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One Dimensional Spin Glasses 
with Potential Decay 1/r 1 +.. 
Absence of Phase Transitions and Cluster Properties 

M. Campanino 1'*, E. Olivieri 2, and A. C. D. van Enter 3'** 

Dipartimento di Matematica, II Universitfi di Roma "Tor Vergata', via Orazio Raimondo, 
1-00173 (La Romanina), Roma, Italy 
2 Dipartimento di Matematica, Universit~ di Roma "La Sapienza', p. le A. Moro 5, 
1-00185 Roma, Italy, C.N.R.-G.N.F.M. 
3 SFB 123, University of Heidelberg, Im Neuenheimer Feld 294, D-6900 Heidelberg 1, 
Federal Republic of Germany 

Abstract. One-dimensional Ising spin systems interacting via a two-body 
random potential are considered; a decay with the distance like 1/r a÷` is 
assumed. 

We consider only boundary conditions independent of the random 
realization of the interactions and prove uniqueness and cluster properties of 
Gibbs states with probability one. 

1. Introduction 

Spin glasses are at present one of the major areas of interest in Statistical 
Mechanics. Only few problems have so far been solved in a rigorous way. In 
particular the existence and the nature of phase transitions are still open problems 
even in the Sherrington-Kirkpatrick mean field theory, for which however a very 
precise heuristic theory exists (see [10]). 

As far as rigorous results are concerned, we mention the proof of the existence 
of thermodynamics for interactions decaying like r-=a w i t h ,  > 1/2 in d dimensions 
[4, 7, 9]. Khanin [8] proved the uniqueness of Gibbs distribution in one dimension 
for interactions decaying like r -= with ~ > 3/2. Cassandro et al. [2] proved under 
the same conditions the infinite differentiability of thermodynamic functions. 

The one-dimensional case with 1 < ~ < 3/2 appears qualitatively different from 
the former case, since here it is not true that the supremum of the interaction 
among two contiguous half-lines over all spin configurations is finite with 
probability one. This case has been considered in [5], where the authors deal with 
the problem of absence of symmetry breaking. They show essentially that the 
interaction among two contiguous half-lines is bounded if one excludes a subset of 
"bad" spin configurations of zero Gibbs measure. The situation is reminiscent of 
superstable unbounded spins (see [1]), but here the set of bad configurations 
depends on the random realization of the interaction. 
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We remark that the proof of the main result of [5] is not correct even though we 
think that it is possible to get a weaker result (see Corollary 3.6 of the present 
paper) by using the ideas of [5] and some further considerations. For a family of 
Gibbs states #(s), obtained by J-independent boundary conditions, the authors can 
show that #(J) and the corresponding spin flipped state are mutually absolutely 
continuous. As they want to prove absence of symmetry breaking they are forced 
to consider extremal Gibbs states, which are a priori obtained by J dependent 
boundary conditions. However their proof which uses Fubini's theorem, can only 
be applied to J-independent boundary conditions. Similar considerations hold for 
[3]. It is thus not excluded that for a relevant set of interactions some "exotic" 
states, not necessarily symmetry preserving, could be obtained by imposing 
boundary conditions dependent on the realization of the interaction. We do not 
comment any further on this question that seems to us difficult to settle but not 
very relevant from the physical point of view. 

In this paper we consider only interaction-independent boundary conditions 
and we prove that 

i) the Gibbs expectation in a volume A of an observable localized far away 
from the boundary has a weak dependence on boundary conditions with large 
probability; 

ii) for any given boundary condition the limiting Gibbs state exists, is a pure 
state and satisfies a suitable mixing property; 

iii) any two boundary conditions give rise, with probability one, to the same 
Gibbs state. 

The strategy of the proof is to consider the system as a nearest neighbour block 
model (which has exponential decay of correlations in the block distance) plus a 
small long-range perturbation. This can be shown to work with sufficiently high 
probability. 

In Sect. 2 we give definitions and notation. In Sect. 3 we state our results and 
prove them by using two main Lemmas 3.1 and 3.2. In Sect. 4 we prove 
Lemmas 3.1 and 3.2. In the appendix we prove a proposition about factorization of 
products of transfer matrices. 

