
 

 

 University of Groningen

Dynamics and Control of a Class of Underactuated Mechanical Systems
Reyhanoglu, Mahmut; Schaft, Arjan van der; McClamroch, N. Harris; Kolmanovsky, Ilya

Published in:
IEEE Transactions on Automatic Control

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1999

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Reyhanoglu, M., Schaft, A. V. D., McClamroch, N. H., & Kolmanovsky, I. (1999). Dynamics and Control of a
Class of Underactuated Mechanical Systems. IEEE Transactions on Automatic Control, 44(9), 1663-1671.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 03-06-2022

https://research.rug.nl/en/publications/3b18dad6-2699-43d2-a66d-9e4860b34ca9


IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 9, SEPTEMBER 1999 1663

Dynamics and Control of a Class of
Underactuated Mechanical Systems

Mahmut Reyhanoglu,Member, IEEE, Arjan van der Schaft,Senior Member, IEEE,
N. Harris McClamroch,Fellow, IEEE, and Ilya Kolmanovsky,Member, IEEE

Abstract—This paper presents a theoretical framework for
the dynamics and control of underactuated mechanical systems,
defined as systems with fewer inputs than degrees of freedom.
Control system formulation of underactuated mechanical systems
is addressed and a class of underactuated systems characterized
by nonintegrable dynamics relations is identified. Controllability
and stabilizability results are derived for this class of underac-
tuated systems. Examples are included to illustrate the results;
these examples are of underactuated mechanical systems that are
not linearly controllable or smoothly stabilizable.

Index Terms—Controllability, mechanical systems, nonlinear
control, stabilizability, underactuated.

I. INTRODUCTION

I N THE past few years, there has been a surge of interest
in the control of mechanical systems that satisfy certain

nonintegrable relations. These studies were primarily limited
to nonholonomic systems satisfying nonintegrable kinematics
relations (see, e.g., [4], [15], and references therein). In this
paper the ideas in [4] are extended to mechanical systems that
satisfy nonintegrable dynamics or acceleration relations.

Systems with nonintegrable acceleration relations can arise
by imposition of certain design conditions on the allowable
motions of redundant manipulators. Such systems can also
arise as models of underactuated mechanical systems, defined
as systems which have fewer inputs than degrees of freedom.
While many interesting techniques and results have been pre-
sented for underactuated systems, the control of these systems
still remains an open problem. Important issues are: how can
nonlinear control models be formulated for such systems; what
are their controllability and stabilizability properties; and how
can open-loop and closed-loop control problems be solved.
The first two issues are thoroughly addressed in this paper,
while the third issue is briefly discussed and references to
published literature are provided. This paper is an extended
version of the conference papers [25] and [26].
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II. M ODELS OFUNDERACTUATED MECHANICAL SYSTEMS

Consider first a dynamic system defined on a configuration
manifold . Let denote
local coordinates on the tangent bundle . We refer to

and as the vectors of generalized coordinates, general-
ized velocities, and generalized accelerations, respectively. Let
the system be under the action of , independent
control forces and/or torques, i.e., there are fewer control
inputs than degrees of freedom. Also let denote the
vector of control variables. We partition the set of generalized
coordinates as

. Without loss of generality, we assume that the actuated
degrees of freedom are represented by the elements of
and the unactuated degrees of freedom are represented by the
elements of . Lagrange’s equations can then be written as

(1)

(2)

where is invertible for all
, and represent

components of an inertia matrix which is symmetric
and positive definite for all . Throughout this paper all
functions are assumed to be smooth functions defined
on .

