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Dissipative di!erential systems and the state space H
=

control problem

H. L. Trentelman*,s and J. C. Willems

Research Institute for Mathematics and Computing Science, P.O. Box 800, 9700 AV, Groningen, The Netherlands

SUMMARY

The purpose of this paper is to apply our very recent results on the synthesis of dissipative linear di!erential
systems to the &classical' state space H

=
control problem. We "rst review our general problem set-up from

Willems and Trentelman, IEEE ¹ransactions on Automatic Control, Submitted, where the problem of
rendering a given plant dissipative by general interconnection, is reformulated as the problem of "nding
a suitable dissipative behaviour wedged in between the &hidden' behaviour and the &manifest' behaviour of
the plant. We review our main result from Willems and Trentelman, which states that a necessary and
su$cient condition for the existence of such behaviour is, that the hidden behaviour and manifest behaviour
are dissipative with respect to suitable supply rates, and have storage functions that satisfy a certain coupling
condition. We then apply this result to the state-spaceH

=
control problem. We show that our general result

in this case reduces to the existence of solutions to certain algebraic Riccati equations, satisfying the
well-known coupling condition. We also derive state-space formulas for the required controllers. Copyright
( 2000 John Wiley and Sons, Ltd.
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1. INTRODUCTION

It is a privilege to contribute this article to this special issue dedicated to the memory of George
Zames. His vision and views on control in#uenced our research in a deep way. For the second
author, this in#uence has been a very direct one over more than three decades. I (JCW) wrote my
doctoral dissertation on input/output stability [1], based on the setting of extended spaces
introduced by Zames [2], and using his beautiful small gain and positive operator principles for
obtaining stability results. It is with fond memories that I recall this early interaction with George,
an interaction that continued o! and on until his untimely passing away.

This article is about H
=

-control, a topic that was put to the foreground of control research by
the seminal paper [3] by George Zames. Our recent research [4}7] in this area uses the
behavioural approach [8] to control combined with the theory of quadratic di!erential forms [9]
in order to come up with the controlled behaviour. While preparing an extensive paper [5] on this
topic, we came to realize that our approach also simpli"es and extends the results of Reference



[10], where the solution to the state-space H
=
-problem in terms of the double Riccati equation

with the remarkable coupling condition was developed. In Reference [5] a very general version of
the H

=
-control problem is solved, which does not need to start with a state-space description of

the plant, and has a cost functional that is a general quadratic di!erential form. Also, no
non-singularity assumptions need to be made.

The aim of this article is to apply the very general results from Reference [5] to the &classical'
state-space suboptimal H

=
control problem by measurement feedback, which, we argue, is

merely a special case of our general problem formulation. Unlike most of the existing literature on
the suboptimal H

=
control problem, we address the problem of "nding, for a given tolerance

c'0, an internally stabilizing feedback controller that makes the closed-loop transfer matrix
¹ satisfy the non-strict inequality E¹EH

=
)c (instead of (c). It turns out that also this problem

admits a solution in terms of two algebraic Riccati equations, together with a coupling condition.
Unlike the strict suboptimal problem, the dimension of the state space of our controllers turns out
to depend on the solutions of these Riccati equations.

The outline of this article is as follows. In Section 2 we review the basic material that we need on
linear di!erential systems, dissipativity, and storage functions. In Section 3 we brie#y discuss the
general control problem of making a given di!erential system dissipative by interconnecting it
with a controller. In Section 4 we apply these general results to the state-space H

=
control

problem by measurement feedback.
The following notation will be used in this paper. We denote R

~
"(!R, 0), and R

`
"(0,R).

Rq]q denotes the space of q]q matrices with real coe$cients. Rp]q[m] denotes the set of p]q
polynomial matrices with real coe$cients. If the dimensions are not speci"ed we use the notation
Rz ]z [m]. Rp]q [f, g] is the set of all p]q two-variable polynomial matrices with real coe$cients.
C=(R, Rq) is the space of in"nitely often di!erentiable functions from R to Rq. If the dimension of
the codomain is not speci"ed, we use the notation C=(R, Rz ). D (R, Rq) denotes the subspace of
C=(R, Rq) consisting of functions with compact support. D (R

~
, Rq) is the space of in"nitely often

di!erentiable functions from R
~

to Rq that have compact support. Finally, L
2
(R, Rq) is the space

of all square integrable functions from R to Rq. For S"ST3Rq]q and v3Rq we denote
DvD2

S
:"vTSv.

2. LINEAR DIFFERENTIAL SYSTEMS AND DISSIPATIVITY

In this section we review the basics of linear di!erential systems. For a more detailed treatment,
we refer to Reference [8]

A subset BLC=(R, Rz) (called a behaviour) is called a linear time-invariant di!erential system
(brie#y, a di+erential system) if there exists a polynomial matrix R3Rz] z [m] such that
B"Mw3C= (R, R z) DR(d/dt)w"0N. The set of all linear time-invariant di!erential systems is
denoted by Lz. We denote by Lw those with w real variables (in other words, with behaviours
BLC= (R, Rw)). For a given di!erential system B, we denote by m(B) its input cardinality.
This is de"ned as the number of free variables in B, i.e. the number of components of the
vector function w that are not constrained by the requirement that w is an element of the
behaviour B.

