

 University of Groningen

Delay-Insensitive Synchronization on a Message-Passing Architecture with an Open Collector
Bus
Bekker, H.; Dijkstra, E.J.

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1996

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Bekker, H., & Dijkstra, E. J. (1996). Delay-Insensitive Synchronization on a Message-Passing Architecture
with an Open Collector Bus. In EPRINTS-BOOK-TITLE University of Groningen, Johann Bernoulli Institute
for Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

https://research.rug.nl/en/publications/6494d041-5316-4b12-9a71-9fa80dc7d696

Delay-Insensitive Synchronization on a Message-Passing Architecture
with an Open Collector Bus

H. Bekker

Department of Computing Science,
University of Groningen,

9700 AV Groningen, The Netherlands

Abstract
The peiformance of some algorithms, running on a mes-

sage passing computer; is limited by the high latency of
global communications. To increase the performance, a
simple open collector bus, operated by delay insensitive
programs running on each processor can be used. We illus-
trate this by an example: the constraint algorithm SHAKE
as used in Constraint Molecular Dynamics (M.D.) simu-
lation. We present a parallelizable SHAKE algorithm and
show how it can be implemented on a ring architecture.
On a large ring the use of message passing to synchronize
SHAKE iterations may take up to 40% of the total time.
We show how the communication time can be reduced by
adding a very simple open collector bus, operated by a
delay insensitive algorithm. In this way the time spent on
the synchronization of SHAKE iterations will be negligible.

We want to emphasize that this kind of open collector
bus can be used with many delay insensitive algorithms. To
show this we will mention other possible applications.

Key words: synchronization, delay insensitive al-
gorithm, open collector bus, constraint dynamics.

1 Introduction
Message passing systems consisting of a large number of

processors, connected by a sparse interconnection topology
(e.g. a ring or a mesh) prove to be a cost effective solution
for many practical applications. These systems offer local
communication with a high bandwidth and a low latency,
but their global communication falls short in two respects:
bandwidth and latency. This may give problems for the
following classes of algorithms:

(i): Algorithms limited by the sustained bandwidth of
the architecture. These algorithms often require local or
global communication of large amounts of data followed
by calculations which take up less time. This paper is not
about this class of algorithms but about:

(ii): Algorithms limited by the latency of the commu-
nications. These algorithms often require global commu-
nication of very small amounts of data followed by some
calculations. An important instance of such an algorithm
is the synchronization of a fine grained iterative process.

This paper is about a simple hardware extension, solv-
ing the class of problems described in (ii). To be more
specific, we will show that a very simple open collector
bus, (0.C.-bus) running along all the processors, may be
used to improve the performance of the algorithms in (ii).

E.J. Dijkstra

Department of Computing Science,
University of Groningen,

9700 AV Groningen, The Netherlands

; f

11
-

Figure 1: Open colle tor line, running along P processors. The
vaiue read atevery processor is the same. It is the logical and of
the values written at all processors, where True(Fa1se) corresponds
to an open(c1osed) gate.

The 0.C.-bus consists of a few (4.. .8) lines, without any
further lines for clocking or control. (See figure 1). Each
of these lines is memory mapped, which means that by
clearing or setting a specific bit in memory every processor
can clamp (pull down) respectively unclamp the line. By
reading a specific bit in memory, every processor can obtain
the logical value of each line. This value is the same on
every processor, and is the logical and of the values written
on that line.

We will show that delay insensitive algorithms are very
suitable to operate this bus. By using delay insensitive al-
gorithms a low quality implementation of the 0.C.-bus is
acceptable: no bus terminators are required, no character-
istic impedance, etc. Moreover, the use of delay insensitive
algorithms, also called self timed algorithms, makes it pos-
sible to operate the 0.C.-bus without clock or control lines.

The rest of this paper consists of a worked out example
of molecular dynamics simulation on a message passing
system. First a general introduction of constraint molecular
dynamics is given. Then it is shown that running this
algorithm on a ring architecture leads to the type of problem
described in (ii). Finally, it is shown how the use of an 0.C.-
bus, operated by a delay insensitive algorithm solves this
problem. Also two similar applications of the 0.C.-bus are
mentioned.

