCo-MT), a syntax-
based MT system that relies on tree-to-tree alignments from large parallel
corpora.
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Chapter 3
The PaCo-MT project

3.1 Introduction

In this chapter, we present Parse and Corpus-Based Machine Translation, PaCo-
MT in short, which is a project during which several parallel treebanks and a
novel syntax-based MT system with the same name were created. The parallel
treebanks were used as a knowledge base for the training of this sytem. This
project served as the testing ground for the research presented in this work.

Apart from some minor changes, sections 3.2, 3.4, 3.5, 3.6 and 3.7 were
described in Vandeghinste et al. (2013). Section 3.3 is mostly new content, some
of which is based on Kotzé et al. (2012).

The PaCo-MT system itself was mainly implemented by Dr Vincent Van-
deghinste and Dr Scott Martens. Vandeghinste is also the author of the tree
restructuring script as described in section 3.3.

3.2 Background

The current state-of-the-art inmachine translation consists of phrase-based statisti-
cal machine translation (PBSMT) (Koehn, 2010), an approachwhich has been used
since the late 90’s, evolving from word-based SMT proposed by IBM (Brown
et al., 1990). These string-based techniques, which use no linguistic knowledge,
seem to have reached their ceiling in terms of translation quality, while there
are still a number of limitations to the model. It lacks a mechanism to deal
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with long-distance dependencies, it has no means to generalize over non-overt
linguistic information (Riezler and Maxwell III, 2006) and it has limited word
reordering capabilities. Furthermore, in some cases the output quality may
lack appropriate fluency and grammaticality to be acceptable for actual MT
users. Sometimes essential words are missing from the translation.

To overcome these limitations, efforts have been made to introduce syntactic
knowledge into the statistical paradigm, usually in the form of syntax trees, either
only for the source (tree-to-string) or the target language (string-to-tree), or for
both (tree-to-tree).

Galley et al. (2004) describes an MT engine in which tree-to-string rules have
been derived from a parallel corpus, driven by the problems of SMT systems
raised by Fox (2002). Marcu et al. (2006) and Wang et al. (2010) describe string-
to-tree systems to allow for better reordering than phrase-based SMT and to
improve grammaticality. Hassan et al. (2007) implement another string-to-tree
system by means of including supertags (Bangalore and Joshi, 2010) to the
target side of the phrase-based SMT baseline.

Most of the tree-to-tree approaches use one or another form of synchronous
context-free grammars (SCFGs) a.k.a. syntax directed translations (Aho and Ull-
man, 1969) or syntax directed transduction grammars (Lewis and Stearns, 1968).
This is true for the tree-based models of the Moses toolkit,1 and the machine
translation techniques described in, amongst others, Wu (1997), Yamada and
Knight (2001), Probst et al. (2002), Chiang (2005), Zollman andVenugopal (2006)
and Lavie (2008). A more complex type of translation grammars is synchronous
tree substitution grammar (STSG) (Schabes, 1990; Eisner, 2003) which provides
a way, as Chiang (2006) points out, to perform certain operations which are
not possible with SCFGs without flattening the trees, such as raising and low-
ering nodes. Examples of STSG approaches are the Data-Oriented Translation
(DOT) model from Poutsma (2003) and Hearne and Way (2003) which uses
data-oriented parsing (Bod, 1992) and the approaches described in Graham
(2010), Graham and Van Genabith (2010a), Graham and Van Genabith (2010b)
and Riezler and Maxwell (2006), using STSG rules consisting of dependency
subtrees, and a top-down transduction model using beam search.

The Parse and Corpus based Machine Translation (PaCo-MT) project (2008-2011)
was sponsored by the STEVIN programme (STE07007)2 of the Dutch Language
Union. Project partners included Frank van Eynde, Vincent Vandeghinste
and Joachim Van den Bogaert from the Catholic University of Leuven (KU

1http://www.statmt.org/moses
2http://www.stevintst.org
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Leuven), Belgium, Jörg Tiedemann and the author of this dissertation from the
University of Groningen (RuG), The Netherlands, as well as Koen Desmet from
the company OneLiner bvba in Sint-Niklaas, Belgium.

KU Leuven was responsible for the main development of the PaCo-MT
system. RuG worked on creating a series of large parallel treebanks to be used
as training data for the system, while OneLiner provided us with the test sets
to be used in evaluation, as well as translation memories which were also
processed to comprise part of the parallel treebanks.

The PaCo-MT engine described in this chapter3 is another tree-to-tree system
that uses an STSG, differing from related work with STSGs in that this engine
combines dependency information with constituency information and that the
translation model abstracts over word and phrase order in the synchronous
grammar rules: the daughters of any node are in a canonical order representing
all permutations. The final word order is generated by the tree-based target
language modeling component.

Figure 3.1 presents the architecture of the PaCo-MT system. A source
language (SL) sentence gets syntactically analysed by a pre-existing parser
which leads to a source language parse tree, making abstraction of the surface
order. This is described in section 3.3. The unordered parse tree is translated
into a forest of unordered trees (also known as a bag of bags) by applying tree
transduction with the transfer grammar which is an STSG derived from a parallel
treebank. Section 3.5 presents how the transduction grammar was built and
section 3.6 how this grammar is used in the translation process. The forest is
decoded by the target language generator, described in section 3.7 which generates
an n-best list of translation alternatives by using a tree-based target language
model. In chapter 8, we present the results of applying various evaluation
metrics against the MT output of a test set.

Next, we describe how we created the resource necessary for grammar
induction - the parallel treebank.

3.3 Parallel treebank creation

In the previous chapter, we have mentioned the pipeline of activities that are
often employed in the process of constructing parallel treebanks, which in our
case are used for the purpose of inducing translation grammars for PaCo-MT.
These parallel treebanks were produced by obtaining a collection of parallel

3Previous versions were described in Vandeghinste and Martens (2009) and Vandeghinste and
Martens (2010).
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Figure 3.1: The architecture of the PaCo-MT system

corpora containing only the raw text and processing them automatically by
applying a series of tools. In short, these steps were followed in chronological
order:

• corpus selection and cleaning

• sentence alignment

• tokenization

• parsing

• word alignment

• constituent alignment

Because of availability for research purposes, we collected Dutch-English
and Dutch-French subsets of the following parallel corpora:

• Europarl 3 (Koehn, 2005), a corpus containing the proceedings of the
European Parliament in several languages from 1996 to 2006.
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Table 3.1: Word and sentence counts on the 1:1 Dutch-to-English and English-
to-Dutch parallel treebanks.

Dutch-English English-Dutch
Corpus Sentence pairs Words Sentence pairs Words
Europarl 1,180,706 57,812,824 1,190,501 57,810,789
DGT-TM 478,972 19,974,703 484,186 20,222,021
OPUS+TM 1,097,834 20,393,721 1,102,958 20,493,131
Total 2,757,512 98,181,248 2,777,645 98,525,941

• the DGTMultilingual TranslationMemory of the Acquis Communautaire:
DGT-TM.4 This is a series of translation memories containing texts from
different domains.

• OPUS:5 the open parallel corpus (Tiedemann, 2009).6

• an additional private translation memory (Transmem). Again, various
different domains are represented.

After applying some cleaning procedures, we proceeded to align the sen-
tences. We assumed an input of sentence-segmented bitexts, although tokeniza-
tion was not necessary at this point. Initially, we used the sentence aligner of
Gale and Church (1993), but soon we switched to Hunalign (Varga et al., 2005)
after an analysis of some output sentences suggested better performance.

Wefiltered the output ofHunalign to only obtain the 1:1 sentences for further
sub-sentential alignment. However, all sentences were eventually parsed, as
we intended to use as much data as possible for target language modeling.

Table 3.1 displays the word and sentence counts of the 1:1 Dutch-to-English
and English-to-Dutch parallel treebanks, where Table 3.2 displays the same
statistics for the Dutch-to-French and French-to-Dutch parallel treebanks.

Dutch input sentences are parsed using Alpino (Van Noord, 2006), a stochas-
tic rule-based dependency parser, resulting in structures as in Figure 3.2. The
Alpino distribution has its own tokenizer which we applied before the parsing
step. Part-of-speech tagging is integrated into the parsing procedure.

4http://langtech.jrc.it/DGT-TM.html
5Open Parallel corpUS
6http://opus.lingfil.uu.se
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Table 3.2: Word and sentence counts on the 1:1 Dutch-to-French and French-to-
Dutch parallel treebanks.

Dutch-French French-Dutch
Corpus Sentence pairs Words Sentence pairs Words
Europarl 1,188,022 60,987,015 1,188,757 61,231,725
DGT-TM 385,317 17,750,535 385,644 17,801,831
OPUS+TM 720,487 18,962,966 722,494 19,038,759
Total 2,293,826 97,700,516 2,296,895 98,072,315

Figure 3.2: An unordered parse tree for the Dutch sentence Het heeft ook een
wettelijke reden “It also has a legal reason”, or according to Europarl “It is also
subject to a legal requirement”. Note that edge labels are marked behind the ‘|’.

We applied some limited restructuring to make the resulting parse trees
more uniform. For example, lonely nouns, pronouns and names are placed
under an NP. For Dutch as a source language, so-called split verbs are merged
in order to increase convergence with their English counterparts.7 A similar
restructuring of syntax trees is shown by Wang (2010) to improve translation
results.

English sentences are tokenized using TreeTagger (Schmid, 1994), after
which they are annotated with the Stanford phrase structure parser (Klein and
Manning, 2003) containing dependency information (De Marneffe et al., 2006).

7In Dutch, verbs that are combined with prepositions, such as opstaan (stand up) are written as
one word. However, under some circumstances, they are split in two (staan and op) and these split
parts often occur in different parts of the sentence, creating problems for constituent alignment.
These cases were those that we have merged.
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The bracketed phrase structure and the typed dependency information are
integrated into an XML format consistent with the Alpino-XML format. The
tree structure is then enriched with lemmas, also using the TreeTagger tool.

For French, we experimented with various different parsers. Eventually,
we decided to use a version of the Berkeley parser (Petrov and Klein, 2007),
trained on French data. As the model does not add dependency information,
we implemented head-finding rules in a similar style as De Marneffe (2006).
The output is a bracketed phrase structure format which we also converted to
Alpino-XML for further processing.

After the parsing and the abovementioned tree restructuring process for
Dutch have been completed, we proceeded to word align all 1:1 sentence pairs.
As mentioned in the previous chapter, we have opted to use GIZA++ (Och and
Ney, 2003) which implements an asymmetric approach that can be applied
in two directions: source to target and target to source. GIZA++ implements
generative models in an unsupervised learning approach.

The output of both directions can be combined to produce an intersection or
union, corresponding to a high-precision and high-recall approach, respectively.
Additionally, one can employ various heuristics to iteratively add neighbouring
alignments in an attempt to balance high-precision with high-recall alignments.
This is implemented by the aforementioned SMT system Moses. We have
adopted grow-diag, which first finds an aligned word pair, then check for their
immediate neighbours. If any of them is unaligned, and both of them are in
the union, they are also aligned.

Another step is the so-called final step, which adds yet more alignments
based on similar considerations. However, our opinion was that grow-diag was
a suitably balanced choice which increased the recall somewhat but still kept
the precision reasonably high.

Constituent or non-terminal alignment, which we will simply call tree align-
ment in most cases,8 was the last important step in the creation of our parallel
treebanks. At the time, there was a relative scarcity of good alignment software
dedicated to this task. This has led to the development of the statistical tree
alignment toolbox Lingua-Align, described in the next chapter.

Because it applies supervised learning, Lingua-Align requires training data
in the form of quality aligned parallel tree pairs. Experiments with a manually

8Technically, tree alignment also includes word alignment, as words are associated with the
leaves of the tree. However, in this work we make a clear distinction between word alignment
and constituent alignment, as these are two very different tasks. It is the case, though, that in
the literature, discussions of phrase-structure tree-to-tree alignment often put the focus on the
alignment of non-terminals.
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produced parallel treebank, SMULTRON (Gustafson-Čapková et al., 2007),
suggested that a relatively small amount of training data is sufficient to produce
quite accurate alignments. For the language pairs used in PaCo-MT, we could
not find any gold standards. Therefore, we decided to make our own training
data.

A very useful tool for this purpose is the Stockholm TreeAligner (Lundborg
et al., 2007). It offers an interface showing graphical representations of the trees,
where one can manually draw lines between nodes indicating the alignments.
By default, a distinction is made between so-called good and fuzzy alignments,
which correspond to confident and less confident alignments. However, one
may specify any number of link types when setting up a project.

The Stockholm TreeAligner only accepts trees in TIGER-XML format (Men-
gel and Lezius, 2000), which is a phrase-structure representation which can also
encode dependencies and other metadata. Therefore, we proceeded to develop
and apply scripts for the conversion of the outputs of the Stanford, Berkeley
and Alpino parsers to TIGER-XML.

The source and target TIGER-XML files have unique identifiers for each
word and each constituent. A native XML format, which we have adopted
in Lingua-Align, is used to refer to the identifiers in these two files. Pairs
of references to both a source and a target node can be found, implying an
alignment. Additional information can be added such as the author, whether
or not the alignment is good or fuzzy, and so on.

The following is an example:

<align type="good" author="Lingua-Align">
<node treebank_id="1" node_id="s1_0"/>
<node treebank_id="2" node_id="s1_501"/>

</align>
<align type="good" author="Lingua-Align">

<node treebank_id="1" node_id="s1_1"/>
<node treebank_id="2" node_id="s1_502"/>

</align>
<align type="good" last_change="2012-07-17" author="Gideon">

<node treebank_id="1" node_id="s1_2"/>
<node treebank_id="2" node_id="s1_503"/>

</align>

The above displays three alignments from a gold standard file, each between
three different node pairs. Node that the third alignment is manual, made by
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the author of this dissertation, and the first two have been automatically created
by Lingua-Align. This is because we created some of our gold standards by
correcting output from this system.

Construction of gold standards for tree alignment

Unlike some efforts to construct a parallel treebank completely by hand, as
discussed in the previous chapter, we select our tree pairs from automatically
produced alignment sets. In other words, sentence alignment, parsing and
word alignment have been done automatically in all cases. Apart from saving
much time, in our opinion, this also enables our aligner to model a typical
input tree pair more closely. For example, if we corrected all word alignments
in favour of a high-precision approach and trained our models on this data,
the tree aligner might make unexpected decisions in the presense of input
containing high-recall word alignments. However, during the PaCo-MT project
we did construct data sets where the word alignments were corrected in the
case of Dutch to English as well as English to Dutch (see section 4.7).

In constructing our gold standards, we thought it wise to follow certain
guidelines. Already mentioned in the previous chapter, the well-formedness
constraint, mentioned by Hearne et al. (2007) makes logical sense and helps to
ensure consistency:

• Descendants of a source linked node may only be linked to descendants
of its linked node on the target side and vice versa (target to source).

• Similarly, ancestors of a source linked nodemay only be linked to ancestors
of its linked node on the target side and vice versa (target to source).

However, since word alignment is not perfect, strict application of this con-
straint invariably leads to low coverage, leaving many non-terminals unaligned.
For the purpose of MT, which typically functions better the more data is avail-
able for training, this is undesirable. Therefore, we have ignored this constraint
in cases where we still deemed the phrases worthy of alignment.

Samuelsson and Volk (2007) discuss a few more guidelines which they ap-
plied to building the SMULTRON parallel treebank. One of them is to never
align an NP containing a pronoun to a full noun phrase. This makes sense for
MT, since learning to produce any specific noun phrase as a translation for a pro-
noun should not depend on probabilities learned from a whole parallel corpus,
but should instead be the result of co-reference resolution. However, translating
a full noun phrase as a pronoun can be acceptable in some cases, since this is
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much less context dependent. For example, one can always translate the girl
to the equivalent of she or her (depending on the grammatical and discourse
context) in the other language. However, she or her can only be translated to
the girl in very specific contexts - it does not suffice to know that translating
these words to the girl has certain probabilities. Although we have not explicitly
implemented this distinction, choosing to keep pronouns unaligned (unless
the other NP also contains a pronoun) this may be useful in future versions of
our gold standards.

Similarly, one side of a translation can be either more or less specific than
the other side. In the case of noun phrases, the more specific phrase can be
considered a hyponym of the less specific phrase, which is a hypernym of the
more specific phrase. For example, the vehicle can be considered a hypernym of
the car, which is is a hyponym of the vehicle. This is a typical is-a relation, found
in the literature surrounding lexical databases such as WordNet (Miller, 1995;
Fellbaum, 1998). In later experiments in the context of our transformation-based
learning alignment system (chapter 7) we have allowed alignments where the
target side is less specific, but not vice versa. All cars are vehicles, but not all
vehicles are cars - it must be determined from context whether or not a specific
vehicle is also a car.

Sometimes, a candidate phrase pair is not exactly equivalent, but the phrases
also do not stand in an is-a relationship to each other. This is a very common
occurrence and is often the result of a freer translation in order to conform to
language-specific stylistic requirements. Although in some cases the decision
was not clear-cut, we have used the advice of Samuelsson and Volk (2007, p. 3)
as a guideline, which states:

Phrases shall be aligned only if the tokens that they span represent
the same meaning, if they could serve as translation units outside
the current sentence context. The grammatical forms of the phrases
need not fit in other contexts, but the meaning has to fit.

Similar to what the authors did, we aimed to align phrase pairs with lesser
translational equivalence using fuzzy links, reserving good links for exact
matches.

Since we decided to follow a high-recall alignment approach suitable for MT,
we have allowed 1:n and n:1 alignments of words. However, we implemented
a strict 1:1 non-terminal alignment approach. The reason for this is that in
the case of 1:n or n:1 phrase alignments, it necessarily means that one of them
is not exact. The non-exact pair can of course still be aligned using a fuzzy
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link, but this information is superfluous, since we have already found an exact
alignment.

Words, however, can be aligned using any combination of links, since it is
common for more than one word, as a group, to be translationally equivalent
to one or more word in the other language.

Samuelsson and Volk (2007) also mention the importance of checking for
completeness and consistency. A tree is complete if every token and constituent
is part of it, while a treebank is consistent if “the same token sequence (or
part-of-speech sequence or node sequence) is annotated in the same way across
the treebank” (Samuelsson and Volk, 2007, p. 2).

As an example of consistency checking, the authors extract all function
triples containing a mother category, the function label and a daughter category.
Where the mother category is a VP and the function is “accusative-object”, in
the vast majority of cases the daughter category is an NP. A handful of daughter
categories was different, which may point to erroneous labeling.

In the case of alignment, one may, for example, extract examples of which
category label pairs are typically aligned and what functional categories are
encoded in their respective edge labels. This may give clues to the degree of
consistency to which the nodes were aligned. However, although we did run
a little experiment where we extracted the category label pairs for incorrect
alignments (see chapter 6), we did not check for full consistency. Although we
obviously attempted to construct our gold standards as accurately as practically
possible, the reality was that we worked with automatically produced parse
trees and that the results of such a consistency check may not necessarily point
to real errors.

We believe that experiments using inter-annotator agreement from the
output of multiple annotators would be more sufficient in this case. In the
future, it may be interesting to measure the impact of such an approach to both
tree alignment and MT evaluation more precisely.

Automatic tree alignment

For all the language pairs, we have constructed and applied various models for
alignment with Lingua-Align. Our experiments are described in chapter 4.

In the latter part of the project, we have experimented with using rules in
order to increase alignment recall. These experiments are discussed in chapter
6. Table 3.3 displays the counting statistics of all alignments made for the final
versions of our parallel treebanks.
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Language pair M/G++ Lingua-Align Rules Total
Dutch/English 48,011,840 5,049,496 9,818,623 62,879959
English/Dutch 38,060,911 11,820,036 9,301,941 58,182,888
Dutch/French 46,976,046 9,128,714 6,021,967 62,126,727
French/Dutch 47,017,307 6,237,574 5,259,590 58,514,471
Total 180,066,104 32,235,820 30,402,121 242,704,045

Table 3.3: Counts of alignments applied to all the parallel treebanks, where
M/G++ denotes Moses/GIZA++.

Figure 3.3: An example of a horizontally complete subtree which is not a
bottom-up subtree.

3.4 Syntactic analysis

Abstraction ismade of the surface order of the terminals in every parse tree used
in the PaCo-MT system. An unordered tree is defined9 by the tuple 〈V, V i , E, L〉
where V is the set of nodes, V i is the set of internal nodes, and V f = V − V i is
the set of frontier nodes, i.e. nodes without daughters. E ⊂ V i × V is the set of
directed edges and L is the set of labels on nodes or edges. V l ⊆ V f is the set of
lexical frontier nodes, containing actual words as labels, and V n = V f − V l is
the set of non-lexical frontier nodes, which is empty in a full parse tree, but not
necessarily in a subtree. There is exactly one root node r ∈ V i without incoming
edges. Let T be the set of all unordered trees, including subtrees.

A subtree sr ∈ T of a tree t ∈ T has as a root node r ∈ V i
t where V i

t is
the set of internal nodes of t. Subtrees are horizontally complete (Boitet and
Tomokiyo, 1995) if, when a daughter node of a node is included in the subtree,
then so are all of its sisters. Figure 3.3 shows an example. Let H ⊂ T be the set
of all horizontally complete subtrees.

9This definition is inspired by Eisner (2003).
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Figure 3.4: Two examples of bottom-up subtrees

(a) (b)

Bottom-up subtrees are a subset of the horizontally complete subtrees: they
are lexical subtrees: every terminal node of the subtree is a lexical node. Some
examples are shown in figure 3.4. Let B ⊂ H be the set of all bottom-up subtrees.
∀b ∈ B : V n

b = ; and V l
b = V f

b , where V n
b is the set of non-lexical frontier nodes

of b and V l
b is the set of lexical frontier nodes of b. V f

b is the set of all frontier
nodes of b.

3.5 The transduction grammar

In order to translate a source sentence, a stochastic synchronous tree substitution
grammar G is applied to the source sentence parse tree. Every grammar rule
g ∈ G consists of an elementary tree pair, defined by the tuple 〈d g , eg , Ag〉, where
d g ∈ T is the source side tree (Dutch), eg ∈ T is the target side tree (English),
and Ag is the alignment between the non-lexical frontier nodes of d g and eg .
The alignment Ag is defined by a set of tuples 〈vd , ve〉where vd ∈ V n

d and ve ∈ V n
e .

V n
d is the set of non-lexical frontier nodes of d g , and V n

e is the set of non-lexical
frontier nodes of eg . Every non-lexical frontier node of the source side is aligned
with a non-lexical frontier node of the target side: ∀vd ∈ V n

d is aligned with a
node ve ∈ V n

e . An example grammar rule is shown in figure 3.5.

Grammar rule induction

Figure 3.6 is an example10 of two sentences aligned at both the sentence and
subsentential level. For each alignment point, either one or two rules are

10The edge labels have been omitted from these examples, but were used in the actual rule
induction.
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Figure 3.5: An example of a grammar rule with horizontally complete subtrees
on both the source and target side. Indices mark alignments

→

Figure 3.6: Two sentences with subsentential alignment.

extracted. First, each alignment point is a lexical alignment, creating a rule that
maps a source language word or phrase to a target language one (Figure 3.7 (a),
(b) and (c)).

Secondly, each aligned pair of sentences engenders further rules by parti-
tioning each tree at each alignment point, yielding non-lexical grammar rules.
For these rules, the alignment information is retained at the leaves so that these
trees can be recombined (Figure 3.7 (d)).
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Figure 3.7: Rules extracted from the alignments in Figure 3.6

(a) →

(b) → (c) →

(d) →

The rule extraction processwas restricted to ruleswith horizontally complete
subtrees at the source and target side. Rule extraction with other types of
subtrees was considered out of the scope of the current research.

Figure 3.7 shows the four rules extracted from the alignments in Figure 3.6.
Rules are extracted by passing over the entire aligned treebank, identifying
each aligned node pair and recursively iterating over its children to generate a
substitutable pair of trees whose roots are aligned, and whose leaves are either
terminal leaves in the treebank or correspond to aligned vertices. As shown in
Figure 3.7, when a leaf node corresponds to an alignment point, we retain the
information to identify which target tree leaf aligns with each such source leaf.
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Figure 3.8: An example of a packed forest as output of the transducer for the
Dutch sentenceHet heeft ook een wettelijke reden. Note that ? marks an alternation.

Many such tree substitution rules recur many times in the treebank, and a
count is kept of the number of times each pair appears, resulting in estimates
for a stochastic synchronous tree substitution grammar.

3.6 The transduction process

The transduction process takes an unordered source language parse tree p ∈ T as
input, applies the transduction grammar G and transduces p into an unordered
weighted packed forest, which is a compact representation of a set of target
trees Q ⊂ T , which represent the translation alternatives. An example of a
packed forest is shown in Figure 3.8.

For every node v ∈ V i
p , where V i

p is the set of internal nodes in the input
parse tree p, it is checked whether there is a subtree sv ∈ H with v as its root
node, which matches the source side tree d g of a grammar rule g ∈ G.

To keep computational complexity limited, the subtrees of p that are consid-
ered and the subtrees that occur in the source and target side of the grammar
G have been restricted to horizontally complete subtrees (including bottom-up
subtrees).

When finding a matching grammar rule for which sv = d g , the correspond-
ing eg is inserted into the output forest Q. When not finding a matching gram-
mar rule, a horizontally complete subtree is constructed, as explained in section
3.6.

Theweight that the target side eg of grammar rule g ∈ G will get is calculated
according to a formula that is similar to the approaches of Graham (2010) and
Riezler and Maxwell (2006), as it contains largely the same factors. We multiply
the weight of the grammar rule with the relative frequency of the grammar
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rule over all grammar rules with the same source side. This is divided by an
alignment point penalty favouring the solutions with the fewest alignment
points.

When no translation of a word is found in the transduction grammar, the
label l ∈ L is mapped onto its target language equivalent. Adding a simple
bilingual word form dictionary is optional. When a word translation is not
found in the transduction grammar, the word is looked up in this dictionary. If
the word has multiple translations in the dictionary, each of these translations
receives the same weight and is combined with the translated label (usually
part-of-speech tags). When the word is not in the dictionary or no dictionary is
present, the source word is transfered as is to Q.

Subtree matching

In a first step, the transducer performs bottom-up subtree matching, which is
analogous to the use of phrases in phrase-based SMT, but restricted to lin-
guistically meaningful phrases. Bottom-up subtree matching functions like
a sub-sentential translation memory: every linguistically meaningful phrase
that has been encountered in the data will be considered in the transduction
process, obliterating the distinction between a translation memory, a dictionary
and a parallel corpus (Vandeghinste, 2007).

For every node v ∈ Vp it is checked whether a subtree sv with root node
v is found for which sv ∈ B and for which there is a grammar rule g ∈ G for
which d = sv . These matches include single word translations together with
their parts-of-speech.

A second step consists of performing horizontally complete subtree matching
for those nodes in the source parse tree for which the number of grammar rules
g ∈ G that match is smaller than the beam size b.

For every node v ∈ V i
p the set Hv ⊂ H \ B is generated, which is the set of all

horizontally complete subtrees minus the bottom-up subtrees of p with root
node v. It is checked whether a matching subtree sv ∈ Hv is found for which
there is a grammar rule g ∈ G for which d g = sv .

An example of a grammar rule with horizontally complete subtrees on both
source and target sides was shown in figure 3.5. This rule has 3 alignment
points, as indicated by the indices.
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Figure 3.9: An example of a constructed grammar rule

( → ) + ( → ) = ( →

)

Backing off to constructed horizontally complete subtrees

In cases where no grammar rules are found for which the source side matches
the horizontally complete subtrees at a certain node in the input parse tree,
grammar rules are combined for which, when combined, the source sides form
a horizontally complete subtree. An example of such a constructed grammar
rule is shown in figure 3.9. The newly constructed grammar rule is the union
of the alignments of the grammar rules that are combined in the process.

As the newly constructed grammar rule has an absolute frequency of 0, we
estimate the frequency of occurrence according to formula 3.1.

