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Fluid dynamical systems as Hamiltonian boundary control systems

A.J. van der Schaft!

Abstract

It is shown how the geometric framework for distributed-
parameter port-controlled Hamiltonian systems as recently
provided in {11, 12] can be adapted to formulate ideal
isentropic compressible fluids with non-zero energy flow
through the boundary of the spatial domain as Hamilto-
nian boundary control systems. The key ingredient is the
modification of the Stokes-Dirac structure introduced in
[11] to a Dirac structure defined on the space of mass
density 3-forms and velocity 1-forms, incorporating three-
dimensional convection. Some initial steps towards stabi-
itzation of these boundary coniro}l systems, based on the
generation of Casimir fuactions for the closed-loop Hamil-
tonian system, are discussed.

1 Introduction

In recent publications {10, 22, 4, 20, 21] a systematic frame-
work has been provided for the geometric modelling of
network models of lumped-parameter physical systems as
port-controlled Hamiltonian (PCH) systems (with or with-
out dissipation). The key notion in this framework is
that of a power-conserving interconnection, formalized by
the geometric concept of a Dirac structure. Furthermore
([23, 4,21, 17, 19]) it has been shown how by interconnec-
tion with a controller system that is itself a PCH system, the
system may be stabilized at a desired set-point by generat-
ing Casimir functions (conserved quantities) determined by
the closed-toop interconnection structure, thus effectively
shaping the energy of the system.

Recently [11, 12] we have started to expand this research
program on finite-dimensional PCH systems to the dis-
tributed parameter case. However, a fundamental diffi-
culty which arises is the weatment of boundary condi-
tions. Indeed, from a control and interconnection paing
of view it is essential to describe a distribuied parame-
ter system with varying boundary conditions inducing en-
ergy exchange through the boundary, since in many appli-
cations the interaction with the environment (e.g. actua-
1ton or measuremnent) will actually take place through the
boundary of the system. On the other hand, the treatment
of distributed parameter Hamiltonian systems in the litera-
ture ([14, 8,9, 15, 13, 1]) seems mostly focussed on systermns
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with infinite spatial domain, where the variables go to zero
for the spatial variables tending to infinity, or on systems
with boundary conditions such that the energy exchange
through the boundary is zero. In {11, 12] we have pro-
posed a framework to overcome this fundamental problem,
by defining a Dirac structure on certain spaces of differen-
tial forms on the spatial domain and its boundary, based on
the use of Stokes’ theorem. This framework has been suc-
cessfully applied to the port-controlled Hamiltonian formu-
lation of ¢.g. the telegraph equations and Maxwell’s equa-
tions.

In the present paper we extend and generalize this
differential-geometric framework to the Eulerian descrip-
tion of 3-dimensional ideal isentropic fluids (see Section
2). The basic set up is to represent the mass density as
a 3-form and the Bulerian velocity as a 1-form (see also
[8, 9] for a similar point of view), and 1o define a modified
Stokes-Dirac structure on the space of these state variables
according to mass and momentum balance {“modified” be-
cause of an additional term arising from 3-dimensional con-
veciion). For zerp-boundary conditions our formulation te-
duces to the elegant Poisson bracket formufation given be-
forein [14, 8, 9, 13}. The resulting infinite-dimensional sys- .
temn with boundary variables can be interpreted as a (nonlin-
tar) boundary control system in the sense of e.g. {71.

The identification of the underlying Hamiltonian structure
of fluid dynamics has proved to be instrumental in deriv-
ing all sorts of results on integrability, existence of soliton
solutions, stability, reduction, etc., and in unifying existing
results, see e.g. [6, 1, 13]. We believe it will also be a fruit-
ful starting point for the control of such systems. In Sec-
tion 3 we shall already provide some initial ideas how the
theory of interconnection and energy-shaping as developed
for finite-dimensional port-controtied Hamiltonian systems
might be extended 1o the fluid dynamics case.

