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Fast atomic decomposition by the inhibition method 

ArthurPece 
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Abstract 

A new algorithm is introduced which is related to match­

ing pursuit but allows updating more than one coding co­
efficient per iteration: the updated coefficients correspond 
to mutually orthogonal elements oj the dictionary. Coding 

experiments on natural images show that the new method 
achieves the same trade-off as matching pursuit between 
number oj coding coefficients and reconstruction error. but 
significantly Jaster convergence. 

1. Introduction 

In many image-coding schemes, an input image is rep­
resented as a linear combination of other images, which are 
elements of a set called the dictionary or code book. It is 
often necessary to decompose the input image into as small 
a number of elements as possible: such a strategy (called 
atomic decomposition, adaptive representation, or sparse 
coding) has obvious advantages for storage, transmission. 
de-noising, and pattern recognition. When the dictionary is 
over-complete, finding the expansion with the smallest re­
construction error for a given number of (non-zero) coding 
coefficients is an NP-hard problem [6]. Several iterative al­
gorithms have been proposed for finding a sub-optimal so­
lution (e.g. [4, 10, 11, 13]). The main drawback of these 
algorithms is their computational cost. Since its introduc­
tion, matching pursuit [10] has been the standard of com­
parison for this class of algorithms. This article introduces 
a new algorithm for atomic decomposition, the inhibition 
method, which can be considered a generalization of match­
ing pursuit and offers faster convergence to a given recon­
struction error, while achieving the same sparseness of en­
coding. In the next Section, matching pursuit and the in­
hibition method are discussed within the same framework; 
experimental results are presented in Section 3 followed by 
the conclusions in Section 4. 
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2. Description of the algorithms 

The image to be encoded is the vector f of n pixel values; 
the linear image size is L = v'n. The dictionary D includes 
m (normalized) elements gi E D, Ilgill = 1, i = 1. . . m. 
These elements are vectors of n pixel values. Given that the 
dictionary is overcomplete, n < m. e is a vector of m cod­
ing coefficients. The linear expansion 2:�1 cigi is the re­
constructed image. The difference between input image and 
reconstructed image r = f - 2::1 cigi is the residual im­
age. The squared L2 norm ofr, normalized by the squared 
norm of f, is the normalized squared reconstruction error 
NSE = IIrll2 / IIf1l2, which is used as the criterion of how 
well the reconstructed image approximates the input image 
(thePSNR measure is linearly related to the logarithm of the 
NSE). p is the vector of m inner products of the residual 
with the m dictionary images: Pi = g[ . r, i = 1 . . .  m. 

When required for clarity, we write e(t), ret) , pet), 
where t is the iteration number. The symbol .:le denotes 
the update of the coefficients at each iteration: .:le( t) = 
e(t) - e(t - 1). Similarly, .:lr(t) = ret) - ret - 1) and 
.:lp(t) = pet) - pet - 1). 

2.1. Basic iteration 

Rather than describing matching pursuit and the inhibi­
tion method separately, it is easier to introduce a common 
framework for both methods and highlight the differences 
within this framework. 

After the vector of inner products p(O) is initialized, 
the basic iteration consists of two steps: (I) updating one 
or more coding coefficient and (II) re-computing the inner 
products between all the dictionary elements and the new 
residual image. The coefficients to be updated should be 
chosen so as to combine a large decrease of NSE with a 
small increa�e of the number of non-zero coefficients. One 
possible heuristic is to update only the one coefficient which 
can bring the largest decrease of NSE, i.e. the coefficient 



corresponding to the largest element of p. This heuristic is 
the basis of matching pursuit. 

To achieve faster convergence, it is desirable to update 
more than one coefficient per iteration. However, most of 
the largest inner products are likely to arise from strongly 
correlated dictionary elements, i.e. elements representing 
the same feature of the input image: updating all of the cor­
responding coefficients would produce a redundant, rather 
than sparse, representation. A solution to this problem is 
to update coefficients corresponding to dictionary elements 
which have larger (in absolute value) inner products with 
the residual than any other non-orthogonal dictionary ele­
ment. This heuristic is the basis of the inhibition method. 
The name 'inhibition method' is inspired by the analogy 
with reciprocal inhibition of neurons with non-orthogonal 
Gabor-like receptive fields in the visual cortex (see e.g. [2]). 