F( f ) = w(yv)×
F(g)
F(d g)

×
F(h)

F(dh)
(3.1)

where

• f is the newly constructed grammar rule

• g and h are the grammar rules which are combined to form f

• w(yv) =
m
p
∏m

i=1 w(Ag
i ) is the weight of grammar rule g, which is the

geometric mean of the weight of each individual occurence of alignment
A, as produced by tree alignment;

• F(g) is the frequency of occurrence of grammar rule g

• F(d g) is the frequency of occurrence of the source side d g of grammar
rule g

• F(h) is the frequency of occurrence of grammar rule h

• F(dh) is the frequency of occurrence of the source side dh of grammar
rule gh
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Constructing grammar rules leads to overgeneration. As a filter, the target
language probability of such a rule is taken into account. This is explained in
more detail in Vandeghinste et al. (2013).

When constructing a horizontally complete subtree fails, a grammar rule is
constructed by translating each child separately.

3.7 Generation

The main task of the target language generator is to determine word order, as the
packed forest contains unordered trees. An additional task of the target lan-
guage model is to provide additional information concerning lexical selection,
similar to the language model in phrase-based SMT (Koehn, 2010).

The target language generator has been described in detail in (Vandeghin-
ste, 2009), but the system has been generalized and improved and was adapted
to work with weighted packed forests as input.

For every node in the forest, the surface order of its children needs to be
determined. For instance, when translating “een wettelijke reden” into English,
the bag N P〈JJ(legal), DT (a), NN(reason)〉 represents the surface order of all
permutations of these elements.

A large monolingual treebank is searched for an NP with an occurrence
of these three elements, and in what order they occur most, using the relative
frequency of each permutation as a weight. If none of the permutations are
found, the system backs off to a more abstract level, only looking for the bag
N P〈JJ , DT, NN〉 without lexical information, for which there is most likely a
match in the treebank.

When still not finding a match, all permutations are generated with an
equal weight, and a penalty is applied for the distance between the source
language word order and the target language word order to avoid generating
too many solutions with exactly the same weight. This is related to the notion
of distortion in IBM model 3 in Brown et al. (1990).

In the example bag, there are two types of information for each child: the
part-of-speech and the word token, but as already pointed out in section 3.3
dependency information and lemmas are also at our disposal.

All different information sources (token, lemma, part-of-speech, and de-
pendency relation) have been investigated with a back-off from most concrete
(token +lemma + part-of-speech + dependency relation) to most abstract (part-
of-speech).
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The functionality of the generator is similar to the one described in Guo et
al. (2008), but relative frequency of occurrence is used instead of n-grams of
dependencies. As shown in Vandeghinste (2009) this approach outperforms
SRILM 3-gram models (Stolcke, 2002) for word ordering. Velidal and Oepen
(2006) use feature templates for translation candidate reranking, but these can
have a higher depth and complexity than the context-free rules used here.

Large monolingual target language treebanks have been built by using the
target sides of the parallel corpora and adding the British National Corpus
(BNC).11

3.8 Conclusion

We have described the PaCo-MT project, mentioning both the steps involved in
creating a parallel treebank, as well as the implementation of a novel syntax-
based MT system, using the parallel treebanks as a knowledge base. It is in this
context that the research presented in this work took place.

In chapter 8, we present a detailed evaluation of the system. In the next
chapter, we discuss our experiments with the statistical aligner Lingua-Align.

11http://www.natcorp.ox.ac.uk
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Chapter 4
Statistical tree-to-tree alignment

with Lingua-Align

4.1 Introduction

In chapter 2, we have defined a parallel treebank as a collection of sentence
pairs that have been grammatically tagged, syntactically annotated and aligned
on a sub-sentential level. Large parallel treebanks are a valuable resource for
various NLP applications such as machine translation, contrastive linguistics
and corpus-based translation studies. We are interested in the alignment of
non-terminal constituents as a process in the creation of such a resource. In this
chapter, we present the conception, design, implementation and application of
a statistical tree-to-tree aligner which we use to create a series of large parallel
treebanks for use in machine translation. We credit Jörg Tiedemann for the
main implementation, as well as the conceptual andmathematical development
of the system.

The contents of sections 4.2, 4.3 (apart from the list of assumptions), 4.4 and
4.6 have been presented earlier in two papers, Tiedemann and Kotzé (2009a)
and Tiedemann and Kotzé (2009b). We add more detailed explanations, as
well as further examples, inspired by those in Tiedemann (2010). Section 4.5
contains more detailed information on parameters that is also found in the
software documentation. Sections 4.7 and 4.8 are new.
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4.2 Background

A number of state-of-the-art MT systems use phrase-based statistical models,
some incorporating syntactic information. Other more experimental systems
are more heavily syntax-based and depend on parallel treebanks where the
non-terminal constituents are also aligned, such as the PaCo-MT system (Van-
deghinste and Martens, 2010) and Data-Oriented Translation (DOT) based
systems (Poutsma, 2000). In the context of the PaCo-MT project (see chapter
3), we have developed the statistical tree-to-tree aligner Lingua-Align. It is
essentially a toolbox which allows the user to customize it to their needs in
almost every aspect. At the time of its conception, we have realized the need
for an easily customizable tool that can be used for the fast creation of parallel
treebanks on a large scale.

Most existing systems have only been applied in relatively restricted en-
vironments, apart from the Dublin Aligner (Zhechev, 2009). The latter was
designed to be unsupervised and as language independent as possible, only
using the tree structure and existing word alignments for guidance. Although
there is much merit to this approach and the system has been used with some
success, it does not consider some features, such as labeled data, which could
improve its accuracy. The Lingua-Align system, however, offers the possibility
of a potentially greater accuracy that may result from implementing a rich
feature set extracted from training data, as well as full customizability in terms
of parameters and the aforementioned feature set.

4.3 Discriminative tree alignment

For the rest of this chapter, we make the following assumptions:

• Tree alignment is the problem of predicting the optimal set of links be-
tween nodes in the source and target phrase structure trees of an aligned
sentence pair such that translational equivalence is maximized.

• We only make use of phrase-structure trees, as defined in chapter 2. Note
that Lingua-Align can also align the dependency trees produced by the
Alpino parser for Dutch, but links are still between non-terminal con-
stituents referred to by IDs in the XML.

• For every alignment decision, the maximum hypothesis space is restricted
to the sentence pair in question. Depending on the search algorithm,
certain additional restrictions may apply.
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• Predicting a specific alignment depends on the values of a set of features
extracted from the data (see section 4.4). This includes the tree structure,
existing alignments, words, labeled data and contextual data.

Lingua-Align is a statistical aligner that utilizes discriminative modeling,
based on a manually specified set of features extracted from the training data
(see chapter 2). A maximum entropy classifier is used to implement discrimina-
tive modeling in the form of a log-linear model. Using maximum entropy has
the advantage that one does not need to consider the dependencies between
the features in the underlying data structure, even when using a rich feature
set. The log-linear model is learned from training data that is manually con-
structed before training. In short, the task is to predict the likelihood of a link
ai j between two nodes si and t j given the features associated with these nodes.
Depending on a given threshold and this calculated likelihood, the nodes are
either linked or not. We therefore use a binary classification approach. How-
ever, phrase-structure trees are complex structures where alignment decisions
can be influenced by previous decisions and the characteristics of nodes other
than the ones that are currently being considered. It is therefore a structured
prediction problem. In section 4.3, we discuss how Lingua-Align is adapted to
take this into account.

A log-linear link prediction model

Similar to related work on discriminative word alignment (see, for example,
Ker and Chang (1997), Ahrenberg et al. (1998) and Melamed (2000)) we base
our model on features extracted for each possible alignment candidate. For tree
alignment, each pair of nodes 〈si , t j〉 from the source and the target language
parse tree is considered and a score x i j is computed that represents the degree
to which both nodes should be aligned according to their features fk(si , t j , ai j),
where ai j denotes the alignment between si and t j , and corresponding weights
λk derived from training data. For the score we calculate a pre-determined
probability threshold, which can be manually set and functions as the cutoff
point at which to decide whether or not to align the nodes.

In our approach we use conditional likelihood using a log-linear model for
estimating the probability of a link:

P(ai j |si , t j) =
1

Z(si , t j)
ex p

 

∑

k

λk fk(si , t j , ai j)

!
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where Z is a normalization value such that P constitute a proper probability
distribution. Here, the mapping of data points to features is user provided (see
section 4.4) and the corresponding weights are learned from aligned training
data. As mentioned earlier, we simplify the problem by predicting individ-
ual alignment points for each candidate pair instead of aiming at structured
approaches. Hence, we can train our conditional model as a standard binary
classification problem.

In our experiments we use a standard maximum entropy classifier using
the log-linear model as stated above. Moreover, state-of-the art toolboxes are
available with efficient learning strategies. In this work, we apply the freely
available toolboxMegam (Daumé, 2004), short for “MEGAModel Optimization
Package”, which has a very efficient training procedure and for which the
author reports good benchmark scores on its website.1

Structured prediction

Tree alignment is a typical structured prediction problem. This means that
this is a problem where we attempt to predict the values of multiple variables
where there are constraints or dependencies among them. This is clear from the
fact that link decisions influence each other. For example, the well-formedness
principle (see below) implies that if two nodes are linked, their children must be
somehow equivalent to each other, increasing their chances to be linked as well.
Whether or not parents or children - or even grandparents and grandchildren
- are linked are often valuable cues in deciding whether or not the currently
inspected node pair should be linked as well.

Because of this, treating links in isolation as outlined above causes a lot of
errors due to the dependencies between link decisions. Therefore, applying a
binary classifier alone and linking according to the individual decisions is not a
good idea. However, building a discriminative predictor for the entire structure
is not feasible due to the sparsity of the data, since most tree structures are
complicated structures with features that are often unique.

In our implementation, we opt for a recurrent architecture (Dietterich, 2002)
using history-based features and a sequential classification process. Both a
top-down and a bottom-up link classification procedure can be used.

The idea behind this strategy is simple: previous decisions of the global
classifier are used as input features for current decisions. Training is simple, as
link decisions are readily available and the classifier can learn directly using

1http://www.cs.utah.edu/
e

hal/megam/
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those features. In classification, we have to use a sequential setup in order to
obtain history features. In the bottom-up strategy we start with predicting links
for leaf nodes moving up towards the tree root. Here, we assign history features
to be taken from the child nodes. Conversely, using a top-down strategy, history
features are taken from the parent nodes.

Lingua-Align offers anotherway of incorporating structural dependencies in
prediction, namely to use a simple greedy alignment strategy. In tree alignment,
it is common to restrict the process to one link per node. This allows us to define
a greedy best-first alignment strategy to account for competition between link
candidates (Melamed, 2001). Further constraints can be applied to guide the
alignment even further.

Additionally, certain well-formedness constraints as proposed by Hearne et
al. (2007) can be used to guide the alignment:

• A node in a tree may only be linked once.

• Descendants of a source-linked node may only be linked to descendants
of its linked node on the target side and vice versa (target to source).

• Similarly, ancestors of a source-linked node may only be linked to ances-
tors of its linked node on the target side and vice versa (target to source).2

Our implementation allows for both the well-formedness constraints and
the greedy best-first strategy to be applied. However, we do not enforce the
one-to-one restriction among word alignments, since in the context of MT, it has
generally been found to be too restrictive (see, for example, Tiedemann (2004)).
In addition, we also introduce a constraint to restrict alignments in such a way
that non-terminal nodes are aligned to non-terminal nodes and terminal nodes
to terminal nodes only. This reduces the hypothesis space significantly and
seems to be sufficient to represent translational equivalence.

Tiedemann (2010) describes in more detail how different alignment strate-
gies can be combined. For example, one can apply directional alignment strate-
gies similar to those used in word alignment (source to target or target to
source) and use symmetrization heuristics such as calculating their intersection.
Alignment can be split into steps such as doing either word or non-terminal
alignment first and the other second, and/or removing links not conforming to
well-formedness at either step.

2As mentioned in chapter 2, one side is often called the source side and the other the target
side, even if eventual translation from the former to the latter is not the end application one has in
mind.
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Figure 4.1: Example tree alignment from a Dutch to English aligned version of
Europarl, including word alignments produced by both the source-to-target
and target-to-source phase of the GIZA++ word alignment phases, as indicated
by the arrows. Dutch is the source and English the target side. The thick solid
line links the roots of the subtrees implying equivalence. Note that no nodes
dominated by the two roots are linked to nodes with different ancestors (i.e. in
other trees), making this tree pair well-formed with respect to their links.

4.4 Alignment features

Figure 4.1 is a simplified example of the alignment of a well-formed tree pair
from the Europarl parallel corpus (Koehn, 2005). We will use this example to
illustrate some feature descriptions.

Lexical equivalence features

For use in the Dublin Aligner, Zhechev and Way (2008) introduce lexical proba-
bilities to be used in unsupervised tree alignment, taken fromGIZA++ probabil-
ity tables. They are combined into an alignment score γwhich is composed out
of so-called inside scores (α(sl |t l), α(t l |sl), ) and outside scores (α(sl |t l), α(t l |sl)).
Inside scores refer to scores derived from word alignment probabilities of the
words dominated by the currently inspected non-terminals, and outside scores
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refer to those that are derived from probabilities from words that are not domi-
nated by these constituents. In Zhechev (2009), two main formulae are given
for the calculation of these scores. In the first, for each source-side word, the
target side word alignment probabilities are summed, after which the sums are
multiplied with each other:

α(y|x) =
|x |
∏

i

|y|
∑

j

P(y j |x i)

Since it was found by Zhechev (2009) that the formula had some drawbacks,
such as a bias towards short strings, in his work a second normalized formula
was introduced, where the averages of the sums were multiplied instead:

α(y|x) =
|y|
∏

j

∑|x |
i P(y j |x i)

|x |

With Lingua-Align, use of both of these features is possible, as well as
versionswhere null links are not considered, which speeds up feature extraction.
We also introduce two new variants of the above formula which are slightly
modified. For the first one, we select the maximum lexical score for each token
instead of taking the sum or average of all possible word connections:

α(x |y) =
|x |
∏

i=1

max j P(x i |y j)

In our experiments this modification gave us a better performance. The main
motivation for this is the idea that it is more important for words to be strongly
aligned to exactly one other word instead of having many weaker alignments.
The latter is often the result of having function words that can be aligned
to almost anything, and therefore is not necessarily a strong indication of
equivalence. In other words, a few strong links might be more important than
a lot of weaker links.

Finally, we also introduce a version where we compute the average of the
maximum scores instead of their product:

α(x |y) =

∑|x |
i=1

|x |
max j P(x i |y j)
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Word alignment features

Other features can be derived directly from existing word alignments. We
define a feature measuring the proportion of consistent links among all relevant
links lx y involving either source sx or target language words t y dominated by
the current tree nodes (si and t j). Denoting dominance as sx ≥ si , this feature is
defined as follows:

crat io(si , t j) =
∑

Lx y

consistent(Lx y , si , t j)/
∑

lx y

relevant(lx y , si , t j)

consistent(Lx y , si , t j) =
�

1 if sx ≥ si ∧ t y ≥ t j

0 otherwise

relevant(Lx y , si , t j) =
�

1 if sx ≥ si ∨ t y ≥ t j

0 otherwise

where crat io denote the proportion (ratio) of consistent links - links shared by
both subtrees - among all relevant links - links shared by at least one subtree -
as described above.

One may apply the Viterbi word alignments produced by GIZA++ (Och and
Ney, 2003) using the IBM 4model in both directions, as well as the symmetrized
versions produced by Moses (Koehn et al., 2007), i.e. the union of these links
and their intersection. These four scores can also be used as features by Lingua-
Align. Consider the following example which displays the GIZA++ alignments
for both directions of the phrase pair displayed in figure 4.1:

zoals gezegd ,
NULL ({ }) as ({ 1 }) has ({ 2 }) been ({ }) mentioned
({ 2 })

as has been mentioned
NULL ({ }) zoals ({ 1 }) gezegd ({ 2 3 4 }) , ({ })

Each word has a number associated with its position. The first word is
at position 1, where a reserved null element is at position 0. The first two
lines display the alignments made in the source-to-target phase, whereas the
next two lines display the alignments made in the target-to-source phase. For
example, the target word as is linked to the first source word zoals, and the
source word gezegd is simultaneously linked to the 2nd and 4th words has and
mentioned on the target side. However, note that these links were made in the
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source target GIZAsrc2trg GIZAtrg2src

CP0 SBAR0 1 1
CP0 S1 2/3 1
CP0 VP2 2/3 1
CP0 VP3 1/3 1
CP0 VP4 1/3 null

Table 4.1: Example of word alignment consistency scores derived from GIZA++

source-to-target phase - in the target-to-source phase, been has also been linked
to gezegd. The comma remains unlinked in both directions.

If we now apply the formula to the trees, we obtain the results presented in
table 4.1. Note that we present the union of the GIZA++ alignments which may
or may not reflect the final result depending on post-processing using Moses
heuristics (see chapter 2 for more information).

We present the following example for clarification: CP0 dominates thewords
Zoals gezegd , and VP2 dominates has been mentioned. To calculate the source
to target score, we note that there are three links that have been made in the
source to target phase. Only two of them are between words that are dominated
by both constituents, namely the links pointing to has and mentioned. Therefore,
the source-to-target score is 2/3.

In the target-to-source phase, one link have been assigned, namely the one
linking been to gezegd. This link is dominated by both constituents, therefore
the target-to-source score is 1.

We can also combine the above GIZA++ scores and measure the union
without taking direction into account. In that case, we simply look whether or
not such a link is between terminal nodes dominated by both trees or just one.

Similarly, we can use the output of the Moses heuristics which can involve
the union, intersect or other refinements to produce the final word alignments,
and calculate the proportions as described above.

Finally, we define anotherword alignment feature for pairs of terminal nodes.
It is simply a binary feature being set to one if and only if both nodes are linked
in the underlying word alignment. This is useful if terminal node alignment is
included in the tree alignment model as it is in our initial experiments.
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Tree features

Next, we introduce a number of features that are independent of external tools
and resources. Using the relative position of each node in the parse tree we
define two features: tree-level similarity (t ls) and tree span similarity (tss). For
the former we use the distance to the root node (d(si , sroot) resp. d(t i , t root)) and
normalize this distance with respect to the size of the tree (maximum distance
between any node and the root node). For the latter we compute the relative
“horizontal” position of a node based on the span of the entire subtree which is
rooted in that node. This position is then normalized by the length (number
of leaf nodes) of the sentence. Furthermore, we define a leafratio feature to
measure the difference in subtree spans.

We formulate the tree level similarity as follows:

t ls(si , t j) = 1− abs
�

d(si , sroot)
max x d(sx , sroot)

−
d(t i , t root)

max x d(t x , t root)

�

where d(si , sroot) and d(t i , t root) denote the distances of the current source and target
nodes to the roots of the respective sentences, and max x d(sx , sroot) and max x d(t x , t root)
denote the maximum distance from any terminal to these respective roots. Therefore,
we obtain a normalized distance measure for both nodes, and subtract them from each
other to obtain a measure of their difference. Finally, we subtract this score from 1 in
order to obtain a tree level similarity measure of the two non-terminals in question,
where 1 is the most and 0 the least similar.

The tree span similarity is formulated as follows:

tss(si , t j) = 1− abs
�

sstar t+send

2 ∗ (leng th(S)− 1)
−

tstar t+tend

2 ∗ (leng th(T )− 1)

�

where S and T are the entire sentences in which si and t j occur, respectively. sstar t and
send denote the starting and end position - in other words, the spans - of the terminals
that are dominated by si , and similarly for tstar t and tend in terms of t j . To compare these
spans to each other, we can look at their middle points - this is achieved by summing
the start and end points and dividing by 2. For each side, this is then normalized by
dividing the latter by the total length of the respective sentences. We subtract 1 from
the length since we assume that the start of the sentence is at position 0.

Finally, we present the formulation of the leaf ratio score as follows:

leafratio(si , t j) =
min(|lea f nodes(si)|, |lea f nodes(t j)|)
max(|lea f nodes(si)|, |lea f nodes(t j)|)
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source target tree-span tree-level leaf-ratio
CP0 SBAR0 1 1 3/4
CP0 S1 5/6 4/5 1
CP0 VP2 5/6 3/5 1
CP0 VP3 2/3 2/5 2/3
CP0 VP4 1/2 1/5 1/3

Table 4.2: Example of tree feature scores

This is simply the proportion of the number of leaves (terminal nodes)
between those that are dominated by si and those that are dominated by t j . For
example, if si has 3 leaves and t j has 4, the leaf ratio score is 3/4.

Similar to Table 4.1, we display the scores obtained when applying the
formulas pertaining to the tree features to our example trees in table 4.2.

Finally, we also define features derived from the syntactic annotation. In-
tuitively, category labels (for non-terminal nodes) and part-of-speech labels
should be valuable indicators for a possible link. For example, it is conceivable
that an NP is more likely to be linked to another NP, as opposed to a VP. These
features are simply binary features which are set to one if the particular label
combination is present and zero otherwise. In the case of a linked NP pair, for
example, we can write it as a function:

f (N P, N P) = 1

and similary, for the same pair:

f (N P, V P) = 0

Edges connecting nodes may also be labeled in order to indicate various
dependencies or underlying syntactic structures. We introduce a similar feature
as above, where a specific combination of edge labels between the current
constituents and their immediate parents is assigned the value 1, and 0 if they
do not exist.

Contextual features

So far we only considered features directly attached to the candidate nodes.
However, tree nodes are connected with other nodes in the tree structure and
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their alignment may as well depend on features of neighboring nodes. There-
fore, features from surrounding nodes should be considered as well. Using the
tree structure we can extract the same features as described above from other
nodes connected to candidate nodes. For this we define the following functions
that can be used to move within the tree when extracting features: parent -
move to the immediate parent and take the feature values from this node; child
- compute the average feature value for all child nodes; sister - compute the
average feature value for all nodes with the same parent node. These functions
can be applied recursively. For example, applying parent twice will force the
feature extraction process to move to the grand-parent node (if this node exists).
Additionally, one can be more specific with the neighbor feature, for which one
can specify a specific sister on both the left and right hand side and specifying
the horizontal distance from the current node. Note that these functions can be
applied to either the source or target language tree or both.

In this waywe havemany possibilities to explore contextual features. Proper
feature engineering is necessary to define useful templates.

Link dependency features

Here we refer to history features mentioned earlier in our discussion on struc-
tural prediction. For bottom-up classification, the following two variants are
defined in our implementation:

• The children_links feature is the number of links between child nodes of
the current node pair normalized by the maximum of the number of
source language children and the number of target language children. In
other words, we introduce the relative number of links between terminals
dominated by the source and target side non-terminals as a discriminating
feature.

• Similarly, the subtree_links feature is the number of links between nodes
in each entire subtree dominated by the current nodes. This score is then
normalized by the larger number of nodes in either the source subtree or
the target subtree.

In classification, only the prediction likelihood is used for estimating these
feature values. In other words, we use soft counts instead of counting actual
links. Hence, classification can be done in a bottom-up fashion before applying
the greedy best-first search in the final step.
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Complex features

Some features may be correlated in a non-linear way. To account for those it is
possible to create complex features. Any of the features above can be combined
in such a way that they form a new feature function with their values combined.
Possible combinations are:

• product (*): This multiplies the value of 2 or more feature types. For exam-
ple, inside2*outside2would refer to the product of the inside normalized
lexical equivalence scores with the outside ones.

• average (+): As above, but calculating the average (arithmetic mean)
instead of the product.

• concatenation (.): Here, we merge 2 or more feature keys and compute
the average of their scores. The idea is that for binary feature types such
as POS tags (1 or 0), as opposed to real-valued feature types such as
inside or outside, it might make more intuitive sense to call it concatena-
tion. For example, catpos.edge concatenates the keys of the first labeled
feature involving POS tags or category labels with the keys of the labeled
edge feature (which is also binary) and computes the arithmetic mean of
both scores. We effectively treat the binary-valued features here not as
categorical, but rather as numerical.

Implementing complex features gives us a combinatorial explosion of possi-
ble features and careful feature engineering is again necessary to select valuable
ones. Furthermore, complex features are evenmore exposed to sparseness prob-
lems. Nevertheless, various combinations lead to significant improvements in
our experiments as we will see in our experiments.

4.5 Parameters

Apart from using various combinations of features as described above, some
parameters can also be set in both the training and testing phase. Apart from
those which specify the actual features, the specific files or directories and how
many sentences are to be used in training and testing, the following are also
possible:

• type of input alignment file: Currently, the options are sta (Stockholm
TreeAligner format) and opus (CES XML format as it is used in the OPUS
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corpus (Tiedemann, 2003)). The Stockholm TreeAligner is a manual
viewer and editor of parallel treebanks in TIGER-XML format, which
we used to build all our training data.

• type of output alignment file: Currently, the options are sta and dublin
(format used in the Dublin tree aligner).

• type of treebank file: The currently supported types are TIGER-XML,
Alpino-XML, Penn Treebank style (brackets with dependencies) and the
type used by the Berkeley format (only brackets).

• swop alignment direction when reading the parallel treebank

• also align index nodes as used in Alpino-XML

• type of classifier: Currently, the options are megam, as mentioned above,
and clue, which, as the documentation states, refers to a noisy-or like
classifier with independent precision-weighted features. This requires
probabilistic values for each feature and supports only positive features.

• switching on the linked children and/or the linked subtree nodes features
(see section 4.4)

• using a specified number of iterations for adaptive SEARN (Search and
Learn) style learning. This is a technique introduced by Daumé III (2006)
in order to deal with the so-called label bias problem, discussed by Van
den Bosch (1997). In our experiments, we have not yet experienced signif-
icant improvements by using this option. The current implementation is
quite slow as well, although this might be improved in the future.

• aligning terminal nodes only, or non-terminal nodes only

• specifying training weights for good, fuzzy or negative examples (non-
aligned nodes)

• keeping the extracted feature file which is created during training and
usually removed afterwards

• specifying the score threshold above which an alignment is made

• specifying the alignment strategy. Currently, the options are inference,
which refers to a two-step procedure with local classification in the first
step and alignment inference in the second (see below); and bottom-up,
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where we align in a greedy bottom-up fashion starting at the terminal
node level and going up to the root nodes. It is greedy in the sense that
nodes are linked immediately when the classification score improves
upon the set threshold, after which aligned nodes are removed from the
search space.

• specifying add-links mode. In this mode, already existing links will be kept
in the output file and may not be removed.

• specifying that we now use the scores of existing links which will compete
with the new links. This also implies that existing links may disappear to
conform to well-formedness.

4.6 First experiments

During the development of Lingua-Align we used the SMULTRON treebank
(Gustafson-Čapková et al., 2007) for evaluating the aligner’s performance with
various strategies and feature sets. SMULTRON includes two trilingual parallel
treebanks in English, Swedish and German. The corpus contains the alignment
of English-Swedish and German-Swedish phrase structure trees from the first
two chapters of the novel “Sophie’s World” by Jostein Gaarder and from eco-
nomical texts taken from three different sources. The alignment has been done
manually using the Stockholm Tree Aligner (Lundborg et al., 2007).

The alignment includes so-called good and fuzzy links, which refer to con-
fident and less confident links respectively. We will use both but give them
different weights in training: Good alignments get three times the weight of
fuzzy and negative examples (good: 3, fuzzy: 1, negative: 1). Negative ex-
amples are instances of node pairs which are not linked, the feature values of
which are also extracted for learning in the training phase.

We mainly worked with the English-Swedish treebank of Sophie’s World
which includes just over 500 sentences per language (528 for English and 536 for
Swedish, including 6,671 good links and 1,141 fuzzy links). In our experiments
we used the first 100 aligned parse trees for training and the remaining 418
sentence pairs for testing, in order to obtain more reliable results. Later on, we
also present the results of a training curve, where more training data was used.

For evaluationwe use the standardmeasures of precision, recall and F-scores
as they are used in word alignment evaluation. Due to the distinction between
good and fuzzy alignments we compute values similar to word alignment
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evaluation scores in which sure (good) and possible (both good and fuzzy) links
are considered:

Precision(A, P) =
|P ∩ A|
|A|

Recal l(A, S) =
|S ∩ A|
|S|

F =
2 ∗ Precision ∗ Recal l

P recision+ Recal l

S refers here to the good alignments in the gold standard and P refers to the
possible alignments which includes both, good and fuzzy. A are the links
proposed by the system. We will only use a balanced F-score with α= 0.5. We
also omit alignment error rates due to the discussion about this measure in the
word alignment literature (Fraser and Marcu, 2007). Note that the proportion
of fuzzy links is reasonable and we do not expect severe consequences on
our evaluation as discussed in Fraser and Marcu (2007) for word alignment
experiments with more unbalanced gold standards.

