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1.1 Chronic airway diseases - asthma and COPD 
 

Chronic airway diseases, including asthma and chronic obstructive pulmonary 

disease (COPD) are a major global health problem. The global incidence of asthma 

and COPD is rising, and predicted to reach epidemic proportions in 2020 for COPD 

(1). Asthma is one of the most common chronic diseases, which affects 

approximately 300 million individuals worldwide, especially children. According to 

the Global Initiative for Asthma (2), asthma is defined as “a chronic inflammatory 

disorder of the airways in which many cells and cellular elements play a role. The 

chronic inflammation causes an associated increase in airway hyperresponsiveness 

that leads to recurrent episodes of wheezing, breathlessness, chest tightness, and 

coughing, particularly at night or in the early morning. These episodes are usually 

associated with widespread but variable airflow obstruction that is often 

reversible either spontaneously or with treatment” (2). From the definition, it is 

clear that airway inflammation and obstruction play a substantial role in the 

pathophysiology and pathogenesis of asthma. An early onset and genetic 

inheritance, affecting individuals in early childhood or adolescence are key 

features of asthma (3). Although current drug therapy can adequately control the 

disorder in most patients, a subgroup of patients with difficult-to-treat severe 

asthma exists, characterized by chronic symptoms, underscoring the need for the 

development of novel drug therapy (4, 5). 

COPD is commonly caused by long-term exposure to toxic gases and particles, in 

particular by cigarette smoking (6). According to the Global Initiative for Chronic 

Obstructive Lung Disease (GOLD) guidelines (7), COPD is defined as “a common 

preventable and treatable disease, characterised by persistent airflow limitation 

that is usually progressive and associated with an enhanced chronic inflammatory 

response in the airways and the lung to noxious particles or gases. Exacerbations 

and comorbidities contribute to the overall severity in individual patients” (7). In 

contrast to most patients with asthma, the airflow limitation in COPD is 

progressive and not fully reversible (8). 

 

1.1.1 Pathogenesis and pathophysiology of asthma and COPD 

1.1.1.1 Asthma 

Asthma is characterised by a chronic Th2-type inflammation of the airways, 

associated with widespread and variable airway obstruction. Most patients are 

allergic and develop IgE-mediated reactions to inhalational allergens, 
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characterised by early and late asthmatic reactions. The early asthmatic reaction 

is induced by IgE-mediated mast cell activation, causing the release of various 

bronchoconstricting and pro-inflammatory mediators, including histamine, 

leukotrienes and cytokines. This results in airway smooth muscle contraction, 

increased vascular permeability and mucus secretion, all contributing to the acute 

airway obstruction (8). The late asthmatic reaction is caused by chemokine and 

cytokine-induced recruitment and activation of inflammatory cells, particularly 

eosinophils. In addition to the release of contractile and pro-inflammatory 

mediators by these cells, eosinophil-derived cationic proteins like major basic 

protein are involved in the development of acute and reversible airway 

hyperresponsiveness to non-allergic stimuli (9). In addition, chronic airway 

hyperresponsiveness as well as irreversible decline in lung function can be 

induced by airway remodelling due to recurrent inflammatory reactions in the 

airways, which may involve mediators, cytokines and growth factors released 

from both inflammatory and structural airway cells (8-10). 

 Structural changes observed in asthmatics airways are epithelial damage, 

thickening of the basement membrane, subepithelial fibrosis, goblet cell 

hyperplasia, submucosal gland enlargement, increased airway smooth muscle 

mass, decreased cartilage integrity and increased airway vascularity (11, 12). A 

particularly important feature of airway remodelling is the increased airway 

smooth muscle mass, as in addition to contraction, airway smooth muscle cells 

can participate in inflammatory and remodelling processes by the release of 

specific cytokines, extracellular matrix proteins and growth factors, thereby 

communicating with structural and inflammatory cells in the airways in an 

autocrine and paracrine fashion (13-16). This will be further discussed below. 

 

1.1.1.2 COPD 

COPD is characterised by pulmonary inflammation associated with progressive 

loss of lung function. COPD includes both emphysema and chronic bronchitis and 

these conditions often coexist (17). Chronic inflammation in COPD patients can 

trigger structural alterations and narrowing of particularly the small airways, as 

well as emphysema, characterised by parenchymal and alveolar destruction. The 

loss of lung function may result from both airway remodelling, characterised by 

peribronchiolar fibrosis, increased airway smooth muscle mass and mucus cell 

hyperplasia, as well as loss of elastic recoil by parenchymal damage (18, 19). In 

addition to long-term exposure to tobacco smoke and other environmental 
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factors like chemicals and dusts, genetic predisposition seems to be an important 

risk factor for the development of COPD as only 15 to 20% of the smokers develop 

COPD (20). Accordingly, genome-wide association studies found several loci which 

have been associated with COPD susceptibility (21-26). COPD has a slow and late 

onset, is progressive in nature, and primarily affects the middle-aged and the 

elderly with a smoking history. The highest prevalence is in patients over 65 years 

of age (27).  

Neutrophils, macrophages and CD8+ T lymphocytes are predominantly recruited 

to the airways of COPD patients, which is largely driven by cytokines and 

mediators such as interleukin (IL)-1β, IL-8, tumour necrosis factor-α (TNF-α), 

leukotriene B4 (LTB4), interferon-γ and matrix metalloproteinases (28). The 

inflammatory response in COPD occurs predominantly in the small airways and 

the lung parenchyma (28), and is involved in the structural changes mentioned 

above. 

 

1.1.2 Current drug therapy 

Inhaled β2-adrenoceptor agonists and glucocorticosteroids are the mainstay 

therapy for asthma (2). Short-acting β2-agonists, like salbutamol and terbutaline, 

are used as reliever therapy for episodes of dyspnoea, whereas inhaled 

glucocorticosteroids, with or without long-acting β2-agonists such as formoterol 

and salmeterol, are used as controller therapy for persistent asthma. According to 

the current guidelines, short-acting anticholinergics, like ipratropium and 

oxitropium, may be used as alternative bronchodilators to relieve exacerbations in 

uncontrolled severe asthma.  

Since cholinergic tone appears to be the major reversible component of airways 

obstruction in COPD, short-acting ipratropium and oxitropium as well as long-

acting tiotropium are mainstay bronchodilator therapies in this disease, together 

with short- and long-acting β2-agonists (7). In contrast to patients with asthma, 

most patients with COPD are relatively resistant to anti-inflammatory therapy 

with inhaled glucocorticosteroids. Therefore, effective treatment of patients with 

COPD is a major unmet need. 

The guidelines for the treatment of asthma and COPD (2, 7) advocate 

anticholinergics for their bronchodilator properties. Interestingly, recent findings 

also suggest non-bronchodilator actions of these drugs, which could involve anti-

inflammatory and anti-remodelling properties (29). Moreover, experimental 

models showed that muscarinic receptors could be involved in inflammation and 
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remodelling (30-38). In this thesis, potential novel mechanisms underlying 

muscarinic receptor-mediated airway inflammation and remodelling will be 

described, with particular focus on the role of the airway smooth muscle cells in 

these processes. 

 

 

1.2 Airway smooth muscle and its role in disease 
 

The primary role of airway smooth muscle is constriction of the airways, 

regulating bronchial tone. In asthma and to a lesser extent in COPD, increased 

airway smooth muscle mass is a major contributor to chronic airway narrowing 

(39). In addition, recent studies demonstrate that airway smooth muscle cells can 

communicate with their environment to modulate local airway inflammation and 

remodelling. 

 

1.2.1 Airway smooth muscle remodelling 

Airway smooth muscle remodelling occurs in both asthma and COPD. In asthma, 

airway smooth muscle mass may be increased in both large and small airways, 

whereas smooth muscle thickening of the small airways is predominantly 

observed in COPD patients (40-42). A correlation between smooth muscle mass 

and the severity of the disease has been found both in asthma and in COPD (43, 

44). Both hyperplasia and hypertrophy of smooth muscle cells occur in the airway 

smooth muscle bundle in asthma, and possibly in COPD (43, 45-48). The relative 

contribution of these processes to airway smooth muscle thickening in asthma is 

still under debate (43, 46, 47) and could be dependent on the disease phenotype 

(48, 49). Furthermore in asthma an increase in extracellular matrix deposition is 

observed within and surrounding the smooth muscle bundles (45, 50, 51), which 

results in airway wall thickening, but also in increased stiffness of the tissue, 

limiting the ability of airway smooth muscle to induce airway narrowing as 

detailed below (52). The mechanisms underlying the increase in airway smooth 

muscle mass in asthma and COPD have not completely been identified. Secreted 

growth factors and cytokines from both the airway epithelium and infiltrated 

inflammatory cells may contribute to the increased airway smooth muscle mass, 

as well as the thickening of the airway smooth muscle towards the epithelium (53, 

54). Furthermore, airway smooth muscle cells produce pro-remodelling, but also 

pro-inflammatory and pro-angiogenic mediators, such as eotaxin, IL-8, vascular 
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endothelial growth factor (VEGF), connective tissue growth factor (CTGF) and 

extracellular matrix proteins (55-57), which may be enhanced in smooth muscle of 

asthma an COPD patients (28, 45). Mechanical stimuli can also stimulate the 

expression of cytokines as well as of contractile proteins in airway smooth muscle 

cells (58). Furthermore, exposure to cigarette smoke drives airway smooth muscle 

cells to proliferate (59). The mechanisms involved and their pathophysiological 

implications will be discussed in detail below. 

 

1.2.2 Communication with inflammatory cells 

Although airway inflammation is associated with cellular and structural changes in 

the airways (40, 60), there is as yet no consensus about the causal role of 

inflammation in airway remodelling. It has been proposed that chronic 

inflammation drives the airway remodelling in asthmatic patients, as mediators 

including TGF-β, IL-1β and IL-6, produced by both inflammatory and structural 

cells, can induce airway remodelling (14, 61). In addition, the airway smooth 

muscle may directly facilitate the inflammatory processes in asthma and COPD. 

For example in asthma, the expression of the chemokine eotaxin by airway 

smooth muscle cells allows eosinophils to be attracted to the airways, leading to 

local release of cytotoxic mediators, pro-inflammatory cytokines, and TGF-β (62). 

Airway smooth muscle cells also express several receptors and mediators, 

including cellular adhesion molecules (CAMs), cytokine receptors, Toll-like 

receptors, chemokines, proteases, and growth factors, facilitating inflammatory 

and remodelling processes within the airways (63-65). For instance, both 

autocrine and paracrine secretion of IL-1β, LTB4, IL-6, IL-8, eotaxin and RANTES by 

airway smooth muscle cells has been reported, enhancing inflammation (Figure 

1.1, (66)). Inflammatory cells can also release numerous mediators, including IL-6, 

IL-8, and TGF-β, allowing activation of the airway smooth muscle cells (45, 53, 67), 

and contributing to airway smooth muscle remodelling (Figure 1.1). Overall, this 

underlines that anti-inflammatory treatment could be a potential strategy to treat 

airway remodelling in chronic disease. 
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Figure 1.1. Bidirectional cellular communication in the airway wall. Growth factors can 
be released by epithelial cells or inflammatory cells in response to environmental factors, 
inducing airway smooth muscle cells to proliferate and release specific cytokines to 
communicate with other structural or inflammatory cells. Epithelial cells can be triggered 
by proteolytic allergens, environmental pollutants or Th2 cytokines. See text for further 
details. EGF: epidermal growth factor; PDGF: platelet-derived growth factor; TGF-β: 
transforming growth factor-β; LTB4: leukotriene B4; IL: interleukin.  

 

1.2.3 Communication with structural cells  

Bidirectional communication between the airway smooth muscle and other 

components of the airway wall, including different structural and inflammatory 

cell types and the extracellular matrix, is involved in various physiological and 

pathophysiological effects of the airways (16). The airway epithelium is the 

interface between the external environment and the airways (68). Injured or 

stressed airway epithelium by environmental factors, such as allergens and 

tobacco smoke, increases the release of fibroproliferative and fibrogenic growth 

factors. Indeed, in asthmatic airway epithelial cells, the release of numerous pro-

inflammatory cytokines (e.g. IL-6 and IL-8) and mediators (e.g. LTB4) as well as pro-

remodelling factors, including growth factors like platelet-derived growth factor 

(PDGF), epidermal growth factor (EGF), TGF-β and VEGF is enhanced compared to 

normal epithelium (68-70) (Figure 1.1). Similar responses of the airway epithelium 

are observed in COPD patients. The airway epithelium is also altered in COPD 

patients, particularly due to the exposure to cigarette smoke, which stimulates 

protection and repair processes by releasing cytokines and mediators, including 
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TGF-β (45, 71, 72). Overall, the release of these cytokines and growth factors will 

affect the airway smooth muscle cells by promoting inflammatory responses, but 

also remodelling responses, including deposition of extracellular matrix proteins 

and airway smooth muscle growth. For example, the secretion of IL-8, IL-6 and 

MCP-1 by damaged airway epithelium promotes smooth muscle cell proliferation 

(73). The secretion of several cytokines including IL-1β, IL-6 and IL-8 by airway 

smooth muscle cells can in turn affect the epithelial layer, but also attract 

inflammatory cells (45, 63). Further, mechanical stimulation of bronchial epithelial 

cells by constricted airways can induce the release of TGF-β, endothelin-1, early 

growth response-1 and the extracellular matrix protein fibronectin (74-76).  

 

1.2.4 Extracellular matrix and integrins 

Extracellular matrix, the non-cellular component within tissues, provides airway 

structure and function. The amount and composition of extracellular matrix are 

altered in patients with asthma and COPD compared with healthy subjects (16, 

77). In asthma, the basement membrane is thickened and there is deposition of 

extracellular matrix beneath the basement membrane as well as within and 

surrounding the airway smooth muscle bundles in both large and small airways. In 

COPD, the thickness of the subepithelial basement membrane is usually 

unchanged; however peribronchial fibrosis occurs in particularly the small airways 

(78). Increased deposition of collagen I, III, and V, fibronectin, tenascin, 

hyaluronan, versican, biglycan, lumican and laminin α2/β2-chains, and decreased 

deposition of collagen IV, decorin and elastin were observed in the airway wall of 

asthmatics compared to healthy subjects (79-81). Also in COPD patients, increased 

expression of collagen I, III and IV, fibronectin and laminin, and decreased 

expression of decorin compared to healthy subjects has been reported (82). In 

asthma, deposition of extracellular matrix is correlated with the severity of the 

disease, but not with age or duration of the disease (83). The expression of the 

extracellular matrix protein elastin within the bronchial wall is inversely related to 

airway hyperresponsiveness in asthmatic patients (51). 

In addition to their structural role, extracellular matrix proteins have been 

reported to be involved in the regulation of various cellular processes, including 

migration, proliferation, attachment, cytokine release and contraction (79, 80, 84-

89). Additionally, extracellular matrix proteins play a role in the maturation of 

airway smooth muscle cells (90). Airway smooth muscle cells grown on fibronectin 

and collagen I have reduced expression of contractile proteins such as sm-α-actin, 
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calponin and sm-MHC, which is associated with modulation of the airway smooth 

muscle cell phenotype towards a proliferative state (80, 87). Indeed, collagen I 

and fibronectin enhanced growth factor-induced airway smooth muscle 

proliferation (90), which requires interaction with α2β1, α4β1 and α5β1 integrins 

through the arginine-glycine-aspartic acid (RGD) sequence within these 

extracellular matrix proteins (85, 91). Integrins are major cell-surface receptors for 

extracellular matrix proteins, including collagens, fibronectin and laminins (92). 

These heterodimeric transmembrane glycoproteins interact with specific amino 

acid sequences within the extracellular matrix proteins, including the RGD 

sequence. The human repertoire of the integrin superfamily is constituted of 24 

α/β heterodimers (92), of which the α5β1 integrin is a major regulator of airway 

smooth muscle cell function (79, 85, 91, 93-95). Accumulation of extracellular 

matrix within the airway smooth muscle bundles could have both protective and 

detrimental effects. Thus, it may protect against excessive bronchoconstriction 

due to the increased stiffness leading to greater internal resistance against 

shortening (96, 97). On the other hand, in vivo studies also support detrimental 

effects of extracellular matrix proteins in airway smooth muscle remodelling. In a 

guinea pig model of chronic asthma, treatment with an integrin blocking peptide 

containing the RGD binding motif inhibited allergen-induced airway smooth 

muscle remodelling, including airway smooth muscle hyperplasia and contractility 

(91), suggesting a potentially beneficial role for RGD-specific inhibitors in the 

treatment of airway remodelling. 

 

1.2.5 Airway smooth muscle phenotype switching 

Phenotype switching of airway smooth muscle cells contributes to the increased 

airway smooth muscle mass observed in asthmatics and COPD patients. 

Phenotype switching is defined as a dynamic process whereby differentiated 

airway smooth muscle cells can reversibly change their phenotype to a 

proliferative/synthetic state (modulation) or a contractile state (maturation), 

depending on their environment (98, 99). In presence of specific extracellular 

matrix proteins, including fibronectin and collagen I, or growth factors, including 

PDGF, airway smooth muscle cells can undergo modulation from a contractile 

state into a proliferative/synthetic state, among others characterised by the 

synthesis of organelles for protein and lipid synthesis and mitochondria (100). This 

process is reversible, as airway smooth muscle cells can undergo re-maturation by 

re-expression of specific smooth muscle contractile protein markers in the 
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absence of mitogens, or by laminins and TGF-β (101, 102). Paradoxically, growth 

factors like insulin and TGF-β may have both mitogenic and pro-contractile 

properties in airway smooth muscle cells. The mechanism behind this 

differentiated regulation is still unknown. In this thesis, the role of TGF-β in airway 

smooth muscle phenotype regulation will be investigated in detail. 

To distinguish between both phenotypic states of airway smooth muscle cells, 

unique markers have been identified. Modulation of airway smooth muscle cells 

to a proliferative/synthetic phenotype is associated with downregulation of sm-α-

actin, calponin, sm-myosin, desmin, myosin light chain kinase and caldesmon and 

reduced expression of the Ca2+ handling and growth repressing functions of 

caveolae, implicating that cells in this state lose their response to contractile 

agonists (103-106). As indicated above, cells undergoing this modulation are 

characterised by abundant organelles involved in synthesis and secretion 

including the Golgi apparatus and mitochondria. Protein markers for the 

proliferative state include non-muscle myosin heavy chain, vimentin, CD44 

homing cellular adhesion molecule, I-caldesmon, protein kinase C α/β and β-

catenin, which are associated with decreased responsiveness to contractile 

agonists (104). Maturation of airway smooth muscle is associated with re-

expression of sm-α-actin, calponin, SM22, sm-MHC, desmin, h-caldesmon and 

increased responsiveness to contractile agonists (98, 102, 104). The amount of 

synthetic organelles is decreased in this state, whereas caveolae expression is 

increased, implicating that cells can respond to contractile agonists (106, 107). 

Transcription and translation of these specific airway smooth muscle phenotype 

markers occur under regulation of specific intracellular pathways as outlined 

below. 

 

1.2.6 Signalling mechanisms associated with phenotype switching of airway 

smooth muscle cells 

Extracellular stimuli, including peptide growth factors, extracellular matrix 

proteins and contractile agonists acting on G protein-coupled receptors can 

induce modulation or maturation of airway smooth muscle cells by activating 

specific intracellular signalling mechanisms (80, 87, 108). The RhoA/Rho kinase, 

mitogen-activated protein kinase (MAPK/ERK) and phosphoinositol 3-kinase (PI3K) 

pathways have been proposed to be key intracellular mechanisms in maturation 

and modulation of airway smooth muscle cells, by regulating transcription and 

translation of specific smooth muscle genes (109-112). 
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The RhoA/Rho kinase pathway is one of the central players in smooth muscle 

specific gene transcription by regulating the nuclear localisation of serum 

response factor (SRF). Polymerisation of sm-actin in response to RhoA/Rho kinase 

pathway activation induces the loss of monomeric globular actin (g-actin), 

allowing the release of the co-activator myocardin-related transcription factor A 

(MAL), which associates only with sm-α-actin in its monomeric form. Binding of 

two SRF molecules to a CArG box element in the promoter region of smooth 

muscle specific genes and recruitment of the co-activators myocardin and MAL to 

the SRF complex facilitates promoter activation of these genes. By contrast, when 

SRF is bound to ternary complex factors (TCFs), including phospho-Elk-1, the c-fos 

promoter is activated to facilitate transcription of proliferative genes (113). The 

MAPK pathway is responsible for the phosphorylation of Elk-1, indicating an 

important role of this pathway in determining the fate of SRF-mediated 

transcription and therefore the regulation of smooth muscle plasticity (113). In 

this way, the presence of specific transcriptional co-activators is crucial in the 

regulation of transcription of either smooth muscle specific genes or proliferative 

genes. In contrast to the MAPK/ERK pathway, the PI3K pathway is involved in the 

activation of smooth muscle specific gene transcription by disruption of the 

interaction of SRF with the inhibitory Fox04 transcription factors, allowing the co-

activator myocardin to bind to SRF (Figure 1.2) (114). Smad-dependent signalling 

can also enhance smooth muscle specific gene transcription after association with 

co-factors and transcription factors (109, 115).  
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Figure 1.2. Mechanisms of airway smooth muscle maturation. Maturation of airway 
smooth muscle cells requires transcription and translation of contractile and contraction 
regulatory proteins. Activation of Smad-independent pathways through TGF-β signalling is 
also common. For example, RhoA can be activated followed by activation of downstream 
target proteins, such as Rho-kinase, to prompt rearrangement of the cytoskeletal 
elements associated with cell spreading, cell growth regulation, and cytokinesis. See text 
for further details. MR: muscarinic receptor; TGFR: TGF receptor; SRF: serum response 
factor; MCDN: myocardin; PKC: protein kinase C; PI3K: phosphatidyl inositide 3-kinase; 
GSK-3: glycogen synthase kinase-3, Akt: protein kinase B, mTOR: mammalian target of 
rapamycin; TCE: TGF-β control elements, 4E-BP1: eukaryotic translation initiation factor 
4E-binding protein 1. 

 

Translation of the transcripts from smooth muscle specific genes is under control 

of the PI3K/Akt and mTOR/p70S6K pathways. PI3K signalling induces activation of 

Akt1 followed by mammalian target of rapamycin (mTOR). Active mTOR 

phosphorylates eukaryotic translation initiation factor 4E-binding protein 1 (4E-

BP1) allowing the activation of the eukaryotic initiation factor eIF4. Subsequently, 

protein translation and contractile protein accumulation is initiated (111, 112). 

Activation of mTOR also allows the activation of p70S6K, responsible for 

ribosomal activation and the accumulation of contractile proteins (111) (Figure 
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1.2). Another downstream target of the PI3K/Akt signalling is glycogen synthase 

kinase (GSK)-3, whose repressive effects on translational processes are reversed 

after phosphorylation by Akt (116, 117).  

 

1.2.7 TGF-β signalling and airway smooth muscle phenotype switching 

TGF-β is an important mediator of tissue remodelling in patients with asthma and 

COPD. In the lung, TGF-β can be expressed by various cell types, including 

eosinophils, macrophages, epithelial cells, fibroblasts and airway smooth muscle 

cells (52). Increased levels of TGF-β have been found in asthmatics, COPD patients 

and tobacco smokers (67, 118-121). Both the airway epithelium and airway 

smooth muscle cells of patients with COPD overexpress TGF-β compared to 

healthy smokers (120, 122). In addition, genetic studies have reported strong 

associations between polymorphisms within genes of the TGF-β superfamily and 

COPD development (25, 123). In response to epithelial damage, excessive 

production of TGF-β occurs, triggering airway remodelling (124). During 

inflammation, neutrophil elastase and mast cell tryptase promote the release of 

TGF-β1 from airway smooth muscle cells (125, 126). Plasmin regulates the release 

and the conversion of biologically active TGF-β from the extracellular matrix (127).  

The functional impact of TGF-β on airway smooth muscle cells is significant. This 

growth factor can induce airway smooth muscle modulation and maturation 

depending on its concentration, by activation of the Smad signalling followed by 

the regulation of SRF-dependent gene transcription or by inducing autocrine 

release of growth factors, including PDGF (115, 117, 128). The binding of TGF-β to 

the TGF-β receptor-type II allows recruitment and phosphorylation of the TGF-β 

type I receptor, followed by both phosphorylation and nuclear translocation of 

the “regulatory” Smads-2, -3 and -4, and activation of Smad-independent 

pathways. In turn, Smad-2, -3, and -4 can bind with the nuclear SRF to regulate 

smooth muscle specific gene transcription, and thereby promoting cell function 

including inducing a contractile phenotype (129) (Figure 1.2). As part of a negative 

feedback loop, Smad-6 and -7 antagonise TGF-β signalling by counteracting the 

induction of smooth muscle specific target genes (Figure 1.2) (115, 129). 

Maturation of smooth muscle cells is promoted by Smad-dependent pathways 

activating TGF-β control elements (TCE) on the promoters of smooth muscle 

specific target genes. In this way, TGF-β augments the expression of contractile 

proteins in airway smooth muscle cells, including sm-α-actin and calponin (130, 

131). TGF-β also activates Smad-independent pathways, including MAPK, 
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RhoA/Rho kinase and PI3K/Akt pathways, thereby promoting airway smooth 

muscle cell proliferation. For example, activation of the PI3K/Akt pathway by TGF-

β can lead to airway smooth muscle proliferation by up-regulating the expression 

of cyclin D1 (132). Phosphorylation of p38 and ERK1/2 by TGF-β1 also enhances 

airway smooth muscle cell proliferation (133). Cooperative regulation between 

Smad-dependent and Smad-independent pathways has been reported (134). For 

example, crosstalk between the MAPK pathway and Smad-pathway can enhance 

cell proliferation and fibrosis (135). Moreover, RhoA can be activated via Smad-

dependent and -independent pathways to induce actin stress fibre formation 

(134). 

In fibroblasts, TGF-β triggers the deposition of extracellular matrix including 

collagen and fibronectin by promoting the expression of extracellular matrix 

genes and suppressing the activity of matrix metalloproteinases genes, which 

degrades extracellular matrix (136, 137). Similar observations were done in airway 

smooth muscle cells (127, 130). Expression of the pro-fibrotic factor CTGF is also 

induced by TGF-β; moreover, TGF-β is enhanced in airway smooth muscle cells of 

asthmatics (55). The induction of the matrix proteins requires activation of the 

Smad signalling, especially Smad-3, but also of the MAPK pathway (138). Although 

TGF-β is predominantly involved in airway remodelling, TGF-β can also regulate 

inflammatory responses by inducing the release of cytokines and chemokines, 

including IL-8, IL-6 by airway smooth muscle (64). Overall, TGF-β can regulate the 

gene/protein expression of extracellular matrix proteins, contractile proteins, 

cytokines, growth factors, and enzymes in airway smooth muscle cells, suggesting 

a major role for TGF-β in airway remodelling and inflammation (16, 64). 

 

 

1.3 Cholinergic system of the airways 
 

Classically, acetylcholine is considered a neurotransmitter of the peripheral and 

the central nervous system. Activation of the neuronal cholinergic system in the 

airways induces airway smooth muscle contraction and mucus secretion, thereby 

causing airway obstruction. The activity of the parasympathetic system in asthma 

and COPD is increased by airway inflammation. However, more than half a 

century ago already, acetylcholine was reported present in bacteria, protozoa, 

yeast, algae, fungi, and plants (139), supporting the existence of a non-neuronal 

cholinergic system. In humans, the non-neuronal cholinergic system was found to 
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be ubiquitously present, including in the airways. A growing body of evidence now 

supports the notion that the non-neuronal cholinergic system also plays an 

important role in the pathogenesis and pathophysiology of asthma and COPD.  

 

1.3.1 Cholinergic system 

In neurons and in non-neuronal cells, acetylcholine is synthesised by a single-step 

reaction catalysed by the enzymes choline acetyltransferase (ChAT) or 

carnesylacetyltransferase (CarAT) using their two precursors choline and acetyl-

CoA. The uptake of choline is the rate-limiting step in acetylcholine synthesis and 

is regulated by specific choline transporters, including the high affinity choline 

transporter (CHT)1 and choline-specific transporter-like proteins (CTL1-4). In 

neurons, acetylcholine is stored in and released from synaptic vesicles by the 

vesicular acetylcholine transporter (VAChT). Although VAChT was found to be 

expressed in several epithelial cell types (secretory cells, neuroendocrine cells and 

brush cells), airway epithelial cells also have an alternative release mechanism for 

acetylcholine by active transport via organic cation transporters (OCT) (140-142). 

Rapid hydrolysis by the enzyme acetylcholinesterase (AChE) or 

butyrylcholinesterase (BChE) allows the termination of the actions of 

acetylcholine once released by neuronal and non-neuronal cells (143). In the 

airways, ChAT and CarAT are expressed in airway smooth muscle cells, fibroblasts, 

epithelial cells and inflammatory cells, such as macrophages, mast cells, 

lymphocytes and granulocytes (144). However, the release of acetylcholine by the 

majority of these cell types has not been proven yet. Remarkably, most of these 

cells also express cholinergic receptors (see for overview (144-146)). 

 

1.3.2 Muscarinic receptors subtypes in the airways 

Two types of cholinergic receptors exist, the G protein-coupled muscarinic 

receptors and the nicotinic receptors, which are ligand-gated cation channels (146, 

147). The clinically used anticholinergics for asthma and COPD are specific for 

muscarinic receptors; the role of nicotinic receptors in the airways will not be 

further discussed here (for a review see Racke et al. (148)). 

Five muscarinic receptor subtypes (M1-M5) have been identified, which are 

expressed in various tissues (149). Muscarinic M2 and M4 receptors are both Gi-

coupled receptors, inducing inhibition of adenylyl cyclase and closure of Ca2+-

dependent K+-channels. Muscarinic M1, M3 and M5 receptors are Gq-coupled 

receptors, activating phospholipase C (PLC)β and thereby inducing an increase in 
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the cytoplasmatic calcium (Ca2+) concentration through the production of inositol 

1,4,5-trisphosphate (IP3) and subsequent mobilization of Ca2+ from the 

endoplasmatic reticulum (149). In addition, diacylglycerol (DAG) is produced, 

causing activation of protein kinase C (PKC). 

As mentioned, muscarinic receptor expression is found in many cell types, 

including neurons and a variety of non-neuronal cells (144). In the airways, 

muscarinic M1, M2 and M3 receptors are widely expressed and are involved in 

different functional responses, including the regulation of smooth muscle 

contraction, mucus secretion, cell proliferation and neurotransmitter, mediator 

and cytokine release (see Table 1.1 for an overview). 
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Table 1.1. Muscarinic receptor subtypes in the airways – localisation and function  

Muscarinic  

receptor subtype 

Localisation Function 

M1 Parasympathetic ganglia Facilitation of neurotransmission (150) 

 Epithelial cells facilitation of cytokine and chemotactic 
factor release (36, 151) 

  Submucosal glands Electrolyte and water secretion (152-154) 

  Mast cells Regulation of inflammatory mediator 
production, inhibition of histamine 
release (39, 139) 

 T lymphocytes Increased cytotoxicity (139, 155, 156) 

  B lymphocytes Proliferation (139, 156) 

  Neutrophils Chemotaxis (69) 

  Eosinophils Unidentified(69) 

  Macrophages/ monocytes Chemotactic factor release (e.g. LTB4) 

M2 Pre- and postganglionic 
cholinergic nerves 

Inhibition of ACh release (157-159) 

  Airway smooth muscle cells Functional antagonism of β-agonist-
induced relaxation (160-164) 

  Fibroblasts Proliferation, extracellular matrix 
production (37, 165) 

  Epithelial cells Facilitation of cytokine and chemotactic 
factor release (36, 151) 

  Sympathetic nerves Inhibition of noradrenaline release (166) 

 T lymphocytes Increased cytotoxicity (139, 155, 156) 

 B lymphocytes Proliferation (139, 156) 

 Neutrophils Chemotaxis (69) 

 Macrophages/ monocytes Chemotactic factor release (139) 

M3 Airway smooth muscle cells Contraction, proliferation, cytokine 
release, functional antagonism of β-
agonist induced relaxation (30, 34, 139, 
162, 167-171) 

  
Epithelial cells Facilitation of cytokine and chemotactic 

factor release (36, 151) 

  

Submucosal glands Mucus secretion (154)  
Electrolyte and water secretion (152, 
153) 

  Goblet cells Mucus secretion (172) 

  T lymphocytes Increased cytotoxicity (139, 155, 156) 

 B lymphocytes Proliferation (139, 156) 

 Neutrophils Chemotaxis (69) 

  Macrophages/ monocytes Chemotactic factor release (139, 173) 
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1.3.3 Regulation of airway smooth muscle contraction by muscarinic 

receptors 

Airway smooth muscle expresses both muscarinic M2 and M3 receptors, in a ratio 

of 4:1 (167). Although muscarinic M2 receptors are predominantly expressed, the 

muscarinic M3 receptor is responsible for contraction. In airway smooth muscle, 

activation of muscarinic M3 receptors induces the release of Ca2+ from 

intracellular stores not only by activating PLCβ and subsequent formation of IP3, 

but also by activation of the CD38/cyclic ADP-ribose pathway via opening of 

ryanodine receptor channels in the sarcoplasmatic reticulum (174, 175). The 

release of Ca2+ activates Ca2+-calmodulin-dependent myosin light chain kinase to 

phosphorylate myosin light chain, followed by airway smooth muscle contraction 

by interaction of the myosin light chain with actin. 