2. Definitions and Notation 

Given A E Z  the configuration space in A is the set ~9°A={--1,1} lal. Given 
A1 CAzC2g and s ~ SPa2, we denote by Sial the restriction of s to A1. Given A~, 
A2CZ, with Alc~A2=O and S ( 1 ) ~ A 1  , S(2)~°A2 , we denote by S(1) VS (2) the 

s (2) configuration s~5°A~uSPa~ such that slai=s~), slA2 = . 
Given A c__ • we denote by C(A) the space of all real valued functions on SPa 

continuous with respect to the usual product topology on SPa, and we put for 
fsC(A)" [If[] = sup f(s). An element f of C(A) will be identified with that 

s¢~ 'A 

element,f  of C(A') with A'D A such that f(s)=f(s[A). 
We introduce a random variable Jij for each unordered pair i, j, i +j ,  i, j 6 Z. 

The variables Jzj are assumed to be independent and identically distributed with 
common distribution dF(x). We require 

SxdF(x)=O, Vt~IR:Sexp(tx).dF(x)<oo. (2.1) 
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In particular for small t 'Sexp(tx)dF(x)=exp(f l tz)+O(t3) .  We shall always 
assume that the realization of the variables Ju  is such that for every i s 2~: 

[Jol < ~ .  (2.2) sup 
j , i  logl i - j l  + 1 

This can be done as the set of such realizations has probability I due to the second 
hypothesis on the distribution dF(x). 

Given a real number ~ > 1 (the interesting case will be 1 < ~ < 3/2), we define the 
energy HA(S) [or H(s) when no confusion can arise] of a configuration s e 6ca with 
A finite C Z by Jij 

H A(S) =i,jsA ~" ~----~( g sisj " (2.3) 
i * j  

Given A1, A2CZ, A l n A 2 = 0 ,  with A1 or A2 finite, s(~)eSPa~, s(2)eSea2, the 
interaction WA~,A2(S m, S (2)) [or simply W(s (1), s(Z))] between s (1) and s (2) is defined 
by 

J i j  "1" (2" 
WAr A2(S (1), S(2)) -~" ~.. - - S  (")S" ) .  (2.4) 

' i ~ a l  l i - - j [  ~ ~ J 

j$A2 

Inequality (2.2) implies that the series on the right-hand side (2.4) is absolutely 
convergent also when A~ or A2 (but not both) is infinite. 

Let now A C Z be finite. Let h e C(Z) and v be a finite, positive measure on 5va, 
h We define the probability measure #A, ~ on 5P~, by 

1 
t~ha, ~(f) = -Z~, ,7 Y. I f (s v a)e h(* ~ ")dv(a) (2.5) 

A, v s ~ ~gaA 
for f E  C(Z), where 

Zna,~ = Z S eh('~)dv(a) . (2.6) 
S~5aA 

Let a realization of the Ju's be given, let A be a finite subset of Z, and let a be a 
fixed configuration in 5~2,. We define the Gibbs distribution fiA, ~ in the volume A 
with boundary condition a by 

- h~ (2 .7)  

where ha(s)=HA(S[A)+WA,A.(SlA, Sla~) for s e ~ ,  and 6~t.,o is the probability 
measure concentrated on the configuration alAq 

3 .  M a i n  R e s u l t s  

Our results follow from the following Lemmas 3.1 and 3.2 that will be proven in the 
next section. 

Given an integer L > 0 we define A L = {j E 2g : - L < j  <__ L}. 

3.1. Lemma. Let k be a positive integer. There exists Lo(k ) such that for A = A L with 
L > Lo, every function f s C(Ak), flf[t < 1, and every two positive finite measures 
V1, V 2 on  ~PAC: 

-#a,~2(f)[ > < exp(-(logL)4/3), (3.1) 
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where P denotes the probability w.r.t, the J~Ss, h a is the function on 5Pz defined after 
(2.7) and ~ is a positive constant that does not depend on k. 

3.2. Lemma. Let k be a positive integer. There exists Lo(k ) such that for A = A L with 
L > Lo, f ~  C(Ak), ~p ~ C(AO with 11 f 1[ __< 1, [l~p [1 < 1 and v finite positive measure on 
5~Ao: 

- #a, ~(f)#a, ~0P)I > < exp (-- (logL)4/3). (3.2) 

3.3. Remark. Note that the events appearing on the left-hand side of(3.1) and (3.2) 
depend only on the J~j's contained in the definition of hA. Therefore we are allowed 
to take for v, v~, and v 2 measures that depend on the remainder of the J~fs. 

The following Theorems 3.4-3.6 follow easily from Lemmas 3.1 and 3.2. 