2 Geometric boundary control formulation of fluid
dynamies

2.1 Introduction
An ideal compressible isentropic fluid in three dimensions
is described by the equations (in vector calculus notation

i ={({2 2 A
with ‘v_-(aX|'aXz‘ axy )

Bp__* )
EYi V- (pv) 8]



v 1
—=—v-YVv-~-V
ar v-Vu pS D

Here p(x, t} denotes the mass density at the spatial position
x e R attime 1, and v{x, ¢) is the Eulerian velocity, that is,
the velocity of the fluid at the (fixed) spatial position x at
time ¢. Furthermore, p(x, ) is the pressure, which is deriv-
able from an internal energy density U/(p) as

P = (5,05 (p(x 1) @)
Bath equations (1) and (2) are conservation laws, express-
ing respectively mass-balance and momentom-balance, and
more generally can be expressed in an inzegral form. In-
deed, let W be any fixed 3-dimensional subdomain of some
given domain 2 ¢ R, filled with the fluid. Then (1) ex-
presses that the change of mass inside W is equal fo minus
the mass flow through the boundary of W, while (2} corre-
sponds to Newton's second iaw.

It can be readily checked that the total stored energy in W
(with dV the standard volume element in R3)

Hy = f (%p 1ol +pU(p))dv @
w .

satisfies the balance equation

d
ZIEHW__

/ B o2 +h<p)] pvondh  (5)
aw

(with d A denoting the standard area element) where »n is the
outward normal vector to the boundary dW, and A(p) =
U(p) + p%i—" (p) is the enthalpy. Alternatively, using (3), the
energy balance (5) can be rewritten in “convective form” as

& Hw — [ [ 1 v 12 +pU(0)]v-ndA
6)
— fow pyv-ndA

It immediately follows that if v is such that v n = 0 at the
boundary 8W (no fluid flow through the boundary), then
the total energy Hw is conserved. In fact, not only the
energy Hw is conserved in this case, but the dynamical
equations (1), (2) of the fluid on W can be formulated as
an infinite-dimensional Hamiltonian system on the infinite-
dimensional space of mass densities p and Eulerian veloci-
ties v on W, This is done via the introduction of an infinite-
dimensional Poisson bracket, see e.g. [14, 8, 9, 6, 13] for
clear expositions and further ramifications. ;From a con-
trol point of view, however, we would like to consider the
fluid dynamical system as a boundary control system, with
time-varying boundary conditions different from v.njaw =
0, since the interaction of the system with its environment
will often take piace through the boundary.

2.2 Stokes-Dirac structure

The basic concept we need is that of a Dirac structure, as
introduced by Courant [4] and Dorfman [7] as a generaliza-
tion of symplectic and Poisson structures, and employed in
e.g. [22, 4, 21] as the geometric notion formalizing general
power-conserving interconnections.

).
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Definition 2.1 Let V be a linear space (possibly infinite-
dimensional). There exists on V x V* the canonically de-
[fined symmetric bilinear form

<« (fl»el)a (f2lel) Di=< ellfl >+ < ellfl > {7)

with fie V,e;e V¥ i=1,2, and < | > denoting the duality
product berween V and its dual space V*, A constant Dirac
struciure on V is a linear subspace D C V x V* such that

D=D* ®
where L denotes orthogonal complement with respect 1o the
bilinear form <, 3.

Let now (f, ¢) € D = D%, Then as an immediate conse-
quence of (7)

0=k (fie),(fe)>=2<e|lf> 18]
Thaus for all (£, e) € D we obtain < e| f >= 0, expressing
power conservation with respect to the dual power variables
fe Vandee V. (In an electricai context the components
of f and e will denote pairs of currents and voltages, while
in a mechanical context they will be pairs of generalized
velocities and forces.)

The Stokes-Dirac structure corresponding to 3-dimensional
fluid dynamics is now defined as follows. Let W C D C
R? be a 3-dimensional manifold with smooth 2-dimensional
boundary 8W, Let Q*(W) denote the space of differential
k-forms on W,k =0,1,2,3, and let 2X(3W) denote the
k-forms on 3W, k =0, 1, 2. We identify the mass density p
with a 3-formon W (see e.g. {8, 9]), that is, with an element
in 23(W). Furthermore, we identify the Eulerian velocity
v with a I-form v, that is, with an element of 2! (W); see
later on for some additional motivation. This leads to the
consideration of the {linear) space of energy variables

X = Q¥ W) x Q' (W) (10
Next we consider the boundary external variables (or
boundary input and output variables). First we consider
the space Q0(3W) of O-forms, that is, the functions on 8W.,
They will represent the “stagnation pressure divided by g”
at the boundary. Secondly, we consider the space S22(8W)
of 2-forms on W, representing the “boundary mass flow™.
Thus we consider the spuce of boundary variables

QUaw) x Q2 (W) (1)
Note that (see also {8, 9]) there is a pairing ( , ) between
QP (aW) and Q2(3W), given by