1066-6192/96 $5.00 0 1996 IEEE
Proceedings of PDP '96

75

2 Constraint Molecular Dynamics simula-

Molecular Dynamics (M.D.) Simulation is a method to
simulate the behaviour of a many particle (atom) system
by numerically integrating Newton’s equation of motion.
M.D. simulation is performed as follows: the initial system
state SO, that is, the position ri and velocity vi of every
particle i in the system at time t o is given. By integrating
Newton’s law Fi = m . ai for every particle, subsequent
states S I , S2, . . . , S, are calculated where S, 3 S(to +
nAt). To calculate S,+l from S,, first the total force
Fi (to + nAt) on every particle i due to all other particles
in the system is calculated. Then this force Fi (t o + nAt) is
used to calculate for every particle the new velocity vi (t o +
n + 1 At . Using this velocity, the new position ri(to + I n + 1 1 1 At of every particle is calculated. Repeating this

procedure gives the time development of the system.
Every timestep, during the force calculations, many

types of interaction-forces are evaluated: Coulomb forces,
Lennard-Jones forces, covalent forces, etc. Some of these
interactions are very rigid. The most rigid interaction in
an M.D. simulation is the covalent interaction. This means
that two particles having a covalent interaction, have an
almost constant distance. Put in another way: covalent
interactions have a high eigenfrequency. The maximal al-
lowed timestep used in an M.D. simulation is dictated by
the allowed numerical drift of the integration algorithm,
so it is dictated by the highest frequency in the system,
and should be approximately 1 / (40 x highest frequency).
However, the behaviour of covalent interactions is not part
of the physics of interest of an M.D. simulation. Leaving
out frequencies above 114 to 112 the highest frequency does
not influence the outcome of an M.D. simulation. So, it
is a waste of computer time to use a timestep based on
covalent eigenfrequencies. For that reason, nowadays in
most M.D. programs, the covalent interactions are handled
using constraint dynamics, which means that the distance
between particles with a covalent bond is kept constant.
Then the timestep may be as high as 1/20 to 1/10 (xhighest
frequency). In this way an M.D. simulation runs two to
four times faster.

Because an atom may have covalent interactions with
a number of atoms’, substituting covalent interactions by
length constraints will in general result in a set of connected
length constraints with a, possibly cyclic, graph like struc-
ture. Covalent interactions are bonded interactions, so, no
constraints are created or broken during a simulation.

The introduction of length-constraints has no con-
sequences for the force calculations, except of course
that the forces of covalent interactions are not calculated.
However, the introduction of length-constraints has severe
consequences for the algorithm in which Newton’s law is
integrated, resulting in a matrix equation. As the rank of the
matrix is the number of constraints in the system, for sys-
tems with many constraints, solving this equation directly
on a parallel computer is complex. There exists however
a fast, iterative method called SHAKE [I], to solve the
matrix equation. The special thing about SHAKE is that
its iterative way of solving the matrix equation is directly

tion

‘In a typical M.D. system the number of constraints is of the same
order as the number of particles.

reflected in iterative adjustment of pairs of particle posi-
tions. This last interpretation of the SHAKE method has
become so familiar that it is almost forgotten that it is a
matrix solver in disguise. We will adhere to this habit, and
in what follows write about the SHAKE algorithm as pair-
wise adjusting particle positions to constraint conditions in
an iterative way.

SHAKE is used as follows. Every timestep, the in-
teraction forces, the new velocities and new positions are
calculated as if no constraints exist, except that no covalent
interaction forces are evaluated. Clearly, particle positions
obtained in this way do not fulfill the distance constraints
between particles. Then SHAKE is invoked. In SHAKE,
particle positions are corrected in an iterative way, such
that finally all length-constraints are fulfilled within a pre-
defined tolerance. So, at the end of every timestep many
SHAKE iterations have to be done.