Muscarinic M3 receptors also activate the Rho/RhoA pathway to facilitate airway 

smooth muscle contraction. Contraction is induced by inhibition of myosin light 

chain phosphatase (MLCP) leading to Ca2+-sensitisation, which is defined as an 

augmented contractile response at a given Ca2+ concentration (176). MLCP can be 

directly inhibited by phosphorylation by RhoA-kinase, but also by binding with the 

phosphoprotein CPI-17, which can be phosphorylated by Rho-kinase and PKC 

(177). 

 

1.3.4 Regulation of inflammation and remodelling by muscarinic receptors 

There is recent evidence that muscarinic receptors on both structural and 

inflammatory cells in the airways may be involved in airway inflammation and 

remodelling.  

Muscarinic receptor activation may contribute to structural changes in the 

airways by airway smooth muscle phenotype modulation, and differentiation and 

activation of fibroblasts. Thus, muscarinic M3 receptor stimulation may profoundly 

enhance growth factor-induced airway smooth muscle proliferation (34, 178-181). 

Cross-talk between muscarinic M3 receptors and receptor tyrosine kinases, like 

epidermal growth factor (EGF) receptors and PDGF receptors causes a synergistic 

increase in airway smooth muscle cell proliferation through PI3K/Akt- and 

mTOR/p70S6K-dependent signalling pathways (178, 180, 181). Moreover, 

muscarinic M3 receptor stimulation induces PKC-dependent GSK-3 inhibition, also 

promoting PDGF-induced airway smooth muscle proliferation (34, 179).  

As indicated above, the regulation of airway smooth muscle cell maturation is 

under control of the RhoA/Rho-kinase signalling pathway through the expression 
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of smooth-muscle specific genes (98, 102, 111, 182). Muscarinic agonists regulate 

the promoter activity of smooth muscle specific genes, including sm-22, sm-MHC 

and SRF-dependent genes, both by RhoA and PI3K signalling (110, 181, 183-184). 

RhoA-dependent promoter activity of sm-22 and sm-MHC is upregulated in 

response to inhibition of PKC (Figure 1.2) (182). Overall, this suggests an 

important role for muscarinic M3 receptor activation in the maturation of airway 

smooth muscle cells, and thus in airway remodelling. 

 

A clear role for muscarinic M2 receptors on airway smooth muscle cells in airway 

remodelling has not yet been reported. However, in fibroblasts muscarinic M2 

receptor activation induces cell proliferation through activation of the MAPK 

pathway (38). Furthermore, carbachol, a muscarinic agonist, induces the 

production of collagen by fibroblasts (37, 165). Interestingly, collagen is also 

known to induce cell proliferation (80), which might suggest a role for muscarinic 

M2 receptor-induced collagen production in the regulation of cell proliferation. 

Muscarinic receptors are also involved in the transition of fibroblasts into 

myofibroblasts, through an increase in ERK1/2 phosphorylation, RhoA activation, 

inhibition of cAMP signalling and the release of autocrine TGF-β (185).  

The role of muscarinic receptors in airway remodelling and the mechanism(s) 

involved need further clarification, particularly in concert with TGF-β as a key 

player in airway remodelling.  

Functional roles for acetylcholine in inflammation have also emerged. In bronchial 

epithelial cells, acetylcholine triggers eosinophil, monocyte and neutrophil 

chemotactic activity (186, 187). Both IL-8 and LTB4 release by epithelial cells were 

found dependent on the ERK1/2 and NF-κB pathways (36, 69, 151). In bovine 

tracheal smooth muscle, upregulation of cyclooxygenase (COX)-2, COX-1, IL-8 and 

urokinase type plasminogen activator (PLAU) gene expression was reported in 

response to the muscarinic agonist carbachol (168). Muscarinic receptor agonists 

induce modest release of IL-6 and IL-8 by airway smooth muscle cells (Figure 1.3, 

(30)). Exposure to cigarette smoke extract can significantly enhance these 

properties (30). Nonetheless, the mechanism behind this interaction is still 

unknown. Several inflammatory cells are also activated by acetylcholine, for 

example promoting lymphocyte proliferation, chemotaxis of neutrophils and 

chemotactic factor release by macrophages (Figure 1.3, table 1.1 (145)). 

Inflammatory mediators can also trigger the upregulation of muscarinic receptor 

signalling. Indeed, both Gi and Gq protein expression and associated intracellular 
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signalling were upregulated in airway smooth muscle cells in response to TNF-α 

and IL-1β (160, 188). Collectively, these findings indicate that muscarinic receptors 

may be importantly involved in regulating inflammatory responses, suggesting an 

anti-inflammatory role of anticholinergics in obstructive airways diseases. 

 

 

Figure 1.3. Role of neuronal and non-neuronal acetylcholine release in airway 

inflammation. Stimulation of muscarinic receptors on inflammatory cells by neuronal or 
non-neuronal acetylcholine may directly activate these cells. Moreover, muscarinic 
receptor activation on epithelial and airway smooth muscle cells promotes the secretion 
of cytokines by these cells, causing infiltation and activation of inflammatory cells. See text 
for further details. LTB4: leukotriene B4; IL: interleukin; ACh: acetylcholine; MR: muscarinic 
receptor. 

 

In vivo studies support the role of muscarinic receptors in inflammation and 

remodelling. In a guinea pig model of chronic asthma, the allergen-induced airway 

smooth muscle remodelling, including increased contractile protein expression 

and airway smooth muscle thickening, but also mucous gland hypertrophy, 

increased MUC5AC-positive goblet cell numbers and eosinophilia, were inhibited 

by tiotropium bromide (33, 189, 190). Furthermore, in a murine model of asthma 

infiltration of macrophages and eosinophils and expression of IL-4, IL-5, IL-13 and 

TGF-β1, all measured in the bronchoalveolar lavage fluid (BALF), as well as airway 



 

  
21

C
h

a
p

te
r 1

 | G
en

eral in
tro

d
u

ctio
n

 
smooth muscle thickening were significantly inhibited by tiotropium bromide 

(191). The allergen-induced infiltration of eosinophils in the BALF was also 

inhibited by the novel muscarinic receptor antagonist, aclidinium bromide (192). 

Also in a cigarette smoke-induced mouse model of COPD, tiotropium bromide 

exerted anti-inflammatory activity, not only by inhibiting total cell number and 

neutrophils, but also by reducing the expression of cytokines, including IL-6, KC, 

TNF-α, and LTB4 in the BALF (193). A recent study using muscarinic receptor 

subtype deficient mice, showed a pro-inflammatory role for the muscarinic M3 

receptor in cigarette smoke-induced neutrophilia and cytokine release, and an 

anti-proinflammatory role for muscarinic M1 and M2 receptors (194). 

 In a guinea pig model of LPS-induced COPD, pulmonary neutrophilia and 

increased peribronchial collagen deposition were also inhibited by tiotropium 

bromide (195). Likewise, the short-acting anticholinergic ipratropium had 

inhibitory effects in a cadmium-induced rat model of pulmonary inflammation 

(196). In a diesel particle-induced rat model of acute lung injury, bilateral 

vagotomy, but also atropine reduced neutrophilia (197). Collectively, these 

studies indicate a profound role for muscarinic receptor activation in airway 

remodelling and inflammation in asthma and COPD. 

 

 

1.4 Aims of the studies 
 

Besides its role as a major regulator of airway constriction and mucus secretion, 

acetylcholine can also regulate remodelling and inflammation of the airways. The 

mechanisms involved have only partially been identified. The primary aim of this 

thesis is to investigate the functional interactions of the cholinergic system with 

inflammatory and remodelling processes in the airways. To this aim, in vitro 

studies were designed to assess the effects of muscarinic receptor stimulation 

alone or in concerted action with cigarette smoke extract or TGF-β1 on key 

features of inflammation and remodelling, using human airway smooth muscle 

cells and precision-cut lung slices. 

Airway smooth muscle cells are capable of expressing and releasing cytokines and 

growth factors, which suggests an important role of this cell type in pro-

inflammatory responses (45, 63). In particular, cigarette smoke (extract) can 

provoke inflammatory responses, including IL-8 secretion, in human airway 

smooth muscle cells, which can be enhanced by Gq-coupled muscarinic M3 
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receptors (30, 45, 145). The mechanism(s) by which muscarinic receptors regulate 

these pro-inflammatory responses are still unknown. In chapter 2, we 

investigated the intracellular signalling mechanisms involved in the release of IL-8 

in response to muscarinic receptor stimulation and cigarette smoke extract in 

human airway smooth muscle cells. In this study, the role of PKC and its 

downstream effectors NF-κB and ERK1/2 was investigated. 

In addition to its role in pro-inflammatory responses, muscarinic receptor 

stimulation has been shown to be involved in airway smooth muscle remodelling, 

including increased contractile protein expression, cell proliferation and 

extracellular matrix deposition (145, 198). The pro-fibrotic cytokine TGF-β has also 

been reported to be involved in these processes; however, the functional 

relationship between muscarinic receptors and TGF-β1 has thus far not been 

described. Chapter 3 and 4 address the potential interaction between muscarinic 

receptor stimulation and TGF-β1 in processes involved in airway remodelling. 

Chapter 3 discusses the effect of muscarinic receptor stimulation on TGF-β1-

induced contractile protein expression in human airway smooth muscle cells and 

elucidates the intracellular signalling mechanisms involved. In chapter 4, the 

cooperative regulation of airway smooth muscle cell proliferation by muscarinic 

receptors and TGF-β1 through autocrine regulation of extracellular matrix proteins 

is described. The roles of integrins and muscarinic receptor subtypes in this 

process were investigated by using integrin-blocking peptides and specific 

antagonists (chapter 4). 

During bronchoconstriction, mechanical forces are induced in the airways, which 

can trigger features of airway remodelling (74, 199, 200). The functional 

importance of muscarinic agonist-induced bronchoconstriction on airway 

remodelling was studied in chapter 5. This study describes mechanisms involved 

in the induction of airway remodelling by bronchoconstriction, using precision-cut 

lung slices as an in vitro model. Since a potential role for TGF-β in the induction of 

airway remodelling by bronchoconstriction was recently indicated by a clinical 

study in mild asthma patients (201), the involvement of endogenous TGF-β 

release by bronchoconstriction was studied using selective inhibitors.  

Finally, chapter 6 reviews the role of the cholinergic system in remodelling and 

inflammatory processes within the airways. 

This thesis provides new insights into the regulatory role of muscarinic receptors 

in airway smooth muscle function.  
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Abstract 
 

Background: Acetylcholine, the primary parasympathetic neurotransmitter in the 

airways, plays an important role in bronchoconstriction and mucus production. 

Recently, it has been shown that acetylcholine, by acting on muscarinic receptors, 

is also involved in airway inflammation and remodelling. The mechanism(s) by 

which muscarinic receptors regulate inflammatory responses are, however, still 

unknown.  

Methods: The present study was aimed at characterizing the effect of muscarinic 

receptor stimulation on cytokine secretion by human airway smooth muscle cells 

(hASMc) and to dissect the intracellular signalling mechanisms involved. hASMc 

expressing functional muscarinic M2 and M3 receptors were stimulated with the 

muscarinic receptor agonist methacholine, alone, and in combination with 

cigarette smoke extract (CSE), TNF-α, PDGF-AB or IL-1β.  

Results: Muscarinic receptor stimulation induced modest IL-8 secretion by itself, 

yet augmented IL-8 secretion in combination with CSE, TNF-α or PDGF-AB, but not 

with IL-1β. Pretreatment with GF109203X, a protein kinase C (PKC) inhibitor, 

completely normalized the effect of methacholine on CSE-induced IL-8 secretion, 

whereas PMA, a PKC activator, mimicked the effects of methacholine, inducing IL-

8 secretion and augmenting the effects of CSE. Similar inhibition was observed 

using inhibitors of IкB-kinase-2 (SC514) and MEK1/2 (U0126), both downstream 

effectors of PKC. Accordingly, western blot analysis revealed that methacholine 

augmented the degradation of IкBα and the phosphorylation of ERK1/2 in 

combination with CSE, but not with IL-1β in hASMc. 

Conclusions: We conclude that muscarinic receptors facilitate CSE-induced IL-8 

secretion by hASMc via PKC dependent activation of IκBα and ERK1/2. This 

mechanism could be of importance for COPD patients using anticholinergics. 

 

 

2.1 Introduction 
 

Chronic obstructive pulmonary disease (COPD) is an inflammatory lung disease 

characterized by airflow limitation that is not fully reversible (1). The 

pathophysiology of COPD is mainly caused by cigarette smoke. COPD is associated 

with an increase in local and systemic inflammatory cytokines including TNF-α and 

IL-1β (2). Furthermore, clinical studies reported that the levels of IL-8 (3) and 
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leukotriene B4 (4) are correlated to the proportion of neutrophils present and are 

increased in induced sputum of COPD patients. Additionally, during exacerbations 

periods, IL-8 levels are increased (3). Attracted by IL-8, neutrophils play a 

significant role in the pathogenesis of COPD. Neutrophils promote tissue 

inflammation and injury by inducing the release of mediators including elastase, 

metalloproteases and reactive oxygen species (4). 

Acetylcholine, the primary parasympathetic neurotransmitter in the airways plays 

an important role in COPD, by regulating bronchoconstriction and mucus 

production (5). Parasympathetic tone may be increased in COPD (5). Therefore, 

anticholinergics -including tiotropium bromide, a long-acting bronchodilator- are 

often used as a mainstay therapy for COPD (6). Recently, however, it has been 

established that activation of the cholinergic system may also contribute to 

inflammatory responses in the lung. For example, the release of IL-8 and 

leukotriene B4 by bronchial epithelial cells (7, 8) and alveolar macrophages (9) in 

vitro appears to be induced by acetylcholine, resulting in increased neutrophil, 

monocyte, and eosinophil chemotactic activities, an effect that may be enhanced 

in COPD. Also, animal studies showed that anticholinergics are capable of 

reducing neutrophilic and eosinophilic inflammation induced by inhaled diesel-

soot (10), inhaled allergen (11), or LPS (12). Furthermore, it has been reported 

that airway vascular leakage is mediated by muscarinic receptors (13). Collectively, 

these findings suggest a role in pro-inflammatory responses for muscarinic 

receptors. Nonetheless, it is still undefined what the potential anti-inflammatory 

effects of muscarinic antagonists are in the lungs of patients with COPD (14), 

which is in part due to the unknown mechanisms behind the regulation of 

inflammatory responses by muscarinic receptors. 

Human airway smooth muscle (ASM) has been attributed an important role in 

pro-inflammatory responses in COPD (5). These cells are capable of expressing 

and releasing cytokines and growth factors, including IL-6 and IL-8 (15). 

Furthermore, it has been reported that ASM cells express cell surface molecules, 

which can directly interact with immune cells, suggesting an immunomodulatory 

role of these cells in COPD (16). Increased pro-inflammatory cytokine release is 

induced by stimulating human ASM cells (hASMc) with G-protein-coupled 

receptors, growth factors and extracellular matrix proteins (15, 16). Additionaly, 

cigarette smoke can evoke inflammatory responses in human hASMc, such as IL-8 

secretion (17). Muscarinic M2 and M3 receptors, both G-protein-coupled receptors, 

are expressed in abundance in hASMc, suggesting that acetylcholine regulates 
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inflammatory responses by ASM (18). Indeed, we recently reported that 

muscarinic receptor stimulation augments cigarette smoke extract (CSE)-induced 

IL-8 secretion by hASMc, which was mediated by the muscarinic M3 receptor 

subtype (19). 

Although these observations illustrate the potential role for acetylcholine in 

regulating airway inflammation, the mechanism(s) by which muscarinic receptors 

regulate inflammatory responses are still unknown. In the present study, we 

investigated the regulation of cytokine secretion from hASMc by muscarinic 

receptors, alone and in concerted action with various pro-inflammatory stimuli 

involved in the pathogenesis of COPD. In addition, we investigated the 

intracellular signalling mechanisms involved, in particular the role of protein 

kinase C (PKC) and downstream pathways.  

 

 

2.2 Materials and methods 
 

2.2.1 Antibodies and reagents 

Methacholine chloride (MCh) was purchased from ICN Biomedicals (Zoetermeer, 

the Netherlands). GF109203X and U0126 were both from Tocris Cookson Inc. 

(Bristol, UK). SC514 was obtained from Calbiochem (Amsterdam, The 

Netherlands). PMA, mouse anti-ß-actin antibody, horseradish peroxidase (HRP)-

conjugated rabbit anti-mouse antibody, HRP-conjugated goat anti-rabbit, 

recombinant human TNF-α, and IL-1β were purchased from Sigma-Aldrich 

(Zwijndrecht, The Netherlands). Human recombinant platelet-derived growth 

factor-AB (PDGF-AB) was from Bachem (Weil am Rhein, Germany). Phospho-

p44/42 MAPK (ERK1/2) (Thr202/Tyr204) antibody and p44/42 MAPK (ERK1/2) 

antibody were obtained from Cell Signalling Technology (Beverly, CA, USA). Rabbit 

anti-IкBα (clone-15) was purchased from Santa Cruz Biotechnology, INC (Santa 

Cruz CA, USA). All other chemicals were of analytical grade. 

 
2.2.2 Cell culture 

Human bronchial smooth muscle cell lines immortalized by stable expression of 

human telomerase reverse transcriptase (hTERT) were prepared as described 

previously (20). The primary cultured human bronchial smooth muscle cells used 

to generate these cell lines were prepared from macroscopically healthy 

segments of 2nd-to-4th generation main bronchus obtained after lung resection 
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surgery from patients with a diagnosis of adenocarcinoma. All procedures were 

approved by the Human Research Ethics Board of the University of Manitoba. 

Cells were grown to confluence using DMEM supplemented with 10% FBS, 100 

µg/mL streptomycin, 100 U/mL penicillin and 1.5 µg/mL amphotericin B. Cultures 

were maintained in a humidified incubator at 37°C-5% CO2, and media was 

changed every 2-3 days. 

 
2.2.3 Cytokine release 

Cells were cultured in 24 well plates and grown until confluence followed by 

serum-deprivation for 1 day in DMEM supplemented with antibiotics (100 µg/mL 

streptomycin, 100 U/mL penicillin and 1.5 µg/mL amphotericin B) and ITS (5 

µg/mL insulin, 5 µg/mL transferrin, and 5 ng/mL selenium) before each 

experiment. The cells were stimulated with the muscarinic receptor agonist 

methacholine chloride (MCh, 10 μM), alone and in combination with either CSE 

(5%), TNF-α (1 ng/mL), PDGF-AB (30 ng/mL) or IL-1β (1 ng/mL) for 24 hrs to 

determine cytokine secretion in cell-free supernatant. 100 % strength CSE was 

prepared by combusting two 3R4F research cigarettes (without filter) (University 

of Kentucky, Kentucky, USA) using a peristaltic pump and passing the smoke 

through 25 mL of FBS-free medium at the rate of one cigarette per 5 min. CSE was 

freshly prepared before every experiment and was used within 15 min after 

preparation. Additionally, where appropriate, hASMc were pre-incubated with 

either the PKC inhibitor GF109203X (3 μM), the IKK-2-inhibitor SC514 (50 μM) or 

the MEK inhibitor U0126 (3 μM) for 30 min. Cells were also treated with the PKC 

activator PMA (0.1 μM). Cytokine levels were quantified using enzyme-linked 

immunosorbent assays (ELISA), according to the manufacturer’s instructions 

(Sanquin Pharmaceutical services, Amsterdam, The Netherlands). The detection 

limit was 1 pg/ml for IL-8 and 0.2 pg/ml for IL-6. We diluted samples were needed 

to remain in the range of the standard curve. 

 
2.2.4 Preparation of whole cell lysates 

HASMc were cultured in 6 well plates and grown until confluence followed by 

serum-deprivation for 1 day in DMEM supplemented with antibiotics (100 µg/mL 

streptomycin, 100 U/mL penicillin and 1.5 µg/mL amphotericin B) and ITS before 

each experiment. The cells were stimulated with the muscarinic receptor agonist 

MCh (10 μM), alone and in combination with either CSE (5 %) or IL-1β (1 ng/mL) 

for 60 or 120 min. To obtain whole cell lysates, cells were washed once with ice-
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cold PBS (NaCl 140 mM, KCl 2.6 mM, KH2PO4 1.4 mM, Na2HPO4.2H2O 8.1 mM, pH 

7.4), followed by lysis using ice-cold RIPA buffer (Tris 40 mM, NaCl 150 mM, Igepal 

1%, deoxycholic acid 1%, NaF 1 mM, Na3VO4 1 mM, aprotinin 10 μg/mL, leupeptin 

10 μg/mL, pepstatin A 7 μg/mL, β-glycerophosphate 1.08 mg/mL, pH 8.0). 

Sonicated lysates were assayed for protein content according to Bradford and 

stored at -20°C until further use. 

 
2.2.5 Western Blotting 

Equal amounts of protein were separated on 10 % polyacrylamide-SDS gels and 

transferred to nitrocellulose membranes. To avoid non-specific binding, 

membranes were blocked with blocking buffer (Tris-HCl 50 mM, NaCl 150 mM, 

TWEEN-20 0.1%, non-fat dried milk powder 5 %) for 1 hour at room temperature. 

The membranes were then incubated with specific primary antibodies, all diluted 

in blocking buffer, for one hour at room temperature. After washing the 

membranes three times with TBS-T 0.1% (Tris-HCl 50 mM, NaCl 150 mM, TWEEN-

20 0.1%) for 10 min, incubation with the secondary antibody conjugated to HRP 

was performed during 1 h at room temperature, followed by additional three 

washes with TBS-T 0.1%. Bands were subsequently visualized on film using 

enhanced chemiluminescence reagents and analysed by densitometry (TotallabTM, 

Nonlinear dynamics, Newcastle, UK). All bands were normalized to either β-actin 

for IкBα or to total ERK1/2 for phospho ERK1/2. 

 
2.2.6 Data analysis 

Data are presented as mean values ± SE. Statistical significance of differences 

between means was determined by a Student’s t test or by one-way ANOVA, 

where appropriate. Data were considered statistically significant when p <0.05. 

 

 

2.3 Results 
 

2.3.1 Muscarinic receptor stimulation facilitates cytokine secretion induced by 

CSE, TNF-α and PDGF-AB 

Recently, it has been reported that stimulation of muscarinic receptors induces 

the release of IL-8 from human bronchial epithelial cells and facilitates the release 

of IL-8 from hASMc induced by CSE (8, 19). We evaluated the pro-inflammatory 

properties of muscarinic receptor stimulation in hASMc, alone and in concerted 
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action with CSE (5 %), PDGF-AB (30 ng/mL), TNF-α (1 ng/mL) or IL-1β (1 ng/mL) 

(Figure 2.1). Previous findings indicated that the effects of muscarinic receptor 

stimulation on ASM cytokine secretion were most profound for IL-6 and IL-8 (19), 

with maximal effects seen at a concentration of 10 μM MCh. Therefore, we used 

10 μM MCh and focused on IL-6 and IL-8 cytokines for our measurements. We 

observed a minor increase in IL-8 induced by MCh alone. CSE alone induced a 

significant increase of both IL-8 and IL-6 secretion, which was significantly and 

synergistically amplified by co-stimulation with MCh. In addition, MCh induced a 

synergistic increase in both IL-8 and IL-6 secretion in combination with TNF-α. 

Furthermore, a synergistic effect was also observed with the combination of MCh 

and PDGF-AB for IL-8 secretion. However, the effect of IL-1β, which induced a very 

high IL-8 and IL-6 production by its own, was not significantly augmented by MCh 

(Figure 2.1). IL-8 release in response to IL-1β was found concentration dependent, 

but treatment with MCh had no additional effects regardless of the concentration 

IL-1β used (data not shown). 

 

Figure 2.1. Muscarinic receptor stimulation augments cytokine secretion induced by CSE, 

PDGF-AB and TNF-α, but not by IL-1β. hASMc were stimulated with CSE (5%, n=22 and 
n=6 for IL-8 and IL-6, respectively), TNF-α (1 ng/mL, n=17 and n=5 for IL-8 and IL-6, 
respectively), IL-1β (1 ng/mL, n=17 and n=6 for IL-8 and IL-6, respectively) or PDGF-AB (30 
ng/mL, n=6 for IL-8), in the absence or presence of MCh (10 μM) for 24 hours. 
Supernatants were analyzed for the presence of IL-8 (A) or IL-6 (B). Data shown are the 
means ± SE of n independent experiments. *p< 0.05, **p< 0.01 and ***p< 0.001 
compared to basal; †p< 0.05 and ††p< 0.01 compared to the absence of MCh (Student's t-
test for paired observations). 
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2.3.2 PKC is involved in the synergistic effect of muscarinic receptor 

stimulation with CSE 

PKC plays an important role as a signalling intermediate in pro-inflammatory 

cytokine secretion by inducing the activation of several downstream pathways, 

including the IKK-2/IκBα/NF-κB and Raf-1/MEK/ERK1/2 pathways (21). The 

stimulation of muscarinic receptors induces the activation of PKC in ASM (22, 23). 

We hypothesized therefore, that PKC could play a central role in the synergism 

between CSE and MCh in IL-8 secretion. HASMc were pretreated with GF109203X 

(3 μM), a specific PKC inhibitor, and subsequently stimulated with MCh, CSE and 

their combination (Figure 2.2). GF109203X significantly inhibited the synergistic 

effect of MCh on CSE-induced IL-8 secretion, demonstrating a requirement for 

PKC in this synergism. Remarkably, in the absence of the muscarinic agonist, 

GF109203X tended to increase the CSE-induced IL-8 secretion. 

 

 

 

 

 

 

 

 

 

 
Figure 2.2. Involvement of PKC in the potentiation of CSE-induced IL-8 release by 

muscarinic receptor stimulation. hASMc were stimulated with CSE (5%) in the absence or 
presence of MCh (10 μM) and/or GF109203X (3 μM) for 24 hours. Supernatants were 
analyzed for the presence of IL-8. Data represent means ± SE of 7 independent 
experiments each performed in duplicate. ***p< 0.001 compared to basal; $$$p< 0.001 
compared to CSE; †p < 0.05 compared to the absence of GF109203X (One-way ANOVA 
followed by Newman-Keuls multiple comparisons test). 

 

To investigate whether PKC activation was sufficient for a synergistic IL-8 

secretion in combination with CSE, we used PMA (0.1 μM) as a PKC activator. 

Indeed, CSE-induced IL-8 secretion was highly augmented in the presence of PMA, 

which could be abolished to the level of CSE-induced IL-8 secretion when pre-

treated with GF109203X (Figure 2.3A). These data indicate that PKC activation is 
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sufficient for a synergistic interaction with CSE, which is in support of a central 

role for PKC in regulating the synergy between MCh and CSE. In contrast to MCh, 

however, PMA induced a considerable IL-8 secretion by itself, which was 

abolished when the cells were pre-treated with GF109203X.  

PKC has been shown to induce activation of the NF-кB and ERK1/2 pathways in 

different cells (21). Moreover, it has been reported that the stimulation of 

muscarinic receptors through acetylcholine mediates the release of IL-8 in human 

bronchial epithelial cells by NF-кB- and ERK1/2-dependent mechanisms (8). To 

test the involvement of the NF-кB and ERK1/2 pathways as a result of PKC 

activation, hASMc were stimulated with PMA after pre-treatment with either an 

IKK-2 inhibitor, SC514, or a MEK1/2 inhibitor, U0126. IL-8 secretion induced by 

PMA was significantly decreased in presence of these pharmacological inhibitors 

(Figure 2.3B for SC514 and Figure 2.3C for U0126, respectively). Moreover, 

western blot analysis indicated that the activation of PKC by PMA induced the 

phosphorylation of ERK1/2 and the degradation of IкBα in hASMc. Collectively, 

these data indicate that PKC is able to activate the IкBα/NF-κB and MEK/ERK1/2 

pathways, leading to IL-8 secretion from hASMc (Figure 2.3D). 
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Figure 2.3. PKC activation is sufficient to facilitate CSE-induced IL-8 secretion in hASMc. 
hASMc were stimulated with PMA (0.1 μM), in the absence or presence of CSE (5%) and 
GF109203X (3 μM) (A), SC514 (50 μM) (B) or U0126 (3 μM) (C) for 24 hours. Supernatants 
were analyzed for the presence of IL-8. Data represent means ± SE of 4-6 independent 
experiments each performed in duplicate. *p < 0.05, **p< 0.01 and ***p< 0.001 
compared to basal; $$$p< 0.001 compared to PMA; †p< 0.05, ††p< 0.01 and †††p < 0.001 
compared to the absence of inhibitor (One-way ANOVA followed by Newman-Keuls 
multiple comparisons test). (D) hASMc were stimulated with PMA (0.1 μM) for 1 hour. Cell 
lysates were analyzed for IκBα breakdown and phosphorylation of ERK1/2 by western blot. 
β-actin and total ERK1/2 were used as loading controls. Western blots shown are 
representative of 4 experiments. 

 

2.3.3 Involvement of the IкBα/NF-κB pathway in the synergistic effect of 

muscarinic receptor stimulation with CSE 

HASMc were pretreated with the IKK-2 inhibitor SC514 to test the involvement of 

this pathway in the synergistic IL-8 secretion by MCh and CSE (Figure 2.4A). SC514 

completely inhibited the MCh- and CSE-induced IL-8 secretion. Furthermore, the 

synergistic effect of the combination of MCh and CSE was abolished (Figure 2.4A). 
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These results confirm the involvement of the IкBα/NF-κB pathway in the observed 

IL-8 secretion. Therefore, we next investigated the effects of muscarinic receptor 

stimulation on IκBα degradation, alone and in combination with CSE at different 

time points (60 and 120 min of treatment). IκBα degradation was measured by 

western blot analysis. Although MCh did not induce significant IκBα degradation 

by itself, it augmented the response induced by CSE; particularly after 120 min of 

incubation (Figure 2.4D). Overall, these results indicate that muscarinic receptor 

stimulation promotes the activation of the IкBα/NF-кB pathway induced by CSE, 

which likely contributes to the synergistic IL-8 secretion. Interestingly, and in line 

with the lack of effect of MCh on IL-1β-induced cytokine secretion, MCh did not 

augment maximal IL-1β-induced IκBα degradation at t = 60 and 120 min (Figure 

2.4E). However, IL-1β-induced IL-8 secretion in presence or absence of MCh, was 

significantly inhibited by SC514 (Figure 2.4B). 
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Figure 2.4. Involvement of the IκBα/NF-κB pathway in IL-8 secretion induced by CSE, IL-

1β and MCh. hASMc were stimulated with CSE (5%) (A) or IL-1β (1 ng/mL) (B) in the 
absence or presence of MCh (10 μM) and/or SC514 (50 μM) for 24 hours. Supernatants 
were analyzed for the presence of IL-8. Data represent means ± SE of 5 independent 
experiments each performed in duplicate. **p< 0.01 and ***p< 0.001 compared to 
basal; †p< 0.05, ††p< 0.01 and †††p< 0.001 compared to the absence of SC514, $$p< 0.01 
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compared to CSE (One-way ANOVA followed by Newman-Keuls multiple comparisons test). 
(C-E) hASMc were stimulated with CSE (5%) (C-D) or IL-1β (1 ng/mL) (C-E) in the absence or 
presence of MCh for 60 min and 120 min (representative blots shown in C) as indicated. 
IκBα degradation was determined by western blot and corrected for the expression of β-
actin, which was used as a loading control. Data represent means ± SE of 9-10 experiments. 
*p< 0.05 and ***p< 0.001 compared to basal and ††p< 0.01 compared the absence of 
MCh (Student's t-test for paired observations). 