(f.a):::f fa, [eQPOW), aeQH@W) (12)
aw

This pairing is weakly non-degenerate, that is, if (f,a) =0
for all @ € Q%(8W) then f =0, and if (f, ) =0 forall f,



then o = 0. Thus we can regard 20(dW) as a dual space of
2% (dW), that is,

Q03W) = (Q%(awW))* (13)

{Note that in this way 2°(3W) is a subspace of the func-
tional analytic dual of Q2(8W).) The pairing (12) will rep-
resent the power fliowing into the system through the bound-
ary aW. In a similar way we define

@w)r = QW)

@ W) = QUW) (14)
using the weakly non-degenerate pairing
<a.ﬁ)=[ anp (1)
w

with @ € 20(W), B & Q¥(W), respectively x € Q¥(W), B €
QI(W).

Theorem 2.2 (Stokes-Dirac structure) Let W c R3 bea 3-
dimensional manifold with boundary dW. Consider V :=
X x QUOW) = Q3(W) x QUW) x QUaW), and V* =
QUW) x QUW) x Q2dW), together with the bilinear
Sorm induced by the pairing (12) and (15)

L (S fi fehelel) (FL f2 fR ek el el) >
= fylel A2+l Afl+el A fi4e2 A fl)

+faw e A S5+ e n fy)
(16)

where

£ e W), fi e QUW), f} € %(3W)
amn
el € W), ), € QHW), ¢}, € R3(aW)

Then D C V x V* defined as
D = [(fp’ fv, fbt ep, €y, Eb) [ V % V*i

fp = de., fu=de,, fo = eaw, €6 = —eow)

(18)

where d is the exterior derivative (mapping k-forms into
{k + 1)-forms), and where \aw denotes the restriction of
k-forms on W 1o k-forms on the boundary 8W, is a Dirac
structure with respect to the bilinear form <, > defined in
(16).

Proof This can be proved along the same lines as in [11],
making use of Stokes’ theorem [, do = [,  for any 2-
form a., (In (117 the “symmetric” case was considered with
V= QW) x Q3(W) x QI(3W) on a 3-dimensional do-
main W < R3, which tums out to be the appropriate setting
for Maxwell’s equations.}
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2.3 The Hamiltonjan formulation

The idea is now 1o regard the Stokes-Dirac structure of The-
orem 2,2 as the power-conserving interconnection relating
the boundary external variables f», e» to the internal vari-
ables f,, fu, €0, €,. Furthermore, following the framework
in[11, 12} the internal variables f,, f, are equated with (mi-
nus) the time-derivatives %’? , %}’ of the energy variables p, v,
while the internal variables ¢,, e, are equated with the co-
energy variables 8, H, §,H. However, contrary to the case
of the telegrapher's equations or Maxwell’s equations as
treated in {11, 12], we still need to introduce an additional
term to the Stokes-Dirac structure given above, which is due
to the 3-dimensional geometry associated with convection.
The problem thus concerns the geometric formulation of the
term v. Vv in (2).

(From a general differential-geometric point of view this
can be done as follows, Let <, > be any Ricmannian met-
ric on W, with V denoting its unique symmetric covariant
derivative. (If <, > is the Euclidean metric then V is just
the ordinary derivative operator (52—] = a‘i?) as above.)
Let u be a vector field on W, and let u® denote the corre-
sponding 1-form, defined as u” = i, <, > (* index raising”
via the metric). Then the following formula holds, relating
the covariant derivative to the Lie-derivative:

Lo = (Vu)® + %d <u,u> (19)
(see for a proof [1, p. 202]). By Cartan’s magical formula
L’ =i,dd +digd’ =idd’ +d <nu>  (20)

we therefore obtain
1
(V) = i,di’ + fd <u,U>, (21

which is the coordinate-free analog of the classical vector
calculus formula (using the Euclidean metric)

‘ 1 _
u-Vu= cur] uxu-}-iVluIz (22}

Let us now consider v in (2) to be a l-form. By “index
lowering” with respect to the Riemannian metric the 1-form
v defines a vector field v" (such that (¥*)" = v), Hence, we
may represent (2) as

av

E:—iundu—d(:—;— < Ui, >) —-%dp (23)

with 5 the mass density function, formally defined as p =
*p, with & denoting the Hodge star operator determined by
<, >; converting the 3-form p into the O-form (function)
*p. Furthermore, by (3) it follows that

1 L 3

2dp = d(U () + pox (P = (= (BU(B)) (= d(h(p

E,dP (U(P)+Pap ) (ap(p (P))) (=d(h(p)))
(24)



Hence we may rewrite (23) as
2 [1
8p 12
where in the second term on the right-hand side we recog-
nize (see {4)) the total energy density.