The upper part of table 4.3 summarizes the results for different feature sets
when running the aligner on our development corpus. We also trained the
Dublin aligner (Zhechev and Way, 2008) on the same data and include the
results as a baseline.

Settings Precision Recall Fα=0.5

Dublin aligner 57.15 55.66 57.57
lexical features 59.76 41.81 49.20
+ tree features 49.40 57.25 53.03
+ alignment features 57.18 60.58 58.83
+ label features 77.17 76.10 76.63
+ align-context features 78.12 78.42 78.27
train=novel, test=economy 77.39 73.50 75.39
train=economy, test=novel 76.66 74.62 75.62

Table 4.3: Results for different feature sets (top) and textual domains (bottom),
using the results of the Dublin aligner as a baseline.

The alignment results are very promising. We can see that adding features con-
sistently helps to improve the performance. The advantage of a discriminative
approach with a rich feature set can be seen when comparing our results with
the performance of an unsupervised tree aligner. Running the Dublin aligner
on the same data set yields a balanced F-score of 57.57%. The low score is
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most probably due to the sparse amount of training data for estimating lexical
probabilities, on which the Dublin aligner relies much more than Lingua-Align.
Therefore, we proceeded to train a new word alignment model based on both
the SMULTRON data and a sentence aligned version of the Europarl 3 parallel
corpus. However, the performance improves only slightly to about 58.64%.3
This is probably the effect of using data from a very different domain.

We can see that the additional features and the optimization of their contribu-
tions through machine learning has a strong positive effect on the performance,
to such a degree that using only 100 sentence pairs already results in F-scores
of close to 80. We speculate that much of this is thanks to the existence of good
word alignments - one of the most important features as shown in later chap-
ters - which serve to disambiguate many candidates, as subtrees sharing word
alignments tend to be equivalent. Applying the well-formedness constraint
filters out more candidates, increasing precision. Other features such as relative
subtree sizes and label pairs also seem to be very telling.

A drawback of supervised techniques is that we have to drop the generality
of the unsupervised approach and require aligned training data to build lan-
guage pair specific models. Furthermore, there is a risk of overfitting. In order
to test the flexibility of our approach we ran several cross-domain experiments
using the two domains present in the SMULTRON treebank. The results are
presented in the lower part of table 4.3.

As we can see, there is only a slight drop in performance when training on
a different textual domain. However, we still have reasonably high accuracy
which is certainly encouraging, especially considering the relatively little effort
of human annotation necessary when preparing appropriate training data.

Finally, we also looked at the training curves with varying amounts of
training data. For this we used about a third of the corpus (2667 links) for
testing and trained on parts of the remaining data. Figure 4.2 shows the impact
of training size on F-scores for three feature settings.

We can clearly see that the aligner yields a high performance already with
little amounts of training data. The training curve already levels out at training
sizes way below 100 sentence pairs. This is especially apparent for the settings
that include word alignment features. Their values bear a lot of positive link
evidence on their own and corresponding weights do not need to be adjusted
very much. Other features such as the binary label-pairs require larger amounts

3Suprisingly, this is significantly better than our discriminative approach when using the
same lexical features only (inside/outside scores) which is probably due to the alignment search
optimization in the subtree aligner.
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Figure 4.2: Training curve for various amounts of training data from the SMUL-
TRON parallel treebank.
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of training examples. However, the alignment performance does not seem to
improve significantly after about 128 sentence pairs, even when those features
are included (see, for example, “no wordalign features” in figure 4.2).

4.7 Experiments for PaCo-MT

The development of Lingua-Align took place in the context of the PaCo-MT
project, which is described in detail in chapter 3. Because of its promising
results as described in the previous section, we decided to align a selection
of parallel treebanks manually in order to train an alignment model. This we
used to construct aligned parallel treebanks on a large scale for training the MT
system.

Our data source is a large selection of multilingual corpora from various
domains. In order to construct this training data, the data have to be cleaned,
sentence aligned, tokenized, word aligned and parsed. The word alignments
were a combination of the intersection of the source-to-target and target-to-
source GIZA++ alignments (confident alignments) as well as the output of the
grow-diag heuristic (less confident alignments, see chapter 3).

72



Data set Word al. Sent. pairs Precision Recall F-score

Dutch to English auto 140 78.3 68.3 76.3
Dutch to English manual 140 78.9 68 75.9
English to Dutch manual 150 74.4 72.9 75.5
Dutch to French auto 158 66.1 67.6 67
French to Dutch auto 158 68 70.5 69.4

Table 4.4: Ten-fold cross validation scores of the training data sets used in
the PaCo-MT project. The entries under Word al. (word alignment) refers
to whether or not the word alignments of that particular data set have been
manually corrected. Sent. pairs refers to the number of sentence pairs.

The languages involved were Dutch/English, and Dutch/French. A sep-
arate translation model is built for each direction. Therefore, we needed to
construct four sets of parallel treebanks. For constructing the manual align-
ments, we utilized the Stockholm TreeAligner (Lundborg et al., 2007). After the
abovementioned pre-processing, a selection of sentence pairs was chosen and
manually aligned. For the initial experiments in PaCo-MT using Dutch and
English, we also corrected word alignments. In the latter part of the project
where we also applied rules and constructed new data sets, we did not change
the automatic word alignments, as we believed it better to simulate the input
conditions as much as possible, while word alignments are quite accurate any-
way. In addition, manual word alignment is also very time consuming. The
word alignments of the Dutch/French sets were not corrected.

For inclusion, sentences had to be correctly sentence aligned. Some of
the parse trees were quite different from each other, restricting the number
of alignments that could be made between the constituents. We decided to
include these as well, since they provide valuable evidence in terms of negative
alignment examples for the training phase. All of our data were extracted from
the Europarl corpus.

Eventually, we constructed four different models for each of the language
directions. Table 4.4 displays the resulting scores after applying ten-fold cross
validation to each data set, training on 90% and testing on 10% of the data.
Note that the number of sentence pairs differs because of the fact that some of
them were discarded because of the occurrence of sentences that are wrongly
aligned, or too short, or duplicated elsewhere, and so on. We did not manage
to recover the English-to-Dutch set containing the automatic word alignments.
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Data set Word al. Linked/unlinked T Linked/unlinked NT

DUT/ENG auto 0.73 0.51
DUT/ENG manual 0.8 0.51
ENG/DUT manual 0.82 0.48
DUT/FRE auto 0.82 0.41
FRE/DUT auto 0.82 0.41

Table 4.5: Ratios of linked terminal vs. total terminal count (T) and similarly
for non-terminals (NT) for all training data sets used in PaCo-MT.

It is clear from the table that Dutch/English models fared reasonably well.
On the other hand, French models did significantly worse, even after extensive
feature engineering. One possible explanation that we have proposed for this
is that the French trees do not contain as much labeled data as the English trees,
where the latter also contained edge labels denoting grammatical functions
such as subject and object. However, in our experiments, the edge feature did
not make that much of a difference in evaluation output. Rather, we have noted
that there were relatively many unalignable nodes during the construction of
the training data because of differences in tree structure. Most probably, we
needed more training data to learn more reliable feature values from positive
examples.

Table 4.5 illustrates this problem more clearly by displaying the ratios be-
tween linked nodes and unlinked nodes for the PaCo-MT training data sets, di-
vided between terminals and non-terminals. The high ratio between linked and
unlinked terminals for all sets is a clear indication of the high recall approach.
However, the non-terminal ratios of the Dutch/French sets are noticeably lower.
Note that we have actually used the same sentence pairs for both directions
(Dutch to French and French to Dutch) but they are still word aligned differently
due to the asymmetric directional approach of GIZA++.

In the latter stages of the PaCo-MT project, we constructed more training
data for various other experiments. They are described in more detail in chap-
ters 6 and 7. There were also a number of stages in the project during which
important changes were made to the system and different alignment sets were
constructed. This is discussed in detail in chapter 3.
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4.8 Error analysis

Here we present a few examples of errors in the output of the Lingua-Align
models for PaCo-MT. Although a clear error analysis of the output of statistical
systems is often quite difficult, we believe that some insight can still be gleaned
in view of the features and parameters that we have specified in the training
phase.

Since the models are trained on Europarl data, we are more interested in the
output from other domains, since our experiments in section 4.6 suggest that
they are likely to have more errors. We think that our first example in figure 4.3,
taken from the Dutch to English DGT translation memory corpus, illustrates
the recall problem as well as the problem with using strict well-formedness as
a constraint. The full sentence pair is:

• Iedere tweewielige motorfiets mag bovendien zijn voorzien van de vol-
gende verlichtings- en lichtsignaalinrichtingen:

• In addition all two-wheel motorcycles may be fitted with the following
lighting and light-signalling devices:

The following problems are apparent:

• TheNP containing theword lichtsignaalinrichtingen should be alignedwith
the NP dominating the words light-signalling devices:. Technically they are
not the same because of the existence of the colon on the English side. This
seems quite unusual, but punctuation is in fact systematically attached to
lower trees in the version of the Stanford parser that we have used. In a
high-recall approach where punctuation is handled in a separate step or
ignored such as with PaCo-MT, aligning such trees would be desirable.
Currently, Lingua-Align only sees a good word alignment that links a
dominated token (English colon) with a Dutch token that does not have
the other NP as an ancestor. The trees are therefore not well-formed so
they are not linked.

• Similarly, the parents of the two NPs just mentioned should have been
linked as well. Almost every descendent on both sides is linked confi-
dently but the existence of the outgoing link from the colon violates the
well-formedness constraint.

• Once again, the next parent pair (two PPs) should have been linked. In
this case, there is also a fuzzy link aligning voorzien with with. Since
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Figure 4.3: An example of false negatives in Lingua-Align output containing
Dutch to English alignments. The Dutch colon, as well as the words voorzien
and fitted, are linked to higher up constituents that are not displayed in this
figure.

voorzien is not a descendant of the Dutch PP, the existence of this link also
violates the well-formedness constraint.

Eventually, many good alignments are thrown out in this way, driving the
recall score down. It is possible to set a parameter so that Lingua-Align ignores
the well-formedness constraints after all good well-formed candidates have
been linked. However, in our experience this has not led to better evaluation
scores. It does seem reasonable to allow certain cases of non-wellformedness but
not others, for example in cases like in the figure, or where only fuzzy links are
concerned, or only a certain number of violating links. This is certainly possible
to implement in Lingua-Align as features but has not yet been done. Our rule-
based experiments in chapter 6 suggest that such distinctions carry some merit.
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We also apply them as features in our transformation-based learning system
described in chapter 7.

Using Lingua-Align, one can also allow the removal of alignments between
words that lead to non-wellformedness between candidate subtree pairs in the
alignment phase, depending on the linking strategy. However, we believe that
in the context of a high-recall alignment approach, although not proven, this
may detract from the ultimate goal of better MT quality.

An example from computer manual data in the French to Dutch parallel
corpora shows an instance of a false positive (figure 4.4) with two other false
negatives. The full sentences are:

• Cliquer sur un item dans cette application affiche alors une fenêtre d’aide
(si celle-ci existe pour cet item particulier), expliquant la fonction de
l’élément en question.

• Het klikken op items in dit programma zal een helpvenster openen (als er
een bestaat voor dit specifieke item) met een omschrijving van de functie
van dit item.

A possible English translation would be:

Clicking on items in this application will open a help window (if one
exists for the particular item) explaining the function of this item.

In the figure, the NP dominating the phrase la fonction de l’élément en question
(the function of this item) is erroneously linked to the NP dominating the phrase
een omschrijving van de functie van dit item (literally: a description of the function
of this item). Instead, the French NP should be linked to the NP dominating de
functie van dit item (the function of this item).

So what went wrong? First of all, there are some false negatives among the
word alignments as well. The French verb expliquant should be linked to the
noun omschrijving, which is the closest equivalent, with possible fuzzy links
to met, een and van. If this were the case, the NPs in question would almost
certainly not have been linked, since expliquant does not have the NP as an
ancestor and therefore the linked subtrees would not have been well-formed.

Secondly, note that the spans of the incorrectly linked subtrees are very
similar, both with regard to each other (eight leaves each) as well as with regard
to the whole sentence (both ending one position before the final sentence token).
On the other hand, the spans of the correct subtrees are less similar (eight leaves
versus five leaves). This span difference is partly due to the French en question
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Figure 4.4: An examples of both false and positive negatives in Lingua-Align
output containing French to Dutch alignments. Both periods are connected
to higher up constituents which are not shown in this figure. Solid word
alignments are good and dashed ones are fuzzy. The dashed non-terminal
alignments indicate false negatives (should have been aligned) and the solid
curve connecting the two NPs is a false positive.
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(in question) which is not explicitly present on the Dutch side. It seems that
this feature must have played a more important role than, for example, the leaf
ratio, which has a higher score when applied to the leaves dominated by the
correct subtree pair.

Having somehow missed the lower Dutch NP (de functie van dit item) as the
best target side candidate, the classifier seems to have proceeded, with a lack of
proper word alignment evidence, to utilize structural features such as the tree
spans and labeled data (choosing the French NP over, for example, the VPpart)
to guess the most likely choice which in this case, proved to be wrong.

Since expliquant is roughly equivalent towhich describes, which can be roughly
translated to with a description of, which is the literal translation for the Dutch
met een omschrijving van, aligning the French VPpart to the Dutch PP seems
quite reasonable. However, here these nodes stay unaligned.

It is also apparent how many non-terminal nodes cannot be linked. The
phrase l’élément en question can be aligned to dit item, but there is no subtree
root governing this specific French phrase. The case is similar with de l’élément
en question which is translatable to van dit item. The Dutch NP dominating een
omschrijving van de functie van dit item has also no equivalent. In our experience,
the lack of convergence was very apparent while building our training data,
which is exemplified by the previously discussed Table 4.5.

The most obvious solution to these problems is to include more training
data. In the case of Dutch to English, we have constructed a larger Europarl
data set for the experiments described in chapters 6 and 7. Indeed, F-scores
generally increase in this case. However, while precision can be very high, recall
tends to stay low. We believe that this is mainly because of the well-formedness
restriction. As mentioned before, we discuss how we go about this problem
while describing our rule-based experiments in chapter 6. In both our examples
it was apparent how even slightly wrong word alignments can lead to wrong
alignment decisions on the constituent level as well. We believe that relaxing
well-formedness requirements would alleviate this problem at least to some
degree.

Related to the last point, different word alignment strategies might also
prove effective. We have not yet had the opportunity to experiment with other
strategies or systems. However, it does remain important to use asmuch parallel
data as possible and also make sure that the data is properly preprocessed.
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4.9 Conclusion

We have presented a discriminative tree aligner that can be trained on small
amounts of hand-aligned training data using a rich feature set. With this tool we
achieve satisfying results for the problem of tree-to-tree alignment that can be
used to align parallel treebanks on a larger scale. However, it was apparent that
the strength of alignment is sensitive to both the quality of word alignment and
to how convergent the source and target trees are. Convergence was especially
a problem for the alignment of Dutch/French data.

For a more in-depth error analysis, a quantitative study is needed. In this
regard, we present a statistical study in the next chapter on the impact of various
different features on alignment performance.
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Chapter 5
A statistical study on the impact of
different features on tree alignment

performance in Lingua-Align

5.1 Introduction

In the previous chapter, we have introduced Lingua-Align, a supervised statis-
tical tree-to-tree aligner implementing log-linear models. As part of our error
analysis, we seek to better understand the role that different features play in
eventual alignment performance. To achieve this, we extract various feature
values from an alignment data set and conduct a multiple regression analysis
by fitting a linear model showing which features have the strongest and most
significant influence on F-scores. Other than with Lingua-Align, where the
features are extracted with respect to a specific node pair, we are interested in
the effect of global features on alignment performance, such as the ratios of
sentence lengths, the number of good or fuzzy links, the ratio of good against
fuzzy links for terminals and non-terminals, differences in the depths of trees,
et cetera. This enables us to draw more general conclusions about the effects of
alignment strategies, tree structures, node counts, and so on.

In the next section, we present the experimental setup. After that, in section
5.3, we present and discuss our statistical data. Finally, in section 5.4, we present
our conclusion.
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Precision Recall F-score (all) F-score (recall_good)

78.63 68.94 73.43 76.46

Table 5.1: Average precision, recall and both types of balanced F-score of the
results of the ten-fold cross validation performed on the Dutch-to-English
alignment set.

5.2 Approach

As mentioned in the previous chapter, testing the tree aligner requires a data
set consisting of sentence pairs that are translationally equivalent, syntactically
parsed and that are also word aligned. In this work, we mostly focus on improv-
ing our Dutch to English parallel data. For this study, we use the same selection
of 140 Dutch-to-English sentence pairs from the Europarl 3 corpus (Koehn,
2005) as described in the previous chapter, using automatic word alignments.
Again, we make a distinction between good and fuzzy links, reflecting the level
of confidence of the link.

We pre-processed themanually produced data set by applying ten-fold cross
validation and then evaluated the accuracy of the automatically produced non-
terminal node links with their respective gold standards. Figure 5.1 displays
the average result.

Next, we extract a set of basic statistics. Per sentence pair, they are:

• based on all links with reference to the gold standard, the alignment
precision, recall and both types of balanced F-score

• node counts (terminals and non-terminals)

• link counts (good and fuzzy, terminals and non-terminals)

• sentence lengths and ratios

• tree heights and ratios

• averages of tree level and sentence length ratios

• average height of terminal nodes to the root node

• standard deviation of these heights
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For each sentence tree, we further assign a score based on its parse quality
using manual inspection. The scores are on a scale of 1 to 3, where 1 is a good
parse, 2 is not so good but reasonable, and 3 is a bad parse.1

We define the maximum height, or just height, of the tree as the longest path
found between a terminal and the root. Assuming that a greater difference
between tree heights as well as a greater difference between sentence lengths
may lead to lower F-scores, we also take the average of these ratios as a feature.
We also look at the average path lengths of terminal nodes to the roots. If the
average is close to the maximum height of the whole tree, this suggests that
the structure is evenly spread, perhaps making it easier for nodes to be linked,
especially if the same is true of the other side. The distribution of terminal node
heights can also described by calculating their standard deviation, which we
also used as a feature.

Ratios are calculated by dividing the minimum value by the maximum
value. They are further normalized to be in the same scale as the F-scores for
further experiments. For example, if a Dutch tree sentence has a length of 10
tokens and the English tree a length of 12, the sentence length ratio would be
0.83. The normalized ratio would then be 83.

Not considering evaluation scores, a total of 73 features are extracted.
After feature extraction, we have for each sentence tree pair, and in some

cases for each sentence tree, a set of data values whose significance with align-
ment evaluation scores we can investigate. With these values, we can produce
distributions of the different variables over the whole set of sentence pairs.

In the next section, we present the distribution of the scores and the results
of the statistical analysis, with a discussion of our findings.

5.3 Presentation and discussion of statistical data and
analysis

Figure 5.1 presents a diagram representing the distribution of F-scores for all
sentence pairs as produced by Lingua-Align. We use the F-scores pertaining
to precision and recall for all non-terminal node links involved as a measure,
and also present those measures in the diagram. It is clear that alignment
accuracy can vary quite extensively. Roughly the first half of the F-score line
tends towards a logarithmic curve. It is also interesting to note that there is
much more variation in precision than in recall, while it is clear that precision
regularly outperforms recall.

1Many thanks to Prof. Gertjan van Noord for checking the quality of the Dutch trees.
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Figure 5.1: Distribution of F-score, precision and recall of non-terminal align-
ments.
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Figure 5.2: Scatterplot of precision against recall per sentence pair.
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Plotting precision against recall suggests only a mild correlation, with much
variation, as figure 5.2 shows. As is clear from the previous figure, precision
tends to be high and recall tends to be low.

The second F-score distribution, where the recall of only the good align-
ments is taken into account, is very similar and we will not discuss this here.

Using the feature values that we have extracted, we proceed to conduct
a multiple regression analysis, intending to find the strongest features while
taking the degree of this influence into account.
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We use the R statistics software package (R Core Team, 2012)2 to fit a linear
model using all features, but excluding precision, recall and the second F-score,
as we are only interested in the first F-score. During the process, 25 features are
dropped because of singularities, leaving us with 48. We achieve a surprisingly
good fit, with a reportedmultiple R-squared value of 0.8315 and a p value of less
than 10−15. Furthermore, a handful of features is reported as very significant:
Two of them have a p value of less than 0.01, two less than 0.05 and four more
are marginally significant with p values of less than 0.1 but more than 0.05.

Table 5.2 displays these values, along with the coefficients indicating the
strength of influence and the standard error. We also include the Pearson’s
correlation coefficients for the features which indicate to which degree they
individually correlate with F-score.

We note that the four significant features strongly overlap with each other.
For example, the number of terminal nodes is surely a strong contributing
factor to the total number of nodes. However, as a whole one can conclude
that node counts, and especially terminal node counts, significantly influence
F-score given the other features included in the model.

The top feature has the lowest p value by far. It has a negative coefficient,
meaning that more terminal nodes lead to worse F-scores given the features
in the linear model. It also correlates negatively on an individual basis. From
personal experience, longer sentences seem to be more likely to deviate trans-
lationally, leading to more fuzzy and/or incorrect word alignments, which
may in turn lead to a lower quality of non-terminal alignment. So the values
attributed to this feature make intuitive sense.

The next most significant feature is more interesting. It still has a negative
correlation, but a positive coefficient. In the context of the model, but not
individually, longer source-tree sentences lead to better F-scores. This is parallel
to the fact that a larger number of nodes in the source tree tends to lead to
worse scores (fourth feature), but conversely, “number of nodes” is positive.

These complications are probably due to the fact that the features compen-
sate for each other to some degree. However, it remains difficult to explain.

The fact that terminal node counts (sentence length) seem to be important,
as well as the focus on only one side (source tree), suggest that sentence lengths
aswell as length differences are significant. As discussed above, sentence length
may have important effects on the quality of word alignment, which in turnmay
influence non-terminal alignment to a significant degree. This is further hinted
at by the fact that the ratio of good terminal links is a marginally significant

2http://www.R-project.org
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Feature p value Coefficient Standard error Individual corr.

Number of terminal
nodes

0.00485 -7.09192 2.45503 -0.12755

Number of terminal
nodes in source tree

0.00847 12.48369 4.63761 -0.11231

Number of nodes 0.02002 2.86113 1.20815 -0.12757

Number of nodes in
source tree

0.03598 -5.08683 2.38929 -0.10856

Ratio of good termi-
nal links against all
terminal links

0.05615 -2.87053 1.48362 0.31482

Standard deviation
of distances of termi-
nal nodes in target
tree to root

0.05966 35.86178 18.80121 -0.20123

Average of the stan-
dard deviations of
source and target
tree distances of
terminal nodes to
their roots

0.06609 -69.22080 37.20699 -0.16076

Standard deviation
of distances of termi-
nal nodes in source
tree to root

0.09867 31.95879 19.15297 -0.06343

Table 5.2: Statistics displaying the most significant features as determined
by a multiple regression analysis, taking all extracted features into account.
The features with their p values in bold we regard as significant - the rest are
marginally significant. corr. denotes correlation.

87



feature. The third and fourth highest correlations that are also in the regression
model (Table 5.3) also happen to be the ratio of fuzzy links and all links (-0.42)
and the ratio of good links and all links (0.42).

The length of sentence pairs negatively influences alignment accuracy so
that longer sentences are aligned less accurately. The fact that source sentence
length in contrast positively affects F-scores corrects the general effect. This
may indicate that the negative influence of the sentence pair length is mitigated
in those cases where it is necessary due to a long source language sentence.
The latter influence F-scores positively.

The rest of the marginally significant features are all related to the standard
deviations of the distances of terminal nodes to the tree roots. First of all, the
coefficients are large because the standard deviations are relatively large. It
is therefore not clear to what extent they influence performance. Individual
correlations are consistently negative. In other words, the more variation there
is between the distances, possibly indicating a more complicated tree structure,
the lower the F-score. Although this is interesting, one should not read too
much from it, firstly because these are just correlations, secondly because the
coefficients associated with the individual trees are positive, and finally because
these features are not that significant.

For the sake of interest, we also present in Table 5.3 the top individual
correlations that are also in the regression model. We also list their p values
and coefficients from themultiple regression analysis for comparative purposes.

A few of the top correlated features have been dropped in the model, and
are not displayed here. None of the features in the table are statistically signif-
icant. Only one is marginally significant, which is the ratio of the number of
good terminal links and all terminal links, presented in bold. Even here, the
correlation appears to contradict the coefficient, where the former is positive
and the latter negative.

The fact that these variables have strong correlations with F-scores but negli-
gible, mostly very insignificant p-values means that their potentially predictive
value has been realized by collinear predictors (in the multiple regression
model). We include them in order to provide more insight into the question
of which variables might be useful candidates for future work. It might turn
out that some of these variables would surpass those in the current regression
model if they might be improved in accuracy, for example.

In fact, 6 out of the 10 correlations are on different sides of the number 0
than the corresponding coefficients in the regression model. This, as well as
the fact that there is very little overlap with the most significant features in the
model, make it clear that the features influence each other to a great extent and
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Feature Correlation coeff. Mult. reg. Coeff. Reg. p value

ratio: number of linked
non-terminal nodes and
all non-terminal nodes

0.52201 0.24013 0.88887

ratio: number of linked
non-terminals in the
source tree and all non-
terminal nodes in the
source tree

0.457970 -0.16336 0.84247

ratio: number of fuzzy
links and all links

-0.42123 1.39882 0.76768

ratio: number of good
links and all links

0.42052 4.91613 0.29204

ratio: number of linked
non-terminal nodes in the
target tree and all non-
terminal nodes in the tar-
get tree

0.40347 1.09138 0.13472

tree span similarity 0.35287 29.22232 0.12004

average of tree span and
tree level similarity

0.32909 -58.08508 0.12263

ratio: number of good
non-terminal links and all
non-terminal links

0.32170 -0.35884 0.43665

ratio: number of good
terminal links and all ter-
minal links

0.31482 -2.87053 0.05615

ratio: number of linked
non-terminal nodes in
source tree and all linked
nodes in source tree

0.23141 -5.37038 0.87868

Table 5.3: Top ten individually correlated features that are also in the multiple
regression model, where coeff. denotes coefficient, reg. denotes regression and
Mult. denotes multiple. None of the features have p values of less than 0.05,
with only one marginally significant feature included, presented in bold.
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that individual correlation by no means tells the whole story. Still, it is worth
noting that many of the top correlations are ratios of links or linked nodes, as
well as link types. The coefficients from the model suggest that they do have
an influence, but the p values suggest that this might also be just by chance.

Finally, the scores that were assigned to parse trees did not feature in any of
our tables. Perhaps parse tree quality is not as important as much as improved
convergence of the trees involved, even if the parses are inaccurate.

5.4 Conclusion and future work

We have presented a statistical study consisting of determining the effect of a
selection of features on the performance of an automatic tree aligner, given a
reasonably good alignment model and reasonably good automatic word align-
ments. The most significant features suggest that node counts, but especially
terminal node counts, have important influences on F-scores. Among these
features, source trees also receive special attention, suggesting that there are
important differences between the source and target sides.

From the list of marginally significant features, it would seem that the ratio
of good terminal links against all terminal links may be important. It might be
that, once we have accepted the general influence of length and tree size, that
the more good word alignments there are in general, the more likely it is that
the well-formedness constraint will lead to constituents staying unlinked in the
case of a wrong word alignment. Flexibility with regard to less-than-perfect
word alignments is an issue that we will investigate in the next chapter.

The other marginally significant features indirectly report the effect of tree
structure. Interestingly, the more variation there is between the distances of
terminal nodes to the root, the better the F-score.

The top correlations suggest that link ratios should have important effects,
with good links leading to better scores and fuzzy links to worse scores. How-
ever, the results of our multiple regression model suggests that much of this
may be due to chance, or simply wrong. Instead, node counts seem to be by far
the most important and significant feature group.

For future quantitative evaluation experiments, more features could be
extracted. In this study, we havemostly focused on counts and ratios at sentence
level, but link-centered features describing the typical contexts of good and bad
links may provide more insight.

As always, more data is always better, and using a second data set from a
different domain may help strengthen or disprove any findings that resulted
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from the first data set. Additionally, using different alignment models and even
different tree aligners may provide more robustness to any future conclusions
that we may draw.