 

2.3.4 Involvement of the MEK/ERK1/2 pathway in the synergistic effect of 

muscarinic receptor stimulation with CSE 

To test the involvement of the MEK/ERK1/2 pathway in IL-8 secretion induced by 

MCh and CSE, we pretreated the cells with the MEK1/2 inhibitor, U0126 (3 μM) 

(Figure 2.5A). In the presence of U0126, IL-8 secretion induced by co-stimulation 

of CSE with MCh was significantly decreased (Figure 2.5A). These results confirm 

the involvement of the MEK/ERK1/2 pathway in the observed IL-8 secretion. 

Therefore, we next assessed phosphorylation of ERK1/2 induced by MCh and CSE 

(Figure 2.5C-D). Although, ERK1/2 phosphorylation was not significantly increased 

when cells were stimulated with MCh alone after one hour of incubation, 15 min 

incubation is sufficient to induce significant ERK1/2 phosphorylation (23). In 

combination with CSE, MCh induced a significant increase in the phosphorylation 

of ERK1/2 at this time point (one hour). These results support the involvement of 

the ERK1/2 pathway in the synergism between CSE and MCh at the level of IL-8 

secretion. In contrast, IL-1β induced ERK1/2 phosphorylation was not increased by 

MCh and also pre-treatment with U0126 had no effect (Figure 2.5B-D). These 

results are in agreement with the results of Orsini, et al., demonstrating that IL-1β 

can induce a transient phosphorylation of ERK1/2 in human airway smooth 

muscle cells (24). 
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Figure 2.5. Involvement of the MEK/ERK1/2 pathway in IL-8 release induced by MCh. 
hASMc were stimulated with CSE (5%) (A) or IL-1β (1 ng/mL) (B), in the absence or 
presence of MCh (10 μM) and/or U0126 (3 μM) for 24 hours. Supernatants were analyzed 
for the presence of IL-8. *p< 0.05 and **p< 0.01 compared to basal; $$$p< 0.001 compared 
to CSE alone, †††p<0.001 compared to the absence of U0126. (One-way ANOVA followed 
by Newman-Keuls multiple comparisons test). (C-D) hASMc were stimulated with CSE (5%) 
or IL-1β (1 ng/mL) in the absence or presence of MCh (10 μM) for 60 min. Cell lysates were 
analyzed for phospho-ERK1/2 by western blot and corrected for the expression of total 
ERK1/2, which was used as a loading control. Data represent means ± SE of 5 independent 
experiments each performed in duplicate. $p< 0.05 compared to CSE alone (Student's t-
test for paired observations). 

 

 

2.4 Discussion  
 

In the present study, we demonstrate that muscarinic receptors stimulate the 

secretion of the pro-inflammatory cytokine IL-8 from hASMc, and augment the 

response induced by TNF-α, CSE and PDGF-AB. Furthermore, we dissected the 

underlying mechanism of the synergistic IL-8 production. To permit the release of 

the pro-inflammatory cytokine IL-8 after activation of the muscarinic receptors 

and CSE, activation of PKC is required, which is followed by the breakdown of IкBα. 
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In parallel, the activation of PKC leads to the stimulation of MEK1/2 inducing the 

phosphorylation of ERK1/2. Both pathways regulate IL-8 secretion, which, as 

previously described, is dependent on NF-кB and AP-1 IL-8 promoter activation 

(25). 

 

Our current and previously published data (19) indicate that the activation of 

muscarinic receptors in hASMc facilitates the secretion of the pro-inflammatory 

cytokines IL-6 and IL-8. Functional muscarinic receptors are expressed on the 

majority of inflammatory cells (5). Also, the endogenous muscarinic receptor 

ligand acetylcholine and its synthesizing enzyme choline acetyltransferase (ChAT) 

are present in several extraneuronal cell types, including airway epithelial cells, 

lymphocytes, eosinophils, neutrophils, macrophages, and mast cells (5, 26). 

Furthermore, animal models showed that atropine reduces lung inflammation 

induced by diesel-soot in rats (10), and that tiotropium bromide inhibits several 

aspects of airway inflammation and remodelling in ovalbumin-sensitized guinea 

pigs (11, 27). Additionally, it has been reported that carbachol, by activation of 

muscarinic receptors, is able to increase inflammatory gene expression in ASM, 

including IL-6, IL-8 and cyclooxygenase-2 (COX-2) (28). Furthermore, acetylcholine 

(ACh) can induce leukotriene B4 (LTB4) release from sputum COPD cells (4), also 

indicating a regulatory role for ACh in inflammatory cells. Taken together, this 

indicates that acetylcholine is importantly involved in the regulation of pro-

inflammatory responses. Our current results provide new insights as we 

demonstrate that the activation of muscarinic receptors interacts with several 

cytokines and growth factors, in particular with TNF-α, PDGF-AB and CSE to 

enhance their inflammatory response in hASMc.  

 

HASMc produce a variety inflammatory mediators (15, 16, 29). This suggests an 

important role for ASM in inflammatory responses in COPD. Indeed, hASMc are a 

source of chemokines and cytokines that play a role in chronic pulmonary 

diseases like COPD and asthma, including IL-8 and IL-6. The levels of IL-8 are 

correlated with the degree of neutrophilic inflammation and are increased in 

sputum in COPD patients (3, 30). Several pro-inflammatory stimuli, including IL-17 

(31-33), gram-positive and gram-negative bacteria (34), β-tryptase (35), IL-1β (32) 

and TNF-α (17) are able to induce IL-8 secretion from human ASM. Moreover, CSE 

synergizes with TNF-α to enhance IL-8 secretion by ASM (17). We previously 

demonstrated that CSE and muscarinic M3 receptor stimulation leads to a 
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synergistic increase in IL-8 secretion by hASMc (19), which as demonstrated in this 

study, is dependent on downstream signalling to PKC and the IκBα/NF-κB and 

MEK/ERK1/2 pathways. Nicotinic receptors and muscarinic M2 receptors are not 

involved in this synergism, as gallamine had no effect on IL-8 release induced by 

either CSE or MCh (19). This indicates that acetylcholine may also play an 

important role in the inflammatory/immunomodulatory processes driven by 

human ASM. 

 

Using the PKC inhibitor GF109203X, we demonstrate that the synergism of MCh 

and CSE-induced IL-8 secretion is mediated by PKC in hASMc. In fact, activation of 

PKC was sufficient to induce synergistic IL-8 secretion in combination with CSE, 

which was confirmed by the use of the PKC activator, PMA. These observations 

correspond with an earlier study from our group demonstrating that MCh 

augments PDGF-induced cell proliferation via the activation of PKC (23) and 

appear to suggest that muscarinic M3 receptors exert their facilitatory effects on 

remodelling and inflammation to an important extent via the activation of PKC. 

Downstream, we demonstrated that PKC is able to induce the activation of 

IκBα/NF-кB and MEK/ERK1/2 pathways in hASMc and that these pathways are 

involved in the secretion of IL-8 induced by the co-stimulation of muscarinic 

receptors and CSE. Interestingly, the co-stimulation with CSE and MCh appeared 

required to reveal the importance of PKC, as stimulation with either CSE or MCh 

alone was not sufficient to demonstrate an involvement of PKC. This indicates that 

PKC stimulation by MCh is not sufficient to induce an IL-8 or IL-6 response by itself, 

but augments pro-inflammatory signalling to NF-κB and ERK1/2 induced by CSE. 

However, synergistic functional interactions with IL-1β, an important cytokine in 

COPD pathogenesis (36), were not observed, both for IL-8 secretion and for 

activation of the signalling pathways investigated, indicating that the mechanism 

of the synergistic interaction is stimulus specific. Lower concentrations of IL-1β 

were also tested and were found to be similarly unaffected by MCh (data not 

shown). 

The combination of MCh and CSE likely triggers PKC to activate IKK-2. This kinase 

allows the phosphorylation and degradation of IкBα leading to the translocation 

of NF-кB into the nucleus to regulate NF-кB gene transcription (37). Furthermore, 

PKC has been shown to be critically involved in the activation of the ERK1/2 

pathway in human aortic smooth muscle cells (38). PKC induces the 

phosphorylation of Raf-1, an upstream regulator of ERK1/2 activation, which is 
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followed by the regulation of AP-1 dependent gene transcription. The IL-8 gene 

contains both NF-кB and AP-1 binding sites in its promoter region (25). Epithelial 

cells are also able, to induce IL-8 secretion through the activation of ERK1/2 and 

NF-кB in response to pro-inflammatory stimuli, including acetylcholine (8, 39, 40). 

Taken together, these findings and our previous findings (19) indicate that the 

synergism between muscarinic M3 receptors and CSE is mediated by PKC 

dependent activation of the downstream pathways NF-кB and ERK1/2, to induce 

the secretion of IL-8. 

 

It is unclear whether the pro-inflammatory effects of muscarinic receptor 

stimulation and CSE, as observed in our current work, are relevant to the COPD 

patient. Nonetheless, several clinical studies demonstrated that short-term 

therapy with tiotropium bromide improves airflow and hyperinflation (41, 42). 

Moreover, long-term use (up to 6 to 12 months) of this anticholinergic drug 

improved exercise tolerance, quality of life, rates of dyspnoea but also the 

exacerbation frequency in COPD patients, which are associated with periods of 

increased inflammatory cell influx (41, 43). The Understanding Potential Long-

Term Impacts on Function with Tiotropium (UPLIFT) study concluded that COPD 

patients treated with tiotropium bromide during a 4-year period improved their 

quality of life, frequency of exacerbations and lung function, but tiotropium 

bromide did not reduce the decline in FEV1 over the treatment period (44). 

Nonetheless, in a subgroup of COPD patients of the UPLIFT study, which were not 

on other controller medication, a reduction in the accelerated FEV1 decline was 

observed in the tiotropium bromide arm (post-hoc analysis of the UPLIFT study 

(44)). This was also observed in the subgroup of stage II COPD patients (45). 

Collectively, besides the well described bronchodilatory effects, these findings 

suggest additional, non-bronchodilator properties for tiotropium bromide (6). An 

anti-inflammatory role for anticholinergics is in agreement with animal and cell 

culture studies showing a role for acetylcholine in cell proliferation, extracellular 

matrix protein secretion and inflammation (5, 46, 47) and with our present 

findings showing that the inflammatory response induced by CSE, TNF-α and 

PDGF-AB can be augmented by muscarinic receptor stimulation in hASMc. It 

should be emphasized, however, that the hypothesis “tiotropium bromide may 

exert anti-inflammatory effects in COPD patients” still needs to be tested in 

clinical studies. 
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Abstract 
 

Acetylcholine (ACh) is the primary parasympathetic neurotransmitter in the 

airways. Recently, it was established that ACh, via muscarinic receptors, regulates 

airway remodelling in animal models of asthma and COPD. The mechanisms 

involved are not well understood. Here, we investigated the functional interaction 

between muscarinic receptor stimulation and transforming growth factor (TGF)-β1 

on the expression of contractile proteins in human airway smooth muscle (ASM) 

cells. ASM cells expressing functional muscarinic M2 and M3 receptors, were 

stimulated with methacholine (MCh), TGF-β1 or their combination for up to 7 days. 

Western Blot analysis revealed a strong induction of sm-α-actin and calponin by 

TGF-β1, which was increased by MCh in ASM cells. Immunocytochemistry 

confirmed these results and revealed that the presence of MCh augmented the 

formation of sm-α-actin stress fibres by TGF-β1. MCh did not augment TGF-β1-

induced gene transcription of contractile phenotype markers. Rather, 

translational processes were involved in the augmentation of TGF-β1-induced 

contractile protein expression by muscarinic receptor stimulation, including 

phosphorylation of GSK-3β and 4E-BP1which was enhanced by MCh. In conclusion, 

muscarinic receptor stimulation augments functional effects of TGF-β1 in human 

ASM cells on cellular processes that underpin airway smooth muscle remodelling 

in asthma and COPD. 

 

 

3.1 Introduction 
 

Acetylcholine is the primary parasympathetic neurotransmitter in the airways that 

is associated with the regulation of bronchoconstriction and mucus secretion (1). 

Therefore, therapy with anticholinergics, such as tiotropium bromide, is often 

prescribed to patients with chronic obstructive pulmonary disease (COPD) and, to 

a lesser extent, with asthma. More recent evidence indicates that acetylcholine 

(either neuronal or non-neuronal) also regulates airway inflammation and airway 

remodelling, which might contribute to the therapeutic effectiveness of these 

drugs (1). Acetylcholine is synthesized by the enzyme choline acetyltransferase 

(ChAT) in different cell types including structural cells such as neurons, epithelial 

cells, airway fibroblasts and airway smooth muscle cells (2). It can act as a 

paracrine or autocrine mediator to induce cell proliferation and cytokine release 
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by epithelial cells and human lung fibroblasts. The expression of ChAT is increased 

in epithelial cells and fibroblasts from COPD patients, and therefore the increased 

release of acetylcholine may promote airway inflammation and remodelling (3, 4).  

Several studies using animal models of allergic asthma demonstrated that 

tiotropium bromide inhibits increased airway smooth muscle thickness, myosin 

expression, eosinophilic airway inflammation, airway fibrosis and airway 

hyperresponsiveness induced by repeated allergen exposure (5-7). In addition, in 

animal models of COPD tiotropium reduced LPS-induced airway neutrophilia, 

collagen deposition and muscularization of microvessels (8), inhibited neutrophil 

elastase-induced goblet cell metaplasia (9), and reduced cigarette smoke-induced 

pulmonary inflammation (10). Anti-inflammatory and anti-remodelling properties 

of tiotropium have also been demonstrated in a mouse model of gastro-

oesophageal reflux disease (11). 

The multifunctional cytokine TGF-β1 plays an important role in remodelling of the 

airways in various chronic airway diseases. This pro-fibrotic cytokine is highly 

expressed in many cell types of the airways of patients with these diseases (12). 

TGF-β1 has been reported to induce proliferation and maturation of airway 

smooth muscle (ASM) cells, depending on its concentration (12, 13). In ASM cells, 

TGF-β1 promotes the expression of contractile phenotype markers, including sm-

α-actin, through both transcriptional and translational control (13). 

Transcriptional regulation requires signalling to RhoA and Smad2/3, which 

promotes the nuclear presence and transcriptional activity of serum response 

factor (SRF) at smooth muscle specific genes (13-16). In parallel, TGF-β1 signals to 

PI3K, which results in downstream phosphorylation of proteins that control 

protein translation, including p70S6K, glycogen synthase kinase 3 (GSK-3) and 4E-

binding protein1 (4E-BP1), a cellular response that requires the presence of 

caveolae (13, 17-19). Furthermore, TGF-β1 regulates cell proliferation, including 

airway epithelial cell and fibroblast proliferation, cell differentiation, including 

myofibroblast differentiation, and the synthesis of extracellular matrix proteins 

such as fibronectin and collagen (20, 21).  

Activation of the PI3K pathway by muscarinic receptor stimulation has previously 

been reported to enhance platelet-derived growth factor (PDGF)- and epidermal 

growth factor- (EGF)-induced ASM cell proliferation (22-25). Functional crosstalk 

between the cholinergic system and TGF-β1 in ASM is, however, still unknown. We 

hypothesized that muscarinic receptors contribute to ASM remodelling by 

enhancing TGF-β1 function. Therefore, in human ASM cells, we investigated the 
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effect of muscarinic receptor stimulation on TGF-β1-induced expression of the 

contractile phenotype markers calponin and sm-α-actin. In addition, we studied 

potential mechanisms of interaction, in particular at the level of transcriptional 

and translational processes, including ChAT and contractile protein mRNA 

expression and phosphorylation of GSK-3β and 4E-BP1. 

 

 

3.2 Materials and methods 
 

3.2.1 Antibodies and reagents 

Methacholine chloride (MCh) was purchased from ICN Biomedicals (Zoetermeer, 

the Netherlands). Human recombinant TGF-β1 was obtained from R&D systems 

(Abingdon, UK). Mouse anti-α smooth muscle actin (sm-α-actin) antibody, mouse 

anti-calponin antibody, horseradish peroxidase (HRP)-conjugated rabbit anti-

mouse IgG antibody, HRP-conjugated goat anti-rabbit IgG antibody, and 

interleukin-1ß (IL-1ß) were purchased from Sigma-Aldrich (Zwijndrecht, The 

Netherlands). Phospho-GSK-3-α/β (Ser21/9) antibody and phospho-4E-BP1 

(Thr37/46) antibody were obtained from Cell signalling Technology (Beverly CA, 

USA). GAPDH antibody and total GSK-3 antibody were purchased from Santa Cruz 

Biotechnology, INC (Santa Cruz CA, USA). Cy3-conjugated secondary antibody was 

obtained from Jackson ImmunoResearch (West Grove PA, USA). The inhibitor 

LY294002 purchased from Tocris Biosciences (Bristol, UK). Tiotropium bromide 

was obtained from Boehringer Ingelheim Pharma GmbH (Biberach an der Riss, 

Germany). All other chemicals were of analytical grade.  

 

3.2.2 Cell culture 

Human bronchial smooth muscle cell lines immortalized by stable expression of 

human telomerase reverse transcriptase (hTERT) were prepared as described 

previously (26). The primary cultured human bronchial smooth muscle cells used 

to generate hTERT ASM cells were prepared from macroscopically healthy 

segments of 2nd to 4th generation main bronchus obtained after lung resection 

surgery from patients with a diagnosis of adenocarcinoma. All procedures were 

approved by the Human Research Ethics Board of the University of Manitoba. 

Cells were grown to confluence using DMEM supplemented with 10% foetal 

bovine serum, streptomycin 50 U/mL, penicillin 50 µg/mL and amphotericin B 1.5 

µg/mL. Cultures were maintained in a humidified incubator at 37°C-5% CO2, and 
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media were changed every 2-3 days. The expression and function of muscarinic 

M2 and M3 receptors in these cells has previously been described (27). 

 

3.2.3 Stimulation of human ASM cells  

Cells were cultured in 6-well plates and grown until confluence. After serum 

deprivation for 24 hours in DMEM supplemented with antibiotics (100 μg/mL 

streptomycin, penicillin 100 U/mL and amphotericin B 1.5 μg/mL) and 1% ITS 

(insulin 5 μg/mL, transferrin 5 μg/mL, and selenium 5 ng/mL), the cells were 

stimulated with the muscarinic receptor agonist methacholine (MCh, 10 μM), 

TGF-β1 (2 ng/mL), or the combination of MCh (10 μM) and TGF-β1 (2 ng/mL) for 2 

hours, 1 day, 4 days or 7 days. Where mentioned, cells were pre-incubated with 

LY294002 (10 µM) or tiotropium bromide (10 nM) for 30 min. 

 

3.2.4 Western Blotting 

To obtain whole cell lysates, stimulated cells were washed once with ice-cold 

phosphate-buffered saline (PBS, composition: NaCl 140 mM, KCl 2.6 mM, KH2PO4 

1.4 mM, Na2HPO4 8.1 mM, pH 7.4), followed by lysis using ice-cold SDS-lysis buffer 

(62.5 mM Tris-HCl, 2% SDS, NaF 1 mM, Na3VO4 1 mM, aprotinin 10 μg/mL, 

leupeptin 10 μg/mL, pepstatin A 7 µg/mL at pH 8.0). Equal amounts of protein 

were separated on polyacrylamide SDS gels and transferred to nitrocellulose. To 

avoid non-specific binding, membranes were blocked with blocking buffer (Tris-

HCl 50 mM, NaCl 150 mM, TWEEN-20 0.1%, non-fat dried milk powder 5%) for 1 

hour at room temperature. Afterwards, the membranes were incubated with the 

specific primary antibody, all diluted in blocking buffer, for 1 hour at room 

temperature. After washing the membranes 3 times with Tris Buffered Saline 

Tween20 0.1% (TBS-T 0.1%: Tris-HCl 50 mM, NaCl 150 mM, TWEEN-20 0.1%) for 

10 min, incubation with the secondary antibody labelled with HRP was performed 

for 1 hour at room temperature, followed by an additional 3 washes with TBS-T 

0.1%. Bands were subsequently visualized on film using enhanced 

chemiluminescence reagents and analysed by densitometry (TotallabTM, 

Nonlinear dynamics, Newcastle, UK). All bands were normalized to either GAPDH 

for phospho-4E-BP1 or to total GSK-3 for phospho-GSK-3-α/β. 

 

3.2.5 Immunofluorescence 

Cells were cultured on Labtek IITM chamber slides and grown until confluence. 

After serum deprivation for 24 hours in DMEM supplemented with antibiotics and 
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1% ITS, the cells were stimulated with the muscarinic receptor agonist 

methacholine (MCh, 10 μM), alone and in combination with TGF-β1 (2 ng/mL) for 

1, 4 or 7 days. After washing the cells twice with cytoskeleton buffer (CB: MES 10 

mM, NaCl 150 mM, EGTA 5 mM, MgCl2 5 mM, and glucose 5 mM at pH 6.1), the 

cells were fixed with CB containing 3% paraformaldehyde (PFA) for 15 min. The 

cells were then incubated with CB buffer containing 3% PFA and 0.3% Triton-X-

100 for 5 min, followed by an additional 2 washes with CB. Cells were then 

blocked for 1 hour in cyto-TBS (Tris-base 20 mM, NaCl 154 mM, EGTA 2.0 mM, 

and MgCl2 2.0 mM at pH 7.2) with BSA 1% and normal donkey serum 2%. After 

that, cells were stained with mouse sm-α-actin antibody overnight at 4°C. After 

washing 3 times with cyto-TBS containing 0.1% Tween-20 (cyto-TBS-T) for 10 min, 

incubation with the secondary antibody Cy3-mouse (dilution 1:50 in cyto-TBS-T) 

was performed during 3 hours at room temperature. Cells were then washed 4 

times for 15 min in cyto-TBS-T and the nuclei were stained with Hoechst 33342 

(dilution 1: 1000 in cyto-TBS-T) (Invitrogen, Breda, the Netherlands) for 1 min. 

Before mounting the slides with ProLong Gold anti-fade reagent (Invitrogen, 

Breda, The Netherlands), cells were washed 4 times with ultra-pure water. After 

staining, the slides were analysed using an Olympus AX70 microscope equipped 

with digital image capture system (ColorView Soft System with Olympus U CMAD2 

lens). 

 

3.2.6 RNA isolation and real-time quantitative RT-PCR of sm-α-actin, calponin, 

ChAT and ribosomal subunit 18S 

Total cellular RNA was isolated using the Rneasy mini kit (Qiagen, Venlo, The 

Netherlands). RNA concentration was determined by Nanodrop ND1000 

(Wilmington DE, USA). By reverse transcription, cDNA was synthesized using the 

Promega cDNA synthesis kit. Real-time quantitative PCR for ChAT, sm-α-actin and 

calponin was performed using an IQ5 real time detection system (Biorad, 

Veenendaal, The Netherlands). The specific primer sets used to detect ribosomal 

subunit 18S (18S rRNA), ChAT, sm-α-actin and calponin are illustrated in Table 3.1. 

The abundance of gene expression for sm-α-actin and calponin was adjusted for 

the expression of 18S rRNA and normalized to the expression found in control 

cultures using the 2-ΔΔCq method. 
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Table 3.1. Primer sequences of sm-α-actin, calponin, ChAT, and 18S rRNA used for real-

time quantitative PCR 

Substance Sequences  

Sm-α-actin Forward   
Reverse   

5′-GACCCTGAAGTACCCGATAGAAC-3′ 
5′-GGGCAACACGAAGCTCATTG-3′ 

Calponin Forward   
Reverse   

5′-TGTTTGAGAACACCAACCATACACA-3′ 
5′-GTTTCCTTTCGTCTTCGCCAT-3′ 

ChAT Forward   
Reverse   

5′-TTTTGTGAGAGCCGTGACTG-3′ 
5′-CACAGGACCATAGCAGCAGA-3′ 

18S rRNA Forward   
Reverse   

5′-CGCCGCTAGAGGTGAAATTC-3′ 
5′-TTGGCAAATGCTTTCGCTC-3′ 

 

3.2.7 Data analysis 

Data are presented as mean values ± SEM. Statistical significance was determined 

by one-way ANOVA or by two-way ANOVA, where appropriate, followed by a 

post-hoc Student-Newman-Keuls multiple comparisons test for paired 

observations. Data were considered statistically significant if p ≤ 0.05. 

 

 

3.3 Results 
 

3.3.1 Effect of muscarinic receptor stimulation on contractile protein 

expression induced by TGF-β1 

We first analysed the effects of MCh (10 µM), alone and in combination with TGF-

β1 (2 ng/mL) on contractile protein expression (calponin and sm-α-actin) by 

human ASM cells. TGF-β1 alone induced a significant increase in calponin and sm-

α-actin expression in these ASM cells after 7 days (Figure 3.1A-C). Interestingly, 

the induction of sm-α-actin occurred considerably later than the induction of 

calponin. MCh had no significant effect on contractile protein expression by itself. 

However, both TGF-β1-induced calponin and sm-α-actin expression were 

significantly increased by 7 days co-stimulation with MCh, to a similar extent (1.4-

fold; Figure 3.1A-C). The response of MCh was concentration dependent to induce 

the expression of contractile proteins (Figure 3.1D). 
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Figure 3.1. Muscarinic receptor stimulation augments contractile protein expression 

induced by TGF-β1. Human ASM cells were stimulated with TGF-β1 (2 ng/mL), in the 
absence or presence of methacholine (MCh; 10 μM) for 1, 4 or 7 days. Cells lysates were 
analysed for the presence of calponin (B) or sm-α-actin (C). Representative blots are 
shown in (A). Data shown are the means ± SE of 4-7 independent experiments. ***p≤ 
0.001 compared to basal; ##p≤ 0.01 compared to the absence of methacholine. A dose-
response for MCh was performed using the concentration 10-7 M, 10-6 M, 10-5 M in 
presence or absence of TGF-β1 (2 ng/mL) for 7 days. Cell lysates were analyzed for the 
presence of calponin or sm-α-actin. Data shown of 1 experiment (D). 
 

As we expected alterations in the morphology of the cells due to the increased 

contractile phenotype marker protein expression after treatment, 

immunocytochemistry was performed. Interestingly, increased sm-α-actin stress 

fibre formation was observed after 7 days of treatment with TGF-β1 (Figure 3.2). 

Co-stimulation with MCh clearly amplified this effect, whereas the muscarinic 

receptor agonist had no effect by itself (Figure 3.2). Collectively, these data 

indicate that human ASM cells acquired a contractile phenotype by TGF-β1 

treatment, which could be enhanced by muscarinic receptor stimulation. 
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Figure 3.2. Methacholine augments TGF-β1-induced sm-α-actin stress fibre expression 

after 7 days of stimulation. Human ASM cells were grown to confluence. After 24 hours of 
serum deprivation, cells were treated with TGF-β1 (2 ng/mL) in absence or presence of 
MCh (10 μM) for 1, 4 or 7 days, as indicated. Cells were stained for α-actin (red) and the 
nuclei were stained with Hoechst 33342. The images shown are representative of 2 
experiments. Magnification 10x40. 

 

3.3.2 Autocrine ACh secretion is not involved in TGF-β1 induced contractile 

protein expression 

To investigate whether human ASM cells express ChAT in response to TGF-β1, we 

measured mRNA levels of ChAT induced by TGF-β1 and/or MCh after 1 (Figure 

3.3A) and 7 days (Figure 3.3B) of treatment. Baseline mRNA expression of ChAT in 

ASM was low (Cq = 31.06 and 10.42 for ChAT and 18S rRNA, respectively). Also, 

we observed no induction of ChAT expression in response to either TGF-β1, MCh 

or their combination. Next, we pre-incubated ASM cells with tiotropium bromide 

for 30 min, followed by stimulation with TGF-β1 for 7 days. TGF-β1 induced an 

increase in the expression of calponin and sm-α-actin; however, pre-treatment 

with tiotropium bromide did not counteract the expression of these contractile 
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proteins. These data suggest that the increase in contractile protein expression 

induced by TGF-β1 stimulation is not dependent on the autocrine production of 

acetylcholine by ASM. 

Figure 3.3. Autocrine ACh release is not involved in the induction of contractile proteins 

by TGF-β1. Human ASM cells were grown to confluence. After 24 hours of serum 
deprivation, cells were treated with TGF-β1 (2 ng/mL) in the absence or presence of MCh 
(10 µM). mRNA levels of ChAT were measured after 1 day (A) or 7 days (B) of stimulation. 
Further, cells were treated with TGF-β1 (2 ng/mL) in the absence or presence of tiotropium 
bromide (10 nM) for 7 days. Cells lysates were analysed for the presence of calponin and 
sm-α-actin (C). Data shown are the means ± SE of 3-6 experiments.  

 

3.3.3 Effect of muscarinic receptor stimulation on mRNA expression of 

contractile proteins induced by TGF-β1 

To establish whether the accumulation of contractile proteins was due to an 

increase in gene expression and/or increased translation, we investigated the 

mRNA expression of calponin and sm-α-actin after 1 and 7 days of treatment with 

TGF-β1 and MCh as described above. After 1 day of stimulation with TGF-β1 alone, 
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a significant increase in calponin (Figure 3.4A) and sm-α-actin (Figure 3.4B) mRNA 

expression was measured. Stimulation with MCh by itself had no effect on the 

expression of calponin and sm-α-actin mRNA (Figures 3.4A and 3.4B). Moreover, 

calponin expression induced by TGF-β1 was not affected by MCh treatment (Figure 

3.4A). Surprisingly, a significant decrease in sm-α-actin mRNA expression was 

observed after treatment with the combination of TGF-β1 and MCh as compared 

with TGF-β1 treatment alone (Figure 3.4B). On day 7, all treatments had no effect 

on the mRNA expression of either calponin or sm-α-actin (Figures 3.4C and 3.4D). 

Collectively, these data suggest that the increase in TGF-β1-induced contractile 

protein expression by MCh observed after 7 days of treatment was not due to 

amplification of TGF-β1-induced mRNA levels of these proteins. 

Figure 3.4. Muscarinic receptor stimulation does not augment mRNA expression of 

calponin and sm-α-actin induced by TGF-β1. Human ASM cells were stimulated with TGF-
β1 (2 ng/mL), in the absence or presence of methacholine (MCh; 10 μM) for 1 or 7 days. 
mRNA levels of calponin (A, C) or sm-α-actin (B, D) were measured. Data shown are the 
means ± SE of 6-7 independent experiments. **p≤ 0.01, ***p≤ 0.001 compared to basal; 
#p≤ 0.05 compared to the absence of methacholine. 
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3.3.4 Effect of muscarinic receptor stimulation on translational processes 

activated by TGF-β1 

Next, we aimed to investigate the role of translational processes in the functional 

interaction between muscarinic receptor activation and TGF-β1. We analysed the 

expression and the phosphorylation status of 4E-BP1 and GSK-3, proteins which 

are involved in the translation machinery of smooth muscle contractile phenotype 

marker proteins, and which have also been shown to play a critical role in TGF-β1 

induced contractile protein accumulation (13, 28). 

The PI3K pathway can induces the phosphorylation of p4E-BP1 and GSK-3β to 

permit the expression of contractile protein. To confirm the involvement of the 

PI3K signalling in contractile protein accumulation induced by TGF-β1, we inhibited 

the PI3K pathway with LY294002 (10µM). Treatment with LY294002 reduced the 

expression of calponin induced by TGF-β1 and MCh (Figure 3.5A). 

 

It has previously been demonstrated that TGF-β1 is able to induce the 

phosphorylation of 4E-BP1 which contributes to TGF-β1-induced sm-α-actin 

expression (29). Therefore, we investigated the potential involvement of 4E-BP1 

phosphorylation in the TGF-β1 response and the additive effect observed with 

MCh. To this aim, we stimulated ASM cells for 2 hours and 24 hours with TGF-β1 in 

the absence or presence of MCh and analysed the phosphorylation of 4E-BP1. No 

significant increase in 4E-BP1 phosphorylation was observed after 2 or 24 hours 

stimulation of ASM cells with TGF-β1 or MCh alone (Figure 3.5B). Interestingly, 

however, a significant effect was observed with the combination of both stimuli, 

at 24 hours after stimulation. To ensure that the PI3K pathway was involved in the 

phosphorylation of 4E-BP1 by TGF-β1 and MCh, ASM cells were pre-treated with 

LY294002, which led to a reduction in the phosphorylation of p4E-BP1 induced by 

TGF-β1 and MCh (Figure 3.5B). 