Following Spong [33], we may solve for as

and substitute into (1) to obtain

where

Consequently, using the partial feedback linearizing controller

(1) and (2) can be rewritten as

(3)

(4)

where
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Equations (3) and (4) have a special triangular or cascade
form that appropriately captures the important attributes of
underactuated mechanical systems. Equation (3) defines the
linearized dynamics of the completely actuated degrees of
freedom. Equation (4) defines the dynamics of the
unactuated degrees of freedom; these are expressed in terms
of equalities involving the generalized accelerations. If these
latter relations do not admit any nontrivial integral, i.e., any
smooth function such that along the
solutions, then these relations may be interpreted as
completely nonintegrable acceleration constraints (or second-
order nonholonomic constraints [25]). As will be seen in
the subsequent development, controllability and stabilizability
properties of underactuated mechanical systems are closely
related to this property. Hence, it is crucial to identify under-
actuated mechanical systems where the acceleration relations
defined by (4) are completely nonintegrable.

Define the -covector fields

(5)

on so that the relations given by (4) can be
rewritten as . Augment the covector
fields (5) with

(6)

(7)

and let denote the codistribution

(8)

The annihilator of , denoted , is spanned by linearly
independent smooth vector fields

(9)

(10)

We present the following definition.
Definition 1: Consider the distribution and let de-

note its accessibility algebra, i.e., the smallest subalgebra of
that contains . Let denote the

accessibility distribution generated by the accessibility algebra
. Then the acceleration relations defined by (4) are said to

be completely nonintegrable if

Note that the above definition gives a coordinate-free char-
acterization of nonintegrability for any set of acceleration
relations of the form (4). Clearly, Frobenius’ theorem (see,
e.g., [22]) applies here. Note also that this definition is
analogous to the definition given in [4] for the nonintegrability
of a set of kinematics or velocity relations.

Other definitions of nonintegrability have been given in [23]
and [37]. The definition given in [23] applies to underactuated
manipulators and involves a coordinate-dependent require-
ment, namely noncyclicity of the unactuated joint variables.
The definition given in [37] applies to underactuated vehicle
models where the acceleration relations are expressed in terms
of quasicoordinates (see, e.g., [11]) rather than to models
expressed in terms of generalized coordinates. Our subsequent
examples illustrate cases for which the definitions given in
[23] and [37] are not applicable.

In this paperit is assumed throughout that the accelera-
tion relations described by (4) are completely nonintegrable.
Note that both completely nonintegrable velocity relations
and completely nonintegrable acceleration relations have in
common the fact that they do not reduce the dimension of the
configuration space. However, in contrast to the completely
nonintegrable velocity relations, completely nonintegrable ac-
celeration relations do not reduce the dimension of the state
space as well. Note also that any mechanical system with
holonomic or classical nonholonomic constraints can be ex-
pressed in the form of an underactuated mechanical system
with integrableacceleration relations.

Examples of underactuated systems with completely non-
integrable acceleration relations include underactuated robot
manipulators [1], [12], [18], [23], [34], underactuated marine
vehicles [10], [27], [37], the planar vertical takeoff and landing
aircraft [13], [19], the rotational translational actuator system
[6], [14], [16], and the acrobot system [32] and examples in
[20] and [30].

A particularly important class of solutions is the equilibrium
solutions of (3) and (4) with . A solution is
an equilibrium solution if it is a constant solution; note that if

is an equilibrium solution we refer to as
an equilibrium configuration. Clearly, the set of equilibrium
configurations of system (3) and (4) is given by

Equations (3) and (4) can be expressed in the usual nonlinear
control system form by defining the following state variables:

Then the state equations are given by

(11)

(12)

(13)

(14)

Equations (11)–(14) define a drift vector field
and control vector fields

, where denotes the th
standard basis vector in and denotes the
th column of the matrix function ,

according to the standard control system form

(15)
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Note that an equilibrium solution , corresponding to
, of (15) has the form , , where

, and , i.e., an equilibrium
solution corresponds to a motion of the system for which all
the configuration variables remain constant. The controllability
and stabilizability properties of system (3) and (4) near an
equilibrium configuration can be obtained by studying
local properties of system (11)–(14) near the corresponding
equilibrium solution .

III. CONTROLLABILITY AND STABILIZABILITY RESULTS

This section develops controllability and stabilizability re-
sults for underactuated systems with completely nonintegrable
acceleration relations. The reader is referred to [3], [22], and
[35] for the controllability concepts developed in the nonlinear
control literature.