In the next chapter, we will venture into new territory and explore the
use of rule-based heuristics for the improvement of tree alignment, using the
knowledge that we have gained.
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Chapter 6
Experiments in rule-based

alignment error correction using
manually constructed rules

6.1 Introduction

In this chapter, we introduce rule-based error correction as a viable complement
to the statistical alignment process.

First, we present some experiments showing that even a single manually
crafted rule can add reasonably accurate non-terminal alignments and also
improve the total accuracy of already existing statistically produced alignments.
We also experiment with strict and more relaxed versions of the rule and of
the well-formedness constraint (see chapter 2), as well as different implementa-
tions of directionality. Finally, we implement a single complex rule based on
our findings, applying it in a bottom-up fashion which significantly increases
alignment recall.

All algorithms described in this chapter, unless otherwise specified, are
applied to the output of a high-precision model trained by Lingua-Align. We
therefore cannot comment on their effectiveness on the output of other models
or aligners, although we remain positive that as a measure to increase recall
they will prove effective, given the existence of quality word alignments.
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6.2 Simple rules

We presented a statistical error analysis of Lingua-Align output in chapter 5
showing which features correlate the strongest with F-score evaluation. The
linear model which resulted from our multiple regression analysis showed
that differences in sentence length are very significant. As for other feature
types, the results were sometimes difficult to interpret because of colinearity.
However, some link ratios and link types had strong individual correlations.
There was especially a clear distinction between good and fuzzy links. More
good links have a relatively strong correlation with higher scores and more
fuzzy links with lower scores. This is valid for both non-terminal and terminal
alignments.

Although the impact of link ratios and link type ratios was not so clear from
the regression model, it makes logical sense that more links should lead to a
higher recall. Since this is a problem with the model that we have investigated,
increasing it is one of our main goals.

Attempts to increase recall using Lingua-Align on this particular data set
have so far led to decreased F-scores. In general, our best results on other data
sets also tend to have higher precision and lower recall evaluation scores.

The importance of accurate word alignments in constituent alignment is
underlined by our qualitative analysis in chapter 4 of the Lingua-Align system,
the sharp drop in alignment performance when Moses and GIZA++ features
are removed, as well as the fact that other alignment systems depend quite
heavily on it (Groves et al., 2004; Lavie et al., 2008; Zhechev, 2009). In this
chapter, we show that measures to decrease the sensitivity to less-than-perfect
word alignment not only leads to a high recall but to better F-scores as well.

One of our goals is to measure the extent to which we can use rules to
complement the statistical alignment process, not only to increase recall, but
general accuracy as well. In that respect we deviate from Groves et al. (2004),
who opt for a high-precision approach and do not apply statistical alignment
as a first step. In the light of this, we proceed to design and implement simple
rule-based experiments. Our additional aim is to determinewhether or not high-
recall alignments lead to better MT performance. In chapter 8, we show that
alignments produced by our bottom-up rule-based algorithm lead to increased
BLEU scores.

Therefore, instead of building another set of training data in order to train
a discriminative model, we manually construct a set of rules based on our
previous findings and manual inspection of the data. For the latter, we produce
a list of the most frequently occurring node-pair mismatches sorted on the
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Source cat. Target cat. False + False -

PP NP 1 14
PP VP 4 8
INF S 0 5
PP S 2 3
OTI PP 2 2
...

Table 6.1: Examples of mismatches by category label combination

particular category label pair involved. We distinguish between false positives,
which lower precision, and false negatives, which lower recall.

Our data set consists of the 140 parallel sentences for Dutch to English
alignment that we used for our experiments on Lingua-Align training in the
PaCo-MT project (chapter 4). Preprocessing steps remain unchanged: Hunalign
is used for alignment on the sentence level and GIZA++, using the combination
of the intersection and grow-diag heuristics, for word alignment. The Alpino
and Stanford parsers are used to parse the Dutch and English texts, respec-
tively, where the Dutch trees have been post-processed for improved syntactic
convergence.

Table 6.1 displays an abbreviated list of some of the category label mis-
matches. These examples include sentence IDs and matching word phrases, so
that they are easily found when viewing the alignments with the Stockholm
TreeAligner (Lundborg et al., 2007).

The top result, PP-NP, has 15 mismatches, of which 14 are false negatives
and 1 is a false positive. The number of false negatives underscores the recall
problem. Also, no PP-NP combination is aligned correctly. It would appear that
subtrees with some unusual category label combinations — PPs are usually
aligned with PPs and NPs with NPs — are generally not aligned. To rectify this
problem using Lingua-Align, we would need to provide more training data
- since category labels count among the features used (see the latter part of
section 4.4) - or manually tune some parameters. Here we demonstrate that a
rule-based approach may be a simple alternative way to deal with the problem.

We proceed by constructing some basic rules where we ignore the ac-
tual category label combinations and other metadata. For the purpose of
our experiments, we simply assume, similar to the developers of the Dublin
aligner (Zhechev and Way, 2008), that the existence of word alignments and
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well-formedness of subtree pairs are the most important features determining
whether such a pair should be linked.1 As explained in chapter 2, a subtree
pair is well-formed when all of the links of the nodes dominated by the source
and target root nodes are shared between these trees only, as well as when the
ancestors of node pairs are only linked to each other and not to non-ancestors.
A third condition is that nodes are only linked once. For the purpose of this
chapter, we only refer to the restriction where descendents are concerned when
mentioning the concept of well-formedness. As for the principle on strict one-
to-one linking of nodes, we do not regard this as important, since in the overall
picture of a stochastic MT system, where some erroneous alignments are to be
expected and where high-recall is often preferred over high-precision align-
ments, allowing violations of this principle should not detract from the ultimate
goal. On the other hand, the first principle — namely that of exclusive linking
between subtrees — is a significant indication of equivalence which, as we shall
see, plays an important discriminative role.

First-level rule

We define the height of a non-terminal node as the maximum distance between
this node and any of the terminals that it dominates. We have found viewing
the height of a node as a function of the distance between non-terminals and its
dominated terminals instead of the distance between the non-terminal and the
root of the sentence tree to be a useful discriminating feature for our alignment
and alignment error correction experiments.

If the height of a non-terminal is 1, this implies that all of its children are
terminal nodes. If we restrict our search space to trees where the root has a
maximum height of 1, we can more easily study the effect of existing word
alignments on non-terminal alignment, without having to take other possible
structural features such as height and number of recursive subtrees into account.

We hypothesize that first-level trees sharing word alignments should gener-
ally be linked. No alignments should be shared with other trees, making the
trees well-formed with respect to their alignments. As we are attempting to
increase our recall, we implement the following conditions:

• We do not have a threshold for the number of shared word alignments.
Even a single word alignment shared between the trees is enough, as long
as they are well-formed.

1One big difference, however, is that the Dublin aligner uses word alignment probabilities,
whereas we do not, at least not at the time of writing.
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• Wedo not distinguish between good (confident) and fuzzy (less confident)
alignments in deciding whether or not trees should be linked.

With the above in mind, we can present our algorithm as follows:

◦ For every unlinked non-terminal source tree node:

◦ If all the children are terminal nodes and one or more of them are
linked:
◦ Get the target-side nodes to which these terminal nodes link.
◦ If these nodes share the same unlinked parent:
◦ If this parent’s children are all terminal nodes, and
◦ If the linked children of this parent all link to children of the
above source-side node:
◦ Link this parent with the source-side non-terminal node
using a confident link.

This simple rule adds a good link between two subtrees if they share one or
more word alignment links, as long as they are well-formed and both candidate
nodes have only terminals as children. Apart from the relaxed constraints
as described above, we also ignore all links involving punctuation, since we
noticed that the parsers treat punctuation differently. For example, with some
equivalent subtree pairs, a comma would be included on one but not on the
other side, and we feel that this should not affect any alignment decisions.

This rule is similar to the first one in the previously discussed work of
Menezes and Richardson (2001), with the exception that they only link the trees
if all lexical items are already aligned — implying a high-precision approach —
and that they apply this on a kind of dependency structure (see chapter 2 for a
brief discussion).

Figure 6.1 is an example from the Europarl corpus, showing two trees that
have only terminal nodes as children. For simplicity, we have not displayed
the part-of-speech tags of the terminal nodes. The word alignments are not
perfect: koopkracht should be linked to both purchasing and power and not only
to purchasing. This does not deter rule application because we have not set any
threshold regarding a shared word alignment ratio, leading to correct linking of
the two trees in the figure. As we show here, we suggest linking non-terminals
even if some of the terminals they dominate are not properly linked to each
other. We disallow only that the terminals be linked to nodes that are not
children of the candidate non-terminal to be linked.
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Figure 6.1: An example of an added link: the two NPs in the picture are linked
after application of the rule. If any of the shared word alignments are linked to
a node that does not have either of the two NPs as an ancestor, the subtree pair
is not well-formed with respect to its links and the rule cannot be applied. The
grey rectangles represent such “no go” areas for word alignment links coming
from the terminal nodes in question - they may pass through but not end up in
them.

Applying the rule in this case goes like this: If we assume that the left side
hun koopkracht is the source side and we test for the conditions stated by the
rule, we start with the left NP. We notice that it is unlinked and we confirm
that all children are terminal nodes (hun and koopkracht) and that at least one
of them are linked. Getting the nodes to which these terminals link (their and
purchasing) we can determine that they share the same parent, the right (target)
NP. We see that it is unlinked and that its children (their, purchasing and power)
are all terminal nodes. We get all the linked terminals (their and purchasing)
and determine that the nodes that they link to (hun and koopkracht) share the
same non-terminal parent, which is the same as the original source-side NP.
Now that we have determined that the rule is applicable, we proceed to link
the two NPs, implying the translational equivalence of the two substrings that
they dominate.

For our experiments, we use 200 Dutch-to-English sentence pairs from a
data set which we also used as a test set for our transformation-based learning
system (see chapter 7), consisting of a manually aligned gold standard and its

98



Data set Precision Recall F-score

Lingua-Align 93.4 61.3 74.0
With rule applied 88.8 66.0 75.7

Table 6.2: Evaluation scores after application of first-level rule.

tree-aligned equivalent.2 Applying the abovementioned rule to the set reveals
126 added links. 63 of them match with good links in the gold standard, 3 and
5 with fuzzy links, where 58 do not match. Ignoring the fuzzy matches, we
achieve an accuracy of 52.07%. The result is a clear increase in recall, with a 1.7
increase in F-score (table 6.2). The F-scores reported are those which include
both types of links in the recall score, since we would like to take all links into
account.

Although the result is not that spectacular, it seems promising enough to
warrant further investigation. We hypothesise that it works relatively well
because it relies largely on the accuracy of word alignments and that, since it
is restricted to the first level above the terminals, divergences between source
and target parse trees do not yet play a significant role. Furthermore, the
rule presents some flexibility in the case of less than perfectly accurate word
alignments, as figure 6.1 demonstrates: The word koopkracht should actually be
aligned to both purchasing and power, but still, the current alignments are seen
as presenting enough evidence to align these phrases.

On the other side of the coin, we can imagine two very large first-level
subtrees sharing only a single word alignment. One might think that they
should generally not be aligned, because of the scarcity of word alignment
evidence, but application of the rule would still align them. Yet this seems to be
an infrequent and negligible occurrence: First-level subtrees have almost always
a quite limited amount of leaves, and assuming correctly aligned sentences
and relatively accurate word alignment, such a lack of alignments between
terminals is scarce.

A more realistic problem is when two subtrees with a substantial difference
between the number of leaves are aligned. Manual inspection of erroneous

2We switched to a new data set so that we can experiment on a typical Lingua-Align output
instead of on the 140 sentence pairs on which the model was originally trained.

3We have encountered an error in the text itself, equating Chechnyawith the Dutch for Czech
Republic (Tsjechië), where it should have also been Chechnya - in other words, a mistranslation. As a
result, we have corrected the word in the data set.
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cases suggests that this is a more frequently occurring problem. Lingua-Align
partly deals with this problem by using relative leaf counts as a feature. In
describing our rule-based bottom-up algorithm in section 6.3, we attempt to
deal with this problem as well.

Extensions to the first-level rule

We experiment with three ways to extend the first-level rule. We first apply
the same algorithm but from the target side, resulting in a second data set,
after which we calculate their union and intersection. Secondly, we attempt
to increase the precision by only linking the trees if there is at least one good
(confident) link shared between the candidate nodes. Finally, we experiment
with a relaxed form of the well-formedness constraint by allowing one fuzzy
(less confident) link to go to the “outside” - meaning that a terminal dominated
by one of the non-terminals in question links to a node that does not have the
other non-terminal as an ancestor (in terms of figure 6.1, ending up in the grey
area). We will call this near-wellformedness. This is based on our observation in
studying training data that a significant number of linked subtrees have such
word alignments. Figure 6.2 gives an example of a nearly wellformed subtree
pair where the strings zwaarwichtig en onrijp and ponderous and immature are
translationally equivalent even though a fuzzy link goes to the outside.

For the relaxed constraint, we use a slightly different version of our algorithm
which is easier to implement, albeit computationally more expensive. Instead
of directly checking the linked terminals for the current source-side candidate
node, we consider, for every unlinked source-side node, every unlinked first-
level target-side node, and determine whether or not they are well-formed in
the sense of the algorithm described above.

Implementing target-side rule application, we find that the sets resulting
from both the latter and the source-to-target-side application are identical,
rendering the same evaluation scores. This can be explained by way of the
nature of the constraints: Since only fully well-formed subtrees can be linked, it
follows that there is at most one candidate for any given subtree and vice versa,
as long as only first-level subtrees are considered. Hence, calculating the union
and intersection is a useless endeavour.

In the case of near-wellformedness, it is possible for the order of application
(source-to-target versus target-to-source) to matter. With near-wellformedness,
it follows that under some circumstances, a second subtree may function as a
candidate. A different tree may therefore be linked depending on the order of
node traversal. However, in our case, this did not make any difference.
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Figure 6.2: An example of a case where nearly wellformed subtrees are linked.
The phrase zwaarwichtig en onrijp should be translated to ponderous and immature,
word by word. The confident links are solid and the less confident links have
dashes. Here, the word alignment software has also assigned a fuzzy link
aligning zwaarwichtig with as. This link ends up outside in the grey area - as
does not have the required ancestor ADJP - therefore the subtrees are not well-
formed. However, since we allow for exactly one fuzzy outgoing link as long
as at least one confident link is shared between the subtrees, we proceed to link
their roots (CONJ with ADJP).

The extra constraint that one only aligns the subtrees if there is at least one
good link leads, as expected, to an improved precision, albeit only slightly.
Balanced F-score is not affected. Not using this constraint but allowing that
one fuzzy link can go to the outside decreases the precision but increases recall,
with a slight drop in in F-score. Using both the linking constraint and the
near-wellformedness condition leads to the best F-score of 75.9.

Table 6.3 displays the results. For comparative purposes, we also apply
the rule on the same set but containing only word alignments (Table 6.4). If
we do not consider punctuation as explained previously, recall drops slightly,
although precision is hardly affected.

Since the rules only apply to the first level above the terminals, in Table 6.4
the recall is understandably low. However, the accuracy achieved is surprising.
With a single rule, we have achieved a precision of 86.2% of aligning first-
level subtrees on a word-aligned data set. Adding the near-wellformedness
constraint increases both the recall and the resulting F-score. The change in the
latter is comparable to the tree aligned data set results.

Our results suggest the following:

• Well-formedness is important, but allowing near-wellformedness to some
degree may have some merit. This can be explained by pointing out that
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Algorithm Precision Recall F-score

Lingua-Align 93.4 61.3 74.0
Fully well-formed, 0+ good links 88.8 66.0 75.7
Fully well-formed, 1+ good links 88.9 65.9 75.7
Nearly well-formed, 0+ good links 83.5 68.4 75.2
Nearly well-formed, 1+ good links 85.5 68.2 75.9

Table 6.3: Non-terminal evaluation scores after application of different forms
of the first-level rule on the Lingua-Align set.

Algorithm Precision Recall F-score

Fully well-formed, 0+ good links 85.9 27.5 41.7
Fully well-formed, 1+ good links 86.2 27.3 41.5
Nearly well-formed, 0+ good links 75.3 29.9 42.8
Nearly well-formed, 1+ good links 79.2 29.6 43.1

Table 6.4: Non-terminal evaluation scores after application of different forms
of the first-level rule on the word-aligned set.

fuzzy word alignments have less confidence and that it can therefore be
expected, in a reasonable number of cases, for equivalent subtrees to have
some fuzzy alignments to nodes outside the tree. Taking these subtree
pairs into account as well may therefore increase recall.

• First-level subtrees can be accurately linked using a hand-crafted rule
based on word alignment evidence and completely ignoring metadata
such as category and edge labels. This demonstrates the overwhelming
importance of word alignment evidence as opposed to other features such
as category labels.

Relaxed rules

Since so far we have restricted ourselves to non-terminal nodes on the first level,
we construct another rule that is more general than the first, with the exception
that children do not necessarily need to be terminal nodes. We call this rule
relaxed, in opposition to the first rule which is strict in terms of the required
height of the subtree roots. Figure 6.3, repeated from figure 2.4, is an example
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Figure 6.3: Example of an output of a relaxed form of the first rule: the two
NPs in the picture are linked after application of the rule.

where such an alignment is necessary. In this case, the words are perfectly
aligned with each other, but note that the NPs involved here would not have
been aligned if only the first rule was considered, since the Dutch NP does not
only have terminal nodes as children.

We can describe this rule as follows:

◦ For every unlinked non-terminal source tree node s:

◦ If there exists at least one child that is a linked terminal node:
◦ Get the set of all the linked leaves of the source-tree node.
◦ Get the set of target-side nodes to which these nodes link.
◦ Get the lowest common parent t that they share.
◦ Get the set of all the linked leaves dominated by t.
◦ If these leaves link to source-tree terminals, all of which have s
(the current non-terminal source-tree node) as an ancestor:
◦ Link s with t.

After applying the relaxed rule, we found that 440 links were added. 214 of
them match correctly with good links in the gold standard, 12 of them with
fuzzy links and 214 are incorrect. Ignoring the fuzzy links, this amounts to an
accuracy of 50%. However, the evaluation score on the final set is a notable
improvement (normal s2t in Table 6.5), with F-scores higher than those of the

103



first-level rules. Error analysis suggests that most errors are due to height
differences. For example, the Dutch phrase deze daden begaan (perpetrate these
deeds) is erroneously linked to these deeds. This in turn suggests that in the
context of a greedy linking approach, linking them in the correct order is
important. For example, correctly linking deze daden to these deedswould rule
out these deeds as an erroneous candidate to be linked to deze daden begaan since
we only look at unlinked nodes.

In Table 6.5, we also display the results of applying the algorithm from
target to source, as well as those of the intersect and union of the previous two
sets. We also display the results of allowing for near-wellformedness, both
with and without the good link constraint, again with the above-mentioned
directions and combinations. Again, as with the first-level rule, for the near-
wellformedness rules, we start off with a candidate node-pair, as opposed to
starting with just a non-terminal and immediately inspecting the leaf links.
To investigate the impact of word alignments more properly, we ignore well-
formedness violations at the non-terminal level.4

As expected, relaxing the well-formedness constraint leads to better recall
but lower precision. However, there are few differences between the F-scores
in general. Near-wellformedness has no positive effect here.

When we apply the union of two data sets, note that sometimes, the same
node could be linked to a different node in each set. For example, if source
node a is linked to target node b in set A but the same source node a is linked
to target node c in set B, the union will contain both alignments, a<–>b as well
as a<–>c. We regard these as different alignments and, since this is a union,
they are allowed, although this means that non-terminals are not strictly linked
in a one-to-one fashion anymore.

When applied to the word-aligned data set (Table 6.6), we find more or
less expected results: Precision is lower than first-level rules, recall is higher,
but changes in F-scores are unimpressive. Of course, we are still restricting
ourselves to nodes that have at least one terminal node, and should not expect
any surprises. An interesting observation is that in all cases, the union of the
sets does better. However, in Table 6.5, this is only true for “Strict union”.

From the results of the two main types of rules that we have investigated,
we can conclude the following about alignment for the data set involved:

• Generally, strict well-formedness and good links requirements increase
precision, but decrease recall.

4Experiments show that this actually leads to slightly better scores.
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Data set Precision Recall F-score

Lingua-Align 93.4 61.3 74.0
Normal s2t 80.0 77.0 78.5
Normal t2s 81.6 73.6 77.4
Normal intersect 84.8 72.0 77.9
Normal union 77.4 78.5 77.9
Strict s2t 78.9 79.1 79.0
Strict t2s 81.0 74.5 77.6
Strict intersect 84.1 72.9 78.1
Strict union 76.5 80.7 78.5
Near-wfness (normal) s2t 70.2 84.1 76.5
Near-wfness (normal) t2s 72.8 81.2 76.8
Near-wfness (normal) intersect 74.0 79.9 76.8
Near-wfness (normal) union 69.2 85.4 76.5
Near-wfness (strict) s2t 71.5 83.9 77.2
Near-wfness (strict) t2s 74.2 81.0 77.5
Near-wfness (strict) intersect 75.5 79.7 77.5
Near-wfness (strict) union 70.4 85.2 77.1

Table 6.5: Evaluation scores after application of different forms of the relaxed
rule on the data set aligned by Lingua-Align. normal means that there is no
necessity of a good word alignment link, where strict means the opposite. s2t
denotes source-to-target and t2s target-to-source. near-wfness denotes near-
wellformedness. With the others, strict well-formedness is implied.

• Near-wellformedness increases recall with little drop in precision.

• The direction of the algorithm may make a significant difference. The in-
tersection of both directions increases precision and their union increases
recall. Neither the union nor the intersection scores consistently better
than the other.

• First-level alignments can be linked with a high precision using few fea-
tures.

• Relaxing the height requirements increases recall but decreases precision.
F-scores improve very clearly.

105



Data set Precision Recall F-score

Normal s2t 67.3 57.3 61.9
Normal t2s 67.2 45.0 53.9
Normal intersect 81.8 42.3 55.8
Normal union 59.7 60.0 59.8
Strict s2t 76.3 67.2 71.5
Strict t2s 68.6 48.5 56.8
Strict intersect 80.5 45.6 58.2
Strict union 68.6 70.2 69.4
Near-wfness (normal) s2t 61.9 68.6 65.1
Near-wfness (normal) t2s 64.2 61.1 62.6
Near-wfness (normal) intersect 67.9 55.7 61.2
Near-wfness (normal) union 59.7 74.1 66.1
Near-wfness (strict) s2t 63.2 68.4 65.7
Near-wfness (strict) t2s 65.7 60.8 63.2
Near-wfness (strict) intersect 69.9 55.4 61.8
Near-wfness (strict) union 60.8 73.8 66.7

Table 6.6: Evaluation scores after application of different forms of the relaxed
rule on the word-aligned data set (not processed by Lingua-Align).

• The order of alignmentmatters: It would seem that a directional approach
has merit. Given the good results of the relaxed rule, the relative heights
of root nodes seem to be less important than the order in which they are
linked.

Given the above, it makes sense to first produce the alignments which render
the highest precision. We therefore propose an algorithm in the next section
that links subtrees from the bottom up. We also implement two additional
similarity constraints in an attempt to deal with the problem regarding height
differences.

6.3 Bottom-up tree alignment error correction

Based on our previous conclusions, we implement an algorithm that greedily
aligns candidate node-pairs in a bottom-up fashion. In the PaCo-MT project, an
implementation of this algorithm led to increased BLEU scores (see chapter 8).
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We traverse all source-tree non-terminal nodes, starting on the first level
above the terminals, and, for every node considered, inspect all candidate
target-tree non-terminals, starting on the the first level. In this way, we ensure
that lower-level nodes are linked first before higher-level nodes. If conditions
are satisfied, a link is made before moving on to another subtree pair. For a link
to be made, all of the following criteria need to be met:

• The subtree pair must be well-formed or nearly well-formed with respect
to the links of the nodes dominated by them. As in the previous sec-
tion, we define near-wellformedness as the condition where there is one
and only one fuzzy link going to the outside of the candidate subtrees
and there exists at least one good link between them. We ignore the
cases of outgoing fuzzy links or shared good links where punctuation is
concerned.

• The subtree pair must have a certain degree of similarity. In this case, we
define a good enough similarity as onewhere both the leaf count similarity
and the link count similarity are above a certain threshold. Defined below
in more detail, the leaf count similarity is based on the ratio between the
number of leaves on the source and on the target side. This ratio is also
used as a feature in Lingua-Align (chapter 4). Additionally, a link count
similarity, similar to the children_links feature used in Lingua-Align, is
calculated based on the ratio of the linked leaves between the subtrees
and the total number of leaves between them.

For the similarity criteria, we also suspected that we needed to take the
number of leaves into account. For example, a subtree with one leaf should
often be linked to a subtree with two leaves, but perhaps it should be less
common that a subtree with five leaves should be linked to one with ten leaves,
even though the ratio is the same. In other words, there could be a bias, where
shorter strings are viewed more favourably over longer strings. We therefore
suspected that the number of unlinked leaves, not just the ratio, should also
play a role.

If one assumes that both the ratio and the difference count have the same
weight, it would be useful and simple to apply the geometric mean of the
numbers, since they occupydifferent ranges. For both similaritymeasures, these
constitute the leaf count similarity and link count similarity scores respectively.

First, we define the leaf ratio l r, similar as in Tiedemann and Kotzé (2009a):
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lr(si , t j) =
min(|x |, |y|)
max(|x |, |y|)

where x denotes sx ≤ si and y t y ≤ t j . si and t j are the respective candidate
source and target-side nodes, and sx are the leaves (terminal nodes) dominated
by si and t y are dominated by t j .

The link count ratio, similar to the children_links feature in Tiedemann and
Kotzé (2009a), is calculated as follows:

lcr(si , t j) =

∑

sx
l inked(sx , si) +

∑

t y
l inked(t y , t j)

∑

sx
lea f (sx , si) +

∑

t y
lea f (t y , t j)

lea f (l, n) =
�

1 if n dominates l
0 otherwise

l inked(l, n) =
�

1 if n dominates l ∧ l ∈ L
0 otherwise

where L is the set of all linked leaves (aligned terminal nodes), but only where
the links go back to descendents of the candidate node on the other side. The
reasoning behind this is that nodes with links going to other subtrees do not
contribute to well-formedness and should therefore not contribute to the simi-
larity score. Some terminals may be linked more than once, but since we count
the nodes and not the links, we do not take this into account.

We now define the differences as follows:

lcd(si , t j): leaf count difference - the difference in the number of leaves
dominated by si and t j

l lcd(si , t j): linked leaf count difference - the difference in the total num-
ber of leaves dominated by both si and t j and the total number of linked leaves
dominated by both si and t j

We can now define the leaf count similarity score lcs as follows:

lcs(si , t j) =
p

l r(si , t j)lcd(si , t j)
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and the link count similarity score l lcs as follows:

l lcs(si , t j) =
p

lcr(si , t j)l lcd(si , t j)

For both similaritymeasures, a previously determined threshold determines
whether or not the subtrees in question are similar enough to be linked. This
threshold can be estimated using a training data set and a machine learning
method, or it can be manually tuned. Here, we only present the rule-based part
of the algorithm, along with the results of using a threshold that we manually
determined.5

A link is only made if both similarity scores are less than or equal to their re-
spective thresholds and the subtrees in question are at least nearly well-formed.
Additionally, we assume that sentence alignment is perfect and therefore change
all fuzzy links between root nodes to good. The reasoning behind this is that
since sentence alignment is very accurate, this has a good chance to be a better
reflection of sentence pair equality and may improve MT performance as well.

Instead of assuming equal weight between the ratios and differences and
using their geometric means to calculate the similarity scores, we can subtract a
weighted difference from the ratio, which we will call a penalty score. The idea
behind this is similar to the previous formula: The larger the difference, the less
important the ratio should be, so we have a lower score in this case. However,
simply subtracting the difference would result in a skewed figure. We therefore
introduce a normalization factor z by which the difference count is divided.
The final values now need to be more than the determined thresholds for the
trees to be linked. For our experiments, we have settled to set z at the value
80, with the leaf count similarity threshold at 0.35 and the link count similarity
threshold at 0.45.