We call B3Lz controllable if for all w
1
, w

2
3B, there exists a ¹*0 and a w3B such that

w (t)"w
1
(t) for t(0 and w (t)"w

2
(t!¹) for t*¹. By Lz

#0/5
, Lw

#0/5
we denote the controllable

elements of Lz, Lw.
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Whereas a di!erential system B is de,ned as the solution space of a di!erential equation of the
form R(d/dt)w"0, there are other possible representations for such B. The ones used in this
paper are the driving variable representation

d

dt
x"Ax#Bd, w"Cx#Dd

with d a free, additional variable, called the driving variable, the output nulling representation

d

dt
x"Ax#Bw, 0"Cx#Dw

and the input/state/output representation

d

dt
x"Ax#Bu, y"Cx#Du, w"(u, y)

Every di!erential system B admits a driving variable representation, an output nulling repres-
entation, and an input/state/output representation, the last one after possibly permuting the
components of w. All these representations are a special case of the so-called state representation

E
d

dt
x#Fx#Gw"0

In such representation of B, the variable x is called the state variable.
In order to be able to de"ne the notions of dissipativity and storage function, we need the

concepts of two-variable polynomial matrix and quadratic di!erential form. For a detailed
treatment, we refer to References [9, 4]. Let '3Rw

1
]w

2 [f, g] be a two-variable polynomial
matrix, i.e. a matrix whose entries are real polynomials in two indeterminates, say f and g. Written
out in terms of its coe$cient matrices such polynomial matrix is given by
'(f, g)"&

k,l|Z`
'

k,l
fkgl, where, of course, the sum is actually a "nite one. This two-variable

polynomial matrix induces the map ¸' :C=(R, Rw
1)]C= (R, Rw

2)PC=(R, R) de"ned by

¸' (w
1
, w

2
)" +

k,l|Z`
A

dk

dtk
w
1B

T
'

k,lA
dl

dtl
w

2B
This map is called the bilinear di+erential form induced by '. When w

1
"w

2
"w, this induces

the map Q' :C=(R, Rw)PC=(R, R) de"ned by

Q'(w) :" +
k,l|Z`

A
dk

dtk
wB

T
'

k,lA
dl

dtl
wB, i.e. Q'(w)"¸'(w, w)

This map is called the quadratic di+erential form (QDF) induced by '.
We now de"ne the notion of dissipative system. Let '3Rw]w[f, g] and B3Lw

#0/5
. The system

B is said to be dissipative with respect to Q' (or: '-dissipative) if :`=
~=

Q' (w) dt*0 for all
w3BWD(R, Rw). The quadratic di!erential form Q' is called the supply rate. Intuitively, we
think of Q'(w) as the power going into the physical system B. Dissipativity expresses the property
that along trajectories w of B that start at rest and bring the system back to rest, the net amount
of energy #owing into the system is non-negative. The system B is said to be dissipative on
R

~
with respect to Q' (or '-dissipative on R

~
) if :0

~=
Q'(w) dt*0 for all w3B

~
WD (R

~
, Rw).

STATE SPACE H
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Here, B
~

denotes the behaviour B restricted to the half-line R
~
"(!R, 0), i.e. B

~
"

MwDR
~

Dw3BN. Note that dissipativity on R
~

implies dissipativity.
It is a basic fact (see e.g. Reference [11, Theorem 4.3] that a system is dissipative with respect to

a given supply rate if and only if it has a storage function. The notion of storage function is de"ned
as follows. Let B3Lw, '3Rw]w[f, g], and (3Rw]w[f, g]. Then Q( is said to be a storage
function for B with respect to the supply rate Q' if the dissipation inequality

d

dt
Q((w))Q'(w)

holds for all w3B.
It was shown in Reference [11, Corollary 6.3], that if the system B is dissipative with respect to

the supply rate induced by a constant two-variable polynomial matrix, then every storage
function is representable as a quadratic function of the state variable of the system:

Proposition 1
Let E(d/dt)x#Fx#Gw"0 be a state representation of B3Lw

#0/5
, with dim(x)"n. Let

S"ST3Rw]w and assume that B is dissipative with respect to the supply rate DwD2
S
. Let Q( be

a storage function. Then there exists K"KT3Rn]n such that for all (w, x) satisfying
E (d/dt)x#Fx#Gw"0 we have Q((w)"DxD2

K
.

We also need the orthogonal complement of a controllable behaviour. This is de"ned as follows.
Let B3Lw

#0/5
. Then there exists a unique behaviour in Lw

#0/5
, denoted by Bo, such that

P
`=

~=

wT
1
w
2

dt"0

for all w
1
3BWD and w

2
3Bo. It is easy to see that (Bo)o"B. If B3Lw

#0/5
, and &"&T3Rw]w,

then we denote the orthogonal complement (&B)o of &B by Bo&. Note that Bo&
"&~1Bo

:"Mw D &w3BoN.
In order to state our main result, we need the following fact that is proven in Reference [4]:

Proposition 2
Let B

1
, B

2
3Lw

#0/5
. Then there exists a two-variable polynomial matrix '3Rw]w[f, g] such

that

d

dt
¸' (w

1
, w

2
)"wT

1
w
2

for all w
1
3B

1
and w

2
3B

2
, if and only if B

1
LBo

2
. Moreover, if '

1
, '

2
3Rw]w[f, g] both satisfy

this equality, then ¸'Ç
(w

1
, w

2
)"¸'È

(w
1
, w

2
) for all w

1
3B

1
and w

2
3B

2
.

If ¸'(w
1
, w

2
) is a bilinear di!erential form satisfying the condition of this proposition, then the

(uniquely de"ned) restriction of ¸'(w1
, w

2
) to B

1
]B

2
is called the (B

1
, B

2
)-adapted bilinear

di!erential form.
Finally, we need the following fact that relates a driving variable representation of B to an

output-nulling representation of Bo. Let B3Lw

#0/5
. Then (d/dt)x"Ax#Bd, w

1
"Cx#Dd is a

driving variable representation of B (with manifest variable w
1
) if and only if (d/dt)z"!ATz!CTw

2
,

0"BTz#DTw
2

is an output-nulling representation of Bo (with manifest variable w
2
). This

fact is easily proven after observing that (d/dt)zTx"wT
2
w

1
for w

1
3B and w

2
3Bo.

1042 H. L. TRENTELMAN AND J. C. WILLEMS

Copyright ( 2000 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2000; 10:1039}1057



Figure 1. Plant and controller con"guration.

3. THE CONTROL PROBLEM

Consider Figure 1. The plant is assumed to be a linear di!erential system with two types of
terminals: terminals carrying the to-be-controlled variables v and terminals carrying the control
variables c.