We first demonstrate that an underactuated mechanical sys-
tem, defined by (3) and (4), does satisfy certain nonlinear
controllability properties. In particular, we show that the
system is strongly accessible. This nonlinear controllability
property is equivalent to Definition 1 and it guarantees that a
necessary condition for small time local controllability (STLC)
of the system at the equilibrium is satisfied.

Theorem 1: Let . The underactuated mechanical
system, defined by (3) and (4), is strongly accessible.

Proof: Since we have assumed that relations (4) are
completely nonintegrable the distribution spanned by

satisfies the accessibility Lie algebra rank
condition at any , i.e.,

Let denote the projection onto .
Then, clearly and .
Let denote the strong accessibility algebra associated with

, i.e., the smallest subalgebra which
contains and satisfies , and
let denote the strong accessibility distribution generated by
the strong accessibility algebra. Since we have

it follows that

Hence, system (11)–(14) is strongly accessible. Consequently,
the underactuated mechanical system, defined by (3) and (4),
is strongly accessible.

The following result illustrates the fact that for certain
underactuated mechanical systems a given equilibrium con-
figuration cannot be asymptotically stabilized using time-
invariant continuous (static or dynamic) state feedback. This
property has been previously recognized for underactuated
manipulators [23] and for underactuated vehicles [37].

Theorem 2: Assume that , for some
. Let and let denote an

equilibrium solution. Then the underactuated mechanical sys-
tem, defined by (3) and (4), is not asymptotically stabilizable
to using time-invariant continuous (static or dynamic)
state feedback law.

Proof: A necessary condition for the existence of a time-
invariant continuous asymptotically stabilizing state feedback
law for system (11)–(14) is that the image of the mapping

contains some neighborhood of zero (see Brockett [5]). No
points of the form

are in its image; it follows that the necessary condition is not
satisfied. Hence system (11)–(14) cannot be asymptotically
stabilized to by a time-invariant continuous
(static or dynamic) state feedback law. Consequently, the
underactuated mechanical system, defined by (3) and (4), is
not asymptotically stabilizable to using a time-invariant
continuous (static or dynamic) state feedback.

There are numerous examples of underactuated mechanical
systems for which the assumption of Theorem 2 is not satis-
fied; in such cases an equilibrium solution may be smoothly
(even linearly) stabilizable.

It is well known that strong accessibility is far from being
sufficient for the existence of a feedback control which asymp-
totically stabilizes the underactuated system at an equilibrium
solution. In certain cases it is possible to prove a stronger
controllability property such as STLC, which guarantees the
existence of a piecewise analytic feedback law for asymptotic
stabilization in the real analytic case [36] (see the remark
below). Since an underactuated mechanical system satisfies

, the dimension of the state is at least four. Hence,
in the real analytic case, the STLC property also guarantees
the existence of asymptotically stabilizing continuous time-
periodic feedback laws [8, Th. 1.4]. We consider the definition
of “asymptotic feedback stabilization” as given in [36], which
involves a specification of “exit rules” for certain lower-
dimensional submanifolds. Our assertion above is based on
the result in [36] and is not in contradiction with the result in
[31], which states that when the system’s solutions are defined
in the sense of Fillippov, the existence of stabilizing piece-
wise analytic feedbacks implies the existence of continuous
time-invariant feedbacks. Indeed, the definition of asymptotic
stability in [31] differs from that in [36]. We refer the reader
to [7] for a detailed discussion on the relationship between
controllability and feedback stabilization.