If we assign x to be the leaves dominated by si and y to be the leaves domi-
nated by t j ,

lcs(si , t j) = l r(si , t j)−
abs(|x | − |y|)

z

where x denotes sx ≤ si (the count of the source-side subtree terminals), y t y ≤ t j
(the count of the target-side subtree terminals), and z the normalization value.
Similarly, our link count similarity score can be expressed as follows:

51.45 for the leaf ratio similarity and 1.4 for the linked leaf ratio similarity.
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Data set Precision Recall F-score

Source side first 76.0 79.8 77.9
Target side first 76.9 81.1 78.9
Intersection 81.4 77.4 79.3
Union 72.4 83.4 77.5

Table 6.7: Evaluation scores on the tree aligned data set after application of
different bottom-up heuristics

l lcs(si , t j) = l l r(si , t j)−
|x |+ |y| − (|x l |+ |yl |)

z

where x l and yl are the linked leaves in x and y respectively.
We also experimented with using the existence of verbal part-of-speech tags

on both sides as a criterion. In some cases, the existence of a verb on only one
side indicates the fact that the current nodes would be linked on the wrong
level, since verbs are often translated as verbs, at least in the case of the closely
related languages involved. The rule states that if a verb is found on only one
side, the nodes are not to be linked. We found that imposing this restriction
may lead to increased precision, but that recall slightly suffers. Often, a verb
on one side is differently lexicalized on the other side, for example through
nominalization, leading to a false negative. Since this experiment did not lead
to a significant improvement, we decided not to use it for producing the parallel
treebanks for the final version of PaCo-MT. However, we do use it as a feature
in our transformation-based learning experiments (see chapter 7).

We apply the algorithm using geometric averages on our data set bidirec-
tionally, as before, and then calculate the intersection and the union. The results
are displayed in Table 6.7. The F-scores are generally slightly better than those
of the relaxed rule. Notable is that in this case, unlike as with the relaxed rule,
the union is clearly worse than the intersection.

We also apply the algorithm on the word-aligned data set (Table 6.8). The
scores are predictably lower, but we see the same tendencies: The intersection
has clearly the highest precision and F-score, and the union has the highest
recall but its precision suffers.

The current version of the algorithm allows for unrestricted node height dif-
ferences, relying on the assumption that more similar subtrees closer to the level
of the current source-tree node will be linked first, while being constrained by
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Data set Precision Recall F-score

Source side first 67.8 56.9 61.9
Target side first 68.3 57.6 62.5
Intersection 79.3 51.8 62.7
Union 60.9 62.7 61.8

Table 6.8: Evaluation scores on the word-aligned data set after application of
different bottom-up heuristics

Height thresholds Precision Recall F-score

no threshold 76.0 79.8 77.9
0 to max 77.3 75.5 76.4
min to 0 77.7 77.1 77.4
-1 to +1 77.3 77.3 77.3
0 to +1 77.9 74.1 76.0
-1 to 0 78.5 76.0 77.2
-2 to +2 76.5 79.3 77.9
0 to +2 77.6 75.2 76.4
-2 to 0 77.9 76.9 77.4
-3 to +3 76.0 79.6 77.8
0 to +3 77.4 75.4 76.4
-3 to 0 77.7 77.0 77.3

Table 6.9: Precision, recall and balanced F-score when applying the bottom-up
rule addition algorithm with varying thresholds of height difference between
candidate source and target nodes. 0 refers to the height of the currently selected
source tree node,min is theminimumheight (1) andmax is themaximumheight
of the sentence tree.

the similarity thresholds. An alternative solution would be to restrict alignment
within a certain height threshold. We experiment with different thresholds,
using the source to target implementation. Table 6.9 displays the results.

Not surprisingly, precision tends to go up as the thresholds are closer to
each other, and recall tends to go up as the height restrictions become more
relaxed. However, no F-score exceeds the original setup with no threshold
(77.9), but the one with the thresholds of -2 and +2 equals it.
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If we produce the target-to-source alignments of the algorithm using no
height thresholds (F-score: 79.0) and the resulting intersection, we get the the
best F-score of 79.4, with a precision of 81.8 and a recall of 77.1.

Error analysis reveals visibly fewer cases of mismatched tree spans, but
there are cases where the verbal rule would have been helpful.

6.4 Conclusion

Our results suggest that the bottom-up algorithm without height restrictions
does rather well to increase alignment recall. In general, combining source-to-
target and target-to-source heuristics leads to overall better scores. We have also
formulated additional features to contribute to increased accuracy of alignment,
including two different measures of subtree similarity. It is also worth not-
ing that Lingua-Align utilizes a bottom-up alignment procedure with success
(chapter 4), which performs better than a top-down approach. However, we
have obtained our improved results only after trial and error experimentation
using manually defined rules and values, which may change according to the
language pair and data set used. It would be more ideal to learn these values
automatically. It would be entirely possible to integrate these features into
machine learning algorithms such as those used by Lingua-Align.

In this chapter, we have experimented on complementing existing align-
ments by heuristically implementing manually constructed rules. Although we
have gained some valuable insights and can report success with this endeavour,
automatic acquisition is more convenient and may lead to better results. In
the next chapter, we introduce our implementation of a transformation-based
learning system for tree alignment and alignment error correction. So far, we
have only focused on increasing recall by adding links to existing data sets. Our
implementation also removes links, constructs more refined rules and generally
produces a more accurate alignment set.

112



Chapter 7
Transformation-based tree

alignment and alignment error
correction

In this chapter, we describe our experiments using Brill’s transformation-based
learning (TBL) algorithm on the tree-to-tree alignment problem. Wewill discuss
our motivation for this in the next section, followed by an introduction to TBL in
section 7.2 and a description of our adaptation to the problem in sections 7.3, 7.4,
7.5 and 7.6. A presentation of our experiments follows in section 7.7, followed
by a discussion of the results in sections 7.8 and 7.9. Finally, we conclude this
chapter in section 7.10.

7.1 Motivation

In chapter 6, experiments suggest that a rule-based approach to tree alignment
error correction is an effective complement to statistical alignment, affirming the
promising results obtained in other systems described in chapter 2. However,
these experiments only make use of manual rule-based components with a
limited scope. It would make sense to also be able to learn many rules that can
be applied with much greater precision without the effort of constructing them
manually.
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Transformation-based learning has proven to be a simple yet powerful
algorithm, applicable to a variety of tasks, also outside the field of NLP. Its
error-driven nature makes it an ideal candidate for improving performance
on data sets which have already been processed, but can also be successfully
implemented as a classifying algorithm in itself. Furthermore, unlike pure
statistical algorithms, its rule-based nature provides for a very transparent
error analysis procedure. We believe that in view of this, TBL is an excellent
candidate for tree alignment error correction. Additionally, TBL has to our
knowledge not yet been applied to this particular problem at the time of this
writing.

As with chapters 4, 5 and 6, we design and implement our experiments in
view of eventual application in syntax-based MT. However, we believe that
the results of our experiments also provide some interesting linguistic insights.
For example, error analysis can shed light on patterns regarding structural
and lexical differences between the languages involved. Conversely, the most
successful rules tell us which linguistic or structural generalisations can be
made in the alignment process with a high rate of success.

7.2 Transformation-based learning

Transformation-based learning (TBL) is a supervised rule-based machine learn-
ing algorithm used to classify previously unseen examples of a data set. Ever
since the introduction of the original concept by Eric Brill and its application on
part-of-speech tagging (Brill, 1992; Brill, 1994; Brill, 1995), there has been a flurry
of publications on the topic, mainly on refining the algorithm (Samuel, 1998;
Ngai and Florian, 2001), increasing the scope (Florian and Ngai, 2001), or adapt-
ing it to different problems such as parsing (Brill, 1993a; Brill, 1993c; Brill, 1996;
Fung et al., 2004), prepositional phrase attachment disambiguation (Brill and
Resnik, 1994), base NP chunking (Ramshaw and Marcus, 1995), spelling correc-
tion (Mangu and Brill, 1997), dialogue act tagging (Samuel et al., 1998), phrase
chunking (Florian et al., 2000), handwritten character segmentation (Kavallier-
atou et al., 2000), named entity recognition (Black and Vasilakopoulos, 2002),
semantic role labeling (Higgins, 2004; Williams et al., 2004), word alignment
(Ayan et al., 2005), newspaper headline generation (De Kok, 2008) and syntactic
tree transformation to improve convergence (Burkett and Klein, 2012).

Although since the 90s there has been significant progress in optimizing and
refining the algorithm, its basic premise remains unaltered: Training occurs
by applying a series of rules to a data set. Each is applied separately in order
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to find the single best rule which, when applied, improves performance most.
This is made possible by comparing the output to a gold standard. That rule
is then marked as the best at that point and set aside. The data set is retained,
with the changes made by the rule and other possible rules in earlier iterations,
up to that point. Then all rules are again tested on the new and updated data
set to find the next single best rule which improves performance the most. This
continues until no rule can be found that improves the accuracy of the newest
data set. The set of learned rules is essentially the model that is to be used on
new unseen data.

Rules are generated by a pre-defined set of templates. A rule template can
be defined as an abstraction of a rule which can be realised to more than one
different instance. A triggering environment realises the rule when conditions
specified in the environment hold. Generally, we can write it as an if...then
statement:

if condition X then do Y

More specifically we can write this as the following example in the context of a
tagging application:

if previous element is X then change current tag to Y

Rule templates refer to features that can potentially describe useful relation-
ships between elements in the data. In the example above, the relationship
between the current and the previous tag is assumed to have the potential to
be a useful feature in helping to determine the identity of the current tag.

After constructing the template list, we generate instantiations, which es-
sentially form the list of all possible rules that can be applied. For the above tag
template, this includes a list of possible tags to be included either as the previ-
ous or the current tag. Not all tag pairs may be useful, therefore the challenge
lies in trying to find an optimal solution lying somewhere between brute force
generation and more manual work (for example, using random sampling).

Often, learned rules are initially very general but become more specific as
they approach the ground truth represented by the gold standard. An effective
analogy is provided by Samuel (1998), who attributes it to Terry Harvey. A
painter can decide, upon painting a barnyard scene, to first colour everything
blue, since the sky will comprise the majority of the canvas area. After the
paint dries, he paints the barnyard which comprises a smaller area, but without
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taking care to avoid the windows, roof and doors, which will be painted more
precisely at a later stage. Similarly, the first few rules can be applied over a
broad area, increasing recall but also making many mistakes. As more rules
are applied, some mistakes are corrected and precision generally goes up.

With many TBL applications, the data is first annotated with a so-called
initial state annotator. To explain this further it in terms of a part-of-speech
tagging application, this can range from naively tagging all words as nouns to
the output of an already accurate tagger with the intention of further increasing
its accuracy. The object of the training phase is to learn the correct order of rules
to get as close as possible to the ground truth represented by the gold standard.

7.3 Transformation-based learning for tree alignment

In this section, we describe our adaptation of TBL to the tree alignment problem.
More specifically, as in chapters 4 and 6, the problem we are attempting to solve
is the accurate alignment of non-terminal constituents between a pair of syntac-
tically annotated parallel sentences. Minimally, we assume structurally valid
phrase structure trees with existing word alignments. However, any additional
metadata can be incorporated and used as features, such as dependency infor-
mation, POS tags, category labels, lemmas, and so on. Instead of an alignment
set that is only word aligned, one containing existing non-terminal alignments
can also be used as an initial state annotator.

As discussed in the previous section, in TBL we apply a list of transforma-
tions consisting of a so-called triggering environment and a rewrite rule, which is
the action undertaken when the required conditions specified by the triggering
environment aremet. In the case of tree alignment, there can always be only two
general courses of action: add or remove an alignment. Whether an alignment
can be added or removed depends on whether the currently inspected node
pair is in fact aligned.

For every iteration, best rules are globally applied - currently, no feature
extraction exists until the full data set has been updated by the rule. Adding
or removing alignments may of course change the actual feature values of
ancestors or descendents of particular node pairs, possibly leading to errors.
However, assuming good feature selection and proper implemention, we can
rely on later rules to correct these errors.

At the time of writing, we do not distinguish between adding different types
of links, instead assuming that all links to be added are confident (good, not
fuzzy - see section 7.4). Therefore, our rule templates consist solely of gener-
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alisations of possible conditions under which to add or remove an alignment.
Since most existing links in our gold standards are confident, not adding fuzzy
links does not significantly affect our results.

As mentioned in chapter 2, a transformation can be represented in an ab-
stract form called a template. The following is an example of a possible template
in the context of tree alignment:

• if current node pair has a height difference of less than x , then change
link type to y

where the link type can in this case only be ADD or REMOVE. However, the
triggering environment may consist of a number of possible features, which we
will discuss in the next section.

7.4 Features

Thanks to our experience in building training data and previous tree alignment
experiments, we have identified a number of features that could be useful to
act as triggering environments. We explain how we incorporate them into our
system in section 7.5. All features are optional, although at least one is needed
for training.

Tree features

Unary nodes

Some phrase-structure trees contain constituents that have only a single child
node. Depending on the alignment scheme, one may prefer aligning either the
parent or the child (or even the unary grandchild, if it exists). For example, in
our gold standards we preferred to align the lowest possible node, since the
information is most specific. For example, a VP can also be an S. Aligning the
VP is more informative since there are also other types of S having different
unary daughters.

Apart from checking if a specific node is in a unary relation, one may specify
certain special conditions or constraints. For example, an S may be in a unary
relationship with a ROOT node, apart from the fact that the ROOT node is also
the parent of a full stop. One may decide that punctuation should be ignored
in some contexts and make an exception in this case.
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Subtree similarity

In the same chapter (section 6.3), we describe two key similarity features that
we call leaf ratio similarity scores and linked leaf ratio similarity scores. Given
a subtree pair, a leaf ratio similarity score is a measure of the ratio between the
number of terminals (leaves) of the subtree with the least number of leaves and
that of the subtree with the most number of leaves, as well as the leaf count
difference between the two sides. The idea is that together, they constitute a
measure of similarity, and the more similar the subtrees are, the more likely it
is that their roots should be linked (given certain other conditions such as the
condition that they share at least one word alignment). Using the geometric
mean of the two numbers (ratio and count difference), reflects the degree to
which they share the same weight. It has the effect that the lesser score is
weighted more heavily. If we use a penalty score, we assume that the weights
are different. We attempt to model these differences using the value of the
denominator.

A similar measure is calculated by the linked leaf ratio similarity score. In
this case, the lowest value is the number of leaves in both subtrees that are linked,
and the highest value is simply the total number of leaves in both subtrees. The
idea behind this is that the more leaves are linked between two subtrees, the
more likely it is that the the trees should be linked. The ratios between these
two numbers and the difference between them are used in exactly the same way
as above (chapter 6) to calculate two alternative ways of representing subtree
similarity. The formulae for these measures are presented in section 6.3.

Height

We have found it useful to define the height of a node as the longest path from
any of its leaves to the current node. Relative height difference between a given
subtree pair could conceivably be a feature in helping to determine whether
or not they should be linked. For example, it seems unlikely that a subtree at
the first level above the terminal and spanning fewer words should be linked
to a more complex subtree containing many recursive subtrees and typically
spanning more words.
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Link features

Link well-formedness

We use the well-formedness feature as a measure of whether or not there are
links from any of the nodes in the subtree pair that are not shared by both of
the trees. If one or more such “outgoing” links, which does not have the root
of the other tree as an ancestor, exist, the trees are not well-formed with respect
to its links. As stated in chapter 2, our definition of well-formedness is based
on the following axiom as stated by Hearne et al. (2007):

• A node in a tree may only be linked once.

• Descendants of a source linked node may only be linked to descendants
of its linked node on the target side and vice versa (target to source).

• Similarly, ancestors of a source linked nodemay only be linked to ancestors
of its linked node on the target side and vice versa (target to source).1

Similar to previous chapters, we will only refer to the second point when
mentioning well-formedness, as it is a significant indication of equivalence and
an important discriminating feature.

As with the work presented in Zhechev and Way (2008), we distinguish be-
tween so-called good and fuzzy links, which denote confident and less confident
links respectively. This distinction is used for a number of features described
below.

In chapter 6, we have noticed the value of allowing for near-wellformedness.
Restricting linking subtrees to only those that are strictly well-formedmay lower
recall significantly. Data sets containing high-recall word alignments often have
incorrect links between the terminals which should ideally not play a role in
determining whether or not the subtree pair in question should be aligned. We
have noticed that in some cases, allowing for one or two less confident word
alignments to violate the principle increases both the recall and the resulting
F-score. Figure 7.1 explains this graphically.

For our TBL system, it is possible to check for near-wellformedness in a
number of possible ways:

• checking for n number of good outgoing links
1As mentioned in chapter 2, one side is often called the source side and the other the target

side, even if eventual translation from the former to the latter is not the end application one has in
mind.
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Figure 7.1: An example of a non- (but nearly) well-formed linked subtree pair,
indicated by the thick line connecting the nodes CONJ and ADJP. The fuzzy
(and incorrect) alignment between zwaarwichtig and as is a less confident link
leading to non-wellformedness of the subtrees, since asdoes not haveADJP as an
ancestor. However, if we ignore this alignment and allow near-wellformedness,
we can still link the trees in question. The grey areas represent “no go areas”
for word alignments which render the subtrees non-wellformed whenever a
descendent of any of the subtree roots is linked to a node there.

• checking for n number of fuzzy outgoing links

• checking for n number of non-terminal outgoing links

• checking for all or any of the above, but ignoring punctuation - in other
words, any links involving terminal nodes with punctuation are not
counted

where by “outgoing” links we mean links between nodes where one of the
nodes that are being linked has a relevant source or target subtree root node as
an ancestor and the other one does not. For example, in figure 7.1, repeated
from figure 6.2, the subtrees CONJ and ADJP are linked. With this in mind,
we note that there is an outgoing link aligning zwaarwichtig with as. The word
zwaarwichtig has a relevant ancestor - the parent node CONJ - whereas the word
as has not, since ADJP, which is aligned to CONJ, is not an ancestor of as.

This can also easily be changed to count the number of nodes that have these
links instead of the links themselves. In the case of multiply aligned nodes,
these two numbers can differ significantly.

Based on manual inspection, we regard even one outgoing link from a
non-terminal node to be significant evidence to discard a candidate node
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pair for alignment. Therefore, in our experiments, we did not allow for near-
wellformedness in this case. However, it is still possible to implement this if
one so chooses.

Link types

If a subtree pair shares only a few low probability (fuzzy) word alignments, it
seems reasonable to conclude that perhaps the trees are not that equivalent to
each other. The converse - that they are fairly equivalent if they share at least
a few strong word alignments - seems to be true. Of course, the lack of any
shared word alignments whatsoever would seem to be present strong evidence
against the alignment of the subtree pair in question. We therefore include
checking for the existence of a specified link type as a possible feature.

Orthographic features

It seems reasonable that if two strings are exactly equivalent, they might also
be semantically equivalent, and should therefore be aligned, especially in the
case of closely related languages. Additionally, if the span of a string includes
the first or last token of the sentence, the same may be true of its translational
equivalent.

One may additionally define a wide range of possible conditions or con-
straints such as the presence of only lower case letters, no punctuation, and so
on.

Other features

Element on only one side

In a significant number of cases, we have found that if a verb occurs in either the
source or target subtree but not on the other, they should not be aligned. The
verb is conceivably the most important word class with which one describes
an action. If one assumes the sentence pair to be a more or less equivalent
translations of each other, it stands to reason that an action described on the
one side must also occur on the other side. Of course, there are exceptions, and
in many cases, the equivalent of a verb can be realized as another class such
as a noun. However, it has still proven to be a useful discriminating feature.
Likewise, other discriminating features such as numbers and capitalized words
may also be used in a similar fashion.
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Element at beginning or end of span

We have found that if any of the subtrees have a punctuation mark at either
end, they are likely to be either at the beginning or end of the sentence or a
clause, which in itself can be a useful discriminating feature.

Of course, this can be generalized to any element. Another useful element
has proven to be the existence of an aligment that ensures well-formedness - in
other words, an alignment from the beginning or end token that links to one on
the other side that has the the root of the subtree as an ancestor. If this occurs
on both source and target-sides and both at the beginning and end tokens, this
seems to be a good indication, along with well-formedness, that the source
and target-side spans are equivalent. If one side is not linked, this could mean
that perhaps an ancestor ought to be linked instead. Figure 7.2 provides an
example.

Rule template with feature set

The implementation (see next section) allows any combination of features to
be applied. Given a subtree pair, a specific feature is either applicable or not,
meaning that we have a hypothesis space consisting of boolean values with the
size of 2n where n is the number of features. Furthermore, features themselves
may contain a possibly infinite range of values. For example, one may check for
a height difference of 4, or 5, or 6, ad infinitum. This is only restrained by its
practical application, which differs depending on the nature of the data being
processed.

Given this, we proceed to specify our rule template which contains ab-
stracted versions of the features described before. Since the rewrite rule is only
ADD or REMOVE - or more simply put, changing the link status - we do not
mention this here. Note that for our final experiments, we have only used a very
small set of all possible feature values. We split the template up into different
tables, one for each feature type (Tables 7.1, 7.2 and 7.3).

In Table 7.1, please note the following at the similarity scores using geometric
means: If the difference in leaf/link counts is 0, then the geometric mean will
of course also be 0, since 0 is multiplied by the ratio before taking the square
root. However, since this is a special case where the similarity is perfect, we
return a very high number instead of 0. The similarity scores using the penalty
scores are indicated as potentially infinite since the penalty score consists of a
division of a count difference by an arbitrary denominator. This may lead to
positive and negative numbers of any real value. If the denominator is 0, the
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Figure 7.2: An example of an equivalent subtree pair where the first and last
words of both sides (de, gisteren, yesterday and sitting) are linked to a descendent
word of the respective other side. The Dutch phrase literally means the sitting
of yesterday. The dotted word alignment indicates a fuzzy alignment, while the
solid lines are confident.
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value returned is conventionally also 0. Linked leaf ratios can include 0 since
there may not be any links. Conversely, leaf ratios are always greater than 0
since a non-terminal node dominates at least one leaf.

7.5 Implementation

The system is implemented in four distinct phases:

• training

• rule cutoff selection

• testing

• processing new data

For the first three phases, a gold standard is needed, and for each also a
version of the samedata setwhich has been processed by the initial state annotator.
This can, for example, be the output of a tree aligner or a set containing only
word alignments. This we will call the automatic data set.

Our tool of choice for creating gold standards, described in previous chap-
ters, is the Stockholm TreeAligner (Lundborg et al., 2007). This tool provides a
graphical UI allowing the user to draw lines between nodes in parallel trees.
These lines are stored as alignments in an XML file which can be processed by
automatic alignment software. This file is in what we will call STA-XML format.
The Stockholm TreeAligner only accepts trees in TIGER-XML format, and for
this reason, it is also our format of choice.

Training

Training initiates by extracting various features from both treebanks and the
automatic STA-XML alignment file. The features are specified by the user in
a text file using a special syntax. These are used to assign rule statistics to all
possible non-terminal node pairs. The rule statistics essentially assign a profile
of boolean feature values to every node pair according to the specified rule
instantiation. In other words, every unique set of binary numbers refers to the
feature profile of the node pairs having those values. These have the potential
to function as triggering environments during actual rule application.

Figure 7.3 illustrates an example of the deletion of a link using a remove
rule. The tree pair in question is the Dutch NP (s5_4) which is erroneously
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Triggering environ-
ment

Range of x Range of y

source node has unary
child under condition x

none / ignore punctua-
tion

N/A

target node has unary
child under condition x

none / ignore punctua-
tion

N/A

leaf ratio similarity
score of range x using
penalty score and
normalization value of
y

∞ ∞

linked leaf ratio similar-
ity score of range x us-
ing penalty score and
normalization value of
y

∞ ∞

leaf ratio similarity
score of range x using
geometric means

> 0 N/A

linked leaf ratio similar-
ity score of range x us-
ing geometric means

> 0 N/A

source and target node
height difference is in
range x

≥ 0 N/A

leaf ratio of range x > 0 and ≤ 100 N/A
linked leaf ratio of
range x

≥ 0 and ≤ 100 N/A

Table 7.1: Rule template with list of possible features acting as triggering envi-
ronments, for tree features.
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Triggering envi-
ronment

Range of x Range of y Range of z

x number of
word alignments
of link type y
leads to non-
wellformedness
under condition
z

≥ 0 good/fuzzy none / ignore
punctuation

x number of
non-terminal
alignments
leads to non-
wellformedness
under condition
y

≥ 0 none / ignore
punctuation

N/A

link of type x ex-
ists

good/fuzzy N/A N/A

start and end
leaves on both
sides are linked
under condition
x

links are well-
formed

N/A N/A

Table 7.2: Rule template with list of possible features acting as triggering envi-
ronments, for link features.
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Triggering environ-
ment

Range of x Range of y

elements x on source
and target-sides are
equivalent

whole string / a word
containing one or more
capital letters or num-
bers

N/A

elements x exists on
both source and target-
sides

capitalized word /
number

N/A

element x exists on
either the source or
target-side

punctuation at begin-
ning / punctuation at
end

N/A

element x exists on only
one side

word containing either
a number or any of:
<>&=*^$#@+_/\~{}[]|
/ word containing
number / word con-
taining one or more
capital letters / any
part-of-speech tag in
the tagset

N/A

Table 7.3: Rule template with list of possible features acting as triggering envi-
ronments, for orthographic and other features.

linked to the English VP (s5_503). The NP dominates de schep (the shovel) while
the VP dominates Bring the shovel. These two phrases are clearly not equivalent.
A remove rule associated with a specific set of feature values could lead to such
cases being identified and removed. In a later stage, an addition rule with the
feature values of the correct NP pair (indicated by the dashed line) could lead
to these tree pairs being correctly linked.

The following feature values could be extracted from the abovementioned
node pair to be associated with a remove rule:

Node pair (s5_4)(s5_503) has the following properties:

• source node has a unary child = FALSE
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Figure 7.3: An example of a tree pair having the feature values as described in
the example list. The tree pair is the Dutch NP which is erroneously linked to
the English VP. A remove rule reacting to the current feature values as triggering
environment could lead to the current link being removed, while a later addition
rule could add the correct link between the two NPs. For simplicity, only the
relevant non-terminal links are shown.
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• target node has a unary child = FALSE

• source node has a unary child, ignoring children with punctuation =
FALSE

• target node has a unary child, ignoring children with punctuation =
FALSE

• less than 1 confident (good) word alignment(s) going outside = TRUE

• less than 3 less confident (fuzzy) word alignment(s) going outside = TRUE

• less than 1 non-terminal alignment(s) going outside = FALSE

• less than 1 confident (good) word alignment(s) going outside, ignoring
punctuation = TRUE

• less than 3 less confident (fuzzy) word alignment(s) going outside, ignor-
ing punctuation = TRUE

• leaf ratio similarity score is less than 40; penalty score denominator is 80
= FALSE

• height difference is less than 4 = TRUE

• verb exists on only one side = TRUE

• pronoun exists on only one side = FALSE

• subtrees share at least one confident word alignment = TRUE

• source-side string has punctuation at beginning or end of span = FALSE

• target-side string has punctuation at beginning or end of span = FALSE

• begin and end words on both sides have links leading to well-formedness
= FALSE

The aforementioned list can be clarified by looking at the example in the
figure, with the NP and VP as the subtree roots:

• Clearly, these nodes do not have unary children, with or without taking
punctuation into consideration. Therefore, all relevant values are 0.
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• There are no confident word alignments going outside (value 0). However,
between the subtrees, two fuzzy word alignments go outside: the ones
linkingBring toGeef andme. ThewordBring is a descendent of the English
VP, but Geef and me are not descendents of the Dutch NP, meaning that
the tree pair is not wellformed.

• There are less than 3 fuzzy word alignments going outside, so this value
is 1.

• The leaf ratio similarity score is not less than 40 if the penalty score
denominator is 80. In the example, the leaf ratio is 2/3. Using the formula
discussed in chapter 6, we subtract the absolute difference (1) divided by
the denominator (80) from the leaf ratio, giving us a value of roughly 0.65
(65). The feature value is therefore 0.

• The source tree height is 1, while the target tree height is 2. The difference
is 1, which is less than 4. Therefore, the feature value is 1.

• There exists a verb on only one side, in the form of Bring. (value=1)

• It is not the case that a pronoun exists on only one side. (value=0)

• The trees share at least one confident word alignment, in the form of
de<–>the and schep<–>shovel. (value=1)

• Neither the source nor the target trees have punctuation at either the
beginning or at the end of their spans. The respective values are therefore
0.