In detail, the two steps of the iteration are as follows: 
I. Select one or more coefficients and update them by 

adding the values of the corresponding inner products: 

if gi E S(t} { Pi(t} 
o otherwise 

(i = 1 . . . m) 

(1) 

The definition of the subset SeD is the essential differ­
ence between matching pursuit and the inhibition method. 
In matching pursuit, S is defined by: 

SMP = {gi ED I 'r/j i= i IPil > Ipjl} (2) 

Obviously, by Eq.2, SMP includes only one element. 
Ideally, in the inhibition method, S should be defined by: 

S1 = {gi E D I 'r/j =t i Igf . gjl > f '* IPil > Ipjl} 
(3) 

where t: is a small constant (t: = 0.05 in our experiments). In 
practice, implementing Eq.3 would require too many com­
parisons between elements ofp. However, comparisons can 
be restricted to the k largest elements of p (for k < < m): 
by this approximation, the coefficients to be updated corre­
spond to the elements of the set S 1M = Sk U S I, where 
Sk is the set of the k dictionary elements having largest in­
ner products with the residual image (in our implementation 
k = 2047). By setting k = 1, matching pursuit is obtained 
as a special case of the inhibition method. A look-up table 
can be used to determine whether two dictionary elements 
are orthogonal. By exploiting symmetries in the dictionary, 
e.g. if the elements are shifted, scaled and rotated versions 
of one or a few kernels, this table requires storage of O(m}, 
rather than O(m2}. 

It is easy to see that the inhibition method will converge 

whenever matching pursuit converges: the largest (in abso­
lute value) element of the vector p is always selected, there­
fore at least one coefficient is updated at each iteration. 
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II. Update the vector of inner products, taking into ac­
count the change in the residual. 

Step II can be broken down into two sub-steps: 
lIa. Update the residual image: 

m 

Ar(t + 1) = -L: ACi(t) gi 
;=1 

(4) 

If few coefficients have been updated, the computational 
cost of sub-step IIa is negligible compared to the cost of 
sub-step lIb. For large numbers of updated coefficients, if 
the dictionary can be decomposed into shifted versions of a 
few kernels, then the update of the residual can be efficiently 
carried out by the application of the FFT. This is the case 
with our dictionary. 

lIb. Re-compute the inner products of the residual image 
r with all dictionary elements: 

6.Pi(t + 1) = g; . Ar(t + 1} (i = 1. .. m) (5) 

Again, this convolution can be carried out efficiently by 
the application of the FFT. 

Alternatively, step II can be carried out by updating the 
inner products directly, using the relation: 

m 

6.Pi(t + 1} = -L 6.Cj . (gf . gj) (i=1 .. . m) 
j=l 

(6) 
If Eq.6 is implemented, then the computational cost of step 
II becomes proportional to the number of updated coeffi­

cients. In this case, updating a number II of coefficients 
by the inhibition method in one iteration would require as 

much computation as updating II coefficients by matching 
pursuit in II iterations. However, this technique is compet­
itive only if most dictionary elements are mutually orthog­
onal (which is not the case in a highly oversampled dictio­
nary), the inner products between elements can be quickly 
computed analytically, and Fourier techniques cannot be 
used to speed up convolutions and deconvolutions (i.e. Eq.4 
and Eq.5). None of these conditions applies in our case. 

2.2. Dictionary 

The dictionary used in the coding experiments is com­
posed of two-dimensional real-valued Gabor functions [5] 
of unit L2 norm and zero mean (so that the DC compo­
nent of the input image was encoded separately). The Gabor 
functions are of the form: 

x=(�) I: _ ( ax 0 ) 
- 0 a" 



x = Xo + u cos e - v sin e 

Y = Yo + u sin e + v cos e 

where Z is a normalizing constant; u and v are image 
coordinates; Xo, yo, CJ,; and CJy are parameters of a two­
dimensional Gaussian window; ). and t.p are parameters of 
a sinusoidal grating and e is the angle between the u axis 
of the image and the x axis of the Gabor function. In our 
dictionary, two of the parameters are fixed by the relations: 
(7y/(7x = -./2 and )../CJ,; = -./27r. The remaining scale pa­
rameter ranges over 11 different scales [,\ == 2 . a8 pixels, 
a = -./2, 0 :::; s :::; loga(L/4)]. The parameters Xo and Yo 
assume all integer values between 1 and L, i.e. the Gabor 
functions are centered on all image pixels (no downsam­
pling). The other parameters range over 8 different orien­

tations [0 == (q/8)7r radians , 0 :::; q < 8] and 2 different 
phases ['I' E {a, 7r /2} J, except at the smallest spatial scale 
(,\ == 2 pixels), for which only Gabor functions in cosine 
phase ('I' == 0) and with horizontal or vertical orientations 

[6 E {O, 7r /2}] are used, to avoid aliasing. The dictionary 
is thus overcomplete by a factor of 10 . 8 . 2 + 2 = 162. For 
images of linear size L = 128 pixels. this sampling scheme 
results in approximately 2.65 million dictionary elements. 