In the case of H
=

control to be discussed later in this paper, we will have v"(d, z), with
d exogenous disturbance inputs, and z to be controlled outputs, and c"(u, y), with u the control
inputs and y the measured outputs. In the "rst part of this paper we aim at a somewhat higher
level of generality, and therefore do not (yet) make these partitions of v and c. Assume that there
are v to-be-controlled variables and c control variables.

Let P
&6--

3Lv`c be the full behaviour of the plant, i.e. the set of all trajectories (v, c) that satisfy
the equations of the plant. Furthermore, let P (called the manifest behaviour) be the behaviour of
the to-be-controlled variables v, with c eliminated. Hence

P
&6--

"M(v, c)3C=(R, Rv`c) D (v, c) satis"es the plant equationsN

P :"Mv3C=(R, Rv) D&c3C=(R, Rc) such that (v, c)3P
&6--

N

A third relevant behaviour associated with the plant is the hidden behaviour N de"ned as

N :"Mv3P D (v, 0)3P
&6--

N

The controller restricts the control variables c and is described by a controller behaviour C3Lc.
Formally,

C"Mc3C=(R, Rc) Dc satis"es the controller equationsN

After the controller is attached, we obtain the controlled behaviour K de"ned by

K :"Mv3C=(R, Rv) D&c3C such that (v, c)3P
&6--

N (1)

We say that C implements K if the above relation holds between C and K.
Now, our point of view is the following. We have been given a full plant behaviour P

&6--
,

consisting of all time trajectories (v, c) that satisfy the plant equations. By restricting the control
variables c to belong to the controller behaviour C, the actual v trajectories will belong to the
controlled behaviour K given by (1). It is a trivial fact that this implies that the hidden behaviour
N must be contained in K, and that K must be contained in the manifest behaviour P, in other
words, we must have NLKLP. We are however also very much interested in the converse
question: if K3Lv is a given behaviour, under what conditions is it a controlled behaviour for

STATE SPACE H
R
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P
&6--

, i.e. under what conditions does there exist a controllerC such that K is implemented by C?
It turns out that the inclusion NLKLP is also su.cient for the existence of such C :

Proposition 3
Let P

&6--
3Lv`c be the full plant behaviour, P3Lv the manifest plant behaviour, and N the

hidden behaviour. Then K3Lv is implementable by a controller C3Lc acting on the control
variables if and only if NLKLP.

Proposition 3 reduces control problems to "nding the controlled behaviour directly. Of course, the
problem of how to actually implement the controlled behaviourK (for example, as a signal processor
from sensor outputs to actuator inputs), needs to be addressed at some point as well. Proposition
3 shows that K can be any behaviour that is wedged in between the given behaviours N and P.

Supported by Proposition 3, we will now express the control speci"cations on the to-be-
controlled variables v as properties of the controlled behaviour K. We go back to Figure 1. Let
&"&T3RvCv. The weighting matrix & de"nes the quadratic form DvD2& that will serve as a control
performance functional. Denote by sign(&)"(p

~
(& ), p

`
(& )) its signature, i.e. p

~
(& ) and p

`
(& )

equal, respectively, the number of negative and positive eigenvalues of & . We assume that & is
non-singular, i.e. that rank(& )"p

~
(& )#p

`
(& )"v. We now formulate our control problem.

Problem formulation
Let N, P3Lv

#0/5
, and &"&T3RvCv be given, with NLP and & nonsingular; P is called the

plant behaviour, N the hidden behaviour, and & the weighting matrix. The problem is to "nd
K3Lv

#0/5
(called the controlled behaviour) such that:

1. NLKLP (implementability and realizability)
2. K is &-dissipative on R

~
(dissipativity)

3. m(K)"p
`

(&) (liveness)

We now discuss the interpretation of the conditions in this problem formulation. Condition 1.
has already been discussed. The dissipativity condition 2 may be viewed as consisting of two parts:
&-dissipativity, and &-dissipativity on R

~
. That the controlled behaviour K must be &-dissipative

is the basic control design speci"cation. As we shall see, by suitably choosing & , it implies
H

=
disturbance attenuation. The fact that &-dissipativity is required to hold on R

~
, and not just on

R, implies that the controlled behaviour is also required to be stable in a sense to be explained at the
end of this section. The liveness condition 3 on the controlled behaviour requires that a certain
number, p

`
(& ), of exogenous variables must remain free in the controlled behaviour.

The following necessary and su$cient conditions for the existence of a controlled behaviour
K were obtained in Reference [4]:

Proposition 4
A controlled behaviour K3Lv

#0/5
described in the problem formulation exists if and only if the

following conditions are satis"ed:

1. N is &-dissipative,
2. PM& is (!& )-dissipative,
3. there exist two-variable polynomial matrices

(N , (PM& , (
(N, PM)

3RvCv[f, g],

de"ning
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f a storage function Q(N
for N as a &-dissipative system, i.e. (d/dt)Q(N

(v
1
))Dv

1
D2& for v

1
3N,

f a storage function Q(PM& for PM& as a (!& )-dissipative system, i.e. (d/dt)Q(PM&(v2
))!Dv

2
D2&

for v
2
3PM&,

f and the (N, PM)-adapted bilinear di!erential form ¸((N,PM)
, i.e. (d/dt)¸((N,PM)

(v
1
, &v

2
)"

vT
1
&v

2
, for v

1
3N, v

2
3PM& (note that by Proposition 2, (

(N, P
M

)
is well-de"ned, sinceNLP)

such that the QDF

Q(N (v
1
)!Q(PM& (v2

)#2¸((N,PM)
(v

1
, &v

2
) (2)

is non-negative for all v
1
3N and v

2
3PM&.

Note that Theorem 4 is formulated completely in terms of properties of the plant behaviour
P and the hidden behaviour N. Nowhere in the conditions representations of these behaviours
appear.