• The beginning and end words on both sides do not all have links lead-
ing to well-formedness. The word Bring has two links that lead to non-
wellformedness, since the words to which it links (Geef and me) are not
dominated by either of the trees. (value=0)

During training, we count all occurrences of specific feature value sets in the
automatic data set in order to compare them to the gold standard. We assign
numbers to each unique feature profile and count whether or not the action
ADD (in the case of unlinked node pairs) or REMOVE (in the case of linked
node pairs) compares favourably with their equivalents in the gold standard,
for every such feature profile.

For example, if there are 20 node pairs in the automatic set having the same
set of binary values 00011011000111010, with 12 of them unlinked and 8 linked,
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then the rule “if 00011011000111010 then ADD” can be applied 12 times and
the rule “if 00011011000111010 then REMOVE” can be applied 8 times.

Since the gold standard has the same trees, it follows that the same node
pairs exist as in the automatic data set. Some of them may be linked and some
not. Transformation rule “if 00011011000111010 then ADD” are applicable 12
times to the automatic set. If we look at the same node pairs in the gold standard,
we might notice that only 8 of them are linked, meaning that 8 rule applications
are right and 4 are wrong. Similarly, transformation rule “if 00011011000111010
then REMOVE” can be applied 8 times to the automatic set, but we might
notice that only 2 of the relevant node pairs in the gold standard are unlinked,
meaning that 2 rule applications are right and 6 are wrong.

We proceed to discover possible rules and compare them to the gold stan-
dard until we have a complete list, each having a count of matches with their
occurrences in the gold standard as well as mismatches. We proceed to sort
them in descending order of the number of mismatches deducted from the
number of matches.

For clarity, we present a possible example of a “best” rule:

163 00011011000111010 ADD 51 38 13

This means that the best rule for this iteration is the 163rd rule to be found.
The binary number corresponds to the truth values of the features in the order
that they are specified in the text file. ADD specifies that with all unlinked node
pairs that are encountered where this combination of feature values are true, a
link is to be added. 51 is the number of correct cases found in the gold standard,
38 are the number of incorrect cases, and 13 is the result of the number of
incorrect cases subtracted from the number of correct cases. If no other rules
have been found with a difference of more than 13, this rule would be selected
to be applied for the current iteration.

In the iteration, the best rule found is added to the list of transformations
and applied to the automatic data set to create a new one, fromwhich we newly
extract features and discover rules. This continues until no rule can be found
where there is a positive difference between matches and mismatches.

Rule cutoff selection and testing

Experiments (see section 7.7) have indicated that this approach can easily lead
to overtraining. This means that training scores tend to be high but score much
lower on development test sets. To counter this, we introduce a phase where
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the learned transformation rules are applied to a held-out set which has its
own gold standard. We then select only the rules up until the one which, when
applied, leads to the highest F-score when evaluated against the gold standard.
This subset of rules will then be used for testing and/or aligning/correcting
new data.

For example, 80 rules might have been learned. On the cutoff set, however,
application of rule 60 has the highest F-score. We therefore select only the set
up to and including rule 60. The order of the rules stay the same, but selecting
a cutoff rule means that not all of them will eventually be applied to new data.

It may happen that with the cutoff rule, the next few rules lead to no change.
In that case, we include them as well, since together with the training data set
they still lead to a net improvement.

One may wish to apply the newly selected list of rules to a test set for
evaluation purposes. Obviously, a gold standard for this set is needed as well.
Instead of a test set, one may apply a development test set which can be used
for various experiments, so that the test set is only used for the final evaluation
process.

Processing new data

Any set of learned rules can be applied to new unseen data. It is important
to take care that the input set has been processed to the same degree as the
training, cutoff and test sets. For example, if one uses TBL to improve the output
of an existing tree aligner, all automatic data sets, including the new one, must
ideally contain the output of that tree aligner. Of course, it would be even better
if all these sets were produced by the same method or model.

The current implementation is too slow for sequential processing of large
data sets such as Europarl (proceedings of the European Parliament, see chapter
3, for example). However, we have adapted the system for use on our local
high performance computing (HPC) cluster so that many alignment sets can be
processed at once. For the sentence aligned Europarl 3 corpus, we have split
the sentence pairs up into 650 files containing roughly 3000 sentence pairs each.
Using TBL, it took less than two days for the entire parallel corpus to be aligned
on the cluster.

7.6 Feature selection

While developing and testing the system on our data (see section 7.7), we have
learned a few interesting properties of the system. We have found it useful to
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construct a few complex rules by implementing a relatively small combination
of features in order to limit the time for training and testing. This deviates
from the approach of Brill (1995) who applies a large set of simple rules to
the part-of-speech tagging problem. Nevertheless, our approach has some
advantages and disadvantages. Some advantages are:

• The system runs more quickly because of the limited number of features.

• It is quite powerful and high scores are reached very quickly, since all
feature values are combined, creating complex rules.

Some disadvantages are:

• Unlike simple rule systems, our system overtrains easily. Since the rules
are complex, it is conceivable that some of them can only be applicable on
the currently investigated data set. This can result in significantly lower
scores in the testing phase on sets that are different from the current one.

• Feature selection must be done carefully in order to keep the number of
features to a minimum.

We attempt to lessen the impact of the disadvantages by doing the following:

• Include a variety of sentence pairs from different domains in the training
data set.

• Concentrate on the most significant features and only include these.

• Make use of a held-out set in order to select a cutoff point to minimise
overtraining.

In our experiments, longer feature lists always led to overtraining issues,
even when using a cutoff point. Therefore, our lists tended to be small, so we
experimented with including and excluding various different features.

Some of the feature lists led to output with a high measure of precision, but
had a relatively low coverage, such as checking whether a number exists on
only one side, which usually means that the subtrees should be unlinked. Our
data sets do not contain many numbers, so including this feature did not lead
to much overall improvement. Therefore, this was not included in our final
best list.
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We also experimented with using different initial state annotators, which
we will describe in section 7.7 in more detail.

Our best list which we will report here was already noted above in the form
of an example of a feature profile. For clarity, we list them again without the
true and false values (note that the specific order does not matter):

• source node has a unary child

• target node has a unary child

• source node has a unary child, ignoring children with punctuation

• target node has a unary child, ignoring children with punctuation

• less than 1 confident (good) word alignment(s) going outside

• less than 3 less confident (fuzzy) word alignment(s) going outside

• less than 1 non-terminal alignment(s) going outside

• less than 1 confident (good) word alignment(s) going outside, ignoring
punctuation

• less than 3 less confident (fuzzy) word alignment(s) going outside, ignor-
ing punctuation

• leaf ratio similarity score is less than 40; penalty score denominator is 80

• height difference is less than 4

• verb exists on only one side

• pronoun exists on only one side

• subtrees share at least one confident word alignment

• source-side string has punctuation at beginning or end of span

• target-side string has punctuation at beginning or end of span

• begin and end words on both sides have links leading to well-formedness
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7.7 Experiments

Data

For our experiments, we make use of data sets that are part of large parallel
corpora which are freely distributed online. These corpora are the same as
those described in chapter 3, which were used in the context of the Parse
and Corpus-Based Machine Translation (PaCo-MT) project. The data sets are
in the same stage of processing as those used in our Europarl experiments
described in chapters 4 and 6. In other words, we make use of strictly one-to-
one aligned sentences that are parsed and then also word aligned by GIZA++
using the Moses heuristics of intersect (high precision) and grow-diag (high
recall) alignments.

From the processed data, we constructed various alignment sets, all of
them with Dutch as the source and English as the target language, using the
Stockholm TreeAligner. We have kept the automatic word alignments intact,
as we seek to emulate input conditions as they would occur when applying
our models. In constructing our training data, we have tried to adhere to the
following principles:

• We took the previously defined well-formedness constraints into account.
However, we also made alignment decisions based on real-world knowl-
edge of concepts to which the text refers. Additionally, we considered
it important whether or not it would make sense to translate the source-
side string into the target-side string in at least some contexts. We have
applied the constraint involving one-to-one links only to those between
non-terminals. Many-to-one and even many-to-many links between ter-
minals occur frequently in cases where there is otherwise no satisfactory
way to represent translational equivalence. Because of this and because
we prefer high-recall over high-precision alignments (see discussion on
previous extrinsic evaluations in section 7.10), we have allowed this.

• As mentioned before, we distinguish between so-called good and fuzzy
links, which denote confident and less confident links respectively.

• A good link is made between subtrees where the string dominated by the
target subtree would be considered a good translation in at least some
contexts of the string dominated by the source subtree.

• A fuzzy link is made between subtrees where the string dominated by the
target subtree would be considered a conceivable but less optimal trans-
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English phrase Dutch phrase Translation Reason

its activities de activiteiten
die daar
plaatsvinden

the activities tak-
ing place there

loose translation

to join us tot de Unie toe-
treden

to join the Union loose but correct
in context

the European
Union

Europese Unie European Union incomplete
but plausible
translation

the story de verhalen the stories loose translation
create opinion onze opinies vor-

men
create our opin-
ion

more general
translation

Table 7.4: Some phrases which have been linked using the fuzzy (less confident)
link. Note that the translation direction is from Dutch to English, which makes
the last example a more general translation instead of a more specific one.

lation of the string dominated by the source subtree. Examples would
be where the target string (the vehicle) is more general than the source
string (the car). A more general translation is still in a sense correct, but a
more specific translation can easily be wrong, since the knowledge about
the specifics is not necessarily present on the source-side. However, in
cases where the target-side is more specific and this particular translation
seems to be relatively frequent, we still align them using a fuzzy link.
We also make fuzzy links, for example, where the translation is loose or
where less important words, such as determiners, are left out on one side.

Figure 7.1 gives a good example of a subtree pair which should be confi-
dently aligned. The phrases zwaarwichtig en onrijp and ponderous and immature
are word-for-word translations where every terminal has a good link to a ter-
minal governed by the other subtree. Conversely, there may be a number of
reasons to prefer aligning subtrees using a fuzzy link. Generally, though, they
are pairs which we have deemed as translationally less optimal, but acceptable.
Table 7.4 presents such examples of phrases which we have deemed to align
using fuzzy links.
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Function Domain(s) Sentence pairs

Training set EP (50), OPUS (150), DGT (50) 250
Cutoff set EP (50), OPUS (35), DGT (15) 100
Development test set EP (50), OPUS (150), DGT (50) 250
Test set EP 200

Table 7.5: Summarisation of the data used in the experiments, where EP =
Europarl = European Parliament Proceedings, OPUS = Open Parallel corpUS
and DGT = Directorate-General for Translation translation memories of the JRC
(Joint Research Centre).

As mentioned in the previous section, there are a number of different data
sets that can be used in the experimental process, each having its own gold
standard. We therefore proceeded to construct four gold standard sets from
Lingua-Align output which was trained on a set of 140 parallel sentences from
Europarl which we used in the PaCo-MT project. The sets consist of:

• A training data set comprising 250 sentence pairs from four different
domains.

• A held-out data set comprising 100 sentence pairs from the same four
different domains, which we use to determine a rule cutoff point, as
discussed in the previous section.

• A development test set comprising 250 sentence pairs from the same four
different domains.

• A test set comprising 200 sentence pairs from one domain (Europarl).

Our opinion is that the training and both test sets are the most important,
therefore they all contain a relatively high number of sentence pairs. The
development test set should be big enough to be a reliable guide for the feature
engineering process. The test set, however, should be notably different in its
domain composition than the training data set, in order to be a proper test of
the flexibility of the model (see below). We regard the cutoff data set as the
least important, therefore it contains the least sentences.

Table 7.5 summarises the above.
For the training and the development test set, the OPUS (Open Parallel

corpUS) data (Tiedemann, 2009) is subdivided into OpenSubtitles (movie
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subtitles, 100 sentence pairs) and EMEA (documentation from the European
Medicines Agency, 50 sentence pairs). DGT (50 sentence pairs) denotes the
DGT (Directorate-General for Translation) Multilingual Translation Memory
of the JRC (Joint Research Centre) Acquis Communautaire.2 In the cutoff set,
the OPUS data are subdivided into 20 OpenSubtitles and 15 EMEA sentence
pairs. We have aligned more sentences in OpenSubtitles since most of them are
very short, although we have tried to include enough variation and negative
examples as well (for example where parses are such that many constituents
cannot be aligned).

Since all four data sets have both a corrected (gold) and an uncorrected
version, this brings the total up to eight sets.

Initial state annotators

We have also experimented using different combinations of alignment steps.
One alignment step is a bottom-up algorithm which we describe in chapter 6,
whichmainly uses the similarity features using geometric averages as described
in the previous section. It can be described as follows:

• For every unlinked source-side non-terminal node, starting at the lowest
level:

• Inspect every unlinked target-side non-terminal node, starting at the
first level.

• If conditions hold between the current two subtrees, link them, else
continue to the next unlinked target-side non-terminal node on the
same level.

• If no target-side non-terminal node has been linked on the current
level, continue to the next level, and repeat the previous steps up to
and including the highest possible level.

• If the current source-side node has been linked, move on to the next
source-side node on the same level, and start inspecting target-side
nodes on the first level again.

• If all source-side non-terminal nodes have been inspected on the
current level, move on to the next level and repeat by inspecting
unlinked target-side nodes on the first level, repeating all previous
steps.

2http://langtech.jrc.it/DGT-TM.html
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• Stop when all unlinked source-side non-terminal nodes have been pro-
cessed.

The algorithm can also be applied in the other direction by starting from
the target-side nodes instead of the source-side nodes. One can create different
data sets by applying both directions to an existing set. Furthermore, one can
create a higher precision set of the latter two sets by calculating and applying
their intersection, or a higher recall set by doing the same with the union.

In our experiments, using the union set as input somehow always led to
many more rules being learned, with relatively little increase in performance.
We have therefore continued to experiment with these combinations (all sets
were already word aligned):

• TBL

• bottom up + intersection + TBL

• Lingua-Align + TBL

• Lingua-Align + bottom up + intersection + TBL

This Lingua-Align model is the same one as mentioned before: a high
precision but low recall model trained on a separate Europarl set, which we
applied to all corpora in the PaCo-MT project. We have subsequently applied a
version of the bottom-up algorithm to it, which increased recall as well as the
BLEU score (see chapter 8). The fact that experiments with intersection data
sets increased F-scores even further suggested that it would be a good idea to
experiment with alignment in that order.

7.8 Results

Wewould like to point out that for our evaluation scores, we do not distinguish
between good and fuzzy links, since we do not yet attempt to make that distinc-
tion in our output. Therefore, we use the standard balanced F-measure as it
occurs in many other NLP publications, instead of the more refined definition
as is used in the word alignment literature (Och and Ney, 2003), where the
recall of only good links is taken into consideration.

The following formulae are used to determine F-scores. P denotes all cor-
rect links (“possible”, both good and fuzzy) and A refers to the automatically
produced links.
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Alignment steps Precision Recall F-score

Intersect 91.2 47.6 62.6
TBL 88.3 78.3 83.0
Intersect+TBL 87.4 81.2 84.2
Lingua-Align+TBL 89.0 80.0 84.3
Lingua-Align+intersect+TBL 87.8 82.7 85.2

Table 7.6: Evaluation results on the development test set

Precision(A, P) =
|P ∩ A|
|A|

Recal l(A, P) =
|P ∩ A|
|P|

F =
2 ∗ Precision ∗ Recal l

P recision+ Recal l

Table 7.6 displays our test results on the development test set using all eval-
uated combinations, while table 7.7 displays the same results on our Europarl
test set. We do not include Lingua-Align scores here, because in order to be fair,
we would also need to train a Lingua-Align model on the same training data set,
which comprises four different domains. However, for Lingua-Align training
we would also need to specify the correct GIZA++ models, and we do not have
any single model that was trained on all four these domains. If we attempt
to train a Lingua-Align model on the training data set specifying any single
GIZA++ model, for example the Europarl model, recall drops substantially.

Therefore, we proceed to select sentence pairs from the domain which is
represented the most in all our data sets, Europarl, and implement ten-fold
cross validation using both Lingua-Align and TBL on its word-aligned version.
We do the same with the pipeline that has led to the best scores on average:
Lingua-Align + bottom-up + intersection + TBL. The set consists of 350 sentence
pairs, on which for Lingua-Align we train 90% - i.e. 315 sentence pairs - and test
on the rest, whereas for TBL, we train on 250 sentence pairs, use 75 sentence
pairs as a cutoff set and test on 25. For Lingua-Align, we use the same set
of parameters that we used in the PaCo-MT project, with an improved set of
features that resulted in better scores for later experiments. For TBL, we use
the same set of template instantiations that led to the scores above. We present
the results of our evaluation in Table 7.8.

A number of things stand out when looking at our results. First of all,
applying the intersection of the bottom-up algorithm generally leads to a high
precision but a low recall. As suggested by experiments described in chapter 6,
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Alignment steps Precision Recall F-score

Intersect 79.3 51.8 62.7
TBL 78.2 79.3 78.7
Intersect+TBL 77.4 82.5 79.9
Lingua-Align+TBL 79.0 82.3 80.6
Lingua-Align+intersect+TBL 77.3 83.9 80.5

Table 7.7: Evaluation results on the Europarl test set

System / Pipeline Precision Recall F-score

Lingua-Align 81 77.6 79
TBL 84.9 80.1 82.5
Lingua-Align+bottom-up+intersect+TBL 84.2 84.2 84.2

Table 7.8: Ten-fold cross validation scores applied on Europarl data for TBL
and Lingua-Align

however, it is quite suitable for increasing the recall of data sets produced by
Lingua-Align.

Secondly, all TBL experiments lead to very good results on the development
test set and worse results on the test set. This is expected since the rules were
learned while training on a set with similar data than the development test set,
whereas the test set consists of only Europarl data. Generally, the combination
consisting of Lingua-Align, the bottom-up intersection and TBL fares the best
although the F-score of Lingua-Align+TBL is a 0.1 improvement on the test set.
The scores of Lingua-Align+intersect+TBL and Lingua-Align+TBL are generally
very close to each other, suggesting that the combination of Lingua-Align and
TBL is more important than using the intersection with TBL.

However, the score from the Lingua-Align model with the intersection
without using TBL is also quite high for the test set, as Table 7.9 indicates.
Performance is inconsistent, however, as the F-score for the same combination
on the development test set is much lower. Performance of Lingua-Align varies
greatly between the sets as well. This is not surprising as the Lingua-Align
model was trained on sentences from Europarl. However, note that Lingua-
Align precision stays very high throughout.
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System / Pipeline Data set Precision Recall F-score

Lingua-Align devtest set 91.3 41.6 57.2
Lingua-Align+intersect devtest set 85.1 57.5 68.6
Lingua-Align test set 90.1 60.5 72.4
Lingua-Align+intersect test set 81.3 76.9 79.0

Table 7.9: Evaluation scores of Lingua-Align with and without adding the
intersection of the bottom-up algorithm, on both the test and development test
sets.

Thirdly, the TBL experiments produce very high precision results on the
development test set with lower but still good recall scores. But when applied to
the test set, recall is always as least as good as precision. The differences are not
that much but still noticeable. We do not yet have a clear explanation for this,
but we speculate that the generalizing nature of the algorithm, together with
the use of a cutoff data set, may be at least partly the reason for the relatively
high recall scores.

Finally, it is clear that our ten-fold cross validation results favour TBL over
Lingua-Align. The very high scores of the error correcting model (Lingua-
Align+bottom-up+intersection+TBL) are consistent with those of the develop-
ment test set and the test set. As a tree aligner, TBL achieves surprisingly high
scores using only a very small set of features.

Figure 7.4 is a graphical presentation comparing the test set evaluation
scores for the TBL experiments that we reported in Tables 7.6 and 7.7 as more
rules are applied for each set. Note that the plots are of different lengths because
of the fact that a different number of rules was applied in each case. It is clear
that the first few rules are very effective in the case of TBL and intersection+TBL.
Unlike with training, where the points are usually plotted in a shape resembling
a logarithmic curve, with these two experiments, there are three distinct jumps
in performance increase at more or less the same points on the x-axis. Note
that we do not include the original scores in the graph (at x=0).

In the case of Lingua-Align+intersection+TBL, it starts off with a high initial
score which increases only slightly after application of the rules. This is not
that surprising since before applying TBL, Lingua-Align+intersect already has
a very high F-score of 79.0 (see Table 7.9). However, Lingua-Align has a lower
score of 72.4, but after just one rule (Lingua-Align+TBL), it achieves almost the
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Figure 7.4: Comparison of the F-scores of the four different test sets.
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Figure 7.5: Comparison of the F-scores of the four different evaluation sets
when the system is used as a tree aligner.
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same as Lingua-Align+intersect+TBL, and also manages to stay on par during
subsequent rule applications.

Figure 7.5 gives us some insight to what happens when we use the system
as a tree aligner. We plot the F-scores for not only the test set, but also for the
training, cutoff and development test sets. The vertical line shows where the
cutoff point is, which is the maximum F-score obtained in the cutoff data set.
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It is clear that the scores for the other sets are not only higher than those
of the test set, but that they also more closely resemble a logarithmic function,
the closest of which is displayed by that of the training data set. However,
the points of the cutoff and development sets mimic the last jump in F-score
improvement in the test set graph to a degree. It is also striking that after only a
single rule application, F-scores jump to between 59.5 and 64.4. During training,
the first rule adds 910 alignments of which only 132 are incorrect. However,
test set results are consistently lower, which suggests overtraining, in spite of
the measures undertaken to minimize its effect.

The first few rules applied are very similar, even when applied to the differ-
ent experimental data sets. Most rules add alignments and significantly fewer
remove them. This obviously holds more strongly when TBL is applied to a
set containing just word alignments. With all four experiments, the first rule
learned is the same. These are the features associated with this rule:

• The source and target roots are not in a unary relation, even when accept-
ing unary parents that have punctuation as children (see section 7.4).

• Nomore than two fuzzyword alignments exist that lead to non-wellformedness
(see section 7.4).

• Nomore than two fuzzyword alignments exist that lead to non-wellformedness,
ignoring punctuation.

• No good word alignments exist that lead to non-wellformedness.

• No goodword alignments exist that lead to non-wellformedness, ignoring
punctuation.

• No non-terminal alignments exist that lead to non-wellformedness.

• The leaf ratio score is 40 or more, with a penalty score denominator of
80 (see section 7.4). Recall that the higher the leaf ratio score, the higher
the similarity. However, we use a penalty score to take the leaf count
difference into account, using a normalization value to avoid subtracting
a too large amount. For more information, see section 6.3.

• The height difference is less than 4 (see section 7.4).

• A verb is either present on both the source and target-side, or none (see
section 7.4).

145



• A pronoun is either present on both the source and target-side, or none.

• The subtrees share at least one good word alignment (see section 7.4).

• The first and last terminal of each subtree has a link that goes to a de-
scendant terminal of the root of the other subtree (“inside”). In other
words, these four terminals - the start and end terminals of the source
and target-sides - all link to terminals dominated by the subtrees with the
current source and target non-terminals as roots (see section 7.4).

Figure 7.6 - which also appears in the introductory chapter - displays an
example of a set of trees conforming to the requirements set by the first rule.

In all cases, the second rule is almost exactly the same. Subsequent rules
follow similar patterns, allowing for certain conditions to be true where it was
not the case in the first rule, for example that a verb is present on only one side.
With all four experimental sets, the first REMOVE rule (situated at position
4, 5 or 6) is exactly the same. In addition, this rule differs in only one respect
to the first ADD rule which is the removal of links where there is at least one
non-terminal alignment leading to non-wellformedness. The fact that they do
not differ that much makes sense, because in many cases we remove alignments
that have been added before, meaning that they share a significant number of
features that are also good for adding. REMOVE rules also noticeably become
more frequent towards the end, but the scope of their application also drastically
diminishes.

As an example, we look at the first few rules learned when training TBL on
word-aligned data only. Five ADD rules are applied before the first REMOVE
rule. The first ADD rule has the same values as described in the list above. We
will use this as a point of reference.

Next, we look at the rules applied in subsequent iterations.

• The second rule adds links to subtrees with the same conditions as those
described by rule 1, except that in this case, a pronoun exists on only
one side. This is a bit counterintuitive, since one should expect correctly
linked trees containing pronouns to have them on both sides. Apparently
though, this is often not the case for this data set.

• The third rule is the same as rule 1, with the exception that there is only a
verb on one side. Again, it seems that there were enough positive hits for
this to be selected as a best rule.
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Figure 7.6: An example of a set of subtrees linked by application of the first
rule. Solid lines are confident (good), the dashed line is less confident (fuzzy).

• The fourth rule is the same as rule 1, with the exception that one or more
good word alignments leading to non-wellformedness are allowed.

• The fifth and final ADD rule - before the first REMOVE rule - also adds
links where the target-side node has a non-terminal unary child, where
the source-side has a non-terminal unary child ignoring punctuation,
and where both the source and target-side strings have punctuation at
either the beginning or end of their spans. Here we can see that subtrees
involving unary relationships and punctuation are globally speaking in
a relative minority but that at some point, a significant number of them
can also be correctly linked.
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One way of viewing this is that the values of rule 1 are the feature archetype
of a correctly linked node pair, where rule 2 to 5 are slight deviations which are
less typical but still mostly correct, in decreasing levels of importance.

Asmentioned before, the first REMOVE rule removes links between subtrees
where there is at least one non-terminal node leading to non-wellformedness.
Interestingly, none of the ADD rules described above have explicitly linked such
subtrees. What happened here was that the addition of previous links changed
the feature profiles of some ancestor node pairs so that after the iteration, they
now have descendants with links going to the outside. This was possible since
there is no well-formedness check on a global scale. In other words, when we
link a subtree pair, we do not check whether or not this action would lead to
their respective ancestors becoming non-wellformed, instead assuming that
later REMOVE rules would take care of this.

Next, we look at the important performance jumps, which are clearly visible
in figures 7.4 and 7.5, and focusing on using TBL on word-aligned data only.
The first one occurs at the 8th rule. This addition rule leads to an F-score
increase of 4.3 (from 66.6 to 70.9) in the test set. The features that differ from the
first rule are the existence of punctuation at either the beginning or end of the
string for both the source and the target-sides. Punctuation does not seem to
be a negative feature in most cases - as opposed to outgoing links, for example
- rather, it helps to identify certain types of trees such as those spanning the
start and/or end of the sentences. In this case, we could view the tree pairs
described by this particular feature set as a special case of those described by
rule 1.

The last big jump occurs at rule 61, which is also an addition rule, leading to
an F-score increase of 3.3 in the test set (from 75 to 78.3). In the development test
set, this rule also leads to a jump, albeit smaller, with a 0.6 increase in F-score
(from 82.1 to 82.7). It differs with rule 1 with respect to four feature values:

• The source-side node has a non-terminal unary child.

• The target-side node has a non-terminal unary child.

• The source-side has punctuation at either the beginning or end of the
span.

• The target-side has punctuation at either the beginning or end of the span.

This clearly describes the sentence root nodes, many of which have unary
children on both sides. Obviously, nodes dominating strings spanning the
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whole sentence mostly include punctuation at either the beginning or end of
the strings. Although we have mentioned before that we prefer to link unary
children instead of their parents, for the sake of completeness we also link the
parents if both of their children are already linked. Since in our experience
this occurs in a significant number of sentences, this may explain the jump in
performance.

In the cutoff data set, instead of one big jump, there are two smaller jumps
at the same place: at rule 60 (0.8 F-score increase, from 81.3 to 82.1) and rule 61
(1.3 increase, from 82.1 to 83.4). Rule 60 differs from rule 61 only at the height
difference feature value. This means that rule 60 links (mostly) top-level nodes
where there is a height difference of 4 or more.

7.9 Error analysis

Apart from the evaluation scores that we have already discussed above, we
would also like to present a qualitative analysis of the output errors with the
help of the Stockholm TreeAligner.

In our opinion, the most interesting results would be those that were pro-
duced by applying TBL on the word aligned data sets, since all non-terminal
alignments and omissions are made only by the system. In this way, we can
rule out such errors made by Lingua-Align and the bottom-up algorithm. Fur-
thermore, it would have been interesting to compare the different domains on
a qualitative level, but most domains are only represented in the development
test set, which we used as a means to improve our scores. Therefore, we will
restrict our analysis to the Europarl domain which is the only one present in
the test set.