3.4. Theorem. Let a ~ 5@ The limit 

flu= tim fiaL,~ (3.3) 
L--*~ 

exists in the weak* sense with probability 1. 

Proof Let f ~  C(Ak) for some positive k and let k < L  1 < L  z. Then we have 

fiAL2,a= ~h~i~' Aer, (3.4) 

where 2. is the measure on 5PA~, defined by 

;~(~) = Z e(O'IA~zV s)exp(HAL~\AL,(S ) + WAL2XAL1,ALe(S, O-IA~2)). (3.5) 
SE~ AL2\AL1 

Let 0 be a positive integer to be chosen later. By applying Lemma 3.1, we obtain 
from the representation (3.4) and the Borel-Cantelli Lemma that the sequence 

FtAne.,(f) (3.6) 

converges with probability 1 for ~ sufficiently large. Using again Lemma 3,1 and 
the representation (3.4), we get that for n sufficiently large 

F( l f i a  ..... ( f ) - f i am , , ( f ) l>  l-~ for some m with n~<m<(n + l) o 

< (n + 1)~ e x p ( -  Oogn°)4/3), (3.7) 

so that we can apply again the Borel-Cantelli Lemma for 0 sufficiently large and 
obtain that the whole sequence fiam,~(f) converges with probability 1. The result is 
then obtained by considering a countable dense set of observables. [] 

3.5. Theorem. Let a, z ~ 5@ then there exists a set of  interactions of probability one 

on which flu = fi~. 

Proof Let f e  C(Ak) for some positive k. By applying Lemma 3.1 with vl and v 2 
probability measures concentrated on a[a ~ and z[a b we get that for L sufficiently 
large 

P(lfia~,~(f)--fiAL,~(f)l> ~ )  =<exp(-(logL)4/3). (3.8) 
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By Theorem 3,4 we can find a set of interactions of full probability on which both 
fiz~, ~(f) and/iA~ , , ( f)  converge as L goes to infinity. Inequality (3.8) implies that on 
this set the limits are equal. The result is then obtained by considering a countable 
dense set of observables. [] 

From Theorem 3.5 we get in particular the absence of symmetry breaking. Let 
0 : ~z  ~ 5fz be the spin flip transformation (Os)i = - s i and 0* be the induced map on 
the measures on 5az. By the spin flip invariance of the interaction we get 

0*/L =~0~. 

Therefore Theorem 3.5 implies the following: 

3.6. Corollary. For every (r ~ 5f  z there is a set o f  interactions o f  ful l  probability on 
which 

O* f ~ =  f~,, . 

3.7. Theorem. There exists  a set o f  interactions o f  probability one on which the limit 
(3.3) exists  and is a pure Gibbs state. 

Proof. Let M > 0 be an integer. Given a finite volume A containing A M, we define 
the Gibbs measure fitaM) ~ on 5eA\a~ by 

t i m  ( -F] - -  7 (  M ) -  t A,trk.l l-- t-~A,cx ~ ,  f ( s )exp(Ha\a~(S)+Wa\a~,A~(S ,  ala O, ( 3 . 9 )  
s ~ ~A~ A M 

where Z (m is the normalizing constant 

z(M)A,a---- Z e x p ( H  A\AM(s) "~- ~VA\AM,Ac(S'  a lAe) )  . (3.10) 
*dE~A\A M 

For f e  C(A\AM) the following relation holds: 

-~, IL, ,(fe- w~. ~,~M) (3.11) 
#A,*(f) = ,7 (o--WA~,A\A2~] " 

It is easy to check that on the set of interactions where the limit (3.3) exists, also the 
limit 

fi(,M) = lim fi(A~ ) (3.12) 
L-* ¢x) 

exists and fie and fi~M) are connected by the relation 

~y(f)  = f i~(fe - ~,~.',A,~ ) 
fi,,(e_WA,~.zv~,~ ) . (3.13) 

This follows from the fact that due to our hypotheses [see (2.2)] the functions 
e x p ( -  WA,4,AL\A,~) converge uniformly to exp (-- Wa,~, Z\A~) as L tends to infinity. 
By a similar argument we get the relation 

fi __,,hA,, ,M (3.14) a-- t~AM,$t  ).  