If the to-be-controlled variables v are given as v"(d, f ), and the weighting matrix & is equal to
the signature matrix

+"C
Id 0

0 !IfD
where d"dim(d) and f"dim( f ), then our general problem formulation is equivalent to an
H

=
control problem. Indeed, the following was proven in Reference [7]:

Proposition 5
Let K3Ld`f

#0/5
be an arbitrary di!erential system, with manifest variable (d, z). Then (i) and (ii)

below are equivalent

(i) f :0
~=

Dd D2!D f D2dt*0 for all (d, f )3K
~
WD (R

~
, Rd`f) (dissipativity on R

~
),

f m(K)"d (liveness).
(ii) f :=

~=
Dd D2!D f D2 dt*0 for all (d, f )3KWL

2
(R, Rd`f) (disturbance attenuation with gain 1),

f (0, f )3K implies lim
t?=

f (t)"0 (external stability),
f d is free in K. More explicitly, for all d3C=(R, Rd), there exists f3C=(R, Rf) such that

(d, f )3K (freedom of d).

4. APPLICATION TO THE STATE SPACE H
=

CONTROL PROBLEM

In this section we will apply our general result of Proposition 4 to the special case that the full
plant is given in state-space form. Thus, we will obtain necessary and su$cient conditions, in
terms of solvability of two Riccati equations together with a coupling condition, for the existence
of a feedback controller that achieves internal stability and a closed-loop transfer matrix with
H

=
norm less than or equal to one. We will also establish formulas for the actual controllers.

4.1. Problem formulation

Assume that P
&6--

is represented by

(d/dt)x"Ax#Bu#Gd

y"Cx #Dd (3)

f"Hx#Ju

STATE SPACE H
R

CONTROL PROBLEM 1045

Copyright ( 2000 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2000; 10:1039}1057



In these equations, u are the inputs to the actuators, y are the outputs of the sensors, d the
exogenous disturbances, and f the endogenous to-be-controlled outputs. In terms of the notation
used in the previous section we have v"(d, f ) as the to-be-controlled variables and c"(u, y) as
the control variables. The problem is to "nd a controller acting on the control variables (u, y) such
that the controlled system meets certain speci"cations. We want this controller to be also in state
representation, more exactly, in input/state/output representation, with y the input, u the output,
and with the controller state denoted as x

#
:

(d/dt) x
#
"A

#
x
#
#B

#
y

(4)
u"C

#
x
#
#D

#
y

The control problem that we consider is to "nd a controller (4) such that the controlled system
satis"es the following speci"cations:

1. disturbance attenuation with gain factor normalized to 1, i.e. for all (d, f )3L
2
(R, Rd`f) for

which there exist (u, y, x, x
#
) satisfying both the plant and the controller equations, we have

E f EL
2(R, Rf

)
)EdEL

2(R, Rd
)
;

2. internal stability, meaning that in the controlled system d"0 implies that the signals
(x, x

#
, u, f ) all go to zero as tPR.

Clearly, this problem formulation involves the weighting matrix &"diag(Id ,!If ), in the sense
that DvD2+"DdD2!D f D2. Note that these speci"cations are equivalent to internal stability and the
condition that the H

=
norm of the closed-loop transfer matrix ¹ satis"es the (non-strict)

inequality DD¹DDH
=
)1, see also References [12}15]. This condition di!ers from the strict inequality

DD¹DDH
=
(1 usually studied in the literature, see References [4, 10, 15}22].

We want to apply the result of Proposition 4 to obtain necessary and su$cient conditions for
the existence of a feedback controller that achieves the speci"cations 1 and 2 above. However,
Proposition 4 is of course not concerned with internal stability, but only with external stability. In
fact, by Proposition 5, Proposition 4 gives necessary and su$cient conditions for the existence of
a behaviour K3Ld`f that satis"es the conditions

1@. NLKLP,
2@. E f EL

2(R, Rf)
)EdEL

2(R,R
d
)
for all (d, f )3KWL

2
(R, Rd`f ),

3@. (0, f )3K implies that f (t) goes to zero as tPR,
4@. the exogenous disturbances d are free in K. More explicitly, for all d3C=(R, Rd), there

exists f3C=(R, Rf) such that (d, f )3K.

Here, P and N and are the manifest behaviour and hidden behaviour associated with the plant
P

&6--
given by (3). Yet, it is immediately clear that if a controller (4) exists that achieves disturbance

attenuation and internal stability, then the corresponding controlled behaviour K will satisfy
1@}4@. This simply follows from the facts that internal stability implies external stability, and that
in the controlled system obtained by interconnecting (3) and (4), the disturbance d is automati-
cally free. Thus, the conditions on N and P of proposition 4 are necessary conditions for the
existence of a disturbance attenuating, internally stabilizing controller. In Section 4.3, we will
therefore compute for P

&6--
in state-space representation (3) the manifest behaviour P and the

hidden behaviour N. The conditions of Proposition 4 will then turn out to reduce exactly to the
existence of solutions to two Riccati equations that satisfy a coupling condition.
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Conversely, if these two Riccati equations have solutions that satisfy the coupling condition,
equivalently, if N and P satisfy the conditions of Proposition 4, then K exists such that 1@}4@ are
satis"ed. From condition 1@ we know that it is implementable by a controller acting on (u, y),
achieving disturbance attenuation, external stability, and freedom of d. We will show in Sections
4.6 and 4.7 that in that case also a controlled behavior K exists that is implementable by an
internally stabilizing feedback controller of the form (4).

In order to simplify formulas, we assume that the following conditions hold:

A.1. DDT"I and DGT"0,
A.2. JTJ"I and JTH"0,
A.3. (A, G) is a controllable pair of matrices,
A.4. (H, A) is an observable pair of matrices.

The outline of this section is as follows. In the next subsection we state our main result, which
gives necessary and su$cient conditions for the existence of a disturbance attenuating, internally
stabilizing feedback controller, and formulas for such controller. Subsequently, in Sections
4.3}4.6, we derive this main result along the lines of the strategy outlined above.