We now briefly summarize a result of Bianchini and Stefani
[3], which we utilize to prove the subsequent controllability
results. Let denote the smallest Lie algebra of vector
fields containing and let denote any bracket
in . Let denote the number
of times , respectively, occur in the bracket.
For an admissible weight vector

, the -degree of is equal to the value of
. The Bianchini and Stefani condition for STLC

for a strongly accessible system is essentially that the so-called
bad brackets, the brackets with odd and even for
each , must be -neutralized, i.e., must be a linear combination
of good (i.e., not of the bad type) brackets of lower-degree
at the equilibrium.
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Consider system (3) and (4) and rewrite the drift and control
vector fields as

where denotes the set .
The following Lie bracket calculations are straightforward:

where

(16)

(17)

Note that the vertical lift of (considered as a vector field on
the configuration space ) is the control vector field . Note
also that .

We now present the following result which is a generaliza-
tion of the results in [18] and [25].

Theorem 3: Let and let denote an
equilibrium solution. The underactuated mechanical system,
defined by (3) and (4), is small time locally controllable
at if there exists a set of pairs of indexes

, such that

(18)

and

(19)

Proof: Consider system (3) and (4) and assume that (18)
and (19) hold. By (18), the space spanned by the vectors

(20)

has dimension at , and hence the system is strongly
accessible at . Let , and

. The value
of a bad bracket must necessarily be odd. Any

bad bracket with has -degree greater than or
equal to ten. Clearly, these brackets are-neutralized since
the spanning good brackets (20) have-degree less than ten.
Hence, it suffices to show that bad brackets with
and are -neutralized. The only bad bracket with

is which vanishes at the equilibrium. By (19), the
bad brackets are all zero at ;
and by (18), the bad brackets

, can be written as linear combinations of the good
brackets , which have lesser-degree.
It follows that the Bianchini and Stefani condition is satisfied

at . Hence, under the stated assumptions, system (3)
and (4) is small time locally controllable at .

Reference [18, Proposition 3] contains the result in Theorem
3 for the special case of one unactuated degree of freedom
only, i.e., . Theorem 3 is also more general than our
previous result in [25] that does apply for the case .

Note that for (18) to hold the condition
must be satisfied. This condition arises due to the fact that in
the above result we have considered Lie brackets up to degree
four only. It is possible to develop a result which weakens
or even removes this restriction by also taking into account
higher order Lie brackets. Such a development is relatively
straightforward for underactuated mechanical systems with
no potential or frictional forces, i.e., systems for which the
components of are of second-order in the-variables.

We now restrict our consideration to underactuated mechan-
ical systems with no potential or friction forces. As shown in
Lewis and Murray [17], for such systems, when evaluated at
the equilibrium the only nontrivial brackets are those satisfying

or .
Clearly, the brackets with are all
good, and the only bad brackets are those with

odd and even, .
Borrowing ideas from Lewis and Murray [17], we define

the following sequence of collections of vector fields:

Let denote a vector field in . It is easy to show that
has the form , where is an
vector function and its Lie bracket with can be written
as . Now let denote an
equilibrium solution. Clearly, if there exists an integer
such that

(21)

then the system is strongly accessible at , i.e., the
system satisfies a necessary condition for STLC at . As
shown in [17], all the bad brackets can be written as linear
combinations of the bad brackets contained in. Thus, a
sufficient condition for STLC at can be obtained by
considering the bad brackets inand applying the Bianchini
and Stefani condition [3].

The following result can now be stated.
Theorem 4: Let and let denote an

equilibrium solution. Consider the underactuated mechanical
system, defined by (3) and (4), and assume that the components
of are of second-order in-variables. Also assume
that (21) is satisfied. Then, the system is small time locally
controllable at if there exists an admissible weight
vector , such that every
bad bracket in , can be -neutralized.

In the next section, selected examples of underactuated me-
chanical systems are studied to illustrate the above theoretical
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Fig. 1. Model of an underactuated manipulator.

results. The examples are described in a physical context,
and the theoretical results of this paper are used to expose
the fundamental control properties of these examples. Each
example is nontrivial. The first example is a new control
theoretical formulation that incorporates a specific design
constraint that an elastic mode not be excited. Our second
example is an original formulation of a mechanical system
with two unactuated degrees of freedom.