In a number of cases, a link is made to the parent of the correct source or
target node, meaning that a longer than necessary string is included on that
side. This may be the result of the fact that non-wellformedness is allowed to a
degree. Words can be wrongly aligned, for example in the case of a lack of a
proper translation, ultimately leading to errors such as the above.

Figure 7.7 gives an example of this, which is an extract from the following
sentence pair:

• Geachte dames en heren, geachte collega’s, op 23 juni 1996 is de heer
Andreas Papandreou overleden.

• Ladies and gentlemen, on 23 June 1996 Andreas Papandreou died.
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The Dutch phrase literally reads: Dear ladies and gentlemen, dear colleagues ,
but only the words Ladies and gentlemen appear on the English side. One could
argue that these two phrases could be aligned using a fuzzy link, but a better
and more equivalent translation of Ladies and gentlemen already exists in the
form of the string under CONJ, dames en heren (ignoring the punctuation). In
the gold standard, therefore, we have decided to align CONJ with NP, but TBL
model has aligned the two NPs instead.

In the figure, it would appear that the high recall word alignment scheme
aligned the untranslated words, such as collega’s (colleagues), using fuzzy links,
as indicated by the dotted lines. This leads to errors such as collega’s being linked
to gentlemen. If punctuation is ignored, the NP pair is completely well-formed.
The pair of CONJ/NP can be regarded as nearly well-formed with three illegal
fuzzy links, and two if punctuation is ignored - a still quite conceivable pairing.

In other cases, the causes of errors are initially less clear. For example, figure
7.8 displays a series of embedded subtree pairs which are linked in the gold
standard but not in the TBL output. The sentences are:

• De heer Papandreou heeft er in beslissendemate zijn deel aan bijgedragen
om Griekenland na de donkere jaren van het kolonelsregime terug te
leiden naar vrijheid en democratie.

• Andreas Papandreou played a vital part in restoring freedom and democ-
racy in Greece after the dark years of military rule.

All these tree pairs are well-formed, contain confident links and are very
similar with respect to their leaf counts, but they remain unlinked. The Dutch
only differs with het kolonelsregime, which literally translates to the colonel’s
regime instead of the more general military rule. Probably not coincidentally,
these words are the only ones that are not aligned, although fuzzy links shared
between kolonelsregime and military rule would have been correct.

This state of affairs leads to the fact that het kolonelsregime is not aligned
with military rule, since they do not share any word alignments. The node pair
comprising their respective parents (PP/PP) has a few good features: they share
at least one confident word alignment, they have the same height, a perfect
leaf ratio and they are well-formed. In fact, they share all feature values of the
first addition rule apart from the requirement that the first and last word in
both strings (kolonelsregime and rule) should also be linked to descendants of
the respective other side (the last feature listed above). Their respective parents
and grandparents (NP/NP and PP/PP) also share exactly the same features.
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Figure 7.7: An example of a wrongly linked subtree pair, where the parent (NP)
of the correct node (CONJ) is linked. The solid lines between the words are
confident alignments and the dotted lines are fuzzy.
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Figure 7.8: In this figure, non-terminal links indicated with dotted lines were
linked in the gold standard but not by TBL.
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This particular difference was in fact the deciding factor which kept these trees
unlinked, since no addition rule actually exists which are applicable to these
trees.

More such examples can be found such as the lack of a link between the
NP democratic Greece and the NP het democratische Griekenland (the democratic
Greece) with all words but het being aligned. Again, het as the first word in the
source-side string being unlinked leads to this particular subtree pair not being
considered for alignment during the application of addition rules.

As discussed in section 7.4, we have found that this particular feature may
be a useful indication of equivalence. However, it naturally also excludes many
possible candidates since not all equivalent trees have to be linked in this way.
Since in our experience, using high precision, low coverage features such as
checking for numbers may lead to a drop in overall performance, perhaps
excluding or changing this feature may be a better option in the future.

Finally, there are errors which are very difficult to solve for various reasons.
The most obvious errors are those that have occurred in previous stages of the
parallel treebank creation pipeline: during tokenization, part-of-speech tagging,
parsing, sentence alignment or word alignment. Words may be spelled or
translated incorrectly or there may even be encoding issues. The only solutions
for this are to focus on improving the accuracy of these tasks and to minimize
their impact if possible.

However, some errors will persist even if one takes care of these problems.
Many if not most sentences are not exact translations of each other: words are
left out or added, even entire phrases, references are made to entities not in the
text yet they are explicitly named on the other side, one language may make
use of more idiomatic expressions than the other, and so on. Sometimes one
needs to make the decision on whether or not to link a tree pair based on one’s
real world knowledge of the concepts to which these phrases refer. In these
cases, it is very hard if not impossible to formulate a concrete set of features,
apart from those that we have described before, in order to automatically make
these decisions.

With this in mind, we recognize that a lack of deep semantic information in
the data may limit general alignment accuracy to a degree. In this regard, we
suggest the future incorporation of external resources such as wordnets.
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7.10 Future work and conclusions

We have presented a system which adapts the powerful transformation-based
learning algorithm to the problem of tree-to-tree alignment. In this chapter,
we have described a set of experiments that were run on various data sets.
All experiments involving our TBL implementation produced very satisfying
results.

Wemust stress that it might be possible to train a better Lingua-Align system
on the same data using the right feature and parameter sets. However, extensive
feature engineering on Lingua-Align has not yet produced the desired results,
whereas with our TBL system, we managed to reach higher scores relatively
quickly. We can conclude that to the best of our knowledge, the results of our
TBL experiments rival and in some cases surpass the best scores that were
produced by Lingua-Align.

At this point in time, it is premature to compare our system to other aligners
such as the Dublin aligner, which has been evaluated on different data sets.
However, a series of ten-fold cross validation experiments using the same
alignment sets and word alignment files as used for Table 7.8 would provide
more clarity on the strength of its performance.

We have gone to reasonable lengths to ensure that experimental data sets
contain a variety of parsed sentences fromdifferent domains. Based on the good
results discussed above, we are reasonably confident that we have a working
system with the ability to produce quality alignments for Dutch to English,
which should also be fairly easily adaptable for other language pairs.

Currently, our system can still be better optimized for faster experimentation.
Every iteration involves much input and output in the form of feature extraction
and writing statistics to files. Various possibilities exist to optimize this step.

Our system also does not currently generate template instantiations. This
means that there is much more manual work to be done when experimenting.
Methods to achieve this without significant sacrifice of performance include
random sampling usingMonte Carlo methods (Samuel, 1998) andmakingmore
independence assumptions (Ngai and Florian, 2001).

Currently, our system does not add links with differing degrees of confi-
dence, which may play a significant role in the performance of statistical MT
systems.

Obviously, experimenting with additional features may improve perfor-
mance in general. For example, classifying links that lead to non-wellformedness
may be useful. A verb being linked this way - in other words, where the link
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goes outside - may be regarded as a more negative feature than a preposition,
for example.

An example of a feature that can be extended is the one which checks for
the existence of good word alignments between the subtrees. Instead, shared
non-terminal alignments can be included, with the option of not only allowing
confident alignments. In fact, checking for such shared links was one of the
strong positive features learned by Lingua-Align in our experiments described
in chapter 4.

We could also incorporate GIZA++ word alignment probability features
which are used by Lingua-Align and the Dublin aligner. Lingua-Align also
makes use of features including looking at the position of the nodeswith respect
to the whole tree span, normalized instead of absolute height differences, more
general category label and part-of-speech combinations, parents, grandparents,
children, grandchildren, sisters, edges, and so on.

At some point, we would be interested to create separate templates for
improving word alignments, which we can use in conjunction with those that
we use for non-terminal alignments. The idea is to extend the system to one that
can be applied to general alignment correction in a single step. Manipulation
of trees for improved alignment convergence is an additional interesting idea
that could be implemented, as described in Burkett and Klein (2012).

In the next chapter, we discuss the impact of our data on the performance
of two machine translation systems: Moses and PaCo-MT.
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Chapter 8
Translation quality evaluation

based on alignment output

8.1 Introduction

In previous chapters, we have discussed various approaches to the problem
of tree-to-tree alignment. For Dutch to English, we have established that the
flexibility of using maximum entropy models is well complemented by both
rule-based heuristics and, especially, the rule-based machine learning approach
called transformation-based learning. TBL has also been shown to work very
well on its own, assuming relatively accurate high-recall word alignments and
given proper feature engineering.

Using these methods, we have produced a number of different versions
of a set of large parallel treebanks, both during the PaCo-MT project (chapter
3) and after. These resources can be used in a variety of ways for research
and development. Of particular interest to us is the effect on syntax-based MT.
Although our focus in this work is to improve alignment quality, by and large
such improvement should also lead to an improvement in translation quality.
For this reason, we present all relevant results achieved by ourMT system using
various evaluation metrics in this chapter. We also compare our results with
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those achieved by a phrase-based SMT model trained on the same data, using
Moses (Koehn et al., 2007).1

In the next section, we present all relevant evaluation scores. After that, in
section 8.3, we discuss the results of a qualitative analysis on some example
sentences. Finally, we conclude in section 8.4.

8.2 Translation quality evaluation

Our chosen MT evaluation metrics are BLEU, NIST and TER, which are widely
used in the evaluation of MT worldwide.

BLEU (Papineni, 2002), short for bilingual evaluation understudy, is a metric of
which the authors claim high correlation with human evaluation. The general
idea is that the closer the automatic translation is to the human translation
equivalent, the better it is. For calculation, it requires a reference corpus of
human translations. A numerical metric is applied which is based on n-gram
occurrences of matching words.

Over the years, BLEU has garnered some criticism. Koehn (2011) lists some
of the main arguments:

• The fact that some words are more important than others is ignored.

• No attention is paid to grammaticality.

• The BLEU score is very dependent on factors “such as the number of
reference translations, the language pair, the domain, and even the tok-
enization scheme used to break up the output and reference into words”.
(Koehn, 2011, p. 2)

• Experiments have shown that human translations do not score higher
than MT output according to BLEU, even though the human translations
are clearly better.

Because it is still the most widely used metric, we will also use it here.
The NIST (National Institute of Standards and Technology) metric is based

on the BLEU metric, but some changes are implemented (Doddington, 2002).
For example, lesser occurring n-grams are perceived as more informative and
are scored higher.

1Our sincere thanks go to Dr Vincent Vandeghinste of the Catholic University of Leuven in
Belgium who ran the evaluation metrics and did most of the training, including for Moses.
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Translation Edit Rate (TER), also called Translation Error Rate,2 is a mea-
surement of the amount of editing that has to be done to an automatic output
to equal the correct human translation (Snover et al., 2006). Since fewer edits
suggests a better translation, the lower scores are better.

Original versions of the PaCo-MT system produced relatively poor evalu-
ation results, as, for example, reported in Vandeghinste and Martens (2009).
Using a bottom-up transfer approach instead of a top-down approach led to
much better scores (Vandeghinste and Martens, 2010). A tree-based target
language generation component was also developed during the project (Van-
deghinste, 2009). Over time, newer and better versions of these systems were
developed.

During the project, we have produced parallel treebanks for the language
pairs of Dutch to English, English to Dutch, Dutch to French and French to
Dutch. For all MT experiments, we used the same data sets. As described in
chapter 3, parallel corpora were preprocessed by tokenizing, sentence aligning,
word aligning and parsing the texts. A few structural changes were made to
Dutch trees to improve convergence with the English and French trees and to
make them more uniform. The last step was to align the non-terminal nodes in
Alpino-XML format.

We will only report the Dutch-to-English results for this work, since in the
project, we have spent much more time working on refining our approach for
this language pair, and as a result, the scores for the other language pairs are
somewhat lower. For more information, the abovementioned papers can be
consulted. As reported in chapter 3, a bilingual dictionary was used which
in most cases has led to slight improvements. All reported evaluation scores
are calculated against a test set consisting of 500 sentences and three reference
translations.

To illustrate the improvement of various versions of the system during the
project, we present in table 8.1 the best evaluation scores reported during those
stages of models trained on Europarl, as well as the results of a 5-gram phrase-
based model of Moses trained on the same data, using the default settings
without optimization.3 The third line denotes the scores derived from a model
trained on parallel treebanks created by the high-precision Lingua-Align model
described in chapter 4, while the fourth line is associated with high-recall

2http://www.cs.umd.edu/~snover/tercom
3Although there exist other state-of-the-art candidates in the SMT paradigm such as Moses

Chart or HIERO-style systems such as Joshua, the phrase-based approach of Moses remains among
them as a worthy competitor.

159



Transducer Alignment approach BLEU NIST TER

V&M (2009) Precision 0.1353 5.70 70.36
V&M (2010) Precision 0.2065 6.44 63.72
PaCo-MT Precision 0.2228 6.43 64.14
PaCo-MT Recall 0.2548 7.36 61.12
Moses N/A 0.4174 8.79 42.92

Table 8.1: Evaluation scores on various models trained on Dutch-to-English
Europarl

alignments produced by a source-to-target version of the bottom-up algorithm
decribed in chapter 6.

The improvement resulting from the switch from top-down to bottom-up
transfer (first two lines) is quite striking. However, as expected, the state-of-the-
art system Moses outperforms our efforts by a large amount.

Note that the model trained on the high-recall alignments leads to a signif-
icant improvement. We have not had the opportunity to train models based
on other heuristics such as the intersection or the union of the source-to-target
and target-to-source approaches of the algorithm.

After implementing our transformation-based learning system (chapter 7),
we have experimented with training PaCo-MT models on various alignment
combinations. They are:

• Lingua-Align (high precision) + bottom-up algorithm, using the intersec-
tion of source-to-target and target-to-source alignments + transformation-
based learning (LABIT)

• Lingua-Align + bottom-up algorithm, using the intersection of source-to-
target and target-to-source alignments + transformation-based learning +
union of source-to-target and target-to-source alignments (LABITU)

• Lingua-Align + bottom-up algorithm, using the intersection of source-to-
target and target-to-source alignments + transformation-based learning +
union of source-to-target and target-to-source alignments + all fuzzy non-
terminals turned to good (probabilities changed from 0.4 to 0.8; LABITU-
FG)

The reason for the creation of the last alignment set is that the high-precision
Lingua-Align model often seemed to assign fuzzy links with a low probability
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to subtree pairs which should have higher probabilities (and none to those that
should have fuzzy links). Since the TBL system does not workwith probabilities
and only attempts to remove wrong alignments (if discovered), these are mostly
intact. We have felt that this might lead to a reduced performance in translation,
and we therefore decided to change all probabilities between non-terminal
nodes to 0.8. The plan was to apply this to both LABIT and LABITU (i.e. LABIT-
FG and LABITU-FG), but since LABITU-FG scored much worse, we did not
finish the training on LABIT-FG.

The reason for the creation of the second last alignment set (LABITU) was
that high-recall alignments seem to lead to better scores. The union of the
bottom-up algorithm added the most number of new alignments, while TBL
seemed to be quite accurate. We have therefore decided to choose, according to
our intrinsic evaluation experiments, the most successful TBL setup (LABIT)
and adding the union alignments to its output.

We now present evaluation scores for all the alignment sets, including the
high-precision alignments from Lingua-Align (LA) and the high-recall bottom-
up alignments (HR). Separate scores are also presented for models trained on
the following corpus combinations:

• Europarl (EP)

• Europarl + OPUS (EP+O)

• Europarl + OPUS + DGT translation memories (EP+O+D)

• Europarl + OPUS + DGT translation memories + OneLiner translation
memories (EP+O+D+TM)

• Europarl + OPUS + OneLiner translation memories (EP+O+TM) (not
including DGT)

In Table 8.2wepresent the BLEU scores. Note that some scores for equivalent
setups are different than those presented in Table 8.1 because of the fact that
better versions of the transducer and target language generator were developed
after the conclusion of the project. “N/A” values are reported for evaluations
we were not able to obtain. A bar chart of the same scores is presented in figure
8.1.

The high-precision approach (LA) is inferior in comparison and the bottom-
up approach (HR) clearly better, producing the best score of 0.2933. Interestingly,
adding DGT (third line) to the model leads to a decrease for HR. With the
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Figure 8.1: Barcharts of the BLEU scores for models trained on different combi-
nations of alignments and corpora.
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Alignment set LA HR LABIT LABITU-FG LABITU

EP 0.2251 0.2575 0.2444 0.2407 0.2399
EP+O 0.2304 0.2646 0.2448 0.2594 0.2631
EP+O+D 0.2320 0.2582 0.2819 0.2590 0.2658
EP+O+D+TM 0.2476 0.2831 0.2834 0.2643 0.2844
EP+O+TM N/A 0.2933 0.2489 0.2565 N/A

Table 8.2: BLEU scores for models trained on different combinations of align-
ments and corpora. N/Ameans that the scores for those particular setups were
not calculated. The best score for each line is in bold.

exception of LABITU-FG, where the score decreases from 0.2594 to 0.2590,
this pattern does not repeat itself with other alignment combinations, where
more data leads to better scores. Conversely, adding DGT to LABIT leads to a
relatively large increase of 0.0371. It is especially interesting considering that
for other models on EP+O+D, there is very little increase or even a decrease
in performance. The reason for this discrepancy remains unclear, but the fact
that we have used some material from DGT as training data for our TBL system
may explain some of it.

Some other noticeable jumps in performance are:

• adding TM to HR with EP+O+D (0.0249)

• adding TM to HR with EP+O (0.0351)

• adding OPUS to LABITU with EP (0.0232)

• adding TM to LABITU with EP+O+D (0.0186)

On average, the scores increase by the following when these corpora are
added to the training:

• adding OPUS to EP: 0.01094

• adding DGT to EP+O: 0.00692

• adding TM to EP+O+D: 0.01318

We exclude mentioning the scores where TM to EP+O was added since not
all models have a corresponding score. Taking all models into account, adding
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Alignment set LA HR LABIT LABITU-FG LABITU

EP 6.48 7.43 7.22 7.2 7.25
EP+O 6.61 7.44 7.22 7.32 7.43
EP+O+D 6.70 7.28 7.64 7.29 7.39
EP+O+D+TM 6.93 7.58 7.66 7.37 7.62
EP+O+TM N/A 7.71 7.27 7.31 N/A

Table 8.3: NIST scores for models trained on different combinations of align-
ments and corpora. N/Ameans that the scores for those particular setups were
not calculated. The best score for each line is in bold.

TM to EP+O+Dhas on average the largest positive effect. This is closely followed
by adding OPUS to EP. However, we did not test for all possible conditions such
as training on EP and DGT first and then adding OPUS or TM, for example. The
performance of TM is especially interesting when one takes into account the
fact that this is the smallest parallel corpus from the four4 and being a corpus
of translation memories, often does not even contain full sentences.

The BLEU results also suggest that high recall generally works. Not only
is HR better than LA but the very high recall LABITU produces the second
highest score (28.44) and the highest when DGT is incorporated into the model.

Finally, the experiment where the probabilities of fuzzy non-terminal align-
ments were increased did not succeed. In most cases, its BLEU score is lower
than other alignment sets involving TBL, in spite of adding the union of the
bottom-up algorithm in order to increase its recall.

Table 8.3 displays the NIST scores for the same models, represented graphi-
cally by figure 8.2.

The results are almost identical in comparison. In this case, however, LABIT
(and not LABITU) scores higher than HR when trained on all data, inching
ahead by 0.08. But yet again, when an HR model is trained on all corpora
excluding DGT, it scores better, with 7.71, a difference of 0.05. Interestingly, this
time only LA and LABIT experience an improvement with the addition of DGT.
The latter experiences a relatively big boost with a difference of 0.42. With the
exception of HR, though, all models still obtain their best scores when trained
on all corpora.

Here are the average improvements per line for the NIST scores:
4366,161 sentence pairs, as opposed to 1,180,706 sentence pairs in Europarl, 731,673 in OPUS

and 478,972 in DGT.
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Figure 8.2: NIST scores for models trained on different combinations of align-
ments and corpora.
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Alignment set LA HR LABIT LABITU-FG LABITU

EP 64.02 60.83 61.26 61.35 61.45
EP+O 64.53 61.42 61.43 61.34 60.98
EP+O+D 65.04 61.83 59.32 61.50 60.58
EP+O+D+TM 63.71 60.41 59.04 61.3 59.12
EP+O+TM N/A 59.98 61.24 61.09 N/A

Table 8.4: TER scores formodels trained ondifferent combinations of alignments
and corpora. N/A means that the scores for those particular setups were not
calculated. The best score for each line is in bold.

• adding OPUS to EP: 0.088

• adding DGT to EP+O: 0.056

• adding TM to EP+O+D: 0.172

Again, TM seems to have the most positive influence, followed by OPUS
and then DGT.

Finally, we present the TER evaluation scores and their graphical equivalent
in Table 8.4 and figure 8.3.

For this metric, the best scores are produced by LABIT and LABITU - this
includes HR trained on everything but DGT (59.98). This time, adding OPUS
also worsens the score in some cases (LA, HR and LABIT), just as with DGT
(LA, HR and LABITU-FG). However, the best scores for all models are still
produced by training on all the data.

Here, we find the average contribution of adding corpora to be somewhat
different:

• adding OPUS to EP: -0.79

• adding DGT to EP+O: 0.286

• adding TM to EP+O+D: 0.938

Yet again, TM wins, and the difference is even more pronounced. Fur-
thermore, adding OPUS has a net negative effect. It would be interesting to
observe TER scores when the models are trained on everything but OPUS
(EP+DGT+TM). In any case, this shows the effect that using different metrics
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Figure 8.3: TER scores for models trained on different combinations of align-
ments and corpora.
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can have on evaluation results. It is not clear why TER and BLEU/NIST differ
so much in this regard.

To lend strength to our conclusions, we run significance tests on a few MT
output sets. Zhang and Vogel (2004) present a method whereby confidence
intervals for BLEU/NIST scores can be calculated using a bootstrap method
where sentences in the hypothesis and reference sets are replaced with others
in the same sets, leading to slightly different sample sets for each iteration. For
each different set, the score is calculated, producing a distribution of different
scores.

Our top three models that are based on high-recall alignments, HR, LABIT
and LABITU, are similar in terms of their performance. We therefore suspect
that their differences would not be significant. However, using the bootstrap
method, we can show that each of them is significantly better than the high-
precision Lingua-Align model. Formally, we aim to reject the null hypothesis
that the three models are not significantly better than the high-precision model
using a confidence interval of 95%.

First, log files are created for each translation hypothesis file associated with
a model. These are used as input for the bootstrap script. As a pre-processing
step, text normalization is applied. Since different normalization methods are
required for the BLEU and NIST metrics, we create separate log files for each
one.

The log files also produce BLEU and NIST scores for each model. In all
cases, BLEU scores are slightly lower than those reported by our script, version
11b of “mteval.pl”, which itself is widely used for evaluation. The script which
produces the log files for bootstrap5 is “in accordance with mteval-v11 of NIST”,
according to the tutorial page.6 However, it is not clear if this means that it
should produce the same results as our script. It also contains two distinct text
normalization subroutines, one for BLEU and one for NIST, as opposed to just
one used in “mteval”. Replacing them with the one in “mteval” leads to only
slight changes. It therefore seems that there are other factors at play here. We
have decided instead to just note the differences and report the results of our
analysis consistently. We will therefore compare only the scores produced by
“generateLog” to each other, instead of the ones produced by “mteval”.

We proceed to apply the bootstrap method to create a sample set of 1,000
hypothesis sets for each model, for which the BLEU and NIST scores are calcu-
lated. Using a confidence interval of 95% and assuming a normal distribution,

5http://projectile.sv.cmu.edu/research/public/tools/bootStrap/generateLog-v11.pl
6http://projectile.sv.cmu.edu/research/public/tools/bootStrap/tutorial.htm
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Model HR (EP+O+TM) LABIT (all) LABITU (all)
Median 0.2783 0.2712 0.2727
Mean 0.2786 0.2713 0.2724
95% Conf. Int. [0.2604,0.2971] [0.2537,0.2890] [0.2523,0.2914]
STDEV 0.0097 0.0090 0.0095

Table 8.5: Statistics extracted from the results of the 1,000 iterations created
using the bootstrap method, where “STDEV” denotes standard deviation and
“Conf. Int.” denotes “Confidence interval”. BLEU scores are used.

Model HR (EP+O+TM) LABIT (all) LABITU (all)
Mean 7.7075 7.6550 7.6062
95% Conf. Int. [7.4577,7.9550] [7.3391,7.9366] [7.3033,7.8937]
STDEV 0.1274 0.1500 0.1522

Table 8.6: Statistics extracted from the results of the 1,000 iterations created
using the bootstrap method, where “STDEV” denotes standard deviation and
“Conf. Int.” denotes “Confidence interval”. NIST scores are used.

we produce the statistics displayed in Tables 8.5 and 8.6 for the high-recall
models.

Table 8.5 shows that the medians and means of the different models are
very similar, showing that skew is not a problem. Therefore, we omit reporting
the medians for the other metrics.

For themodel based on the high-precision Lingua-Align alignments, a BLEU
mean of 0.2361 and a NIST mean of 6.9375 are reported. These are well below
the minimum values of the confidence intervals of all three high-recall models
in Tables 8.5 and 8.6, meaning that we can reject the null hypothesis with a
p-value of less than 0.025. In fact, since the means of the high-recall systems
are more than four standard deviations better than the baseline system, we can
reject the null hypothesis at a level of p < 0.001.

For the sake of completeness, we also bootstrap the output of our best
Lingua-Align model, trained on all corpora. The results are displayed in Table
8.7.

As for TER, we have not been able to run tests of significance. Although
LABIT and LABITU outperform HR in our TER evaluation, the differences
remain relatively small.
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Model LA BLEU LA NIST
Mean 0.2361 6.9375
95% Conf. Int. [0.2185, 0.2537] [6.5471, 7.3081]
STDEV 0.0087 0.1934

Table 8.7: Statistics extracted from the results of 1,000 iterations on BLEU and
NIST log files of high-precision LA, created using the bootstrap method.

Our results show that high-recall alignments improve PaCo-MT models.
Although HR seems to be the best model, it is not better than the other high-
recall models to a statistically significant degree. It also contains fewer phrases
than LABIT and LABITU (see next chapter). It may well be that there is more
variation in performance of our TBL system between the treebanks of different
domains, whereas the performance of the simplistic bottom-up heuristic should
not vary too much between the domains and therefore produce more consistent
results. This seems to be true for almost all data except the DGT treebanks, the
effect of which remains a mystery for now.

8.3 Qualitative analysis

We conduct a short qualitative analysis of the MT output in the test set, by
selecting a few random translations with differing themes and grades of com-
plexity. Translations are selected from the best models: Moses, HR (trained on
all but DGT), LABIT and LABITU.

Note that punctuation is not handled explicitly by PaCo-MT and this is
assumed to be done at a later stage. For both PaCo-MT and Moses, the same
holds for capitalization.

Table 8.8 displays the first example. The first line contains the Dutch sen-
tence to be translated. The following two lines contain two English reference
translations, made by professional translators. The rest contains the automatic
MT output.

In this case, most translations are almost correct. HR and LABIT contain
the erroneous itself, a direct translation from zelf, which in this case should
correspond to own. However, note that the Moses output is ungrammatical.

In Table 8.9, we present an example of a sentence where Moses provided the
better translation. However, it still errs with the selection of the words fidelity,
cut and in progress.
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Model or version Sentence

Original Elke lidstaat behoudt de vrijheid zelf zijn behoeften
te bepalen.

Ref1 Every member state remains free to determine its
own needs.

Ref2 Everymember state retains the freedom to determine
its own needs.

Moses each member state shall retain the freedom they
themselves can identify their needs .

HR each member state maintains the freedom itself to
determine its needs

LABIT each member state retains the freedom itself to deter-
mine its needs

LABITU each member state maintains the partner freedom to
determine its needs

Table 8.8: First sentence comparing different versions of an English translation
for a Dutch sentence.

Table 8.10 displays an example where Moses seems to have produced an
almost correct output, but where the placement of the auxiliary verb been
completely changes the meaning of the sentence. This is a case where an
evaluation metric that does not rely on syntax or semantics may produce a
higher score than necessary. Note that the Moses output is otherwise still
relatively close to the second reference translation. Unfortunately, the PaCo-MT
output is very ungrammatical in this case.