4.2. Statement of the main result

In order to state our main result, we need to introduce the following Riccati inequalities and
algebraic Riccati equations associated with the plant (3):

!ATKN!KNA!HTH!KNGGTKN#CTC*0 (5)

!ATKN!KNA!HTH!KNGGTKN#CTC"0 (6)

AKP#KPAT!GGT!KPHTHKP#BBT*0 (7)

AKP#KPAT!GGT!KPHTHKP#BBT"0 (8)

in the unknowns KN and KP. Our main result is the following:

Theorem 6
Assume that the plant (3) satis"es A.1}A.4. Then the following statements are equivalent:

(i) There exists a feedback controller (4) such that the controlled system is internally stable,
and the closed-loop transfer matrix ¹ satis"es DD¹DDH

=
)1,

(ii) there exist real symmetric solutions KN and KP of the Riccati inequalities (5) and (7),
respectively, satisfying the conditions KN'0, KP(0, and KN*(!KP)~1.

(iii) there exist real symmetric solutions of the algebraic Riccati equations (6) and (8), and the
largest real symmetric solution KǸ of (6), and the smallest real symmetric solution K~P of
(8) satisfy KǸ'0, K~P(0, and KǸ*(!K~P )~1.

In that case, one such feedback controller is given by the singular state-space representation

d

dt
(KǸ#(K~P )~1)xL "(KǸ#(K~P )~1) (AxL #Bu#GdK )#CT(y!yL )

yL "CxL

dK "!GTK~1P xL

u"BTK~1P xL
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Alternatively, one such feedback controller is given by the regular state-space representation

d

dt
RT(KǸ#(K~P )~1)RxL

1
"RT(KǸ#(K~P )~1) (A(PxL

1
#Qy)#Bu#GdK )#RTCT(y!yL )

yL "C(PxL
1
#Qy)

dK "!GTK~1P (PxL
1
#Qy)

u"BTK~1P (PxL
1
#Qy)

Here, R is any injective matrix such that im(R)"im(KǸ#(K~P )~1), N is any injective matrix
such that im(N)"ker(KǸ#(K~P )~1), Q :"N(CN)d, and P :"(I!N(CN)dC)R. Here, (CN)d

denotes the Moore}Penrose inverse of CN. The dimension of the state space of this controller is
equal to rank(KǸ#(K~P )~1).

4.3. Verixcation of the conditions

Following the strategy outlined above, we "rst compute the manifest behaviour and hidden
behaviour associated with the plant P

&6--
. The equations for the plant immediately yield the

following driving variable representation for the plant behaviour P :

d

dt
xP"AxP#[B G] C

d@P
dAPD

vP"C
0

HD xP#C
I 0

0 JD C
d@P
dAPD

and output nulling representation for the hidden behaviour N

d

dt
xN"AxN#[G 0] C

v@N
vAND

C
0

0D"C
C

HDxN#C
D 0

0 !ID C
v@N
vAND

Assumptions A.3 and A.4 ensure that the behaviours N and P are controllable. Moreover, their
state-space representations obtained above are minimal, hence controllable and observable.
These equations immediately yield the following output nulling representation for PM& :

d

dt
zP"!ATzP#[0 !HT] C

v@PM&

vAPM&D

C
0

0D"C
BT

GTD zP#C
!I 0

0 JTD C
v@PM&

vAPM&D
We will now check &-dissipativity of N and (!& )-dissipativity of PM&. We know that &-
dissipativity ofN is equivalent to the existence of a storage function. Furthermore, we know from
Proposition 1 that a storage function is a state function. In the case under consideration, all the
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behaviours are represented in state form. Hence, N is &-dissipative if and only if there exists
a matrix KN"KTN3RnCn (with n"dim(x)) such that the dissipation inequality

d

dt
DxN D2

KN
)Dv@ND2!DvAN D2

holds for all (v@N , vAN , xN) satisfying the equations for N, equivalently,

Dv@N D2!2(v@N)TGTKNxN!DHxN D2!xTN(ATKN#KNA)xN*0

for all (v@N , xN) satisfying CxN#Dv@N"0. To proceed, we need the following lemma, whose proof
is left to the reader:

Lemma 7
Let M"MT, N, P, Q be real matrices of appropriate dimensions, and assume that Q is

surjective. Then the quadratic form xT
1
Mx

1
#2xT

1
Nx

2
#xT

2
x
2

is non-negative on the subspace
de"ned by Px

1
#Qx

2
"0 if and only if

0)M!NNT#(P!QNT)T(QQT)~1(P!QNT)": ¸T¸

in which case the quadratic form on the subspace equals

D¸x
1
D2#Dx

2
#NTx

1
D2
(I~Q

T(QQ
T)~1

Q)

Using this, it follows that &-dissipativity of N is equivalent to the existence of a matrix
KN"KTN3RnCn such that the algebraic Riccati inequality

0)!ATKN!KNA!HTH!KNGGTKN#CTC": ¸TN¸N (9)

holds, in which case

Dv@N D2!DvAN D2!
d

dt
DxN D2

KN
"Dv@N!GTKNxN D2

(I~D
T
D)
#D¸NxN D2 (10)

In a similar way, (!& )-dissipativity of PM& turns out to be equivalent to the existence of a matrix
KP"KTP3RnCn such that

d

dt
DzP D2

KP
)!Dv@PM& D2#DvAPM& D2

for all (v@PM& , vAPM& , zP ) satisfying the equations for PM&. Using lemma 7 again, it readily follows that
(!& )-dissipativity of PM& is equivalent to the existence of KP"KTP3RnCn such that the algebraic
Riccati inequality

0)AKP#KPAT!GGT!KPHTHKP#BBT": ¸TP¸P (11)

holds, in which case

!Dv@PM& D2#DvAPM& D2!
d

dt
DzP D2

KP
"DvAPM&#HKPzP D2

(I~JJ
T)
#D¸PzP D2 (12)

Now apply Theorem 4, using the interpretation of xTNKNxN and zTPKPzP as storage functions for
N and PM&, respectively, and the fact that the minimal states (xN , zP) appearing in the equations
for N and PM& satisfy (d/dt)(xTNzP )"vTN&vP . It follows that a necessary and su$cient condition
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for the existence of a controlled behaviour K satisfying NLKLP , &-dissipativity, external
stability, and d free in K, is that there exist real symmetric solutions KN and KP to the algebraic
Riccati inequalities (9) and (11) such that

K :"C
KN I

I !KPD*0 (13)

This non-negativity is easily seen to be equivalent to the combined conditions

1. KN'0
2. KP(0,
3. KN*(!KP )~1

The last condition is easily seen to be equivalent to o(KNKP)*1, where o denotes the spectral
radius.