IV. UNDERACTUATED MECHANICAL SYSTEM EXAMPLES

A. Control of a Manipulator Without Excitation of its Elastic
Mode

Consider a planar PPR robot, i.e., a robot with two prismatic
and one revolute joint, moving on a horizontal plane so that
gravity can be ignored. Assume that the two prismatic joints
are rigid, whereas the revolute joint is coupled to the end-
effector through an elastic degree of freedom. Also assume
that all the joints are actuated. An idealized model of this
manipulator [2] is shown in Fig. 1. The model consists of a
base body, which can translate and rotate freely in the plane,
and a massless arm at the tip of which the end-effector is
attached. The base body is connected to the massless arm by
a linear torsional spring whose neutral position is .
The Cartesian position of the base body as well
as the angle through which the base body is rotated can
be controlled. The variable measures the deviation of the
massless arm from the assigned value. Whenever the variable

is displaced from zero, it induces a restoring torque ,
where denotes the torsional spring constant. Let
denote the end-effector position of the manipulator. Also, let
the base body have mass and rotational inertia , the end-
effector and payload combination have mass, and let be
the length of the massless arm.

Assume that initially . The control
problem is to move the manipulator between any given initial
configuration and final configuration
such that no elastic deformation occurs, i.e., .

We use the ideas introduced previously to formulate
the above problem as a nonlinear control problem. Let

denote the vector of control inputs applied
to the base body, where are the force inputs in the
and direction, respectively, and is the torque input. Then
we have a Lagrangian system with the Lagrangian

where and . The virtual work is
given by

Equations of motion can then be written as

(22)

(23)

(24)

(25)

Setting first and then rearranging the resulting equations,
we obtain

(26)

(27)

(28)

(29)

It is easy to check that (29) satisfies Definition 1 and hence
represents a nonintegrable acceleration relation, which implies
that the end-effector acceleration exerts no torque on the elastic
joint. This condition can be viewed as a design constraint.

In order to satisfy the above equations, it is required to select

(30)

It is then straightforward to show that the above equations can
be equivalently written as

(31)

(32)

(33)

where

(34)

(35)

Note that now the control problem is reduced to designing
controls and for system (31)–(33). Once these controls
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are designed, one can use relations (34) and (35) to determine
the controls and . Finally, can be determined from
(30).

Let
denote the state. Then, the drift and control vector

fields on are given by

Clearly, the set of equilibrium solutions corresponding to
is given by

Note that for this example and , and thus there is
only one unactuated degree of freedom, i.e., . The
functions can be determined using (16) as

Clearly, (18) and (19) of Theorem 3 are satisfied at any
with or .

We now state the following results which characterize the
controllability and stabilizability properties of the constrained
manipulator dynamics.

Proposition 1: Let denote the equilibrium manifold
and let denote an equilibrium solution. The
following hold for the constrained manipulator dynamics de-
scribed by (31)–(33).

1) The system is strongly accessible since the space
spanned by the vectors

has dimension six at any .
2) The system is small time locally controllable at

since the sufficient conditions for STLC of Theorem 3
are satisfied.

3) There exist both time-invariant piecewise analytic feed-
back laws and time-periodic continuous feedback laws
which asymptotically stabilize .

4) There is no time-invariant continuous feedback law
which asymptotically stabilizes the closed loop to

.

Obviously, the controllability properties given in Proposi-
tion 1 guarantee the existence of the solution to the problem
of controlling the manipulator with zero elastic deformation.
Time-invariant discontinuous feedback control laws have been
developed for this problem in [28] and [29] based on the above
theoretical results.

Note that the results given in Proposition 1 are valid
only for the constrained manipulator dynamics described by
(31)–(33); they do not imply that the original mechanical
system (22)–(25) is STLC at the equilibrium

nor that the equilibrium can be asymptotically
stabilized by means of a feedback law derived on the basis
of system (31)–(33). Note also that the restoring torque
plays no role in the derivation or validity of these results, i.e.,

Fig. 2. Model of a rigid body containing a sliding block.

the above results remain true even if the torsional spring is
removed.