On the other hand the measure fi~m does not depend on the Ji js  in hzu, since it is 
the limit of the measures fi(A M) which do not depend on these Jijs. Therefore we can 
apply to ft, in the representation (3.14) the result of Lemma 3.2 and, in force of the 
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characterization of pure Gibbs states given by Theorem 1.11 of [11], we obtain the 
result. [] 

4. Proofs of the Main Lemmas 

Lemma3.1 will follow from Propositions4.1, 4.2, 4.3 below and from 
Proposition AA. We give first some preliminary definitions. 

Given a positive integer n and an odd integer N, consider the volume A, 
centered at the origin, with [A[ = (2N+ 1)n. N and n will be suitable increasing 
functions of ]At and they will be chosen later. As it will be clear from the proofs, we 
shall be able to treat the case of a general sufficiently large A; the particular case 
that we actually consider here is chosen only to simplify the notation. 

We divide A into 2N + 1 intervals A_ N, ..., AN, each containing n sites. We shall 
write s t/) for slA; 

Let us now give an outline of the proof. In order to evaluate the quantities: 

hA hA #a, vl(f)--12a,v2(f), 

we introduce a sequence of approximations. At each step we make an error that we 
prove to be small with high probability. 

The first step (see Proposition 4.1) consists in subtracting the interactions 
among non-contiguous blocks. In the second step (see Proposition 4.2) we cut off 
all the spin configurations that give rise to interactions among contiguous blocks 
that are bigger than a certain constant M. In the third step (see Proposition 4.3) we 
introduce another restriction on the spin configurations; this new restriction is 
local in the sense that it is not defined, like the previous one, in terms of pairs of 
Mocks, but it involves configurations in single even Mocks. If such a restriction is 
satisfied, then the effective interaction among even blocks is not too big. At this 
point we are able to apply the result of Proposition A.1 on the factorization 
properties of products of transfer matrices to the system relativized to even blocks 
with the restriction on the set of configurations in each block. 

In Proposition AA we prove exponential loss of memory for such a system, so 
that for a suitable choice of the constants involved in the approximation we get the 
final result. 

Before stating Proposition 4.1, let us establish some further definitions. For  
any given s ~ 6ez, with the notation SA=S]A, a=StA~, we set 

H A(S A) + Wa,Ac(S a, a) = [~ (S A, a )  -~- V(S A, (Y) , (4.1) 

where, if a_ and a + are respectively the restrictions of o- to the left and the right 
part of A c, 

N - 1  

g(sa, ~) = w(~_, s <-N)) + X [H(s% + W(s U>, s U+ 1))3 
j=-N 

+ H(s N)) + W(s <N), a +), 
N N-1 (4.2) 

v(sA, cr)= X W(~r_,s%+ X W(s%,r+) 
j = - N + I  j = - N  

N - 2  N 

+ X Z W(s%s%. 
i = - N  j = i + 2  
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/ t  describes a system with interaction of finite range n in A and boundary condition 
a, whereas v contains all the interactions that jump at least one block of size n. 

4.1. Proposition. 3~ > O, s.t., given any function f ~ C( A) with A C Ao, for any finite 
measure v on 6¢A~, if A is large enough, we have: 

n l~(t#~, a ( f )  - #~, a(f)l  > 2 It f II/tAt a ) < exp( - lAt4Z). (4.3) 

Proof It is immediate to check that 
H + W ( t  H + W I7t v ~ v - #v, A(e )) + ~ ,  A f ( e  - 1)) /~,A (f)=#~,A(f)+P~,A (f ) (1  . (4.4) 

For any positive 6 consider now the convex function go defined by 

where )~ is the characteristic function of the interval [ 6 3]  
inequality we have - ~'~ " By Jensen's 

v ~ v F(~,a( le  -- 11) > 3) -- lP(ga(#~a([e v - 1 I)) > 3) ~ ~'(~v, A(g~(le - 11)) > 6). (4.6) 

The above probability can be evaluated by applying the Markov-Chebyshev 
inequality with the expectation taken with respect to the J~s's appearing in v. Since 
these J~s's do not appear in H, we can apply Fubini's theorem and obtain 

Ag (le ° -  1 ° I)) = #,, a(lEg~(le - 1 I))- (4.7) 

We shall get a bound for Ego(le " -  1 I) which is uniform in the spin configuration. 
This bound allows us to estimate the expectation with respect to the remainder of 
the Jo's and to get the desired probability estimate by applying the Markov- 
Chebyshev inequality. By applying Schwarz inequality to Eq. (4.7), we get 

x 2[E(e z~"~'')+ 2e °( . . . .  )+ 1)]1/2 

If 5 < 1, it will certainly be true that 

l P ( [ e ~ - t [ >  ~ ) < ] P ( l v l >  ~ ) .  (4.8) 