Using the theory of the algebraic Riccati equation and its relation with the algebraic Riccati
inequalities and storage functions makes it possible to analyse the situation further. The "nal
conclusion is that a necessary and su$cient condition for the existence of a required controlled
behaviour K is that the two algebraic Riccati equations

!ATKN!KNA!HTH!KNGGTKN#CTC"0 (14)

AKP#KPAT!GGT!KPHTHKP#BBT"0 (15)

both have real symmetric solutions KN"KTN and KP"KTP , and that the maximal real
symmetric solution KǸ of (14) combined with the minimal real symmetric solution K~P of (15)
satis"es

C
KǸ I

I !K~PD*0

equivalently, KǸ'0, K~P(0 and KǸ*(!K~P )~1.

4.4. Construction of the controlled behaviour

In order to proceed, we need the following lemma, which states that an arbitrary v3C=(R, Rd`f)
can be represented as v"vN#vPM&#vPWNM& , with vN3N, vPM&3PM& and vPWN

M&3PWNM&.

Lemma 8
LetN andP be the hidden behaviour and manifest plant behaviour associated withP

&6--
given

by (3). Assume that the assumptions A.1}A.4 hold. Then we have

C=(R, Rd`f)"N#PM&
#(PWNM&)

Proof. First we prove that, in the case at hand, we actually have

C=(R, Rd`f)"P#PM& and C=(R, Rd`f)"N#NM& (16)

We will only prove the "rst equality here. The second one is proven in a similar way. We claim
that the system PWPM& is autonomous, so for its number of inputs we have m(PWPM&)"0.
Indeed, from the driving variable representation for P and the output nulling representation for
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PM& derived in Section 4.3, we can deduce (using in an essential way assumption A.2) that PWPM&

is represented by

d

dt C
xP

zPD"C
A !GGT#BBT

!HTH !AT D C
xP

zPD
vPWPM&"C

0 BT

H !JGTD C
xP

zPD
which, indeed, represents an autonomous system. Using the general fact that for any pair of linear
di!erential systems B

1
and B

2
, we have m(B

1
#B

2
)"m(B

1
)#m(B

2
)!m(B

1
WB

2
) (see

Reference [5, Proposition 7], from this we infer that m(P#PM&)"m(P)#m(PM&), which can
be easily seen to be equal to d#f. Since P#PM& and C=(R, Rd`f) are both controllable
di!erential systems, this implies that they must, in fact be equal.

To complete the proof, note that from the fact that NLP, whence PM&
LNM&, we obtain

NM&
"NM&W(P#PM&)"PM&

#(PWNM&). Obviously, this then yields C=(R, Rd`f)"
N#NM&

"N#PM&
#(PWNM&). This completes the proof of the lemma. K

We now derive state representations for any of the behaviours in this decomposition. For the
behaviours N and PM& we already derived representations. From these it is easily seen that an
output nulling representation for N#PM& is given by

d

dt C
xN

zP D"C
A !GGT

HTH !AT D C
xN

zP D#C
G 0

0 !HTD vN`PM&

0"C
C 0

0 BTD C
xN

zP D#C
D 0

0 JTD vN`PM&

and hence that a driving variable representation for PWNM& is given by

d

dt C
zN
xPD"C

!AT !HHT

GGT A D C
zN
xPD#C

CT 0

0 BD C
d@PWNM&

dAPWNM&D

C
v@PWNM&

vAPWNM&D"C
GT 0

0 HD C
zN
xPD#C

!DT 0

0 JD C
d@PWNM+

dAPWNM&D
vPWNM&"(v@PWNM& , vAPWNM& )

Assume now that the Riccati inequalities (5) and (7) have solutions KN and KP such that
K satis"es (13). We now introduce new variables h, s3Rn and impose the constraint [zN

xP ]"K[hs].
This equation merely expresses that the variables (h, s) must be well-de"ned, which is equivalent
to stating that [zN

xP ] must belong to im(K). A straightforward calculation using the algebraic
Riccati inequalities yield

Dv@PWNM& D2!DvAPWNM& D2!
d

dt C
h
sD

T
K C

h
sD"Dd@PWNM&!ChD2!D¸NhD2!DdAPWNM&#BTsD2#D¸PsD2

(17)

for all (v@PWNM& , vAPWNM& , zN , xP ) satisfying the equations for PWNM&, and with [zN
xP ]"K[hs].
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Now, by combining (10), (12) and (17), we obtain that for arbitrary v3C=(R, Rd`f),
v"vN#vPM&#vPWNM& , with vN"(v@N , vAN)3N, vPM&"(v@PM& , vAPM& )3PM&, and vPWNM&"

(v@PWNM& , vAPWNM& )3PWNM&, with xN , zP , zN , xP , the variables introduced in the state representa-
tions of these behaviours, and [zN

xP ]"K[hs], we have

Dv@N#v@PM&#v@PWNM& D2!DvAN#vAPM&#vAPWNM& D2!
d

dt K C
xN

zP D#C
h
sD K

2

K

"Dv@N!GTKNxN D2
(I~D

T
D)
#D¸NxN D2!DvAPM&#HKPzP D2

(I~JJ
T)
!D¸PzP D2

#Dd@PWNM&!ChD2!D¸NhD2!DdAPWNM&#BTsD2#D¸PsD2. (18)

The crucial observation is that the above equation shows how the right-hand side can be made
non-negative, thereby achieving a &-dissipative subbehaviour K of C=(R, Rd`f). Indeed, we
should make sure that

1. vPM&"0, and zP"0; this ensures that only N, the &-dissipative part of N#PM&, is
incorporated in K,

2. ¸N"0; this is achieved by taking KN"KǸ, the largest real symmetric solution of the
algebraic Riccati equation (14), yielding

K"K` :"C
KǸ I

I !KPD
3. dAPWNM&"!BTs; this ensures that only a &-dissipative part of PWNM& is incorporated in K.