B. Control of a Planar Rigid Body Containing a Sliding Block

Consider the planar rigid body shown in Fig. 2, moving in
a horizontal plane so that gravity can be ignored. The rigid
body can translate and rotate freely in the plane. Let
be a body-fixed orthonormal frame (B-frame) whose origin is
located at the center of mass of the body. Assume that a block
moves along the -axis in a smooth slot in the rigid body.
Let denote the position of the center of mass of the
rigid body and let be the orientation of the rigid body. Also,
let , where is a positive constant, denote the
position of the block relative to the center of mass of the rigid
body. Assume that the rigid body has massand rotational
inertia , the block has mass and rotational inertia .

Let and denote the external force (along the -axis)
and the external torque (about the center of mass of the body),
respectively, and let denote the position of the center
of mass of the body in the B-frame, which is given by

Then, the equations of motion can be written in
coordinates as

(36)

(37)

(38)

(39)

It is easy to check that (38) and (39) satisfy Definition 1 and
hence represent two nonintegrable acceleration relations.
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Clearly, the above equations can be written as

(40)

(41)

(42)

(43)

where and

Let
denote the state. Then, the drift and control

vector fields on are given by

Clearly, the set of equilibrium solutions corresponding to
is given by

Note that for this example and , and thus there
are two unactuated degrees of freedom, i.e., . The
following Lie bracket calculations are straightforward:

Clearly, the condition (21) of Theorem 4 is satisfied at any
with . Let

be the weight vector. It is easy to show that any bad bracket
in is a linear combination of good brackets of
lower -degree at any equilibrium with .

The following results characterize the controllability and
stabilizability properties of the dynamics of the rigid body
and the sliding block.

Proposition 2: Let denote the equilibrium manifold
and let denote an equilibrium solution with

. The following hold for the dynamics of the rigid body
and the sliding block, described by (40)–(43).

1) The system is strongly accessible since the space
spanned by the vectors

has dimension eight at any .
2) The system is small time locally controllable at

since the sufficient conditions for STLC of Theorem 4
are satisfied.

3) There exist both time-invariant piecewise analytic feed-
back laws and time-periodic continuous feedback laws
which asymptotically stabilize .

4) There is no time-invariant continuous feedback law
which asymptotically stabilizes the closed loop to

.

Obviously, the controllability properties given in Proposi-
tion 2 guarantee the existence of the solution to the problem
of controlling the rigid body and the sliding block. Clearly,
if the block is coupled to the rigid body through an elastic
degree of freedom, the above control problem is equivalent
to controlling both the three rigid body modes and the elastic
mode.

V. CONCLUSIONS

A theoretical framework has been presented for the dynam-
ics and control of underactuated mechanical systems which
satisfy nonintegrable acceleration relations. In particular, a
nonlinear control system formulation has been introduced
and certain controllability and stabilizability properties have
been analyzed. These fundamental properties should provide
a foundation for further research in this area.

We believe that motion planning algorithms and feedback
stabilization schemes can be developed for the class of under-
actuated systems with nonintegrable acceleration relations, just
as such developments have been made for classical nonholo-
nomic control systems (mechanical systems with nonintegrable
velocity relations) [15]. For example, specific feedback stabi-
lization schemes have recently been developed for the control
of an underactuated surface vessel [24], [27] for hover control
of an V/STOL aircraft [19], for the control of the RTAC
system [16], and for the control of a rigid body with an
unactuated internal degree of freedom [20], [30]. These papers
use time-invariant discontinuous feedback laws developed
based on a nonsmooth state transformation, time-invariant
discontinuous feedback laws developed based on introduction
of a piecewise constant switching signal, and nonsmooth time
periodic feedback laws. These particular feedback stabilization
approaches, and other approaches that have been introduced
for classical nonholonomic control systems, can perhaps be
extended to the class of underactuated mechanical systems
with nonintegrable acceleration relations. These extensions are
not direct, but the results in [9], [16], [18]–[21], and [27]–[29]
are encouraging.
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