We can exploit now the hypotheses (2.1) made on the distribution of the d~s's. If we 
apply the Chebyshev exponential inequality to the right-hand side of Eq. (4.8) we 

get p (iv(sa, ~r)[ > ~ ) <exp[_elEv2(Ss2a, a)] 

for some positive constant c~. Therefore 

F(#~a([e ~ -  I I) > 6) N sup exp - 2- Evz(SA, or) 

1 (4 .9 )  × 2[1E(e z~(~) + 2e "('a~) + 1)] 1/z. 5" 
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From Eq. (4.3) it is easy to get that for some constant c2, 

N 
F4vZ(sA, ~r)) < c2 nZ(~_ 1)" 

We choose 

and 

with 7 such that 

-/ ' N ~liz 

N = DA['] 

2(a-  1)(1 -o / ) -  y = 102, 

8 =  IAI a~ . 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

10 /f lW(s(i-1),s(°l<M 
)~i-l'i(S(i-1) s(i))= if IW(s"-i),s(i)l> M,  (4.16) 

where we have set 
A_n t - Z - h A  ~, AN+I=Z+nA ~, 

(4.17) 
s ( - g - 1 ) = f f _  ~ S(N+I)=ff+. 

Then there exist positive constants c, c' such that 

p (t#v~a(f)_/z~A ( f  n+ii=l-J_N)~i - i'iJl'~l > II f llNe-CM2)<---- Ne-c 'uz.  

Proof We have 

) #v,a(f)--#v,a I-I zi-l.~ i=-N 
N + I  

<tlf[t  Z n = /t~,A(1 --Zi-  i,i) 
i=  - N  

where ~i =/~ _ W~_ 1, i 

and Wi_l,i=W(s(i-1),s i) i = - N , . . . , N - I .  

Now we evaluate separately the two factors appearing in each term of the right- 
hand side of Eq. (4.19). 

N + l  1 

= Ilftl Z #~ 'a( (  1 - z i - l , i ) e W ' - l ' 9  ,,/7/ JEW,- , ,9  , 
i= - N  /~v, A\  

(4.18) 

(4.19) 

4.2. Proposit ion.  In the same hypotheses of Proposition 4.1, let the characteristic 
functions Zi- 1, i be defined by (for i = - N .. . .  , N + 1) : 

Therefore we finally get that for IA[ sufficiently large, 

P (//~a(leV-ll)> IA@)N exp(-  IAI4X). (4.15, 

Equations (4.4) and (4.15) with the choices (4.12), (4.13), and (4.14) imply the 
result. [] 
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By Jensen's inequality we have 

# ~ t i  f _ W l  - i ~, ate ' ') > exp (#~(W~ _ 1, i))- (4.20) 

Moreover 

P(exp #~(W~_ 1,,) < e-M) < P(/x~'A(I W~_ 1,,I) > M).  (4.21) 

The method that we used to obtain Eq. (4.15) can be applied to estimate the fight- 
hand side of Eq. (4.21). We get in this way 

P(/x~h(l W~_ 1.il) > M) ~ exp ( - c 3M 2) (4.22) 

for some positive constant c3. 
In order to evaluate the first factor, we first compute the expectation w.r.t, the 

J's appearing in W~_ 1,i- Since these J's do not appear in / t i ,  we can use Fubini's 
theorem to interchange the integrations. We get, for any positive 7, 

P(lX~h((1 - Zi- 1, i) exp Wi- 1,i) > ?) < 7-1/x~l(E[(1 - Zl-  1, i) ew' - l '  ~]). (4.23) 

The fight-hand side of Eq. (4.23) can be bounded by the Schwarz inequality by 

- 1  t i  ? /x~, a([E(l  -- Zi- 1, i)] 1/z []E(e z w~_l, 9] 1/2). (4.24) 

It is immediate to check that E(exp(2W~_ w) is bounded by a constant and that 

1E(1 - X~- 1, ~) < sup P(I W~_ 1, il > M) < e-~,M~ (4,25) 
ff, 8A 

for a suitable positive constant c4. 
If we choose properly the constant ? in Eq. (4.23), we conclude  the proof, [] 

We can write 

si ( f N + i  "~ 

s(-  r'r)...s(~)\i = - N  ] i=  - N  "= - 

~<- ),..~< >\i=_NIh(SO)))exPti~ N 

where we have used the notation introduced in Eqs. (4.16) and (4.17) and we have 
denoted by #i the normalized Gibbs measure on the isolated block A~:#~(s to) 
= ( Z ~ , ) -  1 exp(HA,(s(i))) for i=  -- N . . . .  , N. 