The resulting controlled behaviourK is obtained by adding these relations to the equations for
N#PM& and PWNM&. This yields the following state-space representation for K:

d

dt
xN"AxN#Gv@N,

0"CxN#Dv@N

d

dt
K`C

h
sD"C

!AT !HTH

GGT A DK`C
h
sD#C

CT 0

0 BD C
d@PWNM&

dAPWNM&D
dAPWNM&"!BTs

vK"C
v@N

HxND#C
GTKǸ GT

H !HKPD C
h
sD#C

!DT 0

0 JD C
d@PWNM&

dAPWNM&D
Specializing the equality (18) to K leads to

Dv
K
D2+!

d

dt K C
xN#h

s D K
2

K
`

"Dv@N!GTKNxN D2
(I~D

T
D)
#Dd@PWNM&!ChD2#D¸ PsD2 (19)

That K satis"es NLKLP follows immediately from the construction of K. That K is
&-dissipative on R

~
, equivalently that E f EL

2 (R, Rf)
)EdEL

2 (R, Rd
)
for all (d, f )3KWL

2
(R, Rd`f)

and K externally stable, follows from the equality (19) combined with the non-negative de"nite-
ness of K`. Proving that in K, d is free is the di$cult part, especially in the case that K`*0 is
singular. We will give a proof in the next sections, together with the speci"cation of the controller
and a proof of internal stability.
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4.5. Specixcation of the controller

Since NLKLP, the controlled behaviour K can be implemented by means of a controller
acting on the variables (u, y). However, the equations for K that we derived fail to make this
apparent. In these equations, the controlled behaviour is given as N added to a suitable
sub-behaviour of PWNM&. What we need to do, is rewrite K as the manifest behaviour of the
variables (d, f ) of P

&6--
, interconnected with a suitable control law acting on the variables (u, y).

Note that K is given by

d

dt
xN"AxN#Gv@N

0"CxN#Dv@N

d

dt C
zN
xPD"C

!AT HTH

GGT A D C
zN
xPD#C

CT 0

0 BD C
d@PWNM&

dAPWNM&D
C
zN
xPD"K`C

h
sD

dAPWNM&"!BTKPs

vK"C
v@N

HxND#C
GTKǸ GT

H !HKPD C
h
sD#C

!DT 0

0 JD C
d@PWNM&

dAPWNM&D
By introducing new state variables x"xN#xP , z"zN!KǸxP , instead of xN , zN , and the
new variables u"dAPWNM& , d"GTzN#v@N!DTd@PWNM& , y"Cx#Du, the equations for K
become, after some straightforward calculations,

d

dt
x"Ax#Bu#Gd, vK"(d, Hx#Ju)

y"Cx#Dd

d

dt
z"!(AT#KǸGGT)z!CTy!KǸBu

z"(In#KǸKP )s

u"!BTs

d

dt
xP"GGTz#(A#GGTKǸ)xP#Bu

xP"h!KPs

d@PWNM&"!Dd!C(x!xP )

Note that the last three of these equations merely serve to de"ne xP , h, and d@PWNM& . The controlled
behaviour K is hence given by the plant equations

d

dt
x"Ax#Bu#Gd, v"(d, Hx#Ju), y"Cx#Dd (20)

STATE SPACE H
R

CONTROL PROBLEM 1053

Copyright ( 2000 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2000; 10:1039}1057



combined with the control law

d

dt
(In#KǸKP)s"!(AT#KǸGGT)(In#KǸKP)s!CTy!KǸBu

u"!BTs (21)

Note that when In#KǸKP is singular, this is a singular state system. This representation of the
controller, while rather simple, has one major drawback: in the case that In#KǸKP is singular,
it does not make apparent that the transfer function from y to u of the controller exists. In the case
that In#KǸKP is non-singular, then obviously the transfer function from y to u exists, and is
strictly proper. In the next section we will show that, surprisingly, also in the case that
In#KǸKP is singular, the Equations (21) de"ne a controller with a proper transfer matrix!

4.6. Properness of the controller

In the remainder of this paper, we take KP"K~P , the smallest real symmetric solution of the
algebraic Riccati Equation (15). In order to simplify the notation, we will write KN instead of
KǸ and KP instead of K~P . A crucial role is played by the following relation, that is easily deduced
from the algebraic Riccati equations for KN and KP :

!(AT#KNGGT)(KN#K~1P )"(KN#K~1P )(A!GGTK~1P )#K~1P BBTK~1P !CTC (22)

By substituting this relation into the controller Equations (21) and de"ning xL "!KPs we obtain
the following alternative representation of the controller:

d

dt
(KN#K~1P )xL "(KN#K~1P )(AxL #Bu#GdK )#CT(y!yL )

yL "CxL

dK "!GTK~1P xL

u"BTK~1P xL (23)

Note that this representation displays the controller both as an input/output system driven by
the sensor outputs that returns the actuator inputs, and the structure of an observer driven
by error feedback, with yL the estimate of the sensor output, and dK the estimate of the worst
disturbance.