— = —fpdv—d

<yl 1> +Z>U(I3)D (25)

Finally, consider the total energy Hyw given in (4) which
formally can be rewritten as a function of the 3-form p and
the 1-form v as

L

Hw =f F— < vt ' > U (xp)
wl2

The partia! derivative 8,Hy is an element of (Q3(W))*,
and thus can be identified with an element of 2%(W)
(namely, with the function 5":; [36 <) ob > +pU ()] =
1 < v7, 8 > 4l (%p) in (25)), while the other partial deriva-
tive 8,Hy is an element of (2'(W))*, and thus can be
equated with an element of Q2(W) (in fact, with the 2-form
i p). Italso follows immediately that 8, Hw and 5, Hw only
depend on the energy density (the integrand in (4} or (26)),
and thus we simply write §,H and §,H. Finally, we note
the equality (most easily checked in a basis)

(26)

iwdv = ;1—p * ((xdv) A (%8, H)) 7

with dv, 8, H denoting 2-formns, and * the Hodge star oper-
ator converting 2-forms into 1-forms.

Summarizing, we can rewite (1) into the following form

ap _

wo a(3,H) (28)
v 1

—=—d(8,H) - E * {(*dVv) A (%8,H)) (29)

Comparing with the Stokes-Dirac siructure given in Theo-
rem 2.2 we notice the additional term in the right-hand side
of (29). This is incorporated into the following definition of
a modified Stokes-Dirac structure

Proposition 2.3 (Modified Stokes-Dirac structure) Con-
sider the same setting ns in Theorem 2.2. Then D™ C
V x V* defined as

D" = {(for for fon€p enep) €V x V¥
fe=dey,, fu=de,+ ;"-, * ((#du) A (xey)),

fo =epw, er = —e ow}

(30)

is a Dirac structure.

Proof This is based on the fact that eZ * ((xdv) A (xel))
is skew-symmetric in e}, 2 € Q*(W), and hence does not
contribute to the bilinear form (16). (In fact, in vector cal-
culus notation €2 * ({+dv) A (*e))) = (+dv) - (e} x €2).) O
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Remark 2.4 Note however that D as given in (30} is not
anymore a constant Dirac structure, since it depends on the
energy variables p and v,

Remark 2.5 Fora 1- or 2-dimensional fluid the extra term
in (30) is automatically zero. Furthermore, if in the three-
dimensional case the 2-form dv(t) happens to be zero ai
a certain time-instant ty (irrotational flow), then it is zero
for all time t > ty. Hence alse in this case the extra term
in the modified Stokes-Dirac structure D™ vanishes, and
the port-controlled Hamiltonian system describing the FEu-
ler equations reduces to the standard distributed-parameter
port-controlled Hamiltonian system given in [11, 12].

As announced before, the dynamics corresponding to the
modified Stokes-Dirac structure (30) and the Hamiltonian
(4} s now defined by setting

Jo —%?’ ep=238,H
31)
fu —?:', ev=268,H

leading immediately to the port-controlled Hamiltonian sys-
tem whose dynamics is given by (28}, (29), with boundary
external variables

So BoHlaw (= [3 < v", V" > +h(xp)] law)

(32)

€y ~8,Hlgw (= —ipplow)

The resulting system can be regarded as a bourdary control
system in the sense of e.g. [7]. Indeed, we can either re-
gard fj as the boundary control variable (with e, being the
boundary eutpur), or the other way around.

Energy exchange through the boundary is not the only way a
distributed-parameter system may interact with its environ-
ment. Instead of boundary external variables we may alse
incorporate distributed external variables, leading to dis-
tributed control problems; see [11] for some developments.
Also, energy dissipation can be incorporated in the frame-
work by ferminating some of the ports (boundary or dis-
tributed} by a resistive relation (given by a Rayleigh dissi-
pation functional). In this way we can represent the Navier-
Stokes equations.