For  any pair of consecutive even blocks consider the "effective interaction" 
l/V2i, z(~+ 1) defined by 

exp I/V2~ ' 2(i + i)(s(2i), S (2i + 2)) 

= Z ~2i+ 1( S(2i+ 1)22i, 2i+ 1(S(2/), S(2i+ 1))~2i+ 1,2i+2( s ( 2 i +  1) S(2/+ Z)) 
s(21 + 1) 

xexp[Wz¢,zi+l(s(Zi) ,s(zi+x))+Wzi+l,zi+z(s(Zi+l) ,s(Zi+Z))].  (4.27) 

l~ can take also the value - oo. 
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4.3. Proposition. In the same hypotheses of Proposition 4.1 there exist constants ~, 
U, and (" such that there exists a set of interactions J of probability bigger than 
1 - N e  -cu~ on which the following is true: 

1) for j = - ( N - 1 ) / 2 , . . . , ( N - 1 ) / 2  there exists ~2j~,9~A2j: V S 2 j ~ 2 j  , 
S2j+ 2 ~ ~'~2j + 2: 

( 1  - e -  ~'M~)e- 2M =< eCC2j, ~s + :(~(~), ~(2j + :)) __< e2M, 

2) _ /" N HI2 \ 

H t I 2 ~ 2 d )  ( N + l  ~ IX~, A f i=I-]_sZi-,,ij=~_s~ Ne -rM2. 
/x5 f __lTNz,-,,, ) <= 

' " t 
Proof. Given the measures/X, v on the spaces A, B we shall denote  b y / x ® v  the 
produc t  measure on the produc t  space A®B.  

The  following estimates can be obta ined by the same methods  that  we used in 
the above situations: 

P(/Xi®/Xi + 1 (1 - Zi- 1,2) > e -  ~,n~) < e -  ~6n~ 

for i =  - - N  . . . . .  N - 1  and 

lP(v ®/X_ N(1 - Z -N-  ~) > e -  :,M2) < e - ~ M : ,  
(4.28) 

IP(v ®/XN( 1 -- ZN, N + 1) > e - ~M~) < e - c~sa 2. 

We cal l /x_u_ a,/xN+ ~ the natural  projections of  v to 5PA_~, ~, ~A,<, ~ respectively. 
Inequal i ty  (4.28) implies that  on a set of interactions of probabi l i ty  larger than  
1 - (2N + 2) e x p ( -  c6M2), we have 

/Xj(~/Xj+ I()Q,j+ 1) > 1 -- e -csM2 (4.29) 

for j =  - N - 1  . . . . .  N. 
We assume that  (4.29) are satisfied. Then  it is easy to see that  for 

i =  ( - N -  1)/2 . . . . .  (N - 1)/2, there exist sets 025 ~ SPa2, such that  

/x2i(122~) > I - e-~M2, i) 

ii) 

with 

and 

Vs(2i) ~ 0(2~)3Q+i + 1(s(2~)) ~ ~A2, +, 

/X2~+ l(O~-i+ 1(s(2°)) > 1 - e  -c7M2 

Z2i, 2i+ l(s(2i),s(2i+l))= l VS(2i) ~ ff22i, S(2i+1) ~ [~i+1(S(2i) ) 

for a suitable positive constant  c7. 
In the same way we get that  for i = ( - N +  1)/2, ..., ( N +  1)/2 there exist sets 

~2i ~ 5°A2, such that  

i) 

ii) 

with 

/x2i (02i )  > 1 - e - c 7 u 2 ,  

Vs (2i) ~ t22~ ~t2~i_ l(S (a°) 

/x2i- 1(~'~2/- 1(S(2i))) > 1 - - e  c7M2 
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and 

Z2i_l,2i(s(2i-1),S(2i))~-.l Vs(2 i )e02i ,  s(2i-1)~-~2i_1(S(2i)). 