Recently, it has been demonstrated that inhibition of GSK-3β is sufficient for the 

induction of ASM hypertrophy and increase in contractile protein expression (17, 

29). GSK-3β is active in its unphosphorylated form and inhibits protein translation 

by phosphorylating eukaryotic initiation factor-2B (eIF-2B). Therefore, we 

investigated whether the phosphorylation of GSK-3 (ser9/ser21) was induced by 

TGF-β1 and MCh. ASM cells were stimulated for 2 and 24 hours with TGF-β1, MCh 

and their combination. For all treatments, only the phosphorylated β-isoform of 

GSK-3 was detected. Interestingly, after 2 hours of stimulation, TGF-β1 and MCh 

alone were ineffective, whereas their combination induced a significant increase 
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in GSK-3β phosphorylation (Figure 3.5C). No significant effects were observed 

after 24 hours of stimulation. To reensure that the PI3K pathway was also 

involved in the phosphorylation of GSK-3β by TGF-β1 and MCh, ASM cells were 

pre-treated with LY294002, which led to an inhibition of the phosphorylation of 

GSK-3β induced by TGF-β1 and MCh (Figure 3.5C). 

Figure 3.5. Muscarinic receptor stimulation augments TGF-β1-induced phosphorylation 

of GSK-3β and 4E-BP1. To investigate the potential involvement of the PI3K pathway in 
contractile protein accumulation induced by TGF-β1 and MCh, ASM cells were pre-
incubated with LY294002 (10 µM) for 30 min, followed by 7 days stimulation with MCh (10 
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µM) and/or TGF-β1 (2ng/mL) (A). Cells lysates were analysed for the presence of calponin. 
Data shown of 1 experiment. Human ASM cells were stimulated with TGF-β1 (2 ng/mL), in 
the absence or presence of methacholine (MCh; 10 μM) for 2 and 24 hours. Cells lysates 
were analysed for the presence of phosphorylated 4E-BP1 (B) or phosphorylated GSK-3β 
(C). Representative blots are shown next to the graphs. Data shown are the means ± SE of 
4-7 independent experiments. **p≤ 0.01, ***p≤ 0.001 compared to basal; #p≤ 0.05, ##p≤ 
0.01 compared to the absence of methacholine. Additionally, to confirm the that PI3K is 
involved in the phosphorylation of 4E-BP1 and GSK-3β induced by TGF-β1 and MCh, ASM 
cells were pre-incubated with LY294002 (10 µM) for 30 min, followed by 24 hrs (for 
phosphorylation of 4E-BP1 (B)) or 2 hrs (for phosphorylation of GSK-3β (C)) stimulation 
with MCh (10 µM) and/or TGF-β1 (2ng/mL). Cells lysates were analysed for the 
phosphorylation of 4E-BP1 (B) or GSK-3β (C). Data shown of 1 experiment. 

 

 

3.4 Discussion 
 

In the present study, we demonstrate that a cross-talk between TGF-β receptors 

and muscarinic receptors regulate the expression of contractile phenotype marker 

proteins and the formation of sm-α-actin stress fibres in human ASM cells. We 

show that this cross-talk is independent of transcriptional regulation and of the 

autocrine release of ACh, but requires translational mechanisms, such as the 

phosphorylation of GSK-3β and 4E-BP1. These studies provide a potential 

mechanistic explanation for inhibition of allergen-induced contractile protein 

expression and ASM contractility by anticholinergic treatment in animal models of 

asthma (13). Furthermore, these studies are the first to demonstrate functional 

cross-talk between G-protein coupled receptors and TGF-β in ASM. 

 

ASM remodelling in asthma is characterized by phenotype alterations leading to 

maturation of the muscle cells (19). The multifunctional cytokine TGF-β plays an 

important role in ASM remodelling in asthma (12). Patients with asthma as well as 

with COPD, diseases associated with airway remodelling, have increased 

expression of TGF-β in lung tissue (21, 30). In addition, its role in wound healing, it 

is well known that TGF-β induces the maturation of ASM cells. Goldsmith et al., 

reported that TGF-β induces a time-dependent increase in sm-α-actin expression 

in primary human bronchial smooth muscle cells (13). In agreement with this 

finding, we demonstrate that TGF-β induces the expression of the contractile 

phenotype protein markers sm-α-actin and calponin in human ASM cells. 

Interestingly, muscarinic receptor stimulation enhanced the TGF-β1-induced 
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expression of these proteins, suggesting that muscarinic receptors facilitate ASM 

remodelling processes induced by TGF-β1.  

In support of a role for muscarinic receptors in ASM remodelling, an in vivo study 

from our group showed that tiotropium bromide reduces airway remodelling in 

repeatedly ovalbumin challenged guinea pigs. The administration of tiotropium 

bromide before each allergen challenge resulted in a reduction of ASM 

hyperplasia and of the increased contractility and contractile protein expression 

(6). In vitro, muscarinic receptor stimulation augmented the mitogenic responses 

of human ASM in response to EGF and PDGF (23, 25). Here, we show that 

muscarinic receptor stimulation also enhances the expression of contractile 

proteins in response of TGF-β1 in human ASM cells, thus providing a plausible 

explanation for the observed effects of tiotropium in vivo. In line with this 

contention, in muscarinic M3 receptor transfected canine ASM cells, carbachol has 

been reported to induce increased promoter activity of the sm-MHC and SM22 

genes (31). Additionally, the exposure to carbachol in strained human ASM cells 

leads to an augmentation in the expression of myosin light-chain kinase (32). 

Furthermore, muscarinic receptor stimulation augments the IL-6 and IL-8 

secretion by human ASM cells in response to various stimuli, including cigarette 

smoke extract and PDGF (chapter 2). Collectively, these findings and our current 

work are in agreement with a strong regulatory role for muscarinic receptors in 

ASM remodelling. The cholinergic system has also been implicated in fibrosis and 

fibroblast proliferation (33, 34), suggesting that anticholinergics may have 

beneficial effects on multiple pathological tissue remodelling processes in 

obstructive airways diseases.  

Previous studies indicated that ASM expresses mRNA for ChAT, the synthesizing 

enzyme for ACh (35). Also, ChAT expression and autocrine ACh release by 

fibroblasts and epithelial cells was proposed to regulate cell proliferation and 

cytokine release by these cells (3, 36). Our studies show that although ChAT 

mRNA is expressed, the expression levels are in fact quite low. Furthermore, the 

expression of ChAT was unchanged in response to TGF-β1, and antagonism of 

muscarinic receptors using tiotropium had no effect on TGF-β1 induced contractile 

protein accumulation. This implies that an autocrine loop involving ACh release is 

not involved in the acquisition of contractile protein expression induced by TGF-β1 

and suggests that the above mentioned regulatory effects of muscarinic receptors 

on ASM require ACh release by for example, airway neurons and airway 

epithelium. 
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The signalling mechanisms that underpin these remodelling processes have thus 

so far not fully been established. The expression of contractile and contraction 

regulatory proteins, such as sm-α-actin, calponin, SM22 and desmin, which mark 

the maturation of ASM cells are under the control of transcriptional and 

translational processes. Smooth muscle-specific gene transcription is induced by 

the stimulation of the RhoA/Rho-kinase pathway and the Smad2/3 pathway 

leading to the nuclear translocation and transcriptional activation of the 

transcription factor serum response factor (SRF) and its co-activators myocardin 

and megakaryocytic acute leukaemia (MAL) (13-16, 37). The translation of the 

smooth muscle-specific genes is, however, dependent on the PI3K/Akt signalling 

pathway (13, 38-41). Thus, TGF-β1-induced contractile protein expression is 

paralleled by the phosphorylation of GSK-3β and 4E-BP1, both downstream 

targets of PI3K/Akt signalling (13, 42), and the phosphorylation of 4E-BP1 is 

required for TGF-β-induced contractile protein expression (41). We and others 

have reported that muscarinic receptor stimulation facilitates PDGF-induced 

proliferation of human ASM cells through the cooperative activation of the PI3K 

pathway, leading to the synergistic phosphorylation of Akt, p70S6K and GSK-3β 

(22-25). Interestingly, our current results show that the increased expression of 

contractile proteins induced by TGF-β1 and muscarinic receptor stimulation are 

also mediated by translational processes, including the phosphorylation of GSK-3β 

and 4E-BP1, but not by transcriptional processes, as mRNA expression of these 

smooth muscle specific genes was not affected. This suggests that muscarinic 

receptor stimulation exerts its action through cooperative activation of the 

PI3K/Akt/GSK-3-signaling pathway by TGF-β1, inducing the accumulation of 

contractile proteins, and not through the regulation of RhoA/Rho-kinase/SRF 

pathway. In this context, and in the context of our earlier work (23), it is therefore 

of interest that in a mouse model of asthma increased phosphorylation of GSK-3β 

has been reported, which correlated with ASM hyperplasia, hypertrophy and 

expression of contractile proteins, including as sm-α-actin (42).  

 

To our knowledge, this is the first study reporting cross-talk between a GPCR and 

TGF-β in ASM remodelling. Panettieri et al. showed that the expression of 

extracellular matrix proteins induced by TGF-β1 was not influenced by CysLT1 

receptor stimulation in human ASM cells (43), indicating that this cross-talk may 

be receptor dependent. In neural progenitor cells, Morishita et al. reported the 

ability of a GPCR and TGF-β to enhance the activity of the sm-α-actin promoter; 
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however, these activities were independent of each other (44). Collectively, our 

findings suggest that GPCRs and TGF-β are able to cooperatively induce airway 

remodelling processes, although clearly it cannot be assumed that this occurs for 

all GPCR classes. These findings are nonetheless of interest to future studies, as 

many remodelling processes, also outside the airways, involve cooperative 

regulation by GPCR ligands and growth factors (24).  

 

In the Understanding Potential Long-term Impacts on Function with Tiotropium 

(UPLIFT) study, COPD patients treated with tiotropium bromide during a 4 year 

period had a better quality of life and lung function, whereas also the frequency 

of exacerbation was reduced. The rate of decline in FEV1 (forced expiratory 

volume in 1 second) remained, however, unchanged during the trial period (45). 

In a post-hoc analysis of this study, a pre-specified subgroup of COPD patients, 

GOLD stage II patients treated only with tiotropium bromide, had a lower risk of 

exacerbations, but also a reduction in the rate of decline in post-bronchodilator 

FEV1 over the 4 year period compared to placebo (46). In addition, a subgroup of 

young patients with COPD showed a significant reduction in the decline in post-

bronchodilator FEV1) when treated with tiotropium on top of usual care (47). This 

may suggest that tiotropium has disease modifying properties in younger patients 

with COPD and in GOLD stage II patients. In support, regardless of the smoking 

status of the patient, the long-term benefits of treatment with tiotropium 

sustained (48). Moreover, exacerbations accelerate disease progression. Recently, 

tiotropium has also been proven to improve the lung function in patients with 

severe uncontrolled asthma (49). The mechanisms behind these effects are still 

unknown. However, muscarinic receptor induced airway remodelling, as 

demonstrated in the current and in other studies, could be involved. Indeed, a 

recent trial showed that repeated inhalations with the muscarinic receptor 

agonist methacholine induces airway remodelling in asthma patients, including 

the expression of TGF-β and collagen I in bronchial biopsies (50). This 

substantiates the hypothesis that cholinergic activation leads to remodelling via 

cross-talk with TGF-β in these patients. These effects were suggested by the 

authors to result from mechanical forces resulting from the bronchoconstriction 

itself. However, functional cross-talk of MCh and TGF-β on structural cells, 

resulting in remodelling cannot be ruled out. 
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In conclusion, our results indicate that the stimulation of muscarinic receptors 

enhances the expression of contractile phenotype marker proteins induced by 

TGF-β1. These findings provide a plausible mechanistic explanation for our earlier 

observations that demonstrate protective effects of tiotropium on ASM 

remodelling in repeatedly allergen challenged guinea pigs. This implies a role for G 

protein coupled receptors in TGF-β1-induced remodelling in the pathogenesis of 

chronic airway diseases like asthma and COPD. 
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Abstract 
 

Transforming growth factor-β1 (TGF-β1) is a central mediator in tissue remodelling 

processes, including fibrosis and airway smooth muscle (ASM) hyperplasia as 

observed in asthma. The mechanisms underlying this response, however, are 

unclear as TGF-β1 has only weak mitogenic effects on ASM cells. In this study we 

hypothesized that the mitogenic effect of TGF-β1 on ASM is indirect and requires 

prolonged exposure to allow extracellular matrix (ECM) deposition. To address 

this hypothesis, we investigated the effects of acute and prolonged treatment 

with TGF-β1, alone and in combination with the muscarinic receptor agonist 

methacholine on human ASM cell proliferation. Acutely, TGF-β1 had no mitogenic 

effect; however, prolonged treatment (7 days) with TGF-β1 increased ASM cell 

proliferation and potentiated the PDGF-induced mitogenic response. Muscarinic 

receptor stimulation with methacholine synergistically enhanced the effect of 

TGF-β1. Interestingly, the integrin-blocking peptide RGDS (Arg-Gly-Asp-Ser) as well 

as integrin α5β1 function-blocking antibodies inhibited the effects of TGF-β1 and 

its combination with methacholine on cell proliferation. Accordingly, prolonged 

treatment with TGF-β1 increased fibronectin expression, which was also 

synergistically enhanced by methacholine. The synergistic effects of methacholine 

on TGF-β1-induced proliferation were reduced by the long-acting muscarinic 

receptor antagonist tiotropium and the M2 receptor subtype selective antagonist 

gallamine, but not the M3 selective antagonist DAU5884. In line with these 

findings, the irreversible Gi-protein inhibitor pertussis toxin also prevented the 

potentiation of TGF-β1-induced proliferation by methacholine. We conclude that 

prolonged exposure to TGF-β1 enhances ASM cell proliferation, which is mediated 

by ECM-integrin interactions and can be enhanced by muscarinic M2 receptor 

stimulation.  

 

 

4.1 Introduction 
 

The pleiotropic growth factor transforming growth factor-β (TGF-β) is widely 

synthesized throughout the body and regulates a variety of cellular responses 

contributing to morphogenesis, embryonic development, inflammation and 

wound healing (1). Moreover, abnormal TGF-β regulation and expression in 

disease may result in fibrosis, characterized by the excessive deposition of 
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extracellular matrix (ECM) proteins (2). Traditionally, (myo)fibroblasts are 

perceived as the major source of ECM proteins; however, smooth muscle cells 

have also been identified as a rich source of these extracellular components (3, 4). 

Exposure of airway smooth muscle (ASM) cells to TGF-β increases the expression 

of various ECM proteins, including collagens, proteoglycans and fibronectin (3, 5, 

6). In addition to their function as a scaffold, ECM proteins also modulate a variety 

of cellular functions, including migration, differentiation and proliferation. For 

example, ASM cells cultured on fibronectin or collagen type I matrices show 

enhanced mitogenic responses to growth factors such as platelet-derived growth 

factor (PDGF) (7-12). Interaction of these cells with the ECM occurs mainly 

through integrins, a group of heterodimeric transmembrane glycoproteins. 

Studies on the role of integrins in smooth muscle cell proliferation have indicated 

an important role for these ECM receptors; e.g. both angiotensin II- and PDGF-

induced proliferation of vascular smooth muscle cells requires signalling through 

α5β1 integrins (7, 13). In addition, proliferation of human ASM cells can be 

mediated by integrins as well, in particular by the α5β1 integrins (9, 14, 15). 

Various studies have addressed the mitogenic properties of TGF-β on smooth 

muscle proliferation. In vivo studies demonstrated that overexpression of TGF-β1 

in mice increases ASM mass, whereas allergen-induced increases in ASM mass in a 

murine model of asthma could be prevented by anti-TGF-β1 antibodies (16-18). In 

vitro studies, however, have shown that TGF-β1 has variable mitogenic properties 

on ASM cells (19-23).  

In addition to receptor tyrosine kinases, serine threonine kinase receptors and 

integrins, G-protein coupled receptors (GPCR), including muscarinic receptors, 

have been associated with cell proliferation (24, 25). In bovine and human ASM 

cells, muscarinic M3 receptor stimulation enhanced the mitogenic responses to 

PDGF and EGF (26, 27). ASM cell proliferation, leading to ASM thickening, is an 

important contributor to airway remodelling as observed in airway diseases (28, 

29). In vivo animal models of asthma showed that muscarinic receptor stimulation 

also contributes to allergen-induced increase in ASM mass (30-32). Moreover, 

airway fibrosis could be prevented by treatment with the muscarinic receptor 

antagonist tiotropium bromide (32, 33). Interestingly, Matthiesen et al. and Haag 

et al. found that muscarinic M2 receptor stimulation increases proliferation and 

collagen deposition by human lung fibroblasts in vitro (34, 35). Overall, these data 

suggest that muscarinic receptor stimulation plays a role in airway fibrosis and 
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ASM remodelling, which may involve both muscarinic M2 and muscarinic M3 

receptors. 

Collectively, a role for TGF-β and G-protein coupled receptors like muscarinic 

receptors in the induction of smooth muscle cell proliferation via autocrine 

production of ECM proteins and subsequent activation of integrins may be 

envisaged. In the present study, we hypothesized that exposure of human ASM 

cells to TGF-β1 enhances the deposition of ECM proteins, resulting in the 

subsequent induction of proliferation of these cells via activation of integrins. 

Furthermore, we hypothesized that these processes may be reinforced by 

muscarinic receptor stimulation. Our results for the first time demonstrate that 

prolonged exposure to TGF-β1 is followed by ASM cell proliferation, which occurs 

via deposition of ECM proteins such as collagen type I and fibronectin and 

subsequent activation of the α5β1 integrin. Combined treatment with the 

muscarinic receptor agonist methacholine synergistically enhanced fibronectin 

expression and ASM cell proliferation, via a mechanism involving the muscarinic 

M2 receptor. 

 

 

4.2 Materials and methods 
 

4.2.1 Materials 

Active, recombinant human TGF-β1 was purchased at R&D systems (Abingdon, UK). 

Dulbecco’s Modified Eagle’s Medium (DMEM), foetal bovine serum (FBS), 

streptomycin, penicillin and amphotericin B were from Gibco BRL Life 

Technologies (Paisley, UK). Methacholine chloride was from ICN Biomedicals 

(Zoetermeer, The Netherlands). Horseradish peroxidase (HRP)-conjugated rabbit 

anti-mouse antibodies, HRP-conjugated rabbit anti-goat antibodies, human 

platelet-derived growth factor (PDGF)-AB, fibronectin (human plasma), gallamine 

and pertussis toxin (PTX) were purchased from Sigma-Aldrich (Zwijndrecht, The 

Netherlands). Anti-GAPDH and anti-fibronectin (C-20) antibodies were purchased 

from Santa Cruz Biotechnology (Santa Cruz, CA, USA). From Southern Biotech (ITK 

Diagnostics BV, Uithoorn), the anti-collagen I antibody was purchased. RGDS (H-

Arg-Gly-Asp-Ser-OH) and GRADSP (H-Gly-Arg-Ala-Asp-Ser-Pro-OH) were purchased 

at Calbiochem (Nottingham, UK). Monomeric collagen type I (calf skin) was 

obtained from Fluka (Buchs, Switzerland). [methyl-3H]-thymidine (0.25 µCi/mL) 

was purchased at Amersham (Buckingshamshire, UK). Tiotropium bromide and 
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DAU5884 were provided by Boehringer Ingelheim (Ingelheim, Germany). All other 

chemicals were of analytical grade.  

 

4.2.2 Airway smooth muscle cell culture 

Human bronchial smooth muscle cell lines, immortalized by stable expression of 

human telomerase reverse transcriptase (hTERT), were used for all experiments. 

hTERT airway smooth muscle cells were generated from primary cultured human 

bronchial smooth muscle cells as described previously (chapter 2). All procedures 

were approved by the Human Research Ethics Board of the University of 

Manitoba. Cells were grown to confluence on uncoated culture dishes using 

DMEM supplemented with 10% foetal bovine serum and antibiotics (50 U/mL 

streptomycin, 50 µg/mL penicillin and 1.5 µg/mL amphotericin B). Cultures were 

maintained in a humidified incubator at 37°C, gassed with 95% O2 and 5% CO2, 

Culture medium was replaced every 2-3 days. 

 

4.2.3 Preparation of whole cell lysates 

Cells were plated in 6-well plates and grown until confluence. After serum 

deprivation for 24 hours in DMEM supplemented with antibiotics, the cells were 

stimulated with TGF-β1 (2 ng/mL) alone or in combination with the muscarinic 

receptor agonist methacholine (10 μM) for 7 days. Culture medium was refreshed 

after 4 days of stimulation. To obtain whole cell lysates, stimulated cells were 

washed once with ice-cold phosphate-buffered saline (PBS, composition: 140 mM 

NaCl, 2.6 mM KCl, 1.4 mM KH2PO4, 8.1 mM Na2HPO4, pH 7.4), followed by lysis 

using cold SDS-lysis buffer (composition: 62.5 mM Tris-HCl, 2% SDS, 1 mM NaF, 1 

mM Na3VO4, 10 μg/mL aprotinin, 10 μg/mL leupeptin, 10 μg/mL pepstatin A, pH 

8.0). 

 

4.2.4 Western Blotting 

Equal amounts of protein were separated on SDS polyacrylamide gels and 

transferred onto nitrocellulose. To avoid non-specific binding, membranes were 

blocked with blocking buffer (composition: 50 mM Tris-HCl, 150 mM NaCl, 0.1% 

Tween-20, 5% non-fat dried milk powder) for 1 hour at room temperature. 

Subsequently, the membranes were incubated with the primary antibodies 

diluted in blocking buffer for 1 hour at room temperature. After washing the 

membranes 3 times with 0.1% Tris Buffered Saline Tween-20 (0.1% TBS-T 

composition: 50 mM Tris-HCl, 150 mM NaCl, 0.1% Tween-20) for 10 min, 
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membranes were incubated with HRP-labelled secondary antibodies for 1 hour at 

room temperature, followed by an additional 3 washes with 0.1% TBS-T. By using 

enhanced chemiluminescence reagents, bands were recorded in the G:BOX 

iChemi gel documentation system equipped with GeneSnap image acquisition 

software (Syngene; Cambridge; UK). Band intensities were quantified by 

densitometry using GeneTools analysis software (Syngene; Cambridge; UK). All 

bands were normalized to GAPDH. 

 

4.2.5 Coating of culture plates with extracellular matrix proteins 

Monomeric collagen I was reconstituted in hydrochloric acid (10 mM) at 5 mg/mL. 

ECM-coated culture plates were prepared by covering 24-well culture plates with 

dilutions of collagen I (50 μg/mL, diluted in PBS) or fibronectin (10 μg/mL, diluted 

in PBS). ECM proteins were absorbed overnight and air-dried at room 

temperature. Unoccupied protein-binding sites were blocked using sterile 0.1% 

BSA in PBS for 30 min. Subsequently, plates were washed twice with plain DMEM 

and were dried before further use. 

 

4.2.6 [methyl-
3
H]-thymidine incorporation 

Two different protocols were used to investigate DNA synthesis in ASM cells; an 

acute treatment and a prolonged treatment protocol (Figure 5.1A). 

For the acute treatment protocol, ASM cells (20 000 cells/well) were plated on 

uncoated or ECM-coated 24-well plates and allowed to attach overnight. 

Subsequently, cells were serum deprived for 72 hours in DMEM supplemented 

with antibiotics and 1% ITS (5 μg/mL insulin, 5 μg/mL transferrin and 5 ng/mL 

selenium). After serum-deprivation, cells were stimulated with TGF-β1 (2 ng/mL), 

PDGF-AB (10 ng/mL) or methacholine (10 µM) for 28 hours, the last 24 hours in 

the presence of [methyl-3H]-thymidine. 

For the prolonged treatment, ASM cells (20 000 cells/well) were plated on 

uncoated 24-well plates and allowed to attach overnight. Subsequently, cells were 

serum deprived for 24 hours in DMEM supplemented with antibiotics. After 

serum deprivation, cells were treated with TGF-β1, alone or in combination with 

methacholine (10 μM) for 7 days. Subsequently, cells were washed and stimulated 

in the absence or presence of PDGF-AB (10 ng/mL) for 28 hours, the last 24 hours 

in the presence of [methyl-3H]-thymidine. 

After stimulation, cells were washed twice with PBS at room temperature and 

incubated on ice with ice-cold trichloroacetic acid (5%) for 30 min. The acid-
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insoluble fraction was dissolved in 1 mL NaOH (1 M). Incorporated [methyl-3H]-

thymidine was quantified by liquid-scintillation counting using a Beckman LS1701 

β-counter. 

To investigate the involvement of integrins in TGF-β1-induced cell proliferation, 

cells were incubated 30 min before and during stimulation with the integrin-

blocking peptide RGDS (100 μM) or its negative control GRADSP (100 µM); or with 

integrin function-blocking monoclonal anti-α5 (10 mg/mL, clone P1D6; Chemicon) 

and anti-β1 (10 mg/mL, clone 6S6; Chemicon, Chemicon, Chandler’s Ford, UK) 

antibodies or mouse IgG control antibodies (10 mg/ml; Chemicon). Furthermore, 

to investigate the muscarinic receptor subtype involved, cells were incubated 30 

min before and during stimulation with selective muscarinic receptor antagonists 

(gallamine (10 μM), DAU5884 (100 nM), tiotropium bromide (10 nM)). Gi proteins 

were inactivated by overnight incubation with pertussis toxin (PTX, 100 ng/mL) for 

16 hours before stimulation. Newly synthesized Gi proteins were inhibited by 

incubation with PTX (50 ng/mL) during stimulation.  

 

4.2.7 RNA isolation and real-time quantitative RT-PCR 

Cells were plated in 6-well plates and grown until confluence. After serum 

deprivation for 24 hours in DMEM supplemented with antibiotics, the cells were 

stimulated with TGF-β1 (2 ng/mL), alone or in combination with methacholine (10 

μM) for 1 or 7 days. Culture medium was refreshed after 4 days of stimulation. 

Total cellular RNA was isolated using the Nucleospin RNA II kit (Machery-Nagel, 

Bioke, Leiden, The Netherlands). RNA concentration was determined by Nanodrop 

ND1000 (Thermo Scientific, Wilmington, MA). Total RNA was reverse transcribed 

using the Promega cDNA synthesis kit. Real-time quantitative PCR for fibronectin, 

collagen I α1, integrin β1 and integrin α5 was performed using an Illumina Eco 

Personal qPCR System (Westburg, Leusden, The Netherlands) using the specific 

primers listed in Table 4.1. Cycle parameters were: denaturation at 94°C for 30 

seconds, annealing at 58°C for 30 seconds and extension at 72°C for 30 seconds 

for 40 cycles. The abundance of the target gene was normalized to the 

endogenous reference 18S rRNA (designated as ΔCq). Relative differences were 

determined by using the equation 2−(ΔΔCq). 
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Table 4.1. Primer sequences of fibronectin, collagen I α1, integrin β1, integrin α5 and 18S 

rRNA used for real-time quantitative PCR. 

 

 

4.3 Results 
 

4.3.1 Mitogenic properties of TGF-β1 in human ASM cells 

To elucidate the mitogenic effects of TGF-β1 on ASM cell proliferation, human 

ASM cells were treated with TGF-β1 (2 ng/mL) for 1 or 7 days (Figure 4.1A). DNA 

synthesis was determined using a [3H]-thymidine incorporation assay. After 1 day 

of treatment, TGF-β1 did not enhance DNA synthesis in these cells, in contrast to 

the mitogen PDGF (10 ng/mL) (Figure 4.1B). However, prolonged treatment (7 

days) with TGF-β1 significantly (p< 0.05) increased DNA synthesis. After 7 days, 

PDGF still induced DNA synthesis, which was significantly enhanced in cells pre-

treated with TGF-β1 (p< 0.001, Figure 4.1C). A mitochondrial reduction assay and 

cell number determination confirmed these findings, as we observed a time-

dependent increase in cell number when cells were stimulated with TGF-β1 for up 

to 7 days (Table 4.2). Collectively, these results indicate that the TGF-β1-induced 

proliferation of human ASM cells is delayed in its onset and requires prolonged 

TGF-β1 treatment, which can be enhanced by PDGF. 

 

 

 

 

 

 

 

Substance Sequences  

Fibronectin Forward   
Reverse   

5'- TCGAGGAGGAAATTCCAATG -3' 
5'- ACACACGTGCACCTCATCAT -3' 

Collagen Iα1 Forward   
Reverse   

5'- AGCCAGCAGATCGAGAACAT-3' 
5'- TCTTGTCCTTGGGGTTCTTG-3' 

Integrin α5 Forward   
Reverse   

5'- GGAACTCAGATCCAGGACA -3' 
5'- CATGTCTGGCCCAAAGAACT-3' 

Integrin β1 Forward   
Reverse   

5'- CCCTTGCACAAGTGAACAGA -3' 
5'- TCTTGTCCTTGGGGTTCTTG -3' 

18S rRNA Forward   
Reverse   

5′-CGCCGCTAGAGGTGAAATTC-3′ 
5′-TTGGCAAATGCTTTCGCTC-3′ 
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Figure 4.1. Mitogenic properties of TGF-β1 in human ASM cells. Effects of TGF-β1 on DNA 

synthesis in human ASM cells. Two different protocols were used to investigate the 
effects of TGF-β1 on ASM proliferation. In the acute treatment protocol, ASM cells were 
plated and allowed to attach overnight before serum deprivation in the presence of 1% ITS 
for 3 days. Subsequently, cells were treated with serum-free medium, TGF-β1 or PDGF-AB 
for 28 hours, the last 24 hours in the presence of [methyl-3H]-thymidine. In the prolonged 
treatment protocol, ASM cells were plated and allowed to attach overnight after which 
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serum deprivation occurred for 1 day. Subsequently, cells were treated with serum-free 
medium or TGF-β1 for 7 days. Cells were then washed and incubated with serum-free 
medium or PDGF-AB for 28 hours, the last 24 hours in the presence of [methyl-3H]-
thymidine. After both protocols thymidine incorporation was determined as described in 
the Materials and Methods section. (B) Effect of acute treatment with TGF-β1 on ASM 
proliferation. Human ASM cells were treated with serum-free medium (basal), TGF-β1 (2 
ng/mL) or PDGF-AB (10 ng/mL), according to the acute DNA synthesis treatment protocol 
(Figure 4.1A). Data represent means ± s.e.m. of 7 experiments, each performed in 
triplicate. *p< 0.05 compared to basal (one-way ANOVA, post-hoc Newman-Keuls). (C) 
Effect of prolonged treatment with TGF-β1 on ASM proliferation. Human ASM cells were 
treated with serum-free medium (basal) or TGF-β1 (2 ng/mL) for 7 days after which cells 
were stimulated with serum-free medium (control) or PDGF-AB (10 ng/mL), according the 
prolonged treatment DNA synthesis protocol (Figure 4.1C). Data represent means ± s.e.m. 
of 9 experiments, each performed in triplicate. *p< 0.05, **p< 0.01, ***p< 0.001 
compared to basal control. ###p< 0.001 compared to TGF-β1 control (one-way ANOVA, 
post-hoc Newman-Keuls). 
 

4.3.2 Mitogenic properties of TGF-β1 are dependent on extracellular matrix 

protein production and integrins 

The delay in onset of the mitogenic response of TGF-β1 on human ASM cells could 

involve ECM production, therefore, we stimulated human ASM cells with TGF-β1 

and determined the expression of collagen type I and fibronectin by Western 

analysis. TGF-β1 significantly (p< 0.01) increased the expression of collagen I and 

fibronectin protein after 7 days treatment (Figure 4.2A). In line, an increase of 

collagen I α1 and fibronectin mRNA was observed, both after 1 and after 7 days of 

TGF-β1 stimulation (Figure 4.2A-B), whereas after 1 day of stimulation a significant 

increase in protein expression was observed for fibronectin, but not for collagen I 

(Figure 4.2B). ECM proteins such as fibronectin and collagen have been reported 

to increase basal ASM cell proliferation (8, 9). In addition, they may interact with 

growth factors like PDGF to enhance their mitogenic properties (9, 11). To 

investigate whether the enhanced proliferation was (partly) due to synergism 

between the produced ECM and TGF-β1 itself, human ASM cells were plated on 

uncoated, collagen I- or fibronectin-coated plates and stimulated with TGF-β1. As 

observed previously (8, 9), both collagen I and fibronectin increased ASM cell 

proliferation (p< 0.01). However, TGF-β1 had no further effects on the 

proliferation induced by these ECM proteins (Figure 4.2C), suggesting that the 

mitogenic properties of TGF-β1 might be indirect and could involve autocrine 

effects of collagen I and/or fibronectin. 
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ECM proteins may enhance ASM cell proliferation through binding of integrin 

receptors (9, 15). Integrins are heterodimeric transmembrane glycoproteins, 

which interact with specific sequences in ECM proteins. The α5β1 integrin has 

been shown to be importantly involved in collagen I- and fibronectin-induced 

smooth muscle cell proliferation, which can be inhibited by the integrin blocking 

peptide Arg-Gly-Asp-Ser (RGDS) (9, 13-15, 39). Using the RGDS peptide (100 μM), 

we investigated whether the TGF-β1-induced proliferation could be due to the 

production of collagen I and fibronectin and their subsequent interaction with 

integrins on the ASM cell. We observed that treatment with RGDS reduced DNA 

synthesis induced by prolonged TGF-β1 treatment (Figure 4.2D), whereas its 

negative control Gly-Arg-Ala-Asp-Ser-Pro (GRADSP, 100 μM) had no effect. 