In Table 8.11, the PaCo-MT output is again better than that of Moses. In this
case, Moses is missing a main verb. The output of LABIT, although structurally
unusual, is acceptable, apart from a already that should be an already. HR
and LABITU are mostly perfect, although notice that the reference translators
have decided to translate de werklozen, which is perfectly translatable to the
unemployed, to the perhaps more stylistically suitable the unemployed persons and
the unemployed citizens. It is also interesting to note that LABIT and LABITU
put in 2005 at the end of the sentence instead of fronting it such as is the case in
the Dutch sentence.
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Model or version Sentence

Original De beeldkwaliteit van de uiterst betrouwbare E-3,
geknipt voor professionals en fotografen in spe, is
gewoonweg subliem.

Ref1 Designed for professional and aspiring photogra-
phers alike, the E-3 boasts amazing image quality
combined with reliability.

Ref2 The image quality of the highly reliable E-3, designed
for professionals and budding photographers alike,
is simply amazing.

Moses the fidelity of the highly reliable e-3 , cut for pro-
fessionals and photographers in progress , is quite
superb .

HR the quality of the extremely reliable e-3 be for pro-
fessionals in progress and photographers is simply
superb

LABIT the perfect for professionals in progress and photog-
raphers quality of the extreme reliable e-3 is simply
superb

LABITU the quality of the extremely reliable e-3 perfect for
photographers and professionals in progress is sim-
ply superb

Table 8.9: Second sentence comparing different versions of an English transla-
tion for a Dutch sentence.
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Model or version Sentence

Original Ik zou het niet aandurven, omdat ik het nooit eerder
heb gedaan.

Ref1 I would be afraid of that because I have never done
it before.

Ref2 I wouldn’t dare to take the risk, because I have never
done it before.

Moses i would not dare , because i have never before been
done .

HR i would hold not it because i never it did been have
LABIT i would courage not i have never it did been because

it
LABITU i would courage do because i have never it did been

it

Table 8.10: Third sentence comparing different versions of an English translation
for a Dutch sentence.

Finally, we looked at the translations of a longer sentence, presented in table
8.12. Clearly, translation quality is very bad in all cases here. Moses seems to
make slightly more sense, but in the second and third clauses, main verbs are
missing again.

In our experience, large and structurally complex sentences may often be
parsed incorrectly. In general, it also becomes more likely for non-terminal
nodes to remain unaligned, as it becomes less likely for large tree pairs to remain
structurally similar. All this results in less positive examples of training data
for the system, among much noise.

8.4 Conclusion

Comparing the results with Moses shows that there is a long way to go for
our syntax-based approach until we par with phrase-based SMT. One reason
could be the fact that phrase-based SMT systems are known to be optimized
to maximize BLEU. The effect of the n-gram modeling of Moses is quite clear,
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Model or version Sentence

Original In 2005 waren 60,5% van de werklozen al meer dan
één jaar werkloos.

Ref1 In 2005, 60.5% of the unemployed persons had been
unemployed for more than one year.

Ref2 In 2005, 60,5% of unemployed citizens had been un-
employed for over a year.

Moses in 2005 , 60.5 % of the unemployed for more than one
year unemployed .

HR in 2005 60.5 % of the unemployed were already more
than one year unemployed

LABIT 60.5 % of the unemployed . were at a already more
than one year unemployed level in 2005

LABITU 60.5 % of the unemployed were already more than
one year unemployed in 2005

Table 8.11: Fourth sentence comparing different versions of an English transla-
tion for a Dutch sentence.

where the occurrence of unusual word combinations is limited, whereas with
PaCo-MT, odd combinations such as did been may occur. Nevertheless, our
system has not yet reached its full maturity and there are several ways to
improve the approach, as discussed in Vandeghinste et al. (2013).

It is difficult to say why some parallel treebanks lead to better scores and
others not. All but Europarl consist of a variety of different domains, while
Europarl is also by far the biggest collection. The test set also consists of sen-
tences from a variety of different domains, with a certain amount of overlap.
For example, some sentences also contain examples of legalese or formal con-
structions such as those found in Europarl or the DGT data that we worked
with in chapter 7.

Our translation results do not currently stand up to the state-of-the-art in
MT. Although some might argue that this supports the rejection of syntax-
based MT as a serious alternative for phrase-based SMT, this approach is still
in its infancy and there are still many avenues for future work to explore. In
the meantime, the parallel corpora of Europarl, OPUS and DGT have been

174



Model or version Sentence

Original Hij rijdt dus niet tot aan het laatste station, maar vat
meteen de terugreis aan om dan wel op tijd te zijn,
aangezien er daar meer reizigers de trein willen ne-
men.

Ref1 As a result, it does not proceed to the final station
but is diverted along its route and starts its return
journey immediately, thus accommodating the larger
number of passengers who are waiting for it at the
return destination.

Ref2 It therefore does not run all the way up to the final
station, but returns immediately to get there on time,
because more passengers are waiting for it there.

Moses it is not therefore up to the last station , but vessel
the return journey to or to be on time , since more
passengers the train .

HR , but aanvat the return journey immediately to to
be then be in time since more passengers want take
there are take the train to will do until the last drive
not are who

LABIT to the last station up not are who but aanvat the re-
turn journey immediately to to sincemore passengers
want to take there are on-board will be be in time

LABITU far to the last drive do therefore he but aanvat the
return immediately to to be in time then be since
more passengers want to there the train take notice

Table 8.12: Fifth sentence comparing different versions of an English translation
for a Dutch sentence.
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significantly expanded, and other corpora are probably available as well. As
a source of training data, this bodes well for the future development of MT
systems in these languages. There may be merit to further research into the
manipulation of tree structures for improved convergence, in order to counter
the recall problem of tree-to-tree alignment approaches.

In the next chapter, we summarize the work that we have presented in this
book, putting it into a bigger context. We discuss the meaning of our results,
how they may impact future research, and the way forward.
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Chapter 9
Discussion and conclusion

9.1 Summary of the results

In this work, we have presented a flexible means for the alignment of phrase-
structure trees in order to create parallel treebanks in the context of improving
results for a hybrid syntax-based MT system. Although one of our main goals
was to improve MT in the syntax-based paradigm, we have gone a step further
in developing an easily accessible and flexible platform for a wide variety of
needs.

We have shown that both stochastic and rule-based alignment systems can
be successfully implemented. We have conducted quantitative and qualitative
analyses of alignment output illuminating some problems, some of which we
have solved and some of which are very much solvable in the near future. In
the case of Lingua-Align, we have also conducted a statistical analysis in order
to determine which features have the most impact on affecting performance.

During the course of our alignment experiments, the author has developed
alignment gold standards consisting of 1406 parsed and aligned sentence pairs.
The bitexts in these alignment sets were extracted from parallel corpora that are
freely available online. Our gold standards are also freely available for further
use in research and development purposes.

Alignment output sets were used as training data for our MT system, creat-
ing various models and evaluated against a state-of-the-art SMT system and
against each other. Results show that although phrase-based SMT still outper-
form syntax-based MT, our high-recall systems produce promising results.
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9.2 Research questions

In the introduction, we present three research questions that are addressed
in this work. Here, we discuss whether or not, or to which degree, we have
managed to answer them. For the reader’s convenience, we list them again.

Can we improve constituent alignment?

Precision is very important, but given the context of the application of
aligned parallel treebanks toMT, some effort was alsomade to increase coverage
and align as many constituents as possible. Therefore, we have given special
attention to increasing recall.

We have shown that we can improve upon the results of a high-precision
model produced by the statistical aligner Lingua-Align, presented in chapter 4.
Although this does not prove that our rule-based approaches are better than
Lingua-Align, our results are clearly promising. Since we have improved upon
a decent baseline, we can say that at least in this respect we can answer the
research question in the affirmative.

In chapter 2, we have listed some other systems, some of which obtain very
good results as well, some better than reported in this work. It remains to be
seen if those systems are in fact better, since we were not able to make any direct
comparisons. In the future, we would like compare our TBL system with the
following rival approaches more concretely:1

• the Dublin Aligner (Zhechev, 2009)

• the system of Lavie et al. (2008) which uses the novel Prime Factorization
and Alignments algorithm (PFA)

• alignment of packed forests as described by Liu et al. (2009)

• the system of Sun et al. (2010) which uses Bilingual Tree Kernels (BTKs)

• the implementation of the PFA algorithm by Araújo and Caseli (2011)

Althoughwe have notwon any shared tasks awards—an intriguing thought
for the future — our results suggest that, given the variety of different domains
used in our experiments, we have achieved near-state-of-the-art results, and

1For obvious reasons, we only include systems which can produce parallel treebanks of phrase
structures.
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we may be optimistic about finding opportunities to improve. As far as we are
aware, we are also the first to introduce rule-based learning to this paradigm,
offering an exciting alternative to stochastic and manual rule-based systems.

Canwedeterminewhich factors influence constituent alignment?
If so, can we use this information to improve our alignment ap-
proach?

To answer this, we conducted qualitative and quantitative analyses to study
the effect of various features on alignment quality. We showed how alignment
improves as we apply what we learn from these studies.

First, our qualitative study presented in chapter 4 suggests that the quality of
word alignment may have a large effect on the quality of constituent alignment,
especially with recall. In order to be more flexible in the face of erroneous word
alignments, we introduce relaxed versions of the well-formedness constraint
in chapter 6. In the context of our manual rule-based experiments, when we
allow for a less confident word alignment to violate the constraint but not for
more confident word alignments, the effect is quite positive. This is also true of
our bottom-up rule-based heuristic which is designed to increase alignment
coverage of already aligned parallel treebanks. We implement this as a feature
in our TBL system (chapter 7), where the user may choose any number of
confident or less confident links to violate well-formedness.

In the bottom-up heuristic, we discover that applying a simple set of con-
ditions is often sufficient for complementary alignment where the aim is to
increase recall. A directional bottom-up approach which can be applied from
source to target or from target to source provides extra flexibility, as well as
extra precision or recall when combined.

Secondly, we conduct a statistical study in chapter 5 which shows that dif-
ferences in sentence length are an important predictor of constituent alignment
quality. The effects are more visible on the source-side trees (Dutch), suggest-
ing that differences in tree structure may be influential. Although there is not
much that can be done in terms of sentence length, tree manipulation may be a
suitable course of action to improve alignment accuracy.

As for the diminishing the impact of bad parse trees, we admit that more
can be done. Apart from improving the parsers, using an n-best list of parse
trees instead of the first-best trees may help to counter the effect of bad parse
trees.

Apart from improving the parsers, a very important issue is proper con-
vergence of the syntactic structures of the two languages. In other words, the
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parsers must be somewhat compatible. In many cases, incompatibility of the
tree structures leads to a significant drop in recall for the extraction of phrase
pairs. As an example, the number of phrases extracted from LABITU amounts
to 36,467,596, whereas with Moses, a total of 59,558,940 phrases are extracted
(Table 9.1). The fact that our Moses model also outperforms PaCo-MT by a fair
amount suggests that this may be significant. The tree restructuring script of
Vandeghinste, described in chapter 3, increases syntactic convergence but still
assumes good parse trees. We have also applied it to the Dutch data aligned
with French but without much success.

Stochastic inversion transduction grammars (Wu, 1997) as described in
chapter 2, attempt to solve this problem. We already mentioned that this
may fail in cases where segments do not correspond precisely. In addition, as
reported in chapter 2, Wellington et al. (2006) report experiments showing that
bitexts exhibit translational patterns that are more complex than reported in
the literature. On the basis of this, they suggest that STIDs do not have the
ability to generate some of these equivalence relations.

Although their criticism extends to tree-to-tree alignment, we argue in
this work for the potential merit in using specialized monolingual parsers.
In PaCo-MT, we utilize not only the structure, words and POS tags but also
labeled dependencies, lemmas and other useful metadata and discriminating
features for training the model. We remain positive about the potential merits
of retaining as much knowledge as possible obtained from these parsers and
prefer rather to work on the pipeline problem, improving convergence and, of
course, using more training data.

The problem of complex translational patterns may be addressed by im-
plementing packed forests. An implementation leading to increased BLEU
scores is described by Liu et al. (2009), although they do not explicitly produce
parallel treebanks. Using not only the best-first parse trees but rather an n-best
list of candidates would be computationally more expensive, but it may also
increase the chances of capturing a higher proportion of translational patterns
in the text. This may have the additional advantage of further increasing recall.

We believe that the impact of bad sentence alignment, albeit always possible
to improve, is minimal, since sentence alignment is generally very accurate. We
have therefore not paid attention to this.

Taking all this into account, we can safely conclude that we have learned
which factors influence constituent alignment, although perhaps not exhaus-
tively. For example, a statistical study on the output of our TBL system in
the same vein as the one presented in chapter 5 may also prove informative.
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We may also affirmatively answer the question of whether we can use this
information to improve alignment.

Howdoes thequality of tree alignment influence theperformance
of syntax-based machine translation?

It is generally asssumed that better tree alignment leads to better MT. How-
ever, in constructing our various alignment sets, we have discovered that using
parallel treebanks produced by models focusing on high recall generally leads
to better MT results than those produced by high-precision alignment models,
at least for the cases that we have inspected. This has prompted us to research
ways in which to increase alignment recall in general, as discussed before. Ta-
ble 9.1 presents the total number of phrase pairs extracted from our produced
alignment sets for Dutch to English. The names of the sets are the same as
those used in the previous chapter. We also include the number of phrase pairs
extracted by the best Moses model for comparison. Note that LABI was not
processed by PaCo-MT, although we include it here for comparative purposes.

It is clear from the table that low-recall alignments have worse scores, even
though the alignments themselves are accurate. However, the model resulting
in the most alignments (LABITU) fares the best in only one of the metrics, TER.
HR, which is not the highest recall model by a fair amount, is better in both
BLEU and NIST, albeit not by much.

Our statistical significance tests suggest that the top scoring models do
not differ significantly from each other, although they outperform the high-
precision model. Given what we have, correlation between high-recall align-
ments and better MT results does not seem to be completely linear, although we
need more data to make any definite statements. Logically, precision remains
imporant, and we can assume that it varies between different alignment sets.

LABITU, which is the model which produces the most alignments, still
produces relatively good scores on all three metrics. We can conclude that there
seems to be a general tendency for high-recall alignments to produce better MT
results.

This also means that there is no indication yet of a performance ceiling for
PaCo-MT. First of all, adding more data generally leads to better scores. At
the time of writing, much more parallel data has been added to the Europarl
corpus, OPUS as well as the DGT corpora of the JRC Acquis. We daresay that
it is almost certain that incorporating a few million more sentence pairs will
significantly increase performance.
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Data set Phrase pairs Alignments per s.p. Best BLEU/NIST/TER
LA 7,724,500 2.80 0.2476/6.93/63.71
HR 14,868,119 5.39 0.2933/7.71/59.98
LABI 12,549,241 4.56 N/A
LABIT 16,784,348 6.09 0.2834/7.66/59.94
LABITU 18,233,798 6.61 0.2844/7.62/59.12
Moses 29,779,470 10.80* 0.4174/8.79/42.92

Table 9.1: Counts of phrase pairs extracted from all alignment sets for Dutch to
English, with average constituent alignments per sentence pair and best MT
results. For each set, the same bitexts were used, totaling 2,757,512 sentence
pairs. s.p. = “sentence pair”; LA = Lingua-Align; HR = High Recall (source-to-
target bottom-up heuristic applied to LA); LABI = LA+Bottom-up+Intersection;
LABIT = LABI+Transformation-based learning error correction; LABITU =
LABIT + bottom-up+Union. *Since for Moses we have used a phrase-based
model, there was no tree alignment process. The number to the left is simply
the number of phrase pairs extracted. We include the number-per-sentence-pair
number only to give an idea of the increased coverage of the Moses model.
Note that “phrase” in the context of Moses is simply a string of an arbitrary
length and does not need to be linguistically motivated.

The positive trend for high-recall alignments means that we are probably
able to improve quality by implementing additional means of aligning even
more nodes. The most obvious next step is changing the tree structure for
improved convergence, as in the previously discussed work by Burkett and
Klein (2012), but more research is also needed in the application of different
word alignment approaches to maximize constituent alignment recall.

On the basis of this, we may conclude that our work is probably suitable for
use in syntax-basedMT, but that more research is needed to determine whether
or not this would ultimately lead to syntax-basedMT being considered a serious
alternative to phrase-based SMT.

9.3 Contribution

As a result of our research, we have developed a flexible alignment framework
allowing the user the freedom to apply a variety of different alignment ap-
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proaches, features and parameters for experiments. Our framework has the
following attributes:

• the ability to choose a high-precision or a high-recall alignment approach,
or something in between

• the ability to choose different alignment strategies and apply various
constraints

• the ability to choose from a wide variety and combination of features and
parameters

• the ability to experiment with different learning approaches as well as
heuristics

• the ability to combine different alignment approaches

• a common platform facilitating the interaction of all alignment software

We would also like to address each of these points in more detail.

• For both Lingua-Align and our transformation-based learning (TBL) sys-
tem, it is possible to train high-precision or high-recall models, or some-
thing in between. For Lingua-Align, it is a question of feature engineering
and experimenting with different parameters. For our TBL system, we
have generally found that using more features leads to higher precision
scores, but also increases the risk of overtraining. The use of precise fea-
tures that have a high chance to correlate positively with accuracy, such
as removing a link when a number is only present on one side, generally
leads to higher precision as well.

• Using the Lingua-Align toolkit, one can choose a variety of different align-
ment strategies, as described in chapter 4 and the software documentation.
With our TBL system, we do not yet have this variety, but since rules are
applied globally in one go, we do not have to worry about issues such
as alignment directionality. Both systems offer the opportunity to im-
pose the well-formedness constraint, which can be shortly defined as the
condition where descendents of a candidate node pair are only linked to
descendents of the node on the other side, and ancestors are only linked
to ancestors. Lingua-Align offers the use of other constraints such as
keeping to 1:1 alignments, only linking the same type of node, and so on.
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• Both systems offer a variety and combination of different features. In the
case of Lingua-Align, the ability to use contextual and history features
and combining them using different mathematical operators creates an
almost endless supply of variety. In the case of our TBL system, the
number of features is more limited, but they can employ values of mostly
infinite ranges. For both software applications, anyone with some skill in
Perl would be able to extend the number of features that can be used in
training and aligning new data.

• One may experiment using different learning approaches. Lingua-Align
implements a maximum entropy classifier. Our rule-based system im-
plements transformation-based learning. One may choose one system
over the other for different experiments. For example, Lingua-Align is
currently faster and can employ more features. On the other hand, output
from our TBL system is relatively easy to inspect and to correct because
the exact rules applied are visible for each iteration. The heuristics that
we have used in our experiments in chapter 6 can be employed using
stand-alone Perl scripts with their own set of easily understandable pa-
rameters.

• For our experiments using TBL described in chapter 7, we have combined
various different alignment approaches in the form of initial state an-
notators and even as post-processing steps for the system. Eventually,
combinations of alignments from Lingua-Align, TBL and our bottom-up
rule-based algorithmwere created. The simplermanual rules as described
in the former part of chapter 6 can be just as easily combined with the
other alignment approaches.

• All our tree alignment software is implemented in Perl. Makefiles and
bash scripts are available for running a number of scripts on a more global
scale, for example to train and test the TBL system in one go, with the
potential for relatively effortless extension. For the most part, there is no
need to manually install additional modules.

Additionally, we have also developed a set of 1406 sentence pairs for four
different language pairs. They are freely available for further use in research
and development.
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9.4 Scientific significance

Whether or not tree-to-tree alignment will turn out to be important for machine
translation in the long run, both manually and automatically created parallel
treebanks remain an important resource for the study of language pairs. The
evaluation and analysis of automatically created parallel treebanks are also
useful endeavours in the process of improving the tools that created them.

Moreover, parallel treebanks can actually improve phrase-based SMT sys-
tems. Tinsley (2010) uses an implementation of the Dublin Aligner to create
a series of parallel treebanks. The author finds that syntactically motivated
phrase pairs and the information encoded in this resource can be exploited to
improve PBSMT models (Tinsley, 2010, p. 140).

The technologies developed for this work can be applied to similar tasks,
such as aligning dependency structures, for example. Our successful implemen-
tation of TBL to tree alignment also suggests that there is merit to the further
investigation of applying rule-based learners to tree alignment.

9.5 Future work and conclusion

Much can still be done to improve the alignment tools that we have described
in this work. Perhaps the most obvious next step is the addition of new features.
Some features in Lingua-Align can also be implemented in the TBL system and
vice versa.

For both systems, the biggest bottleneck in terms of the speed of execution
is feature extraction. This is an important avenue for further research.

We can run more experiments to test the effect of different combinations
of features, parameters, alignment strategies, data set sizes, textual domains,
parsers and word aligners. We believe that statistical analyses should go hand-
in-hand with investigating and understanding the linguistic motivation behind
our conclusions. Both will help us to improve our systems, while the latter will
also contribute to furthering our knowledge of the language pairs involved,
and may ultimately also help to improve the other tools used for our research.

As mentioned in chapter 7, it may be profitable to employ TBL to correct
both word and constituent alignments in a single step. This might be a suitable
addition to the literature surrounding the improvement of word alignment
using syntactic constraints (see for example, Ma et al. (2008)).

Another important step would be the extension to other language pairs.
Computational processing of more distant language pairs remains a challenge
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for many kinds of tasks. For tree alignment, this has been hinted at by the lower
performance of aligning Dutch to French. However, we suspect that a lack of
convergence between the two parsers plays a significant role in this case.

As a means to improve MT, we need to apply our parallel treebanks to
other systems as well in order to obtain more robust results. If we manage to
achieve consistently good results on a variety of systems, this will solidify the
importance of tree-to-tree alignment for MT purposes.

We hope that the reader has found our work stimulating, and that it will
prove to be a boost to both the research surrounding automatic parallel treebank
creation and syntax-based machine translation.
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Samenvatting

In recente jaren vondt er een verschuiving in het domein van data-gedrevene
machinevertaling (MT) plaats: Er ontstond een grotere nadruk op de integratie
van meer linguistisch gemotiveerde data voor de bouw van systemen die vloei-
ende vertalingen kunnen produceren. Een zeer nuttige bron is het parallelle
treebank. Dat kunnen wij definiëren als een parallel corpus dat op verschillende
niveaus gealigneerd is. Zo een bron is echter alleen op een zeer grote schaal
bruikbaar, en het is dus onpraktisch om handmatig te produceren. Een door
computers leesbaar parallel treebank om MT systemen op te trainen moet dus
automatisch worden geproduceerd, terwijl men ook daarbij rekening moet
houden om aan zekere nauwkeurigheidstandaarden trouw te blijven.

De automatische bouw van parallelle treebanks is wel een tamelijk recent
verschijnsel, maar er werd reeds veel onderzoek op gedaan. Onze bijdrage vindt
in de context van de ontwikkeling van een hybridisch syntactisch gebaseerd
systeem voor automatische vertaling plaats. In dit werk experimenteren wij
op en passen wij bestaande en nieuwe methoden van tree alignment toe om
een verscheidenheid van grote parallelle treebanks in verschillende taalparen
te produceren, maar met de focus op het taalpaar Nederlands-Engels. Ons
belangrijkste doel is om de kwaliteit van het aligneren van constituenten te
verbeteren.

Ten eerste bekijken wij het gebruik van zogenaamdemaximum entropy models
om het probleem van alignment binair te classificeren - dat wil zeggen, om voor
elk paar knopen in de bomen te besluiten of ze gealigneerd moeten zijn of niet.
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Wij gebruiken maximum entropy models om systemen op een discriminerende
manier te trainen door het gebruik van een log-lineair model: De gebruiker
maakt een verzameling trainingsgegevens alsook een stel features aan, die de
classifier kan gebruiken om te leren wanneer de paren knopen gealigneerd
moeten worden. Gebaseerd op wat hij op de trainingsgegevens heeft geleerd,
wordt het opgebouwde model op nieuwe data toegepast. Belangrijke features
zijn word alignments, gelijkvormigheid van subbomen en de etiketten van
knopen.

Wij onderzoeken welke factoren de kwaliteit van alignment beïnvloeden
door middel van een meervoudige regressieanalyse en de berekening van corre-
laties. Ten tweede bekijken wij hoe wij regels kunnen gebruiken om de prestatie
van de classifier te verbeteren. Vooral leggen wij klem erop ommeer alignments
te maken met het doel om recall te verhogen, omdat ons statistische model
een hogere precisie maar een lagere recall heeft. Wij vinden dat heel simpele
regels al positieve effecten op recall kunnen hebben. Wij experimenteren met
verschillende handmatige regels alsook een heuristisch bottom-up algoritme.
In het laatste geval gebruiken wij ook de relatieve gelijkvormigheid van de
subbomen - waar de huidige paar kandidaatknopen als wortelknopen fungeren
- als features.

Voor beide benaderingen vinden wij dat de kwaliteit van de word align-
ments zeer belangrijk is. De toepassing van de zogenaamde well-formedness
constraint (WFC) heeft een positief effect op de precisie, maar leidt tot een ver-
laging in recall wanneer de word alignments afwijken. Wanneer wij regels
gebruiken om de WFC te verslappen, doordat wij word alignments toelaten die
niet door beiden subbomen gedeeld worden, gaan niet alleen de recall maar
ook de F-score omhoog.

Uiteindelijk passen wij wat wij uit deze experimenten hebben geleerd toe
op een regelgebaseerd systeem dat de zogenaamde methode van transformation-
based learning gebruikt. Een stel mogelijke regels worden automatisch aange-
maakt door een combinatie van features die men handmatig opstelt. Door
middel van trainingsgegevens wordt er telkens één beste regel gekozen, die dan
aan een lijst wordt toegevoegd, waarop de regel op een ongealigneerde versie
van de trainingsgegevens wordt toegepast. Wanneer men geen regel meer vindt
die tot een verbetering leidt, stopt de training. De lijst regels past men dan toe
op nieuwe data.

Wij vinden dat een tamelijk kleine maar goed gekoze set features genoeg
is om hoge scores te bereiken. Zoals met onze regelgebaseerde aanpak laten
wij enkele schendingen van de WFC toe voor een verhoogde recall. Behalve de
gelijkvormigheid van subbomen bekijken wij ook andere structurele features
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zoals hoogte en unaire knopen. Niet alleen word alignments maar ook het type
alignment - met meer of met minder vertrouwen - zijn belangrijke features.
Ook gebruiken wij knoopetiketten in beperkte mate.

Wij demonstreren dat een combinatie van statistische en regelgebaseerde
methoden, die een aantal benaderingen tot alignment alsook verschillende
structurele beperkingen toepast, niet alleen de uiteindelijke kwaliteit van align-
ment verbetert, maar ook actief het zogenaamde pijplijnprobleem aanpakt. Als
annotaties in een reeks van modulen streng sequentieel worden toegepast,
zodat de ene module altijd voor de andere tewerk gaat, spreken wij van een
pijplijn. Het pijplijnprobleem ontstaat als latere modules het werk van eerdere
altijd overnemen en nooit mogen corrigeren. Het werk in dit proefchrift neemt
een stap in de richting van een oplossing. Dat gebeurt doordat onze aanpak
het aligneren van constituenten robuuster tegen fouten in het word alignment
- hetgeen een direct en meetbaar effect op de kwaliteit van het aligneren van
constituenten heeft - maakt, alsook relevante stijgingen in recall teweegbrengt.

Na het bespreken, demonstreren en het analyseren van de door ons ge-
kozen systemen, passen wij onze output op het bovengenoemde syntactisch
gebaseerde systeem toe en bekijkenwij hoe zijn prestatiemet een huidig state-of-
the-art frase-gebaseerd statistisch systeem, dat op dezelfde datasets getrained
is, vergelijkt. De resultaten laten zien dat het statistische systeem duidelijk
beter is. Het syntactisch gebaseerde systeem levert echter soms vertalingen met
een betere grammaticale kwaliteit. Ook laten wij zien dat vertaalmodellen die
op hoge recall alignments - een combinatie van statistische (hoge precisie) en
regelgebaseerde (hoge recall) alignments - getrained zijn, significant beter zijn
dan de modellen die alleen op de door het statistische model geproduceerde
hoge precisie alignments getrained zijn.

Ten slotte bespreken wij de resultaten, de wetenschappelijke betekenis van
ons werk en wat nog in de toekomst ligt.
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