If in definition (4.27) we bound the sum from below by restricting it to the 
configurations in the set Q~+ l(stZ°)c~f2~i+ 1(s(2'+2)), we get that 

exp 1~2,, 2i + 2( s(20, s(2i + z~) > (t - e - c~M~)e- M, 
(4.3o) 

Vs(2i) ,  s(2i + 2) E ~'~2i(~)~'~2i + 2"  

On the other side we have of course I~<  2M. 
We set 

f22~= f2~n~2i .  (4.31) 

On the set of realizations on which (4.29) are satisfied we have, using expression 
(4.26), 

# .  f~__~_NZ~-m)'~[~ ~llflIe TM ~2_ e2M#2j(s(2J)) 
e4Me- ~gMZll f II , 

so that we conclude 

p a 
~v,A r I  Zi-l, i H ~22j 

i= -N j= -N/2 

-I~,A f Zi--L~ >Ne4ne-c~M~[lfll (4.32) 
i=  - N  

< (2N + J)e -~6M2 . 

From Eqs. (4.18), (4.32) with f =  1 we immediately get 

"=--  "=-" - - f i v ,  A f i=-N P 
N/2 ) 

Zi- 1,i l-I l ihj 
j = - N/2 

>Nlfle4Me-C,o M2 <_Ne-C-M~. (4.33) 

Equations (4.32) and (4.33) imply the result. [ ]  

Proof of Lemma 3.1. 
From Propositions 4.1, 4.2, 4.3, we get 

i N+ 1 N/2 #~,a I I  Zi- l,i I-[ ~2j 
~) pHv, a ( f )  i=-N j=-N/2 

H 
#V A I'I ~ X j  

= - j = - N/2 

>/ f l l  ~ + r e  -c'2M~ <exp(-IAI4X+ge-='3M~). (4.34) 
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We remark that the sets O, for i = - N ,  N depend on the choice of the 
~(v) (v') 

measure v :~ i  = f2}*). Now, given two measures v, v' we define ~i = f2i c ~ i  for 
i= - N , N .  

For any positive 6 such that 

. ) ~v ,A  I - I  Zi-- l , i  l - I  l l a z j  
i= --N ]= -N/2 

. / s+ t  N/2 ) <3, #,u, ,alf  r~ Z,-, , ,  l-[ 11fi2, 
\ i = --N j= -N /2  

#~' a ,=ITuzi- *,i =ON (4.35) #~,a Zi- l,i I-I ll6~j 
i N j= - N / 2  

we have 

p( l#v ,a( f )_#~, ,a( f ) l )>6+ 2ljfl] 2 

< 2 exp(-[AI 4z + 2Ne-ClaM~). (4.36) 

Now we want to consider the quantity 

lZ~'A~f~YINzi-*'i" = - j = ]-[- N/2 ~ 2 j  / 
I / S +1 N[2 

NZi_ I, i ] i = -- j = -- NI2 

E .  f ( s  )" Iv(d~) ~E ... (o~ 
S t -  )e~-N S(N)~IV 

~-- N/2 

I v(d~) ~ ... 52 I-I 
s(- )e~N S(N)ef2N i = - N [ 2  

N/2 
exp E ~V2i,2i+2(S(2i), S(2i+2)) 

i= - N / 2  
X N/2 

exp Y. ~'r2i ,2i+2(8(2i) ,s(2i+2) ) 
i = -N/2 

N/2 
I-I  #2i(S(2i))  

i= - N / 2  

#2 i (S  (2i)) 

(4.37) 

M =(logN) 3/4 

the result of Lemma 3.1 follows. []  

The proof of Lemma 3.2 is completely analogous to the previous one and we 
leave to the reader the task of making the obvious changes. 

and choose 

and the analogous quantity for v'. 
We can study the above quantities with the help of Proposition A.I stated and 

N + I ,  &=~z i ,  T~,i+l =e#2"2'+2, proved in the Appendix. We must put there q = 2 

vi=#2,, B = e  M. If we take 

6 = 2eZM(1 -- e-4M)N/2 
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Appendix 

For i = - - q - - 1 , . . . ,  q + 1 let Si be a measurable space. Let vi be a probability 
measure for - q__< i__< q and let T~, i + i(s, t) be a positive real function on Si® Si + i for 
- q - 1  <_i<_q such that for every seS~, t sS i+ l ,  

B - l  N Ti, i+ i(s,t)<=B (A1) 

for some positive constant B. 
Let the functions Tk, e(S, t), S e Sk, t e Se, be defined for - q -  1 < k < ~ =< q + 1 by 

the rule 
Tk, e(s, t) =~ Tk, t_ i(S, z)Tt- i,t(z, t)dve- i(z). (A2) 