Similarly, function-blocking anti-α5 and anti-β1 antibodies also fully blocked the 

TGF-β1-induced proliferation (Figure 4.2E), indicating a key role for the major 

fibronectin binding α5β1 integrin in these effects. To investigate whether the TGF-

β1-induced ASM cell proliferation could also involve an increase in α5β1 integrin 

expression, we assessed the mRNA expression of the integrin α5 and β1 subunits. 

No effects of TGF-β1 were observed on the mRNA expression of the α5 subunit. 

However, an increase in mRNA levels of the integrin subunit β1 was observed 

after 7 days of treatment with TGF-β1 (p< 0.001), whereas a trend towards an 

increased mRNA expression was observed after 1 day (p< 0.07, Figure 4.2F). 

Collectively, these results indicate that TGF-β1 enhances ASM proliferation 

primarily through the autocrine effects of ECM proteins such as collagen I and 

fibronectin on the α5β1 integrin, which could possibly be reinforced by enhanced 

expression of the integrin β1 subunit. 
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Figure 4.2. Involvement of extracellular matrix proteins in the mitogenic properties of 

TGF-β1. (A) Human ASM cells were treated with serum-free medium (basal) or TGF-β1 (2 
ng/mL) for 7 days. Protein expression and mRNA levels of collagen I and fibronectin was 
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determined by Western analysis. Representative blots of collagen I, fibronectin and 
GAPDH are shown. Data represent means ± s.e.m. of 6-8 experiments. **p< 0.01 
compared to basal (Student’s t-test). (B) Protein expression of collagen I and fibronectin 
after 1 day of stimulation and mRNA levels of collagen I α1 and fibronectin in response to 
TGF-β1 after stimulation for 1. Data represent means ± s.e.m. of 3-6 experiments. *p< 0.05 
compared to basal (Student’s t-test). (C) Human ASM cells were plated on uncoated plastic 
surfaces or on collagen type I- or fibronectin-coated matrices. Subsequently, cells were 
treated with serum-free medium (control) or TGF-β1 (2 ng/mL), according to the acute 
treatment protocol (see Figure 4.1A). Data represent means ± s.e.m. of 7 experiments, 
each performed in triplicate. *p< 0.05, **p< 0.01 compared to uncoated control (one-way 
ANOVA, post-hoc Newman-Keuls). (D) Human ASM cells were treated with serum-free 
medium (basal) or TGF-β1 (2 ng/ml) for 7 days, in the absence or presence of the integrin 
blocking peptide RGDS or its negative control GRADSP (both 100 μM), according to the 
prolonged treatment protocol (see Figure 4.1A). Data represent means ± s.e.m. of 8 
experiments, each performed in triplicate. *p< 0.05, ** p< 0.01, ***p< 0.001 compared to 
basal control. #p< 0.05 compared to TGF-β1 control (one-way ANOVA, post-hoc Newman-
Keuls). (E) Human ASM cells were treated with serum-free medium (basal) or TGF-β1 (2 
ng/ml) for 7 days, in the absence or presence of the integrin function-blocking monoclonal 
anti-α5 (10 mg/mL) and anti-β1 (10 mg/mL) antibodies or mouse IgG control antibodies 
(10 mg/mL), according to the prolonged treatment protocol. Data represent means ± 
s.e.m. of 6-7 experiments, each performed in duplicate (one-way ANOVA, post-hoc 
Newman-Keuls) *p< 0.05 compared to basal control. #p< 0.05 compared to TGF-β1 control. 
(F) mRNA levels of integrin subtypes β1 and α5 relative to basal expression of these 
subtypes after stimulation with TGF-β1 for 1 and 7 days. Data represent means ± s.e.m. of 
6 experiments (one-way ANOVA, post-hoc Newman-Keuls). ***p< 0.001 compared to 
basal.  
 

4.3.3 Muscarinic receptor stimulation enhances TGF-β1-induced ASM cell 

proliferation 

To assess the functional interaction between TGF-β1 and muscarinic receptor 

stimulation at the level of cell proliferation, ASM cells were pre-treated with TGF-

β1 (2 ng/mL), methacholine (10 µM) or their combination for 7 days. As described 

above, TGF-β1 treatment significantly (p< 0.001) increased DNA synthesis after 7 

days of treatment. Interestingly, this increase was significantly augmented by co-

treatment with the muscarinic receptor agonist methacholine (p< 0.001), whereas 

no effect of methacholine was observed in the absence of TGF-β1 (Figure 4.3A). 

Similar results were observed for cell number (Table 4.2). 
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Table 4.2. Proliferative responses of human ASM cells in the absence of TGF-β1 (2 ng/mL) 

and/or methacholine (10 µM) after 7 days of incubation. 

Data are expressed as percentage of TGF-β1-induced responses. Data represent means ± 
s.e.m. of 4-9 experiments performed I triplicate ([3H]-thymidine-incorporation) or 
duplicate (Alamar Blue conversion and cell number). **p< 0.01, ***p< 0.001 compared to 
control. ##p< 0.01, ###p< 0.001 compared to TGF-β1 control. 

 

To investigate whether muscarinic receptor stimulation could amplify the 

mitogenic properties of the TGF-β1-induced ECM proteins, ASM cells were plated 

on collagen I- or fibronectin-coated beds and treated with methacholine (10 µM) 

for 1 day. Stimulation with methacholine did not enhance the mitogenic effects of 

the ECM proteins (Figure 4.3B), indicating that the interaction between TGF-β1 

and muscarinic receptor stimulation was not due to a direct interaction between 

muscarinic receptors and collagen type I or fibronectin.  

 
Figure 4.3. Muscarinic receptor stimulation enhances mitogenic properties of TGF-β1. (A) 
Human ASM cells were treated with serum-free medium (basal), TGF-β1 (2 ng/mL), 
methacholine (MCh, 10 µM) or their combination for 7 days, according to the prolonged 
treatment protocol (see Figure 4.1A). Data represent means ± s.e.m. of 9 experiments, 
each performed in triplicate. ***p< 0.001 compared to basal control. ###p< 0.001 

 Control Methacholine 

Basal + TGF-β1 Basal + TGF-β1 

[
3
H]-thymidine-

incorporation 

58 ± 9 100 ± 0*** 60 ± 11 149 ± 10***,### 

Alamar Blue 

conversion 

72 ± 1 100 ± 0*** 74 ± 1 115 ± 6***,## 

Cell number 64 ± 6 100 ± 0** 70 ± 7 132 ± 6***,## 



 

  
99

C
h

a
p

te
r 4

 | C
ro

sstalk b
etw

een
 TG

F-β
1  an

d
 m

u
scarin

ic M
2 recep

to
r au

gm
en

ts airw
ay sm

o
o

th
 m

u
scle p

ro
liferatio

n
 

compared to TGF-β1 control (one-way ANOVA, post-hoc Newman-Keuls). (B) Human ASM 
cells were plated on uncoated plastic surfaces or on collagen I- or fibronectin-coated 
matrices and serum deprived for 3 days. Subsequently, cells were treated with serum-free 
medium or methacholine (10 µM), according to the acute treatment protocol. Data 
represent means ± s.e.m. of 7 experiments, each performed in triplicate (one-way ANOVA, 
post-hoc Newman-Keuls). *p< 0.05, **p< 0.01 compared to uncoated control. 

 

Therefore, we investigated whether muscarinic receptor stimulation enhanced 

ECM deposition induced by TGF-β1. ASM cells were treated with TGF-β1 (2 ng/mL), 

methacholine (10 µM) or their combination for 7 days. Subsequently collagen I 

and fibronectin expression were measured by Western analysis. Interestingly, 

although TGF-β1 clearly increased the expression of both collagen I and 

fibronectin, methacholine selectively increased the TGF-β1-induced protein 

expression of fibronectin, while methacholine was ineffective by itself (Figure 

4.4A). This suggests that the enhanced deposition of fibronectin might be involved 

in the functional interaction between TGF-β1 and muscarinic receptor stimulation. 

To further substantiate this hypothesis, ASM cells were treated with or without 

RGDS while stimulated with TGF-β1, methacholine or their combination for 7 days. 

RGDS blocked the enhanced mitogenic response induced by the co-stimulation 

with TGF-β1 and methacholine (Figure 4.4B), whereas no effects were found for 

GRADSP (data not shown). Furthermore, function-blocking anti-α5 and anti-β1 

antibodies significantly reduced the enhanced DNA synthesis induced by TGF-β1 

and methacholine (Figure 4.4C). In line with an increased activation of the α5β1 

integrin, no effects of methacholine were observed on the mRNA expression of α5 

and β1 integrins either, indicating that the synergistic effect of methacholine on 

TGF-β1-induced proliferation cannot be explained by increased integrin 

abundance (Figure 4.4D). Collectively, these data indicate that the synergistically 

enhanced deposition of fibronectin and α5β1 activation in response to muscarinic 

receptor and TGF-β1 stimulation importantly contributes to their functional 

interaction on ASM proliferation. 
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Figure 4.4. Involvement of extracellular matrix proteins in the enhanced mitogenic 

response induced by muscarinic receptor stimulation in the presence of TGF-β1. (A) 
Human ASM cells were treated for 7 days with serum-free medium (basal), TGF-β1 (2 
ng/mL), methacholine (MCh, 10 µM) or their combination. Protein expression of collagen I 
and fibronectin was determined by Western analysis. Representative blots of collagen I, 
fibronectin and GAPDH are shown. Data represent means ± s.e.m. of 7-8 experiments 
(one-way ANOVA, post-hoc Newman-Keuls). (B) Human ASM cells were treated with 
serum-free medium (basal), TGF-β1 (2 ng/ml), methacholine (10 µM) or their combination 
for 7 days, in the absence or presence of the integrin blocking peptide RGDS (100 μM), 
according to the prolonged treatment protocol. Data represent means ± s.e.m. of 8 
experiments, each performed in triplicate (one-way ANOVA, post-hoc Newman-Keuls). (C) 
Human ASM cells were treated with serum-free medium (basal), TGF-β1 (2 ng/ml), or TGF-
β1 (2ng/mL) + methacholine (10 µM) for 7 days, in the absence or presence of the integrin 
function-blocking monoclonal anti-α5 (10 mg/mL) and anti-β1 (10 mg/mL) antibodies or 
mouse IgG control antibodies (10 mg/mL), according to the prolonged treatment protocol. 
Data represent means ± s.e.m. of 6-7 experiments, each performed in duplicate (one-way 
ANOVA, post-hoc Newman-Keuls). (D) mRNA levels of integrins subtypes β1 and α5 after 
stimulation with TGF-β1 and methacholine for 1 and 7 days. Data represent means ± s.e.m. 
of 6 experiments (one-way ANOVA, post-hoc Newman-Keuls).*p< 0.05, **p< 0.01, 
***p< 0.001 compared to basal control. #p< 0.05, ##p< 0.01, ###p< 0.001 compared to TGF-
β1 control. $$$p< 0.001 compared to TGF-β1 + methacholine. 

 

4.3.4 Muscarinic M2 receptors are responsible for the cross-talk with TGF-β1 

We have previously reported that the enhancement of PDGF-induced ASM cell 

proliferation by methacholine is mediated by Gq-coupled muscarinic M3 receptors 

(26). Distinct signalling pathways are involved in the activation of receptor 

tyrosine kinases by growth factors and serine/threonine kinase receptors by TGF-

β1 (38, 39). This could implicate that their cross-talk with muscarinic receptors 

may require different muscarinic receptor subtypes. Therefore, we aimed to 

investigate the muscarinic receptor subtype involved in the cross-talk between 

the serine/threonine kinase TGF-β receptor and muscarinic receptor stimulation. 

To this aim, we stimulated ASM cells with TGF-β1 (2 ng/ml), methacholine (10 μM) 

and their combination in absence and presence of the subtype-selective 

muscarinic receptor antagonists DAU5884 and gallamine for 7 days. The clinically 

used, non-subtype-selective long-acting muscarinic receptor antagonist 

tiotropium bromide was also used. Concentrations of the selective antagonists 

were chosen based on the work of Roffel and coworkers, such that approximately 

99% of the M2 receptors and approximately 8 % of the M3 receptors were 

occupied with the muscarinic M2 receptor selective antagonist gallamine and less 

than 30% of the M2 receptors and more than 99% of the M3 receptors with the 
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muscarinic M3 receptor selective antagonist DAU5884 (40-43). DNA synthesis was 

assessed using a [3H]-thymidine incorporation assay. We observed that both the 

muscarinic receptor antagonist tiotropium bromide and the muscarinic M2 

receptor antagonist gallamine significantly (p< 0.01) reduced the DNA synthesis 

induced by co-stimulation with TGF-β1 and methacholine, to levels observed after 

stimulation with TGF-β1 alone (Figure 4.5A). No effects were observed for the 

muscarinic M3 receptor antagonist DAU5884. In addition, no effects of the 

antagonists were observed on basal or TGF-β1-induced proliferation. This indicates 

that the interaction between TGF-β1 and muscarinic receptor stimulation was 

mediated by the muscarinic M2 receptor. 

Since muscarinic M2 receptors couple to Gi proteins, the contribution of the 

muscarinic M2 receptors to TGF-β1 and methacholine-induced ASM cell 

proliferation was further assessed using the irreversible Gi protein inhibitor 

pertussis toxin (PTX). ASM cells were treated with PTX (100 ng/ml) for 16 hours, 

after which the cells were stimulated with TGF-β1 (2 ng/mL), methacholine (10 μM) 

and their combination, in absence and presence of PTX (50 ng/mL) for 7 days. In 

line with a role for the muscarinic M2 receptor, we observed that the synergistic 

effect of methacholine on the TGF-β1-induced response could be attenuated by 

PTX treatment, whereas no effects of PTX were observed on any of the other 

treatments (Figure 4.5B). Collectively, these results demonstrate that cross-talk 

between Gi coupled muscarinic M2 receptors and TGF-β1 enhances ASM cell 

proliferation. 
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Figure 4.5. Muscarinic M2 receptors enhance mitogenic properties of methacholine in 

the presence of TGF-β1. (A) Human ASM cells were treated with serum-free medium 
(basal), TGF-β1 (2 ng/mL), methacholine (MCh, 10 µM) or their combination in absence 
and presence of the non-selective muscarinic receptor antagonist tiotropium bromide (10 
nM), the M2-selective muscarinic receptor antagonist gallamine (10 μM) or the M3-
selective muscarinic receptor antagonist DAU5884 (100 nM) for 7 days, according to the 
prolonged treatment protocol. Data represent means ± s.e.m. of 8 experiments, each 
performed in triplicate (one-way ANOVA, post-hoc Newman-Keuls). (B) Human ASM cells 
were treated with serum-free medium (basal), TGF-β1 (2 ng/mL), methacholine (10 µM) or 
their combination in presence or absence of PTX (100 ng/mL for 16 hours, followed by 50 
ng/mL during the entire treatment period) for 7 days, according to the prolonged 
treatment protocol. Data represent means ± s.e.m. of 8 experiments, each performed in 
triplicate (one-way ANOVA, post-hoc Newman-Keuls). *p< 0.05, **p< 0.01, ***p< 0.001 
compared to basal control. ##p< 0.01, ###p< 0.001 compared to TGF-β1 control. $$p< 0.01, 
$$$p< 0.001 compared to TGF-β1 + methacholine. 
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4.4 Discussion 
 

In the current study, we demonstrate that prolonged treatment with TGF-β1 is 

required to induce ASM cell proliferation via the enhanced deposition of ECM 

proteins and the subsequent autocrine activation of the α5β1 integrin. Our data 

show that TGF-β1 enhances fibronectin and collagen I expression and that these 

ECM proteins subsequently interact with RGD-binding integrins, including the 

α5β1 integrin, to induce ASM cell proliferation. Moreover, TGF-β1-induced 

proliferation was synergistically enhanced by muscarinic receptor stimulation, 

which required increased protein expression of fibronectin, but not collagen type I. 

Furthermore, we demonstrate that muscarinic M2 receptors, but not muscarinic 

M3 receptors, contribute to this enhancement of TGF-β1-induced ASM cell 

proliferation. 

 

The cytokine TGF-β is a ubiquitously expressed and multifunctional cytokine that 

regulates various processes in the human body, including morphogenesis, 

inflammation, cell growth, wound healing and fibrosis (1). Studies investigating 

the effects of TGF-β on smooth muscle indicate that TGF-β is importantly involved 

in differentiation and maturation. In ASM cells, TGF-β increases the expression of 

smooth muscle α-actin, calponin and smooth muscle myosin (chapter 3, 44, 45). 

Moreover, maturating ASM cells release higher concentrations of TGF-β, which in 

turn enhance ASM maturation in an autocrine fashion (46). In addition to its role 

in the maturation of smooth muscle cells, TGF-β also enhances fibrogenic 

responses. In vitro studies have demonstrated that TGF-β1 enhances deposition of 

collagen type I, fibronectin and versican by smooth muscle cells as well (3, 4, 47). 

TGF-β also contributes to smooth muscle hyperplasia and/or hypertrophy; in vivo 

administration of an anti-TGF-β antibody reduces allergen-induced increases in 

ASM mass in a mouse model of asthma, which was associated with a decreased 

ECM deposition in the airway wall (47). Conversely, overexpression of TGF-β in 

mice increased smooth muscle mass and ECM deposition in the lung (17, 48). 

Previous in vitro studies have indicated that TGF-β could stimulate proliferation of 

ASM cells directly (19-23). In the current study, we also demonstrated that TGF-β1 

increased ASM proliferation, which required prolonged treatment and was 

associated with an enhanced production of ECM proteins fibronectin and collagen 

I. This increase in proliferation after prolonged exposure experiments could not be 

due to enhanced expression of endogenous PDGF (49) as the cells were washed 



 

  
105

C
h

a
p

te
r 4

 | C
ro

sstalk b
etw

een
 TG

F-β
1  an

d
 m

u
scarin

ic M
2 recep

to
r au

gm
en

ts airw
ay sm

o
o

th
 m

u
scle p

ro
liferatio

n
 

before [3H]-thymidine incorporation was assessed. In line with previous studies 

showing that fibronectin and collagen I enhance both basal and growth factor-

induced smooth muscle proliferation, we found that ASM proliferation was 

increased when cells were grown on fibronectin or collagen type I. Proliferation of 

ASM cells on these matrices requires multiple β1-integrins, including the α5β1 

integrins (9, 15). These α5β1 integrins are also found to be important in the 

proliferation of vascular smooth muscle cells in response to angiotensin II and 

PDGF (7, 13). Proliferation in response to these stimuli could be inhibited by the 

use of integrin-blocking peptides containing the RGD motif, but also by anti-α5 

and anti-β1 function-blocking antibodies (9, 13, 37). In the current study, we 

found that the RGD-binding integrin α5β1 is also importantly involved in the 

induction of ASM proliferation following prolonged TGF-β1 treatment. These 

findings may not only be important in vitro, but also in vivo as RGD-binding 

integrins plays a key role in ASM remodelling in a guinea pig model of allergic 

asthma (9). In line with previous findings (37), we also found an increase in mRNA 

expression of integrin subtype β1 following TGF-β1 stimulation. However, mRNA 

expression of the integrin subtype α5 remained unchanged. Taken together, our 

findings indicate an important role for TGF-β1 and autocrine ECM signalling in 

smooth muscle remodelling, leading to smooth muscle proliferation. 

 

Muscarinic receptors, belonging to the family of G protein-coupled receptors, are 

associated with contraction of smooth muscle cells in the airways. In addition, 

proliferation of ASM cells in response to peptide growth factors PDGF and EGF is 

enhanced by muscarinic receptor stimulation, with an important role for the 

muscarinic M3 receptor (26, 27). The functional interactions between the TGF-β 

receptor serine/threonine kinase and GPCRs, however, are still not well 

characterized. Currently, we demonstrate that muscarinic receptor stimulation 

enhanced the mitogenic properties of TGF-β1 and augmented the deposition of 

the ECM protein fibronectin, but not collagen I. As reported previously (26, 52), 

muscarinic receptor stimulation had no mitogenic properties by itself. Similarly, 

when grown on ECM beds of collagen I and fibronectin, methacholine did not 

enhance ASM cell proliferation. Using pharmacological antagonists at selective 

concentrations, we demonstrate that the interaction between TGF-β1 and 

methacholine was dependent on the muscarinic Gi-coupled M2 receptor. This was 

confirmed using the irreversible Gi protein inhibitor pertussis toxin. Also in human 
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lung fibroblasts, activation of the muscarinic M2 receptors induces cell 

proliferation and collagen deposition (34, 35, 51). 

The intracellular signalling pathways involved in the increased ECM deposition in 

response to muscarinic M2 receptor and TGF-β receptor stimulation are still 

largely unknown. However, we have recently demonstrated that combined 

muscarinic receptor and TGF-β1 stimulation enhanced the phosphorylation of 4E-

BP1 and GSK-3β resulting in the increased expression of contractile proteins, 

including sm-α-actin and calponin in human ASM cells (chapter 3). Furthermore, 

as fibronectin expression after TGF-β1 stimulation has been shown to be under 

the regulation of the GSK3β target β-catenin (3), these observations suggest an 

important role for the GSK-3 signalling axis in the increased fibronectin expression 

after TGF-β1 and methacholine stimulation.  

Taken together, these findings suggest that in addition to muscarinic M3 receptors, 

also muscarinic M2 receptors may importantly contribute to remodelling 

processes, leading to airway fibrosis and ASM remodelling. 

ASM remodelling is considered to be a major factor contributing to lung function 

decline and airway hyperresponsiveness in asthma and chronic obstructive 

pulmonary disease (COPD) (52, 53). Airway hyperresponsiveness is characterized 

by increased responsiveness of the airways to pharmacological, chemical and 

physical stimuli such as methacholine, smoke and cold air (54-56). Acute, variable 

airway hyperresponsiveness is considered to be dependent on airway 

inflammation, whereas chronic persistent airway hyperresponsiveness is 

considered to reflect airway remodelling. The mechanisms underlying ASM 

remodelling in airway diseases are still incompletely understood, however, 

inflammation appears to play an important role. In addition, recent studies 

indicate that also bronchoconstriction may promote airway remodelling, as 

bronchoconstriction in response to methacholine challenge increases the 

expression of TGF-β and the deposition of subepithelial collagen in patients with 

asthma, without increasing inflammation (57). Not only ASM changes, but also 

ECM changes may contribute to airway responsiveness, as a significant correlation 

has been found between airway responsiveness and the deposition of collagen 

and elastin in the airway wall (58, 59). These findings indicate that remodelling 

characteristics, including the deposition of ECM by ASM cells, may contribute to 

airway hyperresponsiveness. Interestingly, our findings demonstrated that TGF-β1 

and methacholine induce proliferation of ASM cells via the deposition of the ECM 

protein fibronectin, which may contribute to allergen-induced airway 
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hyperresponsiveness and ASM remodelling in asthma (9). In line with these 

findings, increased ASM mass induced by repeated allergen challenges in guinea 

pig model of asthma is inhibited by the use of the muscarinic receptor antagonist 

tiotropium bromide, well-known for its bronchodilator effects (31). In a murine 

model of asthma, tiotropium bromide not only inhibited smooth muscle 

thickening but also the expression of TGF-β1 in the bronchoalveolar lavage (BAL) 

fluid (32). This relationship between the cholinergic system and TGF-β1 may in 

part be explained by the fact that cellular contraction is required for the release 

and activation of TGF-β from its inactive complex with latency-associated peptide 

by the αvβ5 integrin on the ASM cell membrane (60). In addition, our current data 

indicate that in addition to M3 mediated effects, also M2 mediated effects may 

contribute to ASM remodelling.  

In summary, our study has demonstrated that TGF-β1 enhances ASM proliferation 

by enhancing ECM deposition and the subsequent activation of RGD-binding 

integrins, in particular the α5β1 integrin. Muscarinic receptor agonists enhance 

TGF-β1-induced ASM cell proliferation by the specific induction of fibronectin 

protein expression via the muscarinic M2 receptor. Collectively, our data suggest 

that not only muscarinic M3 receptors, but also muscarinic M2 receptors play an 

important role in processes associated with airway remodelling. 
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Abstract 
 

Airway remodelling, including smooth muscle remodelling, is a primary cause of 

airflow limitation in asthma. Recent evidence links bronchoconstriction to airway 

remodelling in asthma. The mechanisms involved are poorly understood. A 

possible player is the multifunctional cytokine TGF-β, which plays an important 

role in airway remodelling. Guinea pig lung slices were used as an in vitro model 

to investigate mechanisms involved in bronchoconstriction-induced airway 

remodelling. To address this aim, mechanical effects of bronchoconstricting 

stimuli on contractile protein expression and TGF-β release were investigated. 

Lung slices were viable for at least 48 h. Both methacholine and TGF-β1 

augmented the expression of contractile proteins (sm-α-actin, sm-myosin, 

calponin) after 48 h. Confocal fluorescence microscopy showed that increased sm-

myosin expression was enhanced in the peripheral airways and the central 

airways. Mechanistic studies demonstrated that methacholine-induced 

bronchoconstriction mediated the release of biologically active TGF-β, which 

caused the increased contractile protein expression, as inhibition of actin 

polymerization (latrunculin A) or TGF-β receptor kinase (SB431542) prevented the 

methacholine effects, whereas other bronchoconstricting agents (histamine and 

KCl) mimicked the effects of methacholine. Collectively, bronchoconstriction 

promotes the release of TGF-β, which induces airway smooth muscle remodelling. 

This study shows that lung slices are a useful in vitro model to study mechanisms 

involved in airway remodelling. 

 

 

5.1 Introduction 
 

Airway remodelling is an important pathological characteristic of chronic asthma 

(1). Airway remodelling encompasses all structural alterations of the airways, 

including remodelling of the airway smooth muscle layer which is one of the most 

striking pathological features of chronic asthma (2). Remodelling of the airway 

smooth muscle layer has been suggested to be a major cause of airflow 

obstruction in asthma (3, 4). The mechanisms underlying this pathology are, 

however, still unclear. 

During bronchoconstriction, airways are subjected to mechanical forces, which 

promote gene expression and growth factor release in resident cells (5). As such, 
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mechanical forces could promote tissue remodelling. For example, compression of 

airway epithelial cells leads to features of remodelling, including upregulation of 

gene expression of TGF-β and protein expression of fibronectin (5-8). Grainge et al. 

demonstrated that bronchoconstriction induced by repeated methacholine 

challenges can induce features of airway remodelling in mild asthma patients (9), 

including an increase in epithelial TGF-β expression and an increase in 

subepithelial collagen deposition compared to saline-challenged controls. 

Moreover, we have previously demonstrated that treatment of sensitized guinea 

pigs with the anticholinergic bronchodilator drug tiotropium inhibits airway 

remodelling induced by repeated allergen challenge (10, 11). These findings have 

provided new insights into the causality of the relationship between persistent 

airflow obstruction and airway remodelling in asthma.  

 

The multifunctional cytokine TGF-β plays an important role in airway remodelling 

(12). In the airways of asthmatics, this pro-fibrotic cytokine is highly expressed, 

particularly in epithelial cells and in eosinophils (12). In airway smooth muscle 

cells, TGF-β1 can induce proliferation (12, 13, 14) as well as increased expression 

of contractile protein markers, such as sm-α-actin and calponin through both 

transcriptional and translational control (chapter 3, 13). Activation of 

serine/threonine kinase receptors by TGF-β1 will provoke phosphorylation of 

Smad 2/3 (15), and promotes the nuclear localization of serum response factor, 

which cooperatively regulate the transcriptional activity for smooth muscle 

specific genes (16-18). Furthermore, TGF-β1 can regulate cell proliferation of 

airway epithelial cells and fibroblasts, but also cell differentiation and the 

synthesis of extracellular matrix proteins in these cells (19). Although evidence 

exist that TGF-β is upregulated after mechanical compression of airway epithelial 

cells and is involved in tissue remodelling, a direct link between 

bronchoconstriction and TGF-β-induced airway remodelling has not been 

demonstrated yet. 

 

Precision-cut lung slices have been proven a valuable in vitro tool in 

pharmacological research and drug development (20). Lung slices have various 

advantages compared to airway smooth muscle cell cultures, as all lung cell types 

are present and cell-cell contacts and cell-matrix interactions are preserved, 

which are important regulators in bronchoconstriction and airway remodelling 

(21). Additionally, the profound loss of contractile capacity of airway smooth 
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muscle cells in culture, associated with a loss of sm-myosin expression and 

contractile receptors, is avoided (22, 23). Moreover, a large number of lung slices 

can be prepared from the lungs of a single animal, which allows the direct 

comparison of experimental treatments with a control from the same animal (23). 

The use of precision-cut lung slices from guinea pigs has additional advantages. 

For example, Ressmeyer et al., showed that airway responsiveness to 

methacholine was almost identical for precision-cut lung slices from humans and 

guinea pigs (23). Moreover, in contrast to other small experimental animals, there 

are great anatomical and functional similarities between guinea pig and human 

airways including the presence of small airways (4).  

 

Therefore, in the present study, precision-cut lung slices were used as an in vitro 

model to study mechanisms of bronchoconstriction-induced airway remodelling. 

Precision-cut lung slices from guinea pigs were stimulated with contractile 

agonists such as methacholine, histamine and potassium chloride, but also with 

the pleiotropic cytokine TGF-β1. Contractile protein expression was studied in 

response to these stimuli as a marker of airway remodelling. Using specific 

inhibitors, the mechanisms inducing an increase in contractile protein expression 

by bronchoconstriction were studied and were found to be dependent on 

mechanically-induced release of endogenous TGF-β. 

 

 

5.2 Materials and methods 
 

5.2.1 Animals 

Outbred, male, specified pathogen-free Dunkin Hartley guinea pigs (Harlan, 

Heathfield, UK) (740 ± 85g) were used. All protocols described in this study were 

approved by the University of Groningen Committee for Animal Experimentation, 

Groningen, The Netherlands. The animals were housed under a 12 hour light/dark 

cycle in a temperature- and humidity-controlled room with food and tap water ad 

libitum. 

 

5.2.2 Precision-cut lung slices 

Precision-cut lung slices were prepared as described in (23). In short, after 

euthanization by injection with pentobarbital (Euthasol 20%, Produlab Pharma, 

Raamsdonksveer, the Netherlands) the trachea was cannulated, and the animal 
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was ex-sanguinated via the aorta abdominalis. Lungs were filled through the 

cannula with a low melting-point agarose solution (1,5% final concentration 

(Gerbu Biotechnik GmbH, Wieblingen, Germany) in CaCl2 (0.9mM), MgSO4 (0.4 

mM), KCl (2.7 mM), NaCl (58.2 mM), NaH2PO4 (0.6 mM), glucose (8.4 mM), 

NaHCO3 (13 mM), Hepes (12.6 mM), sodium pyruvate (0.5 mM), glutamine (1 

mM), MEM-amino acids mixture (1:50), and MEM-vitamins mixture (1:100), 

pH=7.2). Subsequently, lungs were placed on ice for at least 30 min, in order to 

solidify the agarose for slicing. Tissue cores were prepared from the lobes using a 

rotating sharpened metal tube (diameter 15 mm), followed by slicing the tissue in 

medium composed of CaCl2 (1.8mM), MgSO4 (0.8 mM), KCl (5.4 mM), NaCl (116.4 

mM), NaH2PO4 (1.2 mM), glucose (16.7 mM), NaHCO3 (26.1 mM), Hepes (25.2 

mM), pH = 7.2, using a tissue slicer (Compresstome™ VF-300 microtome, 

Precisionary Instruments, San Jose CA, USA). Lung slices were cut at a thickness of 

500 µm. 