We now address the issue of the properness of the transfer function of the controller.
Decompose the singular state system that speci"es the controller in its regular and singular parts.
Let R3RnC$*.(*.(KN`K~1

P )) and N3RnC$*.(,%3(KN`K~1
P )) be matrices whose columns span

im(KN#K~1P ) and ker(KN#K~1P )"(im(KN#K~1P ))M, respectively. Note that the matrix
[R N] is non-singular. Introduce new state variables (xL

1
, xL

2
) by

xL "[R N] C
xL
1

xL
2
D

Now note that for all y, yL compatible with the equations of the plant and the controller (23) we
have

NTCT(y!yL )"0
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The idea is to use this relation to express xL
2

in terms of xL
1

and y. In order to do this, let (CN)d be
the Moore}Penrose inverse of CN. By de"nition we then have that (CN)d is the projection onto
ker((CN)T) along im(CN). Consequently, NTCTCN(CN)d"NTCT and hence NTCT(y!CRxL

1
!

CNxL
2
)"0 implies that

N(CN)d(y!CRxL
1
)!NxL

2
3ker(NTCTC) W im(N)

As a consequence, for all xL
2
, y, xL

1
compatible with the plant/controller equations, there exists

a signal a3ker(CN) such that

NxL
2
"N(CN)d(y!CRxL

1
)#Na

The idea is now to substitute this expression for NxL
2

into the controller representation (23). We
will prove now that the variable a does, in fact, not appear in these new equations for the
controller. Indeed, by premultiplying (22) with NT and postmultiplying with N, we get
NTK~1P BBTK~1P N"NTCTCN. Since CNa"0, this immediately yields BTK~1P a"0. Also,
(KN#K~1P ) (A!GGTK~1P )Na"0. Hence, after substituting NxL

2
into (23), and premultiplying

the resulting di!erential equation with the (non-singular) matrix [R N]T, we "nally obtain that
the controlled behaviour K is also represented by the plant equations (20) together with the
controller represented by

d

dt
RT(KN#K~1P )RxL

1
"RT(KN#K~1P ) (A(I!N(CN)dC)RxL

1
#Bu

#GdK #AN(CN)dy)#RTCT(y!yL )

yL "C((I!N(CN)dC)RxL
1
#N(CN)dy)

dK "!GTK~1P ((I!N(CN)dC)RxL
1
#N(CN)dy)

u"BTK~1P ((I!N(CN)dC)RxL
1
#N(CN)dy) (24)

These equations show that the transfer function of the controller is indeed proper. The feed-
through term is given by BTK~1P N(CN)d, while the strictly proper part is given by the di!erential
equation part of the above expression. This di!erential equation is a regular one, since
RT(KN#K~1P )R is a non-singular matrix.

4.7. Internal stability

In this subsection we show that the controlled system obtained by interconnecting the plant (3)
with the controller (24) is internally stable, i.e. we will prove that for all x and xL

1
satisfying both

the plant equations (3) and the controller equations (24), we have (x(t), xL
1
(t))P0 as tPR, when

d"0. For any xL
1

and y satisfying the di!erential Equation in (24), the signal xL :"RxL
1
#NxL

2
,

with NxL
2
:"N(CN)d(y!RxL

1
), and y satisfy the di!erential equation in (23). Obviously,

RT(KN#K~1P )RxL "RT(KN#K~1P )RxL
1
, so to prove (x(t), xL

1
(t))P0 it su$ces to prove

(x(t), xL (t))P0. To prove this, we need the following Lyapunov function argument for singular
systems (see Reference [18, Theorem 4.3]):

Lemma 9
Consider the system (d/dt)Ez"Fz, where E,F3RnCn. Let P"PT3RnCn satisfy P*0 and

de"ne <(z) :"DzD2
P
. Assume that Q"QT3RnCn, Q*0, is such that for all z satisfying
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(d/dt)Ez"Fz we have

(i) (d/dt)<(z)"!DzD2
Q
, and

(ii) (Qz"0)N(z"0)

Then the system (d/dt)Ez"Fz is asymptotically stable, i.e. all solutions z tend to 0 as tPR.

We now apply this lemma to the controlled system obtained by interconnecting the plant with
the controller (23). Consider

<(x, xL ):"!DxD2
K

~1P
#Dx!xL D2

KN`K
~1P

Clearly<(x, xL )*0 for all (x, xL ). A straightforward computation shows that for all (x, xL ) satisfying
the state Equations (3), (23) we have

d

dt
<(x, xL )"!DHx#JBTK~1P xL D2!DGTK~1P xL !(GTKǸ!DTC)(x!xL )D2 (25)

Hence, along solutions (x, xL ) of the controlled system, the derivative of <(x, xL ) coincides with
a negative semi-de"nite quadratic form. This yields condition (i) of Lemma 9. Now turn to
condition (ii). Clearly (d/dt)<(x, xL )"0 if and only if (x, xL ) satis"es the following two equations:

Hx#JBTK~1P xL "0 (26)

and

GTK~1P xL !(GTKǸ!DTC) (x!xL )"0 (27)

By premultiplying equation (26) with JT, we obtain BTK~1
P

xL "0 so u"0. Combined with the
Equation of the plant, this implies that x satis"es the equations

d

dt
x"Ax, Hx"0

By regularity condition (A.4), i.e. observability of the pair (H, A), this implies x"0.
By premultiplying the second Equation, (27), with D, we get CxL "0. Again combining this with

(27), we obtain GT(KN#K~1P )xL "0. Now note that (KN#K~1P )xL "x
c
, where x

c
satis"es

(d/dt)x
#
"!(AT#KǸGGT)x

#
, GTx

#
"0. By the regularity assumption A.3 (observability of the

pair (GT, AT)), this yields x
#
"0, so (KN#K~1P )xL "0. Since xL "RxL

1
#NxL

2
, this yields

RT(KN#K~1P )RxL
1
"0, so xL

1
"0. Also NxL

2
"N(CN)d(y!RxL

1
)"0, since y"0 and xL

1
"0.

Thus xL "0. Now use Lemma 9 to conclude that the controlled system is indeed internally stable.
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