2.4 Energy-halance

1t immediately follows from the power-conservation prop-
erly (9) of any Dirac structure that the modified Stokes-
Dirac structure D™ defined in Proposition 2.3 has the prop-
erty

f(ep/\f,,+eu/\f,,)+[ ex N fo=0 (33)

W oW

Hence by substituting (31) we immediately obtain
ii—Hw:f ebf\be-—f (SUHASPH (34)
dr aw aw



where 5, H = % < v, V! > +h(*p) is a funciion, and 5, H is
the 2-form i 0. This is exactly the coordinate-free version
of (5). The 2-form §; /f represents the mass-flow and 8, H is
the stagnation pressure divided by p. Note that altcrnatively
we can write

fowboHABH = [ in[} <% ot > p+ Ulxp)p}

+ fow i (%p)
(35)

where % p is the pressure 3-form A{xp)p — U(xp)p. This is
the coordinate-free version of (6).

3 Conservation laws and passivity-based control of
fluid dynamical systems

The Energy-Casimir method has proved to be a very vah-
able tool in the stability analysis of fluid dynamical systems
(and Hamiltonian systems in general); see e.g. [6, 1, 13]
for further information. The basic idea is to determine
the conserved guantities or Casimir functions of the sys-
tem, and to consider as candidate Lyapunov functions the
Hamiltonian function (the energy) plus a suitable Casimir
function. The idea of using the Energy-Casimir method
for stabilization of finite-dimensional Hamiltonian control
systems was explored in e.g. (2, 23, 4, 17, 18, 21, 19].
In particular, in [23, 4, 17, 18, 21, 19] it has been shown
how by power-conserving interconnection with a Hamilto-
nian controller system Casimir functions for the closed-loop
system can be generated. Underlying this construction is
the fact (see {21]) that any power-conserving interconnec-
tion of Dirac structures defines another Dirac structure, and
thus the closed-loop system is again Harniltonian. Then the
Energy-Casimir method can be applied to the closed-loop
system (with Hamiltonian being the energy of the Hamilto-
nian plant system together with the energy of the Hamilto-
nian controller system). Furthermore, it has been shawn
([17, 18, 191) how this approach relates to the energy-
shaping and interconnection-damping-assignment methods
of passivity-based control, which have proved to be quite
powerful for the control of (electro-)mechanical systems,
seee.g. [16, 17, 18, 21, 19].

The extension of these ideas to fluid dynamical control sys-
tems can be approached as follows. From the Dirac struc-
ture given in Proposition 2.3 one infers conservation taws of
the Hamiltonian boundary control sysiem. A physically ob-
vious conservation law cotresponds to the total mass [, p.
Indeed, one immediately verifies

-f—i—f =—f d(suH)—_-_f ‘SUH-__f 2y (36)
dr Jw w aw aw

(which is nothing else than the mass-balance (1)). Then
consider an additional controller system, also of port-
controled Hamiltonian form, but with intemally diseributed
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control u. and output y.

¥ =
37
Ye = 3,;ch

with X. a 2-form on 3W, and H, = f;, #.(x.) the con-
troller Hamiltonian for a certain density 2-form % (x.). In-
terconnect this controller to the fluid dynamic system via
the power-conserving interconnection

He = €
(38)
i = —¥

(note that y. is a function on @W). Then the closed-loop
system is again a Hamiltonizn system with total Hamilto-
nian Hy 4 H,. Furthermore, because of (36), the function

f p— f Xe 39
W oW

is a Casimir function (conserved quantity). Therefore, by
the Energy-Casimir method, any other function

V::HW+HC+P(f ,o—f xc) (40)
w aw

with P: R — R stil} to be assigned, can be used as an en-
ergy function for the closed-loop system, and therefore as
a candidate Lyapunov function. Its potential for the conirol
of fluid dynamical systems has to be investigated.

The rext conservation law to be considered derives from the
helicity of the fiuid, defined as

f vAdv @n
W

This quantity measures the “koottedness™ of the fluid, see
e.g. [1]. Time-differentiation of (41) yields

Llpvande= L (Zrdvetvady)=
== [ dBH) Adu=— [, d@,H Adv)  (42)

== o Hadv=={, findv

showing the boundary variable f, which can be intercon-
nected to a controller Hamiltonian system as before, leading
again 10 new candidate Lyapunov functions.

4 Conclusions

We have shown how 3-dimensional ideal isentropic fluids
can be modelled as a Hamiltonian boundary control system,
using the notion of a Stokes-Dirac structure. Among others,
this opens up the way for the application of passivity-based
control techniques, which have been proven to be very ef-
fective for the control of lumped parameier physical systems
modelled as port-controlled Hamiltonian systems.
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