 

5.2.3 Culture medium 

Before stimulation, lung slices were incubated individually in 24 well-plates in 

minimal essential medium composed of CaCl2 (1.8mM), MgSO4 (0.8 mM), KCl (5.4 

mM), NaCl (116.4 mM), NaH2PO4 (1.2 mM), glucose (16.7 mM), NaHCO3 (26.1 

mM), Hepes (25.2 mM), sodium pyruvate (1mM), glutamine (2 mM), MEM-amino 

acids mixture (1:50), and MEM-vitamins mixture (1:100), pH=7.2, at 37°C in a 

humid atmosphere. In order to remove the agarose and cell debris from the tissue, 

medium was refreshed after 30 min, followed by 2 washes every hour. During the 

experiments, the lung slices were incubated in Dulbecco’s Modification of Eagle’s 

Medium (DMEM) supplemented with sodium pyruvate (1 mM), non-essential 

amino acid mixture (1:100), gentamycin (45 µg/mL), penicillin (100 U/mL), 

streptomycin (100 µg/mL) and amphotericin B (1.5 µg/mL) at 37°C-5% CO2. 

 

5.2.4 Lactate dehydrogenase release 

To assess the viability of the lung slices, the amount of lactate dehydrogenase 

(LDH) released from the slices into the incubation medium relative to the total 

slice content was measured. Slices were incubated in 6 well-plates (2 slices/well) 

in 4 mL incubation medium for 1, 2, 3 or 4 days. Maximal LDH release was 

determined by lysing 2 slices with 1% Triton X-100 for 30 min at 37°C at the 

beginning of the experiment. Supernatants were stored -80 °C. LDH release in the 

supernatant was determined by routine clinical chemistry at the UMCG 
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(Groningen, The Netherlands) using the Roche/Hitachi Modular system (Roche, 

Mannheim, Germany). 

 

5.2.5 Mitochondrial activity assay 

Mitochondrial activity, as an additional measure of tissue viability, was assessed 

by conversion of Alamar blue into its reduced form, as described previously (24). 

Lung slices were incubated with Hanks’ balanced salt solution, containing 10% 

Alamar blue solution (BioSource, Camarillo, CA), for at least 30 min at 37°C-5% 

CO2.  

 

5.2.6 Treatment of lung slices 

Lung slices were cultured in 6-well plates, using 2 slices per well. The slices were 

stimulated with methacholine (10 μM), TGF-β1 (0.1, 0.2, 1 and 2 ng/mL), KCl (60 

mM) or histamine (1 µM) for 1 or 2 days continuously, as indicated. Where 

mentioned, lung slices were pre-incubated with the inhibitor of actin 

polymerization latrunculin A (0.3 µM) or the selective inhibitor of the TGF-β type I 

receptor activin receptor-like kinase ALK5, SB431542 (0.3 µM) for 30 min. 

 

5.2.7 Stimulation of MRC-5 fibroblasts by conditioned media of stimulated 

lung slices 

MRC-5 lung fibroblasts were cultured in Ham’s F12 medium supplemented with 

10% foetal bovine serum (FBS), L-glutamine (2 mM), streptomycin (100 µg/L) and 

penicillin (100 U/mL). For each experiment, cells were grown to confluence and 

subsequently culture medium was substituted with Ham’s F12 medium 

supplemented with 0.5% FBS, L-glutamine and antibiotics for a period of 24 hours. 

Thereafter, cells were stimulated for 1 h with TGF-β1 (2 ng/mL), methacholine (10 

µM) or with conditioned media obtained from incubated lung slices. Conditioned 

media used were taken from control slices and from slices treated with TGF-β1 (2 

ng/mL) or MCh (10 µM), both in the presence and absence of the inhibitors 

latrunculin A (0.3 µM) or SB431542 (0.3 µM), for 48 h. 

 

5.2.8 Immunofluorescence 

Lung slices were stimulated in 6 well-plates, using 2 slices per well. Slices were 

stimulated with methacholine (10 μM) or TGF-β1 (2 ng/mL) for 2 days 

continuously. After washing twice with cytoskeleton buffer (CB: MES (10 mM), 

NaCl (150 mM), EGTA (5 mM), MgCl2 (5 mM), and glucose (5 mM) at pH=6.1), the 
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lung slices were fixed with CB containing 3% paraformaldehyde (PFA) for 15 min. 

The slices were subsequently incubated with CB buffer containing 3% PFA and 

0.3% Triton-X-100 for 5 min, followed by an additional 2 washes with CB buffer. 

Lung slices were then blocked for 1 h in cyto-TBS (Tris-base (20 mM), NaCl (154 

mM), EGTA (2.0 mM) and MgCl2 (2.0 mM), pH=7.2), supplemented with BSA (1%) 

and normal donkey serum (2%). After that, lung slices were stained with mouse 

sm-myosin antibody overnight at 4°C. After washing 3 times with cyto-TBS 

containing 0.1% Tween-20 (cyto-TBS-T) for 10 min, incubation with the secondary 

antibody (Cy3-mouse, 1:50 in cyto-TBS-T) was performed during 3 h at room 

temperature. Lung slices were then washed 4 times for 15 min in cyto-TBS-T, 

followed by 4 washes with ultra-pure water. The slides were mounted with 

ProLong Gold anti-fade reagent (Invitrogen, Breda, The Netherlands). After 

staining, the slides were analysed using a Leica TCSSP2 confocal microscope. All 

conditions within one experiment were analysed in the same session using 

identical microscopic settings. Excitation wavelength was 543 nm. 

 

5.2.9 Western Blotting 

Lung slices or MRC-5 cells were washed once with ice-cold phosphate-buffered 

saline (PBS, composition: NaCl (140 mM), KCl (2.6 mM), KH2PO4 (1.4 mM), 

Na2HPO4 (8.1 mM), pH 7.4), followed by lysis using ice-cold SDS-lysis buffer (Tris-

HCl (62.5 mM), SDS (2 %), NaF (1 mM), Na3VO4 (1 mM), aprotinin (10 μg/mL), 

leupeptin (10 μg/mL), pepstatin A (7 µg/mL) at pH 8.0). Equal amounts of protein, 

determined by Pierce protein determination according to the manufacturer’s 

instructions, were separated on SDS polyacrylamide gels and transferred onto 

nitrocellulose, followed by standard immunoblotting techniques. All bands were 

normalized either to β-actin or to total Smad 2/3 expression. 

 

5.2.10 Antibodies and reagents 

Methacholine chloride was purchased from ICN Biomedicals (Zoetermeer, the 

Netherlands). Human recombinant TGF-β1 was obtained from R&D systems 

(Abingdon, UK). Mouse anti-α smooth muscle actin (sm-α-actin) antibody, mouse 

anti-calponin antibody, mouse anti-β-actin (β-actin) antibody, horseradish 

peroxidase (HRP)-conjugated rabbit anti-mouse IgG antibody, histamine were 

purchased from Sigma-Aldrich (Zwijndrecht, The Netherlands). Mouse anti-myosin 

smooth muscle myosin (sm-myosin) was purchased from Neomarkers 

(Immunologics, Duiven, The Netherlands). Cy3-conjugated secondary antibody 
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was obtained from Jackson ImmunoResearch (West Grove PA, USA). The 

inhibitors latrunculin A and SB431542 were purchased from Tocris Biosciences 

(Bristol, UK). All other chemicals were of analytical grade. 

 

5.2.11 Data analysis 

Data are presented as mean values ± SEM. Statistical significance was determined 

by paired Student’s t-test with two-tailed distribution or one-way ANOVA for 

paired observations, followed by a Newman-Keuls multiple comparisons test 

when appropriate. Data were considered statistically significant if p< 0.05. 

 

 

5.3 Results 
 

5.3.1 Lung slice viability 

To determine the viability of cultured precision-cut lung slices, LDH release and 

mitochondrial activity were assessed after 1, 2, 3 and 4 days of incubation. We 

observed a significant increase in LDH release over time; however, LDH release 

was still below 15% of maximal content on day 2 (Figure 5.1A) as observed 

previously in Ressmeyer et al. (23). The time course of LDH release was closely 

paralleled by that of the mitochondrial activity assay, which demonstrated a 

significant reduction in activity starting on day 3 (Figure 5.1B). Based on these 

data, we used lung slices that were cultured for up to 2 days. 



 

  
123

C
h

a
p

te
r 5

 | B
ro

n
ch

o
co

n
strictio

n
 in

d
u

ces TG
F-β

 release an
d

 airw
ay rem

o
d

ellin
g in

 gu
in

ea p
ig lu

n
g slices 

 
Figure 5.1. Lung slice viability. (A) LDH release from lung slices after 1, 2, 3 and 4 days of 
culture. Maximal LDH content of the slices was established by lysis with 1% Triton X-100. 
Data shown are the means ± SE of 3-7 independent experiments. (B) Mitochondrial 
activity in lung slices after 1, 2, 3 and 4 days of culture. Data shown are the means ± SE of 
5 independent experiments. *: p<0.05 and ***: p<0.001 compared to basal (one-way 
ANOVA, posthoc Newman-Keuls). 

 

5.3.2 Contractile protein expression in response to TGF-β1 

TGF-β1 is a potent cytokine that induces cellular biological processes leading to 

airway remodelling (12). Therefore, in order to investigate the usefulness of lung 

slices as an in vitro model to study airway remodelling, we studied the effect of 

TGF-β1 treatment on contractile protein expression in lung slices. Lung slices were 

incubated in a dose- and time-dependent manner for 1 or 2 days in the presence 

or absence of TGF-β1 (0.1, 0.2, 2 ng/mL) and analysed for the expression of sm-

myosin, sm-α-actin and calponin. We observed that TGF-β1 induced a time- and a 

concentration-dependent increase in the expression of sm-myosin, sm-α-actin 

and calponin (Figure 5.2A-B). The maximal response measured for sm-myosin was 

obtained by incubating the slices with 2 ng/mL TGF-β1 for 2 days continuously 

(Figure 5.2B). This condition was chosen for further experiments with this 

cytokine. 
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Figure 5.2. Concentration and time-dependent effects of TGF-β1 on contractile protein 

expression. Lung slices were treated in a time- and concentration-manner with TGF-β1 (0, 
0.1, 0.2, 2 ng/mL) for 1 or 2 days, as indicated. Lung slice lysates were analysed for sm-
myosin, sm-α-actin, or calponin, using β-actin as a loading control. (A) Representative 
blots of TGF-β1-induced contractile protein expression. (B) Densitometric analysis of sm-
myosin expression. Data shown are means ± SE of 3 independent experiments. *: p<0.05, 
**: p<0.01, and ***: p<0.001 compared to basal (one-way ANOVA, posthoc Newman-Keuls). 

 

5.3.3 Contractile protein expression in response to methacholine-induced 

bronchoconstriction 

We next determined whether bronchoconstriction also induced the expression of 

contractile proteins. Stimulation of lung slices with 10 µM methacholine for 2 days 

resulted in an increased expression of sm-myosin and calponin (1,69 ± 0.23- and 

2.89 ± 0.59- fold induction, respectively). However, methacholine did not induce 

an increase in the expression of sm-α-actin (Figure 5.3A-D). 



 

  
125

C
h

a
p

te
r 5

 | B
ro

n
ch

o
co

n
strictio

n
 in

d
u

ces TG
F-β

 release an
d

 airw
ay rem

o
d

ellin
g in

 gu
in

ea p
ig lu

n
g slices 

 
Figure 5.3. Methacholine stimulation induces contractile protein expression in lung 

slices. Lung slices were treated with TGF-β1 (2 ng/mL), methacholine (MCh; 10 µM) or 
medium (basal) for 2 days. Lung slice lysates were then analysed for the presence of sm-
myosin (B), sm-α-actin (C), or calponin (D) using β-actin as a loading control. 
Representative blots are shown in (A). Data shown in graphs are the means ± SE of 3-4 
independent experiments. ***: p<0.001 compared to basal (one-way ANOVA, posthoc 
Newman-Keuls). 

 

In view of these data, we further investigated the localization of increased 

contractile protein expression induced by TGF-β1 and methacholine in the airways. 

Therefore, lung slices incubated with either TGF-β1 (2 ng/mL) or methacholine (10 

µM) were stained immuno-cytochemically for sm-myosin and visualized using 

confocal fluorescence microscopy. Staining intensity within the smooth muscle 

bundle was quantified (Figure 5.4A-C). To distinguish peripheral airways from 

central airways, the diameter of the airways was measured. Airways with a 

diameter under 100 µm were considered as peripheral airways and with a 

diameter above 400 µm as central airways. Increased expression of sm-myosin, 

but not of sm-α-actin (data not shown) in response to methacholine and TGF-β1 as 

visualized by confocal fluorescence microscopy was found in peripheral airways 

with a diameter smaller than 100 µM (1.8 ± 0.3 and 1.6 ± 0.1 fold-induction for 

methacholine and TGF-β1, respectively, Figure 5.4A-B), and in the central airways, 

with a diameter larger than 400 µM (1.6 ± 0.1 fold-induction for methacholine 

Figure 5.4C). 
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Figure 5.4. Localization of sm-myosin expression after TGF-β1 and methacholine 

treatment. Lung slices were treated with TGF-β1 (2 ng/mL), methacholine (MCh; 10 µM) or 
medium (basal) for 2 days. Lung slices were then fixed, stained for sm-myosin and 
analysed by confocal immunofluorescence microscopy. The images shown in (A) are taken 
from the peripheral airways (diameter smaller than 100 µm). Staining intensity within the 
muscle bundle was quantified and data shown from the peripheral airways (B) and central 
airways (diameter larger than 400 µm; C) are the means ± SE of 3 independent 
experiments. *: p<0.05 compared to basal (one-way ANOVA, posthoc Newman-Keuls). 
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5.3.4 Mechanisms of bronchoconstriction-induced airway remodelling  

Bronchoconstriction induced by methacholine causes an increase in the release of 

epithelial TGF-β in asthma patients (11). Also, co-culture of airway smooth muscle 

cells and epithelial cells causes the release of biologically active TGF-β in response 

to contractile agonists such as lysophosphatidic acid and methacholine (26). 

Therefore, the increase in contractile protein expression we observed in response 

to bronchoconstriction may be due to the release of TGF-β by lung slices. To 

establish whether biologically active TGF-β is involved in the increased contractile 

protein expression in response to methacholine, biologically active TGF-β was 

determined in conditioned media from stimulated precision-cut lung slices, using 

Smad-3 phosphorylation in human MRC-5 fibroblasts as a bio-assay. Human MRC-

5 fibroblasts were incubated for 1 hour with the conditioned media obtained from 

methacholine-stimulated lung slices, followed by analysis of phosphorylated 

Smad-3, which is specifically activated by TGF-β. The phosphorylation of Smad-3 

was significantly increased by conditioned media from methacholine-stimulated 

lung slices compared to basal controls (Figure 5.5A). As controls, the direct 

phosphorylation of Smad-3 in response to TGF-β1 and methacholine in human 

MRC-5 fibroblasts were investigated. TGF-β1, but not methacholine, induced 

direct phosphorylation of Smad-3 in the MRC-5 cells (Figure 5.5A), confirming that 

the effect of methacholine was due to the release of biologically active TGF-β 

from the lung slices. 

To investigate whether bronchoconstriction is involved in methacholine-induced 

contractile protein expression and release of TGF-β, we inhibited actin 

polymerization with latrunculin A. Latrunculin A prevented the increase in sm-

myosin expression in response to methacholine and TGF-β1 (Figure 5.5B). In 

addition, the release of bioactive TGF-β by methacholine was inhibited by 

latrunculin A, whereas latrunculin A had no direct effect on TGF-β1-induced Smad-

3 phosphorylation (Figure 5.5C). Moreover, inhibition of TGF-β type I receptor 

kinase with SB431542 prevented the increase in expression of sm-myosin induced 

by either TGF-β1 or methacholine (Figure 5.5B). Collectively, these findings 

indicate that bronchoconstriction induced by methacholine leads to the release of 

TGF-β, which enhances the expression of contractile proteins. 

To establish whether the increase in contractile protein expression was only seen 

with the contractile agonist methacholine, we stimulated lung slices also with the 

contractile agonists histamine (His, 1 µM) and potassium chloride (KCl, 60 mM) in 

the presence or absence of the inhibitors latrunculin A or SB431542. The 
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expression of sm-myosin was enhanced in response to the contractile agonists 

methacholine, histamine and KCl, and these responses were similarly inhibited by 

latrunculin A and SB431542 (Figure 5.5D). This suggests that bronchoconstriction 

leads to the release of TGF-β inducing the expression of the contractile protein 

sm-myosin irrespective of the contractile agonist used. 
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Figure 5.5. Bronchoconstriction induces the release of biologically active TGF-β leading 

to contractile protein expression. Human MRC-5 fibroblasts were stimulated for 1 hour 
with TGF-β1 (2 ng/mL), methacholine (MCh; 10 µM) or medium (basal), or with 
conditioned media obtained from lung slice cultures treated for 2 days with and without 
10 µM methacholine. MRC-5 cell lysates were analysed for phosphorylated (ser 423/425) 
and total Smad-3. Representative blots and quantified data of Smad-3 phosphorylation in 
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response to conditioned media are shown in (A). Data shown are the means ± SE of 4 
independent experiments. *: p<0.05, compared to basal (paired Student’s t-test with two-
tailed distribution). (B) Lung slices were pre-treated with latrunculin A (0.3 µM), SB431542 
(0.3 µM), or medium (basal) for 30 min, followed by 2 days of treatment with 
methacholine (MCh; 10 µM), TGF-β1 (2ng/mL), or medium (basal). Lung slice lysates were 
analysed for the presence of sm-myosin, using ß-actin as a loading control. Blots shown 
are representative of 3 experiments. (C) Human MRC-5 fibroblasts were stimulated for 1 
hour with conditioned media obtained from lung slice cultures after treatment with 
methacholine (MCh; 10 µM), TGF-β (2ng/mL) or medium (basal), in the absence and 
presence of latrunculin A (0.3 µM) or SB431542 (0.3 µM). MRC-5 cell lysates were 
analysed for phosphorylated (ser 423/425) and total Smad-3. Blots shown are 
representative of 3 experiments. (D) Lung slices were pre-incubated with latrunculin A (0.3 
µM), SB431542 (0.3 µM), or medium (basal) for 30 min, followed by 2 days stimulation 
with methacholine (MCh; 10 µM), TGF-β1 (2ng/mL), histamine (His, 1 µM), KCl (K+, 60 mM) 
or medium (basal). Lung slice lysates were analysed for sm-myosin, using β-actin as a 
loading control. Blots shown are representative of 3 experiments. 

 

 

5.4 Discussion 
 

After validation of lung slices as an in vitro model for TGF-β induced airway 

smooth muscle remodelling, we studied the mechanisms involved in the induction 

of airway remodelling in response to bronchoconstriction. We show that 

bronchoconstriction induced by contractile agonists including methacholine, 

histamine and KCl, stimulates the release of TGF-β from lung tissue, which leads 

to an enhanced expression of contractile phenotype markers by the airway 

smooth muscle, similar to what is observed in patients with asthma (27, 28). 

Airway remodelling is a multicellular process, in which structural cell-cell 

interactions and cell-matrix interactions play a major regulatory role (29). 

Therefore, lung slices appear to be a useful in vitro model to study multicellular 

remodelling processes as most cell-cell contacts, and the cell-matrix interactions 

are preserved in this model. This has already been established for other organ 

systems, such as liver slices, in which ethanol or CCl4 induced liver fibrosis can be 

adequately mimicked (30-32). Another advantage of lung slices in culture is that 

the loss of sm-myosin expression that is typical for cultured airway smooth muscle 

cells is not observed. The choice for guinea pig lung slices in the present study is 

based on the observations that airway responsiveness to methacholine in guinea 

pig lung slices is very similar to that in human tissue (4). Furthermore, guinea pigs 
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have great anatomical and functional similarities compared to human airways 

including the presence of small airways in contrast to other animals (24).  

The use of lung slices also has some limitations. The major disadvantages of lung 

slices as an in vitro model include the lack of circulation and oedema formation 

(33), which interferes with the ability to clear soluble factors, including TGF-β. 

Also, relevant to the present study, tachyphylaxis to sustained 

bronchoconstriction could occur during 2 days of culture with bronchoconstricting 

agonists. However, as bronchoconstriction remained visible after 2 days of culture, 

and as other contractile agonists, including histamine and potassium chloride 

produced very similar results, we believe that even though tachyphylaxis may 

have occurred to some extent, its impact on the overall conclusion is small. 

Furthermore, the period during which lung slices can be maintained in culture is 

limited. Nonetheless, after 2 days of culture, we still measured low levels of LDH 

release and no decline in mitochondrial activity, indicating good viability. Very 

importantly, we observed an increase in contractile protein expression in 

response to TGF-β1 as a marker of airway remodelling, which underscores the 

usefulness of this culture system. Overall, this model offers a great perspective for 

future experiments, particularly in studying research questions in which intact 

cell-cell and cell-matrix interactions are essential. 

 

The pleiotropic cytokine TGF-β is an important growth factor involved in airway 

remodelling processes in asthma (12). Increased expression of TGF-β is found in 

lung tissue and bronchoalveolar lavage fluid of patients with asthma (33). TGF-β 

promotes important aspects of airway remodelling, including maturation of 

airway smooth muscle cells characterized by increased expression of contractile 

phenotype marker proteins (34). Indeed, we previously showed that TGF-β 

induces increased expression of the contractile phenotype markers sm-α-actin 

and calponin in human airway smooth muscle cells in a time-dependent manner, 

which was synergistically enhanced by muscarinic receptor stimulation (chapter 3, 

13). Patients with chronic asthma show an increase in sm-α-actin and myosin light 

chain kinase staining in the airways (26, 27). In agreement with these data, we 

show that lung slices in culture exhibit a time- and concentration-dependent 

increase of contractile phenotype markers including sm-myosin, in response to 

TGF-β. This implies that TGF-β responses in lung slices are similar to those 

observed in airway smooth muscle cell systems. 
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Our studies provide important insights into the mechanisms behind the induction 

of contractile protein expression in response to bronchoconstricting agents. Our 

previous studies using cultured airway smooth muscle cells showed that 

muscarinic receptor stimulation had no effect on cell proliferation, cytokine 

production or contractile protein expression by its own but required functional 

interactions with growth factors (e.g. PDGF-AB, TGF-β), cytokines (e.g. TNF-α) or 

cigarette smoke extract to induce these cellular responses (35-37, chapter 2 and 

3). Cooperative regulation of contractile protein expression by TGF-β and 

methacholine was found to be associated with enhanced GSK-3 and 4EBP-1 

phosphorylation (chapter 3). The present study shows that in lung slices, in which 

cell-cell interactions and contractility are preserved, bronchoconstriction induced 

by methacholine is sufficient to promote the expression of contractile proteins, 

including sm-myosin and calponin, which is explained by the release of biologically 

active TGF-β which may functionally interact with methacholine to induce 

contractile expression. Other bronchoconstricting agents, including histamine and 

KCl were also sufficient to induce these effects. Notably, bronchoconstriction 

induced by methacholine did not enhance the expression of the contractile 

protein sm-α-actin. We previously demonstrated that sm-α-actin positive area in 

guinea pig airways is larger compared to sm-myosin positive area suggesting that 

actin positive, myosin negative cells exist within the smooth muscle bundle (10). 

Moreover, allergen-challenged guinea pigs show much greater induction of sm-

myosin expression in comparison to sm-α-actin (10). Although we cannot directly 

compare the effect of allergen with methacholine, the similarity with our current 

data is remarkable and suggests that sm-α-actin is less susceptible to regulation 

than sm-myosin in guinea pig airways. The TGF-β response by itself was also 

affected by the actin polymerization inhibitor latrunculin A, suggesting a basal 

tone of the airways, leading to the release of TGF-β or a requirement of actin 

polymerization for the induction of smooth muscle specific gene expression, also 

in response to TGF-β (38-40). Taken together, this suggests that 

bronchoconstriction induces the release of biologically active TGF-β, leading to 

contractile protein expression. 

 

In response to bronchoconstriction induced by methacholine or house dust mite, 

epithelial-TGF-β levels are increased in patients with asthma (9). In the airways 

biopsies of human lung, immunostaining revealed that TGF-β was mainly localized 

to the bronchial epithelial compartment, and to a lesser extent in smooth muscle 
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cells (41). Mechanical stimulation of bronchial epithelial cells induced the release 

of TGF-β, playing an important role in subepithelial processes observed in asthma 

(8). In response to static transmembrane pressures, rat epithelial cells also 

promote the gene expression of TGF-β, endothelin-1 and early growth response-1 

(42). Additionally, mechanical stimulation induces an increase in fibronectin 

production in epithelial cells (5). This may suggest that the primary sources of 

TGF-β in the airways are the epithelial cells, which release this growth factor in 

response to mechanical stimulation during bronchoconstriction. Nonetheless, the 

airway smooth muscle may also play an important role as Tatler et al. 

demonstrated that airway smooth muscle cells can activate TGF-β through αVβ5 

integrins in response to bronchoconstrictors in vitro (25). Moreover, blocking the 

αVβ5 integrins caused a reduction in the increased ASM layer in vivo with an 

ovalbumin-challenged mice model (25). Furthermore, in response to the 

contractile agonists lysophosphatidic acid and methacholine, airway smooth 

muscle cells from asthma patients released TGF-β to a greater extent than airway 

smooth muscle cells from healthy controls (25). Therefore, epithelial release of 

TGF-β and subsequent activation of the latent form into the biologically active 

form by αVβ5 integrins on airway smooth muscle is a plausible mechanism for the 

effects of bronchoconstriction observed in our study. 

 

Our findings have important implications for the management of chronic asthma. 

As bronchoconstriction can promote airway remodelling, the beneficial effects of 

bronchodilator drugs may exceed their acute effects on lung function. In vitro and 

in vivo studies are supporting this hypothesis. In a murine model of asthma, levels 

of TGF-β were reduced in bronchoalveolar lavage fluid (BALF) by the 

anticholinergic drug tiotropium. Additionally, tiotropium inhibited the thickening 

of airway smooth muscle and airway fibrosis in this model (43). Tiotropium 

treatment also inhibited the increase in contractile protein expression and 

thickening of the airway smooth muscle layer, in response to allergen-challenge in 

guinea pigs (10, 11). In fact, anticholinergics have multiple anti-inflammatory and 

anti-remodelling properties in animal studies (for review, see chapter 6), however, 

the underlying mechanism are still not understood. β-agonists, which are widely 

prescribed as bronchodilator drugs to asthmatics, can also reduce, though only 

partially, TGF-β-induced contractile protein expression in human bronchial 

smooth muscle cells (44) and other remodelling processes (12). 
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In conclusion, using lung slices as an in vitro model, our findings demonstrate that 

bronchoconstriction can induce the release of TGF-β which promotes contractile 

protein expression. Therefore, our data suggest that bronchodilators may have 

beneficial effects on airway remodelling which should be followed up in future 

studies. Also our data suggest that the use of precision cut lung slices is a suitable 

model to study airway remodelling processes in response to bronchoconstriction. 
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Abstract 
 

Acetylcholine is the primary parasympathetic neurotransmitter in the airways and 

an autocrine/paracrine secreted hormone from non-neuronal origins including 

inflammatory cells and airway structural cells. In addition to the well-known 

functions of acetylcholine in regulating bronchoconstriction and mucus secretion, 

it is increasingly evident that acetylcholine regulates inflammatory cell chemotaxis 

and activation, and also participates in signalling events leading to chronic airway 

wall remodelling that is associated with chronic obstructive airways diseases 

including asthma and COPD. As muscarinic receptors appear responsible for most 

of the pro-inflammatory and remodelling effects of acetylcholine, these findings 

have significant implications for anticholinergic therapy in asthma and COPD, 

which is selective for muscarinic receptors. Here, the regulatory role of 

acetylcholine in inflammation and remodelling in asthma and COPD will be 

discussed including the perspectives that these findings offer for anticholinergic 

therapy in these diseases. 

 

 

6.1 Introduction 
 

Acetylcholine is the primary parasympathetic neurotransmitter in the airways and 

a paracrine/autocrine hormone released from non-neuronal origins. The role of 

acetylcholine in the regulation of bronchomotor tone and mucus secretion from 

airway submucosal glands is well established (1). More recent findings suggest 

that acetylcholine, acting on muscarinic receptors, regulates additional functions 

in the airways, including inflammation and remodelling in obstructive airways 

diseases such as asthma and COPD (2-4). Based on these findings, we have 

previously questioned the traditional view on the role of acetylcholine, and 

suggested new possibilities for therapeutic targeting of muscarinic receptors in 

asthma and COPD (2). In this review, we will discuss the role of muscarinic 

receptors in obstructive airways disease further and update the discussion in view 

of these recent research papers and trials. In view of the selectivity of currently 

used anticholinergics for muscarinic receptors, we will not elaborate on the role 

of nicotinic receptors in this review. Nicotinic receptors are, however, expressed 

in the airways and mediate anti-inflammatory effects of acetylcholine. For 

excellent reviews on the anti-inflammatory role of nicotinic receptors, we would 
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like to refer to recently published reviews and to other reviews in this special 

issue (5-7). 

 

 

6.2 Acetylcholine and muscarinic receptors in the  
          airways 
 

6.2.1 Biosynthesis, metabolism and mode of action of acetylcholine 

Acetylcholine is synthesized from choline and acetyl-CoA mainly by the enzyme 

choline acetyltransferase (ChAT) (6). Airway neurons and non-neuronal cells such 

as airway epithelial cells express ChAT and release acetylcholine (8). Further, 

macrophages, mast cells, lymphocytes, granolucytes, fibroblasts and smooth 

muscle cells all have been suggested to express ChAT (6), although the release of 

acetylcholine from these cells has not yet been demonstrated directly. 

Acetylcholine can bind to and activate a family of G protein coupled muscarinic 

receptors, but also a family of nicotinic receptors, which are ligand gated cation 

channels (9). Most inflammatory and airway structural cells express muscarinic 

and/or nicotinic receptors (2). The individual receptor subtypes and subunits 

expressed by these cells have been reviewed extensively by Wessler and 

Kirkpatrick (6).  

The mechanisms that regulate the metabolism of non-neuronal acetylcholine by 

airway epithelial cells are still not fully established, although recent studies have 

yielded important new insights. The uptake of choline is the rate-limiting step in 

the synthesis of acetylcholine. Choline uptake in airway epithelial cells is regulated 

by the high affinity choline transporter (CHT1) and by choline-specific transporter-

like proteins (CTL) (10, 11). Organic cation transporter (OCT) subtypes 1 and 2 play 

a dominant role in the release of acetylcholine by airway epithelial cells (10, 11). 

Furthermore, the expression of the vesicular acetylcholine transporter (VAChT) by 

some epithelial cell types, including secretory cells, neuroendocrine cells and 

brush cells has been reported, suggesting that storage and release of 

acetylcholine via vesicles may mediate acetylcholine release by non-neuronal cell 

type (10, 11). The expression of muscarinic receptors, nicotinic receptors, 

synthesizing enzymes such as ChAT and the release of acetylcholine from non-

neuronal cells is solid evidence for the existence of a non-neuronal cholinergic 

system in the airways next to the well-established neuronal cholinergic system. 
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6.2.2 Muscarinic receptor expression and function in the airways 

Muscarinic receptors are the target for anticholinergic therapy in obstructive 

airways diseases as asthma and COPD and are the focus of this review. Muscarinic 

receptors are expressed by structural cells in the airways, predominantly airway 

smooth muscle, airway epithelium and airway fibroblasts. The parasympathetic 

neural network penetrates deep into the airway wall, and regulates 

bronchoconstriction, the release of mucus from submucosal glands, and to a 

lesser degree from goblet cells in the airway epithelium (2). The functional role of 

non-neuronal acetylcholine released from the airway epithelium is less well 

described, although recent studies suggest a role in airway smooth muscle 

contraction (12). It should be noted however that this finding is still controversial 

(13, 14). Additionally, acetylcholine, either neuronal or non-neuronal, may 

modulate airway inflammation and remodelling, as will be discussed further on. 

The distribution of muscarinic receptor subtypes throughout the bronchial tree is 

mainly restricted to muscarinic M1, M2 and M3 receptors (2). Muscarinic M1 

receptors are expressed by epithelial cells, where they play a modulatory role in 

electrolyte and water secretion, and in the ganglia, where they facilitate 

parasympathetic neurotransmission. Muscarinic M2 receptors are expressed by 

neurons, where they function as autoreceptors, inhibiting the release of 

acetylcholine from both preganglionic nerves and from parasympathetic nerve 

terminals. Muscarinic M2 autoreceptors are dysfunctional in allergic asthma due 

to eosinophil-derived release of major basic protein which acts as an allosteric 

antagonist of the M2 receptor (15), augmenting acetylcholine release. 