Gabor functions with odd symmetry (t.p = 7r /2) have 
zero mean. The DC component of Gabor functions with 
even symmetry ('I' = 0) was set equal to zero in the fre­
quency domain. 

3. Coding results 

The inhibition method was tested on a set of 19 natu­
ral images. Fig.l shows the results obtained with the Lena 
image: the NSE is plotted as a function of both number of 
iterations and number of coefficients; the two curves are 
undistinguishable for matching pursuit. As can be seen, the 
two algorithms offered the same trade-off between NSE and 
number of coding coefficients: the data points (crosses) for 
the inhibition method lie on the data line for matching pur­

suit. On the other hand, the number of iterations required 
to reach a given NSE was smaller for the inhibition method 
than for matching pursuit, except for the first two iterations, 
in which the inhibition method only updated one coefficient 
per iteration. As the main low-frequency, large-scale com­
ponents of the image were removed, it became possible for 

the inhibition method to detect more and more mutually 
orthogonal image components simultaneously, so that the 

number of updated coefficients increased with the iteration 
number. 

Over the entire set of 19 images, the number of iterations 
needed for the inhibition method to reach NSE = 0.01 was 
42.1±4.4 (average ± standard deviation) and the number of 
coefficients needed to reach NSE = 0.01 was 3370 ± 1179 
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Figure 1. Performance of the two algorithms 
on the Lena image. 

(average ± standard deviation); in other words, the num­
ber of iterations was approximately constant, irrespective 
of the number of coefficients required to encode the image. 
The average number of coefficients updated per iteration 
was 77.0. Assuming that one iteration of the inhibition 
method has almost twice the computational cost of one iter­
ation of matching pursuit (because the deconvolution step, 
Eq.4, has negligible cost in matching pursuit), we conclude 
that the inhibition method converges about 38 times faster 
than matching pursuit. This average hides the fact that the 
inhibition method is not much faster than matching pursuit 
in the first few iterations, but can be over 100 times faster in 
the last few iterations. 

These estimates are based on the assumption that match­
ing pursuit would encode all the images with about the same 
number of coefficients as used by the inhibition method. 
In addition to the Lena image (Fig. I), this assumption was 

tested on the two images most likely to prove it wrong: the 
image which the inhibition method encoded with the largest 

number of coding coefficients; and the image (shown in 
Fig.2) which was encoded at the fastest rate by the inhi­
bition method: the more coefficients are updated per iter­
ation, the higher the likelihood that redundant coefficients 
are updated. In both cases, the plots of NSE VS. number of 
coefficients were overlapping, as was the case for Lena. 
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Figure 2. Performance of the two algorithms 
applied to a landscape. 

4. Conclusions 

Several auxiliary techniques have been developed to 
speed up the matching pursuit iteration [1, 12, 3], but most 
of these techniques work by speeding up the computation 
of inner products between the dictionary elements and the 
residual image (step II), i.e. reducing the computational cost 

of one iteration; therefore, they could be combined with the 
inhibition method to achieve the same result. Only hierar­
chical parallel matching pursuit [7] is similar to the inhibi­

tion method in allowing the updating of several coefficients 
per iteration, although the method used to select these coef­
ficients is different. 

The elements of the vector p can be interpreted as mea­
sures of similarity between the residual image and the ele­
ments of the dictionary. Recently, it has been shown that a 
more sparse encoding can be achieved with a different simi­

larity measure [8]. This different measure can be combined 
with the inhibition method as well as with matching pursuit, 
since it consists of a modification of Eq.5. 

This paper has presented results on images, because this 
is an application which puts a heavy computational load on 
matching pursuit; however, the inhibition method can be ap­
plied to one-dimensional signals as well. Atomic decompo­

sition has proved useful in a number of pattern-recognition 
applications (e.g. [9, 14, 15, 16]). The inhibition method, 
by its faster convergence, allows the practical application of 
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atomic decomposition to new areas. 
Acknowledgements: The authors thank Dr. J. Roerdink 
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