We have the following: 

A.1. Proposition. For every k with - q - 1  <_k<_q-1 there exist two positive 
functions u(s), v(t) defined respectively on S k and Sq+ 1 such that for every s e Sk, 

t • Sq +l ,  _Tk,q+ i ~ ,  t) _ 1 --< 2B2(1 - B -  4)~-k- i  (a  3) 
u ( s ) v ( t )  

Similarly for - q + 1 <_ k <_ q + 1 there exist positive functions ~2(s), f(t) on S,, S_q_ 1 
such that for every s e Sk, t ~ S_q_ l, 

T-q-a'k(t's)f(t)a(s) I < 2 B 2 ( 1 - B - 4 )  k+q-1 . (A3') 

Proof We shall prove (A3). (A3') can be obtained in the same way with obvious 
changes. 

We define the functions Pk,e(S, t) for - -q- - I  <k<Y<_q, s~S , ,  t6Se  by 

t )  = T /s, t ) f  T ,q(t, z)dv (z) 
Tk,~(s, z)dvq(z) ' (A4) 

where we agree that the integral in the numerator of the right-hand side of (A4) is 
absent for t '=q .  The functions Pk, e(s,t) are the densities of the transition 
probabilities for a (inhomogeneous) Markov chain, i.e. 

Pk,e(S, t)dve(t) = I ,  
(AS) 

Pk,,,(S, t) = ~ Pk, e(S, z)P em(z, t)dv e(z) . 

We first find upper and lower bounds for the values of Pk, e( s, t). We have for 
- q - l < = k < k + 2 < _ Y < _ q + l ,  

Tk, e(s, z) _ I Tk,, + 1 (S, y) Tk + l, e(Y, z)dVk + i(Y) > B-  2 (A 6) 
Tk,e(t , z) I Tk,,+ i(t, Y)~+ 1,e(Y, z)dVk+ i(Y) = 

and, similarly, 
z) s) 

Tk,~(t,z ) <-B2' B-z<__ __ <B 2 
- - t )  - 

for every choice of s, t, z in the appropriate spaces. 

(A7) 
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It follows that 

Tk, e(s, t ) f  Te,q(t,z)dvq(z) > B _ 4 .  (A8) 
Pke(S, t) = f Tke(S, y)dv t(y) I Te, q(Y, z)dvq(z) = 

We can obtain from (A8) the following estimate for - q - l < k < ~ < q  and for 
every s, s" ~ S k 

l IPk, e(S, t ) - -Pk,  e(S', t )Idve(O<2(t  - B - 4 )  e - k - 1  • (A9) 

Indeed for - q -  i <<_k<<_k+2<~'<q, 

I IPk, e(s, t) -- Pk, e(S', t)dve(t) 

= S IS (Pk,e-1 (S, z) -- Pk ,e - t  (S', z))Pe_ 1, e( z, t)dve-1 (z) ldve(t) 

= S 1~ B-4(Pk ,  e_ l(s, z) - P k ,  e- 1( s', z) )P e-  Le( z , t )dve- l (z)ldv e( t) 

+ I If(Pk, e-1 (s, z) --Pk, e-  l(s', z)) (Pc - l ,  e(z, t ) -  B -  4)dve_l (z)Idve(t). 
(AIO) 

The first term on the right-hand side of (AIO) vanishes, whereas the second term 
can be bounded by 

(1 - B - 4) I Pk, e-- 1 (s, z) -- Pk,e-1 (S', z) ldv e_ l (z) , (A 11) 

so that (A9) follows by induction. 
Let now, for - q - 1  <_k<<_q-1, u(s) be the function on Sk defined by 

u(s) = I Tk, q(S, z)dvq(z) , (A 12) 

and, given an arbitrary point s* in Sk, let v(t) be the function on Sq+ 1 given by 

v(t) = f Pk, q(s*, z) Tq,q + 1 (z, t)dvq(z). (a  13) 

By using (A I) and the fact that Pk, q(s*, z)dvq(z) is a probability measure, we get 

v(t) > B -  1 (A 14) 

for every t s S~ + 1. 
We have 

rk,q+ ds, t) 
v(t) = I I (Pk,q(s, z) --Pk,q(S*, Z)) T~, q +t (z, t)dvq(z)t 

<2(1 -B-4)q-k-lB 

by (A9). Inequalities (A14) and (AI5) imply (A3). 

(A15) 
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