Furthermore, M2 receptors are widely expressed by airway mesenchymal cells 

such as fibroblasts and smooth muscle cells (2). Recent studies suggest that they 

may modulate cellular responses associated with airway remodelling (16). Also, a 

role in inhibition of Gs mediated airway smooth muscle relaxation has been 

proposed (1). Muscarinic M3 receptors are probably the best characterized 

subtype and are the dominant receptor subtype in the regulation of mucus 

secretion from submucosal glands and airway smooth muscle contraction (2). As a 

result, muscarinic M3 receptors are the primary target for anticholinergics, and M3 

subtype-selectivity has been advocated for by several research groups (17-22).  

 

6.2.3 Muscarinic receptors as therapeutic targets for asthma and COPD 

Anticholinergic therapy in COPD, and to a lesser extent asthma, is mainly aimed at 

inhibition of bronchoconstriction by inhibition of muscarinic receptors. Although 
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the term anticholinergic is most commonly used, all available anticholinergics 

used for the treatment of asthma and COPD are in fact specific antimuscarinics as 

they lack binding affinity at the nicotinic receptor. Clinically available 

anticholinergics are the short-acting ipratropium and the long-acting tiotropium. 

In addition to its longer duration of action, tiotropium has a considerably slower 

rate of dissociation from the M1 and the M3 receptor than from the M2 receptor, 

making the drug ‘kinetically selective’ for M1 and M3 receptors (21). It is 

conceivable that this functional selectivity of tiotropium is beneficial, as smooth 

muscle contraction is primarily mediated by muscarinic M3 receptors, whereas 

muscarinic M2 receptor blockade facilitates acetylcholine release from 

parasympathetic nerves (2). However, direct evidence for a beneficial clinical 

effect of this functional M3 selectivity of tiotropium is still lacking and the major 

difference between these drugs appears to be the duration of action. 

The Understanding the Potential Long-term Impacts of on Function with 

Tiotropium (UPLIFT) trial has demonstrated that treatment with tiotropium 

provides a significant and sustained improvement in lung function and quality of 

life in COPD patients, and reduces exacerbations and hospitalizations (23). 

Currently available anticholinergics are the short-acting ipratropium and the long-

acting tiotropium. These can be used either as monotherapy or in combination 

with β2-agonists and provide significant improvement in FEV1 in both asthma and 

COPD patients (24-27). The combination therapy with β2-agonists is more 

effective than anticholinergic treatment alone; nonetheless, monotherapy is 

already markedly effective (104). The explanation for this relatively large effect of 

monotherapy may lie within the role that mediators of inflammation (e.g. 

thromboxane A2, histamine) have in activating the airway cholinergic system. 

Airway inflammation has several ways to increase the output of neuronally 

released acetylcholine, as it results in exposure and activation of afferent C-fibres 

that facilitate ganglionic and central parasympathetic neurotransmission. Further, 

the release of acetylcholine can be facilitated directly via excitatory receptors for 

inflammatory mediators (e.g. prostaglandins, tachykinins) present on 

parasympathetic nerve terminals, and indirectly via inhibition of the M2 

autoreceptor through the release of eosinophil derived major basic protein that 

acts as an allosteric M2 receptor antagonist (1, 2). As a result, the 

bronchoconstrictor response (and perhaps additional responses) induced by pro-

inflammatory mediators such as thromboxane A2 is for a large part mediated by 

neuronally released acetylcholine (28). Further, bronchoconstriction induced by 
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histamine after the early asthmatic response can be inhibited by ipratropium in a 

guinea pig model of asthma (29). This advocates for the use of anticholinergic 

therapy not only in COPD – where parasympathetic tone is the primary reversible 

component of airway obstruction (30) – but also in asthma. Indeed, recent clinical 

trials indicate significant improvements in lung function in asthma patients on top 

of usual care, and show that tiotropium therapy is non-inferior to β2-agonist 

therapy when combined with corticosteroids in severe asthma patients (25, 26, 

31). The additional observations that next to FEV1 also exacerbation rate and lung 

function decline in subgroups of COPD patients are improved by treatment with 

tiotropium (20, 32) has prompted speculations on the possible beneficial effects 

of anticholinergics on airway inflammation and remodelling (33).  

 

 

6.3 Airway inflammation 
 

Asthma and COPD are both characterized by chronic airway inflammation, albeit 

that the patterns of inflammation are markedly different. Different subtypes of T 

cells are involved in asthma and COPD: in asthma there is an increase in TH2 (CD4+) 

cells, whereas in COPD CD8+ T cells predominate. Furthermore, the inflammation 

that occurs in asthma can be described as eosinophilic, whereas that occurring in 

COPD is mainly neutrophilic. However, when disease severity increases these 

differences become less pronounced (34).  

 

6.3.1 Inflammation and the non-neuronal cholinergic system 

Increasing evidence suggests that acetylcholine contributes to airway 

inflammation. In 2004, Wessler et al. found that in patients with atopic dermatitis, 

a condition characterized by TH2 type inflammation and often associated with 

bronchial asthma, expression of ChAT is increased in skin biopsies, with a 

consequent increase in acetylcholine (35). Further, Profita et al. (2011) 

demonstrated that cigarette smoke extract upregulated the non-neuronal 

cholinergic system in bronchial epithelial cells, by showing that expression of 

muscarinic M2 and M3 receptors and ChAT mRNA and protein were increased, 

whereas muscarinic M1 receptor levels were not affected. Consequently, 

acetylcholine levels in cell extracts were significantly higher after stimulation with 

cigarette smoke extract. This increase could be reduced by tiotropium (36). In 

contrast, lungs of ovalbumin challenged rats and mice show a significant decrease 
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in ChAT and other components of the cholinergic system, including the 

functionally relevant choline transporter CHT1 (37). Future studies are clearly 

warranted within this area to better understand the complex mechanism of 

regulation of the cholinergic system by inflammation and the significance of this 

process in asthma and COPD. 

 

6.3.2 Inflammatory cells 

Acetylcholine has been shown to affect inflammatory cells involved in asthma and 

COPD directly, by inducing proliferation or cytokine release from these cells. 

Carbachol can induce the proliferation of macrophages from mice in vitro (38). 

Also T-cell proliferation can be observed ex vivo after treatment of rats with the 

muscarinic agonist oxotremorine, whereas atropine suppresses the proliferation 

of T-cells (39). These anti-inflammatory properties of atropine were also 

demonstrated in rats in vivo, were it suppressed the turpentine-induced 

infiltration of leukocytes (39). Moreover, bovine alveolar macrophages exhibit 

neutrophil, eosinophil and monocyte chemotactic activity in response to 

acetylcholine, which is likely explained by cholinergic induction of leukotriene B4 

(LTB4) release (40). Recently, this was confirmed for primary human macrophages 

(41). Moreover, it was shown that acetylcholine-induced release of chemotactic 

activity from monocytes, macrophages and epithelial cells could be inhibited by 

tiotropium (41). It has also been shown that acetylcholine can induce the release 

of LTB4 from sputum cells of COPD patients (42). These results are consistent with 

a study demonstrating that tiotropium and also acetylcholinesterase, the 

degrading enzyme of acetylcholine, inhibited alveolar macrophage mediated 

migration of neutrophils from COPD patients (43). Using the M3-selective 

antagonist 4-DAMP it was shown that this effect is mediated via the muscarinic 

M3 receptor (43). Further, although R,R-glycopyrrolate, a muscarinic receptor 

antagonist, did not inhibit LPS-induced TNF-α release by itself, it synergistically 

inhibited the rolipram and budesonide induced decrease in TNF-α release from 

human primary monocytes (44). All these findings support a broad role for 

acetylcholine acting on muscarinic receptors in the regulation of airway 

inflammatory cells (Figure 6.1). 
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Figure 6.1. The regulatory role of acetylcholine in inflammatory cell chemotaxis and 

activation. Acetylcholine can be neuronally released or secreted as an autocrine or 
paracrine hormone from inflammatory cells and airway structural cells, most notably 
airway epithelial cells. In susceptible individuals, the release of acetylcholine may be 
enhanced in response to environmental factors such as cigarette smoke or allergens. As a 
consequence, pro-inflammatory cytokines including IL-6, IL-8 and LTB4 are produced, 
which attract and activate inflammatory cells, most notably neutrophils. Muscarinic M3 

receptors expressed on airway smooth muscle and muscarinic M1-3 receptors expressed 
by airway epithelial cells mediate the release of these factors via activation of ERK1/2 and 

NF-kB signaling pathways. 

 

6.3.3 Epithelial cells 

The expression of non-neuronal acetylcholine is relatively high in bronchial 

epithelial cells (8). Acetylcholine is known to induce eosinophil, monocyte and 

neutrophil chemotactic activity in bronchial epithelial cells (45, 46). The increase 

in epithelial neutrophil chemotactic activity by acetylcholine could be inhibited by 

tiotropium, indicating the involvement of muscarinic receptors in this response 

(47). The acetylcholine-induced neutrophil chemotactic activity from epithelial 

cells is partially dependent on IL-8 release, since it is inhibited by an anti-IL-8 

monoclonal antibody (47). In line with this contention, the increase in IL-8 release 

in response to acetylcholine could be partially inhibited by tiotropium. In addition, 

acetylcholine induced LTB4 release from bronchial epithelial cells in a tiotropium 

sensitive manner (36). Both IL-8 and LTB4 release from bronchial epithelial cells is 

mediated via ERK1/2 and NF-κB signalling pathways and dependent on multiple 



 

  
149

C
h

a
p

te
r 6

 | R
egu

latio
n

 o
f airw

ay in
flam

m
atio

n
 an

d
 rem

o
d

ellin
g b

y m
u

scarin
ic recep

to
rs 

muscarinic receptor subtypes (M1/M2/M3) (36, 47). Taken together, these studies 

implicate an important role for epithelial acetylcholine in airway inflammation, via 

the activation of muscarinic receptors (Figure 6.1). 

Another potential mechanism by which tiotropium could inhibit inflammation 

induced by epithelial cells is by attenuating respiratory syncytial virus (RSV) 

replication in these cells (48). RSV is one of the major causes of acute lower 

respiratory tract infection and has been detected in patients with exacerbations of 

asthma and COPD (49). In an in vitro study, Iesato et al. demonstrated that the 

attenuation of virus replication by tiotropium was partially due to inhibition of 

RhoA activity. Moreover, tiotropium inhibited epithelial IL-6 and IL-8 production 

induced by RSV infection (48). In vivo studies are needed to investigate the 

importance of inhibition of infection-induced airway inflammation by tiotropium. 

 

6.3.4 Airway smooth muscle cells 

The airway smooth muscle is increasingly recognized for its role in modulating 

inflammation by secreting cytokines and chemokines (50), and it has been shown 

that muscarinic receptors on airway smooth muscle cells are involved in these 

responses. Stimulation of bovine airway smooth muscle strips with the muscarinic 

agonist carbachol induces pro-inflammatory gene expression, including IL-6, IL-8 

and cyclo-oxygenase-2 (51). Furthermore, carbachol augmented the cyclic stretch-

induced expression of these genes (51). Stimulation of airway smooth muscle cells 

with carbachol also induces the protein release of IL-6 and IL-8 via muscarinic M3 

receptors (52). Furthermore, methacholine strongly augmented cigarette smoke 

extract (CSE) induced IL-8 release (52). In line with findings in epithelial cells, IL-8 

release induced by stimulation with methacholine and CSE in airway smooth 

muscle is ERK1/2 and NF-κB dependent (chapter 2).  

 

6.3.5 In vivo studies 

The regulatory role of muscarinic receptor signalling in inflammatory processes 

involved in asthma and COPD has been confirmed by in vivo studies, using animal 

models of these diseases.  

Wollin and Pieper (2010) were the first to report anti-inflammatory properties of 

tiotropium in an animal model of cigarette smoke induced COPD. Total cell 

number and neutrophils in the bronchoalveolar lavage fluid (BALF) were 

concentration-dependently decreased after treatment with tiotropium. 

Furthermore, tiotropium inhibited the increase of several cytokines in the BALF, 
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including IL-6, KC, TNF-α and LTB4 (53). Similar inhibitory effects of tiotropium on 

airway neutrophilia were observed in a guinea pig model of LPS-induced COPD 

(54). Moreover, neutrophilia was inhibited by ipratropium in a cadmium-induced 

rat model of pulmonary inflammation (55), by tiotropium in a HCl-induced rat 

model of gastro-oesophageal reflux (7) and by bilateral vagotomy or treatment 

with atropine in a diesel particle-induced rat model of pulmonary inflammation 

(56). Of interest, the latter study found that atropine was more effective in 

inhibiting pulmonary inflammation than bilateral vagotomy, suggesting a role for 

non-neuronal acetylcholine in this response (56). 

These findings may also be relevant for asthma. Our group has shown that 

tiotropium also partially inhibits eosinophilia in a guinea pig model of asthma (57), 

which has been confirmed by Buels et al. (58). In line with these findings, 

infiltration of macrophages and eosinophils in the BALF was significantly inhibited 

by tiotropium treatment in a murine model of asthma. Furthermore, expression 

levels in BALF of IL-4, IL-5 and IL-13 were decreased by tiotropium treatment (59). 

In addition, aclidinium, a novel muscarinic receptor antagonist which is kinetically 

selective for the muscarinic M3 receptor, inhibited infiltration of eosinophils in 

BALF in a mouse model of Aspergillus fumigatus-induced asthma (60). A recent 

study also suggested that M3 receptors regulate these inflammatory responses, 

although the selectivity profile of the antagonist bencycloquidium that was used 

in this study precludes firm conclusions on the involvement of other receptor 

subtypes (61). Since both tiotropium and aclidinium are kinetically selective for 

the muscarinic M3 receptor, this suggests predominant involvement of this 

receptor subtype in the observed anti-inflammatory effects in asthma and COPD 

models described above. This is supported by our own data on M3 -/- mice, in 

which neutrophilia and cytokine release in BALF were inhibited compared to wild-

type mice after exposure to cigarette smoke (62). 

Clearly, all these in vivo studies indicate a profound role for acetylcholine in 

inflammation in asthma and COPD, which is in accordance with results of in vitro 

studies that report pro-inflammatory effects of muscarinic receptors (Figure 6.1). 

The implication of these findings is that treatment with anticholinergics may have 

beneficial effects that exceed their bronchodilatory properties, a contention 

confirmed in several models of pulmonary inflammation. However, the exact 

mechanism responsible for the regulatory role of acetylcholine in inflammation is 

far from understood.  
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6.4 Airway remodelling  
 

Airway inflammation in chronic airway diseases such as asthma and COPD is often 

associated with cellular and structural alterations in the airways, referred to as 

airway remodelling (63). Airway remodelling is considered a major component of 

irreversible airflow limitation in these diseases (64), is progressive, and correlates 

with disease severity (65, 66). Airway remodelling in asthma and COPD is 

characterized by mucus gland hypertrophy, goblet cell hyperplasia and pulmonary 

vascular remodelling (63). In addition, in asthma the basement membrane is 

thickened, there is subepithelial fibrosis, and there is considerable thickening of 

the airway smooth muscle bundle (64). In contrast, in COPD the fibrosis is mostly 

peribronchial, and although increased airway smooth muscle mass may occur, this 

appears restricted to severe stages of COPD (65). Airway structural alterations 

may accelerate decline of lung function (67). 

 

6.4.1 Epithelial cells / mucus production 

The airway epithelial layer is in continuous interaction with the external 

environment. To protect itself from exogenous stimuli, mucus is secreted under 

the control of the cholinergic system by muscarinic receptors (68). Mucus 

secretion can be increased by electrical field stimulation of the vagal nerve in 

bronchial preparations, predominantly via muscarinic M3 receptors on the 

submucosal glands (68). In addition, electrolyte and water secretion are regulated 

by muscarinic M1 and M3 receptors (69, 70). Neuronal muscarinic M2 

autoreceptors appears to regulate the extent of the secretory response, by 

limiting neuronally released acetylcholine (70). In response to acetylcholine, 

glandular goblet cells also produce mucus (68).  

Mucus hypersecretion is an important pathological feature of chronic airway 

diseases contributing to airway obstruction (68). MUC5A/C expression in airway 

epithelial cells and airway submucosal glands is directly correlated to airway 

obstruction in smokers (71) and in smokers, COPD patients and asthma patients; 

the expression of the MUC5A/C gene is augmented (32). Also, the expression of 

MUC5B and the insoluble MUC2 are increased, particularly in COPD. The ratio of 

mucus cells to serous cells in the submucosal glands is also increased in COPD 

patients (72). In vitro studies demonstrated that aclidinium suppressed carbachol-

induced MUC5A/C overexpression in human bronchial tissue. Additionally, the 

increased expression of MUC5A/C by the co-stimulation of cigarette smoke 
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extract and carbachol could be attenuated by the use of aclidinium or atropine 

(73). Moreover, epidermal growth factor (EGF) stimulation enhanced the ACh-

induced response on mucus cell activation in airway submucosal glands (74). In 

vivo studies confirm the role of acetylcholine in mucus hypersecretion and 

demonstrate that tiotropium reduces allergen-induced mucus gland hypertrophy 

and MUC5A/C-positive goblet cell number in guinea pigs (57). Further, it has been 

reported that tiotropium inhibits neutrophil elastase-induced goblet cell 

metaplasia in mice (75) and that treatment with tiotropium inhibited the 

increased MUC5A/C expression and mucus gland hypertrophy in a guinea pig 

model of COPD (54). This demonstrates the important role of acetylcholine in the 

regulation of mucus secretion, both in vitro and in animal models of asthma and 

COPD in vivo (Figure 6.2). 

Acetylcholine may also regulate the proliferative and pro-fibrotic responses of 

airway epithelial cells. Bronchoconstriction induced by repeated challenges with 

methacholine induced epithelial cell proliferation and an increase in the 

expression of the profibrotic cytokine TGF-β by these cells in mild asthmatic 

subjects (76). In line with these findings, airway constriction induced by 

methacholine significantly increased the phosphorylation of the EGF receptor in 

airway epithelial cells (77). Moreover, in rat tracheal epithelial cells, acetylcholine 

induces proliferation mediated by muscarinic M1 receptors (78) and autocrine 

release of acetylcholine is sufficient to induce monkey airway epithelial cell 

proliferation (8). Thus, the cholinergic system is able to regulate epithelial cell 

proliferation, either through the induction of mechanical strain or in an 

autocrine/paracrine manner, which is required for the repair of the airway 

epithelial layer.  
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Figure 6.2. The regulatory role of acetylcholine in airway wall remodelling. Acetylcholine 
is neuronally released and secreted as an autocrine or paracrine hormone from airway 
structural cells and inflammatory cells. In the inflamed airway, inflammatory cells and 
airway epithelial cells also secrete growth factors that in concerted action with 
acetylcholine activate cell proliferation and matrix production by airway mesenchymal 
cells, including airway fibroblasts and airway smooth muscle cells. Furthermore, 
acetylcholine activates smooth muscle contraction leading to airway wall compression, 
which activates inflammatory cells and promotes remodelling responses by airway 
epithelial cells. Acetylcholine also directly promotes mucus production by and cell 
proliferation of airway epithelial cells.  
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6.4.2 Mesenchymal cells 

Airway mesenchymal cells (e.g. fibroblasts, airway smooth muscle cells) 

contribute to airway remodelling by means of proliferation, contractile protein 

expression and the release of components such as mediators, extracellular matrix 

proteins and matrix metalloproteinases (MMPs) (79, 80). In vitro studies showed 

that the stimulation of muscarinic receptors on lung fibroblasts induces cell 

proliferation and the synthesis of collagen (16, 81) through the activation of the 

mitogen-activated protein kinase pathway (81, 82). This effect was mediated by 

the activation of muscarinic M2 receptors (16). Interestingly, acetylcholine-

induced cell proliferation is enhanced in human lung fibroblasts from COPD 

patients compared with healthy non-smokers and healthy smokers without COPD 

(83). The higher activation of cell proliferation in fibroblasts from COPD patients 

was due to enhanced ERK1/2 and NF-κB phosphorylation. Notably, the 

synthesizing enzyme ChAT was also increased in lung fibroblasts from healthy 

smokers and COPD patients (83). 

MMPs play a key role in airway remodelling, inflammation and emphysema (84). 

In COPD patients, increased expression levels of MMP-1, MMP-2 and MMP-9 have 

been reported (85, 86). The activity of the MMPs can be inhibited by tissue 

inhibitor of matrix metalloproteinases (TIMPs) (84). Recently, it was demonstrated 

that tiotropium inhibited TGF-β-induced protein expression of both MMP-1 and 

MMP-2 in human lung fibroblasts, but had no effect on the TGF-β-induced TIMP-1 

and TIMP-2 expression (87, 88). Therefore, these data suggest that treatment 

with tiotropium improves the balance between MMPs and TIMPs, inhibiting pro-

fibrotic responses. As MMPs also play important roles in the infiltration of 

inflammatory cells, this effect could also contribute to the anti-inflammatory 

properties of anticholinergics. 

Airway smooth muscle thickening is a characteristic pathological feature of 

asthma, and to a lesser extent of COPD. The induction of airway smooth muscle 

cell proliferation by growth factors, including PDGF and EGF, can be enhanced by 

the stimulation of muscarinic receptors (89-92). Specifically, Gβγ subunits derived 

from Gq protein coupled receptors cooperate with receptor tyrosine kinases (e.g. 

the PDGF/EGF receptor) to induce synergistic activation of PI3K/Akt/p70S6K 

signalling leading to cell proliferation (89, 91, 92). Moreover, the activation of 

conventional PKC isoenzymes, likely via muscarinic M3 receptor mediated Gαq 

stimulation, leads to GSK-3 inactivation, which potentiates both translational and 

transcriptional processes (90). These pathways are also involved in the acquisition 
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of contractile protein expression by TGF-β via transcriptional and translational 

processes (93-95) and can be activated by muscarinic receptor stimulation (96). 

Indeed, the expression of myosin light-chain kinase was augmented by carbachol 

in human airway smooth muscle cells exposed to cyclical mechanical strain (97). 

Additionally, we recently described that muscarinic receptor stimulation 

enhanced the TGF-β1-induced contractile protein expression in human airway 

smooth muscle cells (chapter 3). Collectively, these findings suggest an important 

role of muscarinic receptor stimulation in the proliferation and maturation of 

mesenchymal cells (Figure 6.2). 

 

6.4.3 In vivo studies 

Inhibitory effects of anticholinergics on airway mesenchymal cell remodelling 

have indeed been reported in animal models of asthma and COPD. Treatment 

with tiotropium significantly inhibited airway smooth muscle remodelling in a 

guinea-pig model of chronic asthma using repeated challenges with ovalbumin 

(98). This was associated with the inhibition of increased contractile protein 

expression and of airway smooth muscle thickening. In a murine model of asthma, 

it was shown that tiotropium could also significantly inhibit smooth muscle 

thickening and the expression of TGF-β1 in BALF (59). Similar effects have been 

described for the muscarinic M3 receptor selective antagonist bencycloquidium 

bromide (61). Furthermore, bencycloquidium bromide reduced mucus production, 

globet cell metaplasia and collagen deposition and inhibited the upregulation of 

MMP-9, but not of TIMP-1 mRNA (61). Treatment with tiotropium also inhibited 

the increased peribronchial collagen deposition in a guinea pig model of COPD 

(54). Similarly, in a chronic gastro-oesophageal reflux model, tiotropium 

treatment prevented the increase in airway fibrosis (7). Taken together, these in 

vivo studies confirm in vitro studies showing that anticholinergics have anti-

remodelling properties in asthma and COPD (Figure 6.2). 

 

 

6.5 Clinical implications 
 

The above mentioned in vitro and in vivo studies indicate significant pro-

inflammatory and remodelling effects for acetylcholine via muscarinic receptors, 

suggesting that anticholinergics may have anti-inflammatory and anti-remodelling 

properties in asthma and COPD patients. This hypothesis still needs to be proven 
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in clinical studies, however. In the UPLIFT study, COPD patients treated with 

tiotropium during a 4 year period showed an improved quality of life and lung 

function, and a reduction in the frequency of exacerbations. Although tiotropium 

did not reduce FEV1 decline in the overall study population (23), in pre-specified 

post-hoc studies, GOLD stage II and young COPD patients with rapid lung function 

decline had a significant improvement in the accelerated post-bronchodilator FEV1 

decline (20, 99). No notable reduction in exacerbation frequency was reported for 

ipratropium (100, 101). This suggests a beneficial role for tiotropium as a long-

acting anticholinergic or a possible role for muscarinic M3 receptor subtype 

selectivity, as tiotropium is kinetically selective for muscarinic M3 receptors 

compared with ipratropium. Moreover, it also indicates anti-inflammatory effects 

of tiotropium, since patients who have more exacerbations demonstrate 

increased levels of inflammatory markers at stable state (102). However, Powrie 

et al. (2007) were not able to demonstrate a reduction in sputum IL-6 or IL-8 

levels in patients treated with tiotropium during one year, even though the 

number of exacerbations was significantly decreased (103). A possible explanation 

for this discrepancy proposed by the authors is that the reduction in amount of 

sputum after tiotropium treatment might result in an increase in cytokine 

concentrations. Measurement of cytokine concentrations in sputum might 

therefore not be the optimal method. Also, Perng et al. (2009) did not find a 

decrease in sputum IL-8 levels after tiotropium treatment (104). However, the 

treatment group in their study was small and patients only received tiotropium 

for 12 weeks. Further studies are therefore needed to elucidate the mechanisms 

by which tiotropium reduces exacerbations and FEV1 decline in subgroups of 

COPD patients and whether this is based on the anti-inflammatory effects of 

tiotropium discussed in this paper or by other effects, including a reduction in 

dyspnea or mucus hypersecretion. Likewise, further studies on the beneficial 

effects of anticholinergics in asthma patients are warranted. In patients with 

severe, uncontrolled asthma it has recently been shown that treatment with 

tiotropium improves lung function (25). Furthermore, a recent clinical trial 

showed that repeated inhalations with the muscarinic receptor agonist 

methacholine induces airway remodelling in asthma patients, including the 

expression of TGF-β and collagen I in bronchial biopsies (76). Therefore, although 

a rationale for beneficial effects of anticholinergics beyond the well-described 

bronchodilator properties in asthma and COPD certainly exists, it is evident that 

this still needs to be confirmed in clinical studies.  
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Acetylcholine, the primary parasympathetic neurotransmitter in the airways, plays 

an important role in the regulation of bronchoconstriction and mucus production 

(1). Anticholinergics, by acting on muscarinic receptors inhibit the increased 

cholinergic tone in asthma and chronic obstructive pulmonary disease (COPD) 

patients. Both diseases are also characterised by inflammation and structural 

changes of the airways, defined as airway remodelling. Remodelling of the airway 

smooth muscle layer has been reported to contribute to the pathophysiology of 

both asthma and COPD. 

Recent evidence suggests that the cholinergic system contributes to inflammation 

and remodelling of the airways, particularly at the level of airway smooth muscle. 

However, the mechanisms involved in these processes have only partially been 

solved. This thesis aims to explore the potential role of the cholinergic system in 

airway smooth muscle responses involved in airway inflammation and 

remodelling, as well as intracellular mechanisms underlying these processes. 

Novel muscarinic receptor-mediated mechanisms involved in the pro-

inflammatory and remodelling responses of the airway smooth muscle are 

described in chapters 2, 3, 4 and 5. Chapter 6 gives an overview of recent 

developments in the regulation of airway inflammation and remodelling by 

muscarinic receptors. 

 

 

7.1 Role of muscarinic receptors in airway  
          inflammation 
 

The role of muscarinic receptors in the regulation of airway inflammation has 

been increasingly recognised during the last decade. Thus, various subtypes of 

muscarinic receptors are expressed on a variety of inflammatory cells (1, 2). 

Moreover, ChAT expression has been detected in immune cells, including 

eosinophils, neutrophils, lymphocytes, macrophages, and mast cells (3). Structural 

cells, including airway smooth muscle cells and epithelial cells, also express 

elements of the cholinergic system (2). Non-immune cells have been reported to 

regulate airway inflammation by secreting cytokines and chemokines (4). The 

airway smooth muscle plays an important role herein, by secreting a wide variety 

of immunomodulatory mediators, including IL-8, RANTES, IL-1β and TGF-β, in 

response to various pro-inflammatory stimuli (5). Recent work from our 

department has demonstrated that airway smooth muscle cells release pro-
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inflammatory cytokines, including IL-8 and IL-6, in response to cigarette smoke 

extract (6). Muscarinic M3 receptor activation synergistically enhanced this 

cytokine release and could also induce the production of IL-8 by itself, albeit to a 

minor extent ((6) and chapter 2). Similarly, others have shown that gene 

expression of pro-inflammatory cytokines, including IL-6 and IL-8, is up-regulated 

by carbachol in airway smooth muscle cells (7). These findings were supported by 

in vivo studies, as in a mouse model of COPD tiotropium bromide significantly 

reduced the cigarette smoke-induced increase of several cytokines, including IL-6, 

in the BALF (8). Moreover, in a guinea pig model of LPS-induced COPD, 

neutrophilia was reduced by tiotropium bromide (9). However, the precise 

mechanisms by which muscarinic M3 receptors enhance the release of pro-

inflammatory cytokines such as IL-6 and IL-8 remained unclear. In chapter 2, we 

demonstrate that the activation of muscarinic receptors on human airway smooth 

muscle cells induces the secretion of pro-inflammatory cytokines IL-8 and IL-6, 

particularly in combination with TNF-α, PDGF-AB and cigarette smoke extract. The 

mechanism behind the synergism between cigarette smoke extract- and 

methacholine-induced IL-8 secretion involves signalling by PKC, NF-κB and ERK1/2. 

This mechanism could be of importance for COPD patients using anticholinergics. 

 

 

7.2 Role of muscarinic receptors in airway  
          remodelling 
 

An important mediator of airway remodelling is TGF-β, a multifunctional cytokine, 

which, among others, is involved in inflammation-induced tissue repair by 

inducing mesenchymal cell growth and extracellular matrix production. In chronic 

inflammatory conditions, as in obstructive airway diseases, this may lead to 

fibrosis. The expression of TGF-β is upregulated in the airways of asthma and 

COPD patients. Indeed, various in vivo studies have demonstrated that 

overexpression of TGF-β1 in mice increases airway smooth muscle mass and 

fibrosis (10, 11). In addition, allergen-induced increased airway smooth muscle 

mass was prevented by anti-TGF-β1 antibodies (12). Nonetheless, in vitro studies 

on the mitogenic effect of TGF-β1 on airway smooth muscle cells are not yet 

conclusive. It appears that TGF-β can regulate both proliferation and maturation 

of airway smooth muscle cells, depending on its concentration (13). In this thesis 

(chapters 3, 4 and 5), we investigated the effects of TGF-β, alone and in concert 
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with muscarinic receptor stimulation, on various processes involved in airway 

smooth muscle remodelling. 

To determine the impact of TGF-β1 and muscarinic receptors on human airway 

smooth muscle phenotype, we studied the effects of TGF-β1, methacholine and 

their combination on contractile protein expression and cell proliferation 

(chapters 3 and 4). In chapter 3, we demonstrated that TGF-β1 on its own 

increases the expression of contractile phenotype markers, including sm-α-actin, 

calponin and sm-myosin, in airway smooth muscle cells (chapter 3, (20-22)). 

Despite the fact that muscarinic receptor stimulation on its own did not induce 

the expression of contractile proteins, it synergistically enhanced the TGF-β1-

induced contractile protein expression in airway smooth muscle cells. 

Furthermore, chapter 3 describes a mechanism by which the cooperative 

regulation of contractile protein expression by TGF-β1 and muscarinic receptor 

stimulation is mediated, namely through enhancing the translational activity by 

phosphorylation of glycogen synthase kinase (GSK)-3 and eukaryotic translation 

initiation factor 4E-binding protein 1 (4E-BP1) and not by upregulation of gene 

expression in human airway smooth muscle cells (Figure 7.1). To our knowledge, 

this is the first study reporting crosstalk between a G protein-coupled receptor 

and TGF-β in airway smooth muscle; however, it remains unclear whether this 

crosstalk is applicable to other G protein-coupled receptors. This is worthwhile to 

further elucidate as many remodelling processes, also outside the airways, involve 

cooperative regulation by G protein-coupled receptor ligands and growth factors 

(14).  
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Figure 7.1. Functional interactions of muscarinic receptors and TGF-β in airway smooth 

muscle remodelling. The release of TGF-β by damaged epithelial cells, inflammatory cells 
and extracellular matrix proteins triggers airway smooth muscle phenotype switching by 
inducing airway smooth muscle cell proliferation and contractile protein expression. 
Muscarinic receptor activation on the airway smooth muscle cell enhances these 
processes. In particular, muscarinic receptors interact with TGF-β activation to allow 
phosphorylation of 4E-BP1 and GSK-3, leading to increased smooth muscle-specific gene 
translation in airway smooth muscle cells, followed by reorganisation of actin and myosin 
filaments to induce contraction. The interaction of muscarinic M2 receptors with TGF-β 
promotes the deposition of extracellular matrix proteins, which triggers airway smooth 
muscle cell proliferation through integrins. The cooperative interactions of TGF-β and 
muscarinic receptors promoting airway smooth muscle remodelling may lead to airway 
hyperresponsiveness. TGFR: transforming growth factor receptor, TGF-β: transforming 
growth factor-β, ACh: acetylcholine, M2R: muscarinic M2 receptor, M3R: muscarinic M3 
receptor, mTOR: mammalian target of rapamycin; PI3K: phosphatidyl inositide 3-kinase, 
GSK-3: glycogen synthase kinase 3; 4E-BP1: eukaryotic translation initiation factor 4E-
binding protein 1. 
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Interestingly, in addition to its role in airway smooth muscle maturation, we also 

demonstrated that prolonged exposure (7 days) to TGF-β1 induced airway smooth 

muscle cell proliferation, which was similarly significantly augmented by 

muscarinic receptor stimulation (chapter 4). Overall, this indicates a pivotal role 

for TGF-β1 in airway smooth muscle phenotype switching, which is under 

important cholinergic control. Airway smooth muscle cells and extracellular matrix 

proteins communicate with each other through heterodimeric glycoproteins 

integrins (15). Integrins have been shown to be involved in airway smooth muscle 

cell proliferation; however, the potential interaction of muscarinic receptors with 

these processes has not been explored yet. Chapter 4 demonstrates that TGF-β1-

induced airway smooth muscle cell proliferation is dependent on the production 

of the extracellular matrix proteins fibronectin and collagen I and their 

subsequent interaction with RGD-binding integrin α5β1 (Figure 7.1). Prolonged 

treatment with TGF-β1 was required for the production of extracellular matrix 

proteins, which is necessary to induce airway smooth muscle cell proliferation. 

Also, muscarinic receptor activation enhanced TGF-β1-induced cell proliferation 

and fibronectin deposition. Remarkably, this process was mediated through 

activation of muscarinic M2 receptors and not M3 receptors, as previously 

reported for the interaction between PDGF and muscarinic receptors in inducing 

airway smooth muscle cell proliferation (16, 17). This implies that in addition to 

muscarinic M3 receptor-mediated effects, also muscarinic M2 receptor mediated 

effects may contribute to airway smooth muscle remodelling. Furthermore, a role 

for GSK-3 signalling can be suggested, as fibronectin expression after TGF-β1 

stimulation has been shown to be under the regulation of the GSK-3β target β-

catenin (18), whereas chapter 3 demonstrates that crosstalk between muscarinic 

receptors and TGF-β1 enhanced the phosphorylation of 4E-BP1 and GSK-3β 

resulting in increased expression of contractile proteins in the human airway 

smooth muscle cells. Overall, an important role for GSK-3 signalling in the 

crosstalk between muscarinic receptor and TGF-β1 signalling in airway smooth 

muscle remodelling processes is suggested. 

Recently, evidence for a role of methacholine-induced bronchoconstriction in 

airway remodelling was found in patients with asthma (19). Indeed, increased 

levels of collagen deposition, TGF-β expression and proliferating epithelial cells 

were measured in asthma patients, who were subjected to repeated 

methacholine challenges (19). In vitro, cyclical mechanical strain of airway smooth 

muscle enhanced the expression of contractile proteins in response to muscarinic 
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agonists (20). Moreover, contractile agonists, including methacholine, activated 

the release of TGF-β from airway smooth muscle cells through reorganization of 

the cytoskeleton and inside-out activation of αvβ5 integrins (25). This process was 

enhanced in asthmatic cells (21). In this thesis, we hypothesised that 

bronchoconstriction contributes to airway remodelling by inducing the release of 

TGF-β (Figure 7.1). This hypothesis was investigated in precision-cut lung slices. As 

demonstrated in airway smooth muscle cells ((22) and chapter 3) we observed 

that exogenous TGF-β also induced increased expression of contractile proteins in 

precision-cut lung slices in a time-and concentration-dependent manner (chapter 

5). Moreover, we demonstrated that muscarinic receptor activation induced the 

release of endogenous biologically active TGF-β in these slices, resulting in an 

increase of contractile protein expression, including sm-myosin and sm-α-actin. 

This remodelling process was shown to be due to bronchoconstriction induced by 

the muscarinic agonist, as inhibition of actin polymerization (latrunculin A) 

prevented these effects. This was apparently in contrast to chapter 3, where we 

demonstrated that muscarinic receptor stimulation by itself did not induce 

increase contractile protein expression in cultured airway smooth muscle cells. 

Moreover, in precision cut lung slices, bronchoconstriction induced by other 

contractile agonists, including histamine and potassium chloride, increased the 

expression of contractile protein phenotype markers as well. The above 

mentioned findings are in agreement with the study of Grainge et al. (19), 

demonstrating that repeated inhalations with methacholine induce the release of 

TGF-β and airway remodelling in bronchial biopsies of patients with mild asthma 

(19). Based on our findings and those of Grainge et al., we propose that 

bronchoconstriction in asthma and COPD induces airway remodelling through the 

release of biologically active TGF-β. Our results in the precision-cut lung slices 

further extend the importance of the cooperative regulation of airway 

remodelling by muscarinic receptors and TGF-β. Overall, this would imply a 

beneficial effect of bronchodilators, including anticholinergics, on airway 

remodelling, which should be followed up in future studies. Furthermore, the use 

of precision-cut lung slices has proven to be a suitable model to study processes 

involved in airway remodelling induced by bronchoconstriction. 

 

In conclusion, the findings presented in chapters 2-5 point out the important 

functional role of muscarinic receptors in pro-inflammatory and remodelling 

processes in the airway smooth muscle cells and support a beneficial non-
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bronchodilator role for anticholinergics to protect against these processes. A role 

for GSK-3/4E-BP1 signalling in airway smooth muscle remodelling processes 

induced by muscarinic receptor and TGF-β is proposed. 

 

 

7.3 Clinical implications 
 

The UPLIFT study (Understanding Potential Long-Term Impacts on Function with 

Tiotropium), a recent 4 year double-blind, randomised, placebo-controlled clinical 

trial investigating the effect of tiotropium on the progressive decline in FEV1 in 

COPD patients, showed that tiotropium improved lung function, the risk of 

respiratory failure and quality of life, and reduced exacerbations and 

hospitalisations, but did not reduce the rate of decline of FEV1 (23). However, in 

post-hoc studies, young COPD patients presenting a rapid lung function decline 

and GOLD stage II patients had a reduced rate of decline of FEV1 when treated 

with tiotropium (24, 25), suggesting a potential disease-modifying effect of 

anticholinergics such as tiotropium in specific subpopulations of COPD patients. 

Recently, Kerstjens et al. demonstrated the potential of tiotropium in patients 

with severe and uncontrolled asthma, by showing a significantly improved lung 

function and reduced exacerbation frequency in these patients (26, 27). These 

effects might be explained by beneficial effects on airway inflammation and 

remodelling; however, further clinical studies are needed to substantiate this 

hypothesis. In support, repeated inhalations of methacholine induced airway 

remodelling in patients with mild asthma, by increasing the expression of TGF-β 

and collagen I (19). 

 

 

7.4 Future perspectives 
 

In this thesis, we show for the first time that muscarinic M2 receptors are involved 

in airway smooth muscle phenotype switching, by promoting cell proliferation 

through the deposition of extracellular matrix proteins. In addition, muscarinic M2 

receptors mediate both proliferation and collagen synthesis in fibroblasts (28,29). 

These findings raise the question as to whether the kinetic selectivity towards the 

M3 receptor of particularly the clinically used long-acting anticholinergics is 
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beneficial. Therefore, it will be important to study the distinct roles of M1, M2, and 

M3 receptors in airway remodelling and inflammation. 

Several approaches can be used to determine the involvement of the muscarinic 

receptor subtype(s) in inflammatory and remodelling processes. First, in vitro 

studies using selective antagonists in cultured cells are useful to identify the 

specific role of muscarinic receptor subtypes in specific cellular functions. 

However, many cell types are present in the airways and their response is highly 

dependent on intercellular communication and interaction with the environment. 

In this regard a more informative approach would be in vivo studies in animal 

models of asthma and COPD, using different experimental subtype-selective 

muscarinic receptor antagonists or muscarinic receptor subtype specific knockout 

mice. Alternatively, precision cut lung slices as described in chapter 5 can be used, 

which may also be applied to the muscarinic receptor subtype knockout mice. 

Cellular infiltration from the bloodstream is lacking in these slices; however, 

responses of infiltrated cells can be studied when the animals are first subjected 

to challenges. Using this model, fewer animals would be required, as several 

conditions can be investigated in one animal. By understanding the effects of 

specific muscarinic receptor subtypes on airway remodelling, inflammation and 

mucus production, including the intracellular mechanisms involved, an 

improvement in the treatment of asthma and COPD may be acquired. 

Further, findings described in this thesis demonstrate the ability of muscarinic 

receptors in airway smooth muscle to synergize with TGF-β-induced responses. 

Although TGF-β has anti-inflammatory properties, TGF-β is highly expressed in the 

airways of asthma and COPD patients and show as well pro-inflammatory and pro-

remodelling effects (30, 31), therapy against TGF-β could therefore be envisaged. 

To investigate the cooperative effects of TGF-β and muscarinic receptor activation 

in the airways, in vivo models could be used. For example, the effect of an 

anticholinergic in transgenic mice overexpressing TGF-β could be studied. 

Alternatively, muscarinic receptor subtype specific knockout mice (M1/M2/M3) 

could be treated with TGF-β and anti-TGF-β to acquire more information on the 

cooperative interaction of muscarinic receptors and TGF-β on airway remodelling 

and inflammation. The development of potent specific inhibitors of TGF-β 

signalling, possibly in combination with selective anticholinergics might be a 

promising drug therapy for asthma and COPD patients to halt and reverse both 

airway remodelling, inflammation and mucus production. However, decreased 

TGF-β signalling has also been reported to mediate parenchymal tissue 
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destruction in emphysema (31). SD-208, a TGF-β inhibitor has been developed; 

however, there may be long term concerns about the inhibition of TGF-β, like 

maintaining sufficient levels of regulatory T lymphocytes (32). Overall, this 

stresses the importance of further elucidating TGF-β signalling in chronic airway 

diseases. 

 

 

7.5 Main conclusions 
 

In conclusion, the studies described in this thesis revealed that: 

� Muscarinic receptor stimulation augments the pro-inflammatory response 

of airway smooth muscle in response to cigarette smoke extract, TNF-α 

and PDGF, as measured by IL-8 and IL-6 release (chapter 2). 

� The augmentation of IL-8 release is mediated by activation of PKC, 

followed by activation of the NF-κB- and ERK1/2-dependent pathways. 

This response is mediated by muscarinic M3 receptors (chapter 2). 

� TGF-β mediates phenotype switching, i.e. proliferation and maturation, of 

airway smooth muscle cells (chapters 3, 4 and 5). 

� Muscarinic receptor stimulation enhances TGF-β-induced contractile 

protein expression in airway smooth muscle cells (chapters 3 and 5). 

� The enhanced contractile protein expression by muscarinic receptor 

stimulation is mediated by activation of the PI3K pathway, as indicated by 

the phosphorylation of 4E-BP1 and GSK-3 (chapter 3). 

� Prolonged exposure to TGF-β is required to induce airway smooth muscle 

cell proliferation by this cytokine. This involves enhanced deposition of 

extracellular matrix proteins, which subsequently induce proliferation via 

interaction with RGD-binding (α5β1) integrins (chapter 4). 

� Muscarinic M2 receptors, but not muscarinic M3 receptors, enhance TGF-

β-induced airway smooth muscle cell proliferation by deposition of 

fibronectin, but not of collagen I (chapter 4). 

� Precision cut lung slices are a suitable model to study airway remodelling 

processes in vitro (chapter 5). 
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� Bronchoconstriction induces the release of endogenous biologically active 

TGF-β, which contributes to airway remodelling by promoting contractile 

protein expression (chapter 5). 

Beyond their role in the contraction of airway smooth muscle cells, muscarinic 

receptors are also important in inflammatory and remodelling responses by these 

cells, involving complex intracellular signalling mechanisms.  
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 Nederlandse samenvatting 
 

 

Chronische aandoeningen van de luchtwegen, zoals astma en chronisch 

obstructief longlijden (COPD) vormen een groot wereldwijd gezondheidsprobleem. 

De wereldwijde incidentie van zowel astma als COPD stijgt en naar verwachting 

zal COPD in 2020 epidemische proporties aannemen. Zowel astma als COPD 

worden gekenmerkt door beperking van de luchtstroom en chronische 

aanhoudende luchtwegontsteking. Acetylcholine is de primaire parasympathische 

neurotransmitter in de luchtwegen en speelt een belangrijke rol in 

luchtwegconstrictie en mucusproductie door activering van muscarinereceptoren 

in de luchtwegen. Astma- en COPD-patiënten kunnen behandeld worden met 

anticholinergica (deze blokkeren de werking van acetylcholine op de 

muscarinereceptoren) om de verhoogde cholinerge tonus (ten gevolge van 

overmatige afgifte van acetylcholine) te blokkeren. Naast een verhoogde 

cholinerge tonus spelen ontsteking en structurele veranderingen van de 

luchtwegen (luchtweg-remodelling) een belangrijke rol bij astma en COPD. 

Remodelling van de zg. gladde spierlaag rond de luchtwegen bijvoorbeeld draagt 

sterk bij aan de pathofysiologie van deze ziektes. Hierbij kunnen luchtweg-gladde 

spiercellen fenotypische veranderingen ondergaan, waarbij een omkeerbare 

overgang van een contractiel naar een proliferatief fenotype mogelijk is. 

Recentelijk is aangetoond dat acetylcholine ook kan bijdragen aan ontsteking en 

luchtweg-remodelling, in het bijzonder van de luchtweg-gladde spierlaag. Het is 

echter nog onbekend welke mechanismen hieraan ten grondslag liggen.  

In dit proefschrift wordt de potentiële rol van acetylcholine bij ontsteking en 

luchtweg-remodelling in de luchtweg-gladde spierlaag onderzocht. In hoofdstuk 2, 

3, 4 en 5 worden nieuwe mechanismen besproken die betrokken zijn bij deze 

processen. Hoofdstuk 6 geeft een overzicht van de recente ontwikkelingen op het 

gebied van luchtwegontsteking en -remodelling en de betrokkenheid van de 

muscarinereceptor hierbij. 
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Rol van muscarinereceptoren bij ontsteking van de 
luchtwegen 
 

De bijdrage van muscarinereceptoren aan luchtwegontsteking wordt steeds 

duidelijker. Niet alleen is duidelijk geworden dat verschillende subtypes van 

muscarinereceptoren tot expressie worden gebracht in ontstekingscellen, maar 

ook is gevonden dat ChAT (het enzym dat acetylcholine synthetiseert) in 

ontstekingscellen, zoals eosinofielen, neutrofielen, lymfocyten, macrofagen en 

mestcellen, tot expressie wordt gebracht. In structurele cellen, zoals luchtweg-

gladde spiercellen en epitheelcellen komen ook verschillende onderdelen van dit 

cholinerge systeem tot expressie. Ook is aangetoond dat deze laatstgenoemde 

celtypes kunnen bijdragen aan luchtwegontsteking d.m.v. de aanmaak en afgifte 

van specifieke cytokinen en chemokinen. Luchtweg-gladde spiercellen 

bijvoorbeeld reguleren de productie en afgifte van immunomodulerende 

mediatoren, zoals interleukine (IL)-8, IL-1β en transforming growth factor (TGF)-β, 

na activatie door pro-inflammatoire stimuli. Dit proefschrift toont aan dat 

luchtweg-gladde spiercellen ook pro-inflammatoire cytokinen, zoals IL-6 en IL-8, 

vrijzetten na activatie met sigarettenrook. Activatie van muscarine M3 receptoren 

versterkt deze respons, en kan ook zelf in geringe mate de IL-8 productie 

induceren (hoofdstuk 2). Deze in vitro bevindingen worden ondersteund door 

verschillende in vivo studies die aangeven dat het anticholinergicum tiotropium 

bromide de expressie van verschillende cytokinen, waaronder IL-6, significant 

remt in de bronchoalveolaire lavagevloeistof van muizen die blootgesteld zijn aan 

sigarettenrook. Tevens verminderde tiotropium bromide de neutrofiele 

luchtwegontsteking na herhaalde lipopolysaccharide-blootstelling in een 

caviamodel voor COPD. De precieze mechanismen waarmee muscarine M3 

receptoren het vrijzetten van cytokinen zoals IL-6 en IL-8 bevorderen waren 

echter nog onbekend. De resultaten in hoofdstuk 2 tonen aan dat de activatie van 

muscarinereceptoren op humane luchtweg-gladde spiercellen de afgifte van de 

cytokinen IL-8 en IL-6 bevordert, in het bijzonder in combinatie met TNF-α, 

platelet derived growth factor (PDGF)-AB en sigarettenrookextract. Het 

mechanisme achter deze synergistische effecten berust op signaaltransductie via 

de eiwitten PKC, NF-κB en ERK1/2. Dit mechanisme kan van belang zijn voor 

patiënten met COPD die anticholinergica gebruiken, omdat onsteking een 

belangrijk onderdeel is van de ziekte. 

 



 

 
185

Rol van muscarinereceptoren bij luchtweg-remodelling 
 

Een belangrijke groeifactor voor luchtweg-remodelling is TGF-β. Deze factor is 

betrokken bij meerdere processen, waaronder het herstel van weefselschade die 

door ontsteking is ontstaan. Bij weefselschade zal de groeifactor TGF-β celgroei 

(proliferatie) induceren, waaronder die van gladde spiercellen, maar ook de 

aanmaak van extracellulaire matrixeiwitten bevorderen. Bij chronische 

ontstekingsziektes, zoals COPD en astma, leiden deze mechanismen tot fibrose 

(overmatig bindweefsel). De expressie van TGF-β is verhoogd in de luchtwegen 

van astma- en COPD-patiënten. In vivo studies hebben aangetoond dat 

overexpressie van TGF-β1, een isovorm van TGF-β, in muizen leidt tot verdikking 

van de luchtweg-gladde spierlaag en tot fibrose. Het toedienen van anti-TGF-β1 

antilichamen (antilichamen die de werking van TGF-β1 blokkeren) voorkomt de 

verdikking van de luchtweg-gladde spierlaag na blootstelling van muizen aan 

allergenen. Desondanks zijn de resultaten met betrekking tot de mitogene 

eigenschappen van TGF-β1 in luchtweg-gladde spiercellen in vitro niet eenduidig. 

Het blijkt dat TGF-β1 in vitro zowel proliferatie (celgroei) als maturatie (verhoogde 

expressie van contractiele eiwitten) van de luchtweg-gladde spiercel kan 

induceren, afhankelijk van de concentratie. In dit proefschrift (hoofdstuk 3, 4, en 

5) hebben we de invloed van TGF-β1 op luchtweg-remodelling en de interactie 

met muscarinereceptoractivatie verder bestudeerd. 

Om de invloed van TGF-β1 en muscarinereceptoractivatie op het humane 

luchtweg-gladde spiercel fenotype te bepalen, hebben we de effecten van TGF-β1, 

methacholine en hun combinatie op de expressie van contractiele eiwitten 

(hoofdstuk 3) en celproliferatie (hoofdstuk 4) onderzocht. De resultaten 

beschreven in hoofdstuk 3 tonen aan dat TGF-β1 de expressie van contractiele 

eiwitten zoals sm-α-actin, calponin en sm-myosin kan induceren in luchtweg-

gladde spiercellen. Hoewel muscarinereceptoractivatie op zichzelf de expressie 

van contractiele eiwitten niet bevorderde, versterkte het significant de effecten 

van TGF-β1 hierop. Muscarinereceptoractivatie draagt derhalve bij aan de 

maturatie van de luchtweg-gladde spiercellen. Het synergistisch effect van TGF-β1 

en muscarinereceptoractivatie wordt veroorzaakt door een verhoging van de 

fosforylering van glycogen synthase kinase (GSK)-3 en eukaryotic translation 

initiation factor 4E-binding protein 1 (4E-BP1), en beinvloedt hiermee wel de 

eiwit-, maar niet de genexpressie van de contractiele eiwitten. Dit is de eerste 

studie die crosstalk van een G-eiwit gekoppelde receptor (in dit geval de 
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muscarinereceptor) en TGF-β in luchtweg-gladde spiercellen heeft aangetoond. 

Verdere studies zijn nodig om te onderzoeken of deze crosstalk voorkomt bij 

andere klassen G-eiwit gekoppelde receptoren. Het is zeker de moeite waard om 

dit verder te onderzoeken, omdat veel remodellingsprocessen, ook buiten de 

luchtwegen, gekenmerkt worden door de betrokkenheid van zowel G-eiwit 

gekoppelde receptorliganden als van groeifactoren, zoals TGF-β. 

Hoofdstuk 4 laat zien dat langdurige blootstelling van luchtweg-gladde spiercellen 

aan TGF-β1 ook proliferatie kan induceren. Deze respons wordt eveneens 

significant versterkt door muscarinereceptoractivatie. Het mechanisme waarop de 

inductie van luchtweg-gladde spiercelproliferatie door TGF-β1 en 

muscarinereceptoractivatie wordt bevorderd, is nader onderzocht in dit 

hoofdstuk. Luchtweg-gladde spiercellen en extracellulaire matrix (ECM) eiwitten 

(eiwitten die toegenomen zijn bij fibrose) communiceren met elkaar d.m.v. 

integrinen, receptoren voor ECM eiwitten op de gladde spiercel. Eerder is 

aangetoond dat sommige integrinen betrokken zijn bij luchtweg-gladde 

spiercelproliferatie, maar de mogelijke interactie met muscarinereceptoren was 

nog niet eerder bestudeerd. Hoofdstuk 4 toont aan dat de door TGF-β 

geïnduceerde luchtweg-gladde spiercelproliferatie afhankelijk is van de productie 

van ECM eiwitten, zoals fibronectine en collageen I, en van hun interactie met 

α5β1 integrinen. Deze integrinen binden aan een specifieke aminozuursequentie 

(RGD) op de genoemde ECM eiwitten. Langdurige blootstelling aan TGF-β1 is 

noodzakelijk om voldoende ECM eiwit te produceren voor de inductie van 

luchtweg-gladde spiercelproliferatie. Daarnaast verhoogt muscarinereceptor-

activatie de door TGF-β1 geïnduceerde celproliferatie en fibronectine productie, 

maar niet de productie van collageen I. Dit proces wordt gemedieerd door 

muscarine M2 receptoren en niet door M3 receptoren, zoals eerder was 

aangetoond voor de interactie met de groeifactor PDGF bij de inductie van 

luchtweg-gladde spiercelproliferatie. Hoofdstuk 4 is de eerste studie die aantoont 

dat muscarine M2 receptoren ook betrokken zijn bij remodellingsprocessen van 

luchtweg-gladde spiercellen.  

Bij astmapatiënten is recent aangetoond dat bronchoconstrictie ook een rol kan 

spelen in luchtwegremodelling. In luchtwegbiopten van patiënten met astma die 

herhaald blootgesteld werden aan methacholine, werd een verhoogde 

collageendepositie, TGF-β-expressie en epitheelcelproliferatie aangetoond. 

Contractiele agonisten zoals methacholine kunnen reorganisatie van het 

cytoskelet en activatie van αvβ5 integrinen veroorzaken, wat kan leiden tot afgifte 
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van TGF-β door de luchtweg-gladde spiercellen. Dit proces bleek versterkt in 

luchtweg-gladde spiercellen van astmapatiënten. In dit proefschrift hebben we de 

hypothese onderzocht dat bronchoconstrictie bijdraagt aan luchtweg-remodelling 

door de TGF-β vrijzetting te bevorderen (hoofdstuk 5). Deze hypothese hebben 

we onderzocht door gebruik te maken van zogenaamde precision-cut lung slices 

(met precisie gesneden dunne longplakjes). Met behulp van deze methode 

hebben we aangetoond dat methacholine op een tijds- en concentratie-

afhankelijke manier de expressie van contractiele eiwitten bevordert. Daarnaast 

tonen de resultaten van hoofdstuk 5 aan dat muscarinereceptoractivatie de 

vrijzetting van endogeen, biologisch actief, TGF-β induceert in deze slices en dat 

dit de oorzaak is van de toename in contractiele eiwitexpressie. Dit effect werd 

geremd door het gebruik van latrunculin A (“verlamt” de spier door remming van 

de actinepolymerisatie nodig voor contractie) en een TGF-β receptorblokker. In 

hoofdstuk 5 werd tevens een verhoogde expressie van contractiele eiwitten in 

precision-cut lung slices gevonden met andere contractiele stimuli, zoals 

histamine en kaliumchloride. Gebaseerd op onze bevindingen en de eerder 

genoemde klinische studie, concluderen wij dat bronchoconstrictie leidt tot 

luchtwegremodelling via de vrijzetting van TGF-β. Onze bevindingen in de 

precision-cut lung slices ondersteunen derhalve het belang van de coöperatieve 

regulatie van luchtwegremodelling door muscarinereceptoractivatie en TGF-β. 

Daarnaast wijst het op potentieel gunstige effecten van bronchusverwijders, zoals 

anticholinergica, op de luchtwegremodelling. Dit zal verder moeten worden 

onderzocht. Het gebruik van precision-cut lung slices is een zeer bruikbare 

methode gebleken om bronchoconstrictie-geïnduceerde luchtweg remodelling in 

vitro te bestuderen. 

Samenvattend wijzen de bevindingen in hoofdstuk 2-5 op het belang van 

muscarinereceptoren bij ontstekings- en remodellingsprocessen in luchtweg-

gladde spiercellen en de mogelijk gunstige effecten van anticholinergica op deze 

processen. Dit proefschrift beschrijft ook een nieuwe rol voor GSK-3/4E-BP1 

signalering in remodellingsprocessen in de luchtweg-gladde spier, gemedieerd 

door muscarinereceptoractivatie en TGF-β. 
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Toekomstperspectieven 
 

In dit proefschrift wordt voor de eerste keer bewezen dat muscarine M2 

receptoren betrokken zijn bij fenotype veranderingen van luchtweg-gladde 

spiercellen, met name door het bevorderen van celproliferatie via de afzetting van 

ECM eiwitten. In fibroblasten zijn soortgelijke bevindingen gedaan, waar 

muscarine M2 receptoren een rol hebben bij zowel proliferatie als 

collageensynthese. Deze bevindingen trekken het veronderstelde gunstige effect 

van selectieve muscarine M3 receptorantagonisten in twijfel. Daarom is het 

belangrijk om de specifieke rol van muscarine M1, M2 en M3 receptoren in 

luchtwegremodelling en -ontsteking verder in kaart te brengen. 

Er zijn verschillende benaderingen om de rol van de muscarinereceptorsubtype(s) 

bij ontstekings- en remodellingsprocessen te bepalen. In vitro studies met 

selectieve antagonisten in gekweekte cellen kunnen bruikbaar zijn om de 

specifieke rol van muscarinereceptorsubtypes bij specifieke celfuncties te 

identificeren. Er zijn echter veel verschillende celtypes aanwezig in de luchtwegen 

en hun respons is sterk afhankelijk van intercellulaire communicatie en interactie 

met de omgeving. In dit verband zullen in vivo studies met diermodellen voor 

astma en COPD een meer informatieve benadering vormen, waarin verschillende 

experimentele subtype-selectieve muscarinereceptorantagonisten of 

muscarinereceptorsubtype-specifieke knockout-muizen onderzocht kunnen 

worden. Een ander alternatief is het gebruik van precision-cut lung slices zoals 

beschreven in hoofdstuk 5, wat ook kan worden toegepast op de 

muscarinereceptorsubtype knockout-muizen. Alhoewel de circulatie van 

bloedcellen ontbreekt in deze slices, kan de respons van geïnfiltreerde cellen wel 

onderzocht worden wanneer de dieren eerst blootgesteld worden aan 

bijvoorbeeld allergeen. Met dit model zouden minder dieren nodig zijn, omdat 

verschillende omstandigheden van één dier onderzocht kunnen worden. Het 

begrijpen van de rol van specifieke muscarinereceptorsubtypen op 

luchtwegremodelling, -ontsteking en slijmproductie, en de betrokken 

intracellulaire signaaltransductiemechanismen, kan leiden tot een verbetering in 

de behandeling van astma en COPD. 

De bevindingen beschreven in dit proefschrift tonen het vermogen aan van 

muscarinereceptoren om de effecten van TGF-β op de luchtweg-gladde spieren te 

bevorderen. Hoewel TGF-β ontstekingsremmende eigenschappen heeft, komt 

TGF-β sterk tot expressie in de luchtwegen van astma- en COPD-patiënten en 
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heeft het ook ontstekingsbevorderende en remodellingsbevorderende effecten. 

Therapie gericht tegen TGF-β zou daarom overwogen moeten worden. Om de 

coöperatieve effecten van TGF-β en muscarinereceptoractivering in de 

luchtwegen te onderzoeken, kunnen in vivo modellen gebruikt worden. Zo zou 

bijvoorbeeld het effect van een anticholinergicum op transgene muizen die TGF-β 

tot overexpressie brengen bestudeerd kunnen worden. Een alternatief is om 

muscarinereceptorsubtype-specifieke knockout-muizen (M1/M2/M3) te 

behandelen met TGF-β en anti-TGF-β. Dit zou meer informatie op kunnen leveren 

over de coöperatieve interactie van muscarinereceptoren en TGF-β bij 

luchtwegremodelling en ontstekingsprocessen. De ontwikkeling van specifieke 

inhibitoren van TGF-β signalering, eventueel in combinatie met een selectieve 

anticholinergica, zou een veelbelovende therapie voor astma- en COPD-patiënten 

kunnen opleveren om de luchtwegremodelling, -ontsteking en slijmproductie te 

verminderen. Hierbij moet echter opgemerkt worden dat juist verminderde TGF-β 

signalering betrokken is bij de parenchymale weefselafbraak bij emfyseem. 

Bovendien is met de TGF-β-remmer SD-208 aangetoond dat langdurige remming 

van TGF-β kan leiden tot afname van regulatoire T-lymfocyten. Daarom is verdere 

opheldering van de rol van TGF-β bij chronische luchtwegaandoeningen, zoals 

astma en COPD, noodzakelijk. 

 

 

Conclusies 
 

De belangrijkste conclusies van dit proefschrift zijn: 

� Activatie van muscarinereceptoren versterkt de door sigarettenrook, TNF-

α en PDGF geïnduceerde vrijzetting van IL-6 en IL-8 door luchtweg-gladde 

spiercellen (hoofdstuk 2). 

� De bovengenoemde toename in IL-8 afgifte wordt gemedieerd door PKC-

activatie, gevolgd door de activatie van NF-κB en ERK1/2-afhankelijke 

signaaltransductieroutes. De cholinerge respons wordt gemedieerd door 

muscarine M3 receptoren (hoofdstuk 2). 

� TGF-β kan zowel proliferatie als maturatie van luchtweg-gladde 

spiercellen induceren (hoofdstuk 3, 4 en 5). 

� Activatie van muscarinereceptoren verhoogt de door TGF-β geïnduceerde 

contractiele eiwitexpressie in luchtweg-gladde spiercellen (hoofdstuk 3 

en 5). 
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� De door muscarinereceptoractivatie verhoogde contractiele 

eiwitexpressie wordt gemedieerd door fosforylatie van 4E-BP1 en GSK-3 

(hoofdstuk 3). 

� Langdurige blootstelling aan TGF-β is noodzakelijk om proliferatie te 

induceren in luchtweg-gladde spiercellen. Hiebij speelt een verhoogde 

depositie van ECM eiwitten door TGF-ß een cruciale rol. De proliferatie 

wordt veroorzaakt door interactie tussen de ECM eiwitten en de 

luchtweg-gladde spiercel via de RGD-bindende (α5β1) integrinen 

(hoofdstuk 4). 

� Muscarine M2 receptoren versterken de door TGF-β geïnduceerde 

luchtweg-gladde spiercelproliferatie door bevordering van de depositie 

van fibronectine, maar niet van collageen I (hoofstuk 4). 

� Precision-cut lung slices zijn een uitstekend model om 

luchtwegremodelling in vitro te bestuderen (hoofdstuk 5). 

� Bronchoconstrictie induceert de afgifte van endogeen en biologisch actief 

TGF-β. Dit draagt bij aan luchtwegremodelling, waaronder de expressie 

van contractiele eiwitten (hoofdstuk 5). 
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