SHAKE is implemented as follows. The particle num-
bers of every pair of particles between which a distance
constraint exists, are kept in a constraint-list (CL). So, in
CL, every constraint is represented by two particles. (In
this article we assume that the constraint distance is the
same for every constrained pair of particles, so we need not
store this in CL.) In every iteration, SHAKE goes through
CL once; the order in which items of CL are processed does
not matter. Processing an item of CL means that the posi-
tions of the particles of this pair are adjusted such that their
relative distance becomes the required constraint distance.2
Because a particle may have more than one constraint in-
teraction, repositioning a particle due to one constraint may
disturb another, previously adjusted constraint. Therefore,
after every iteration of adjusting positions of particle pairs,
the constraint conditions are checked. If these conditions
are not fulfilled within a predefined tolerance, another iter-
ation is done, in which all constraints in CL are processed
once again. Typically, at the end of every timestep SHAKE
does 4 . . .40 iterations, but for large molecules, some hun-
dreds of iterations may be required. On a single processor,
SHAKE typically takes 5. . .20% of the total CPU time of
an M.D. simulation.

In the SHAKE algorithm as we presented it, two particle
positions are adjusted when processing an item from CL.
When processing the next item from CL, a possibly pre-
viously adjusted particle position is adjusted further. So,
items from CL cannot be processed simultaneously. Fortu-
nately, the SHAKE algorithm can be restated without these
dependencies. When processing an item from CL, instead
of immediately adjusting the two particle positions, the
resulting particle displacements are accumulated.3 After
processing the whole CL, particles are displaced over their
accumulated displacements. In pseudo code, the parallel-
izable SHAKE algorithm looks like:

2Although not relevant for this paper, adjusting positions goes as fol-
lows. The particles of the constrained pair a, b, with positions ra and
rb. are reset in the direction of ro(t - A t) - rb(t - A t) , such that the
center of mass of this pair does not change, and their distance becomes
the constraint distance.

3This cannot be derived by transformations of the algorithm, but is a
matter of numerical mathematics.

76

procedure SHAKE;
type rvec= array[l..3] of real;

var
partId=l..N; { number ofparticles is N }

r, displ: array [partId] of rvec;
CL: array [1 ..nr-constr] of

record a,b: partId end;
begin
repeat

clear(disp1);
for i:=l to nr-constr do begin

displ[CL[i].a] += ; See footnote2 }
displ[CL[i].b] += ; { See foomofe2 }

end;
for i:=l to N do r[i] += displti];

until all-constraints-within-tolerance;
end;

3
At the departments of physical chemistry, and com-

puter science in Groningen, the M.D. simulation package
GROMACS [2,3] has been implemented on a custom-built
ring architecture, consisting of 32 i860 processors. Each
i860 board plugs into a collective PC bus, and has two eight
bits wide parallel interfaces (2 Mb/sec) to connect the board
in the ring. Also on the PC bus is an i486, running UNIX,
which serves as a host. This host uses the PC bus to load
code and initial data on the 8 6 0 processors, and for I/O
purposes.

In the GROMACS ring implementation, particles are
statically allocated on processors. An M.D. system of
N particles, numbered from 1 to N , is mapped on P (in
our case P = 32)processors by allocating the first N I P
particles on processor 1, the second N I P on processor 2,
etc. The processor Hi on which particle i is allocated is
called its homeprocessor. The home processor of particle i
calculates the final position of i after a timestep (constrained
and unconstrained). As will be clear, the particle number-
ing determines the home processor of every particle.

For the force calculations it does not matter how particles
are allocated on the processors. That is because every
particle potentially interacts with every other particle.
Therefore, at the beginning of every timestep, the position
of every particle i is, starting from its home processor Hi,
distributed over half the ring, in say the positive direction.
Distribution over half the ring is sufficient because in this
way every position pair rj , rj is present on at least one pro-
cessor. After this distribution stage, interaction forces are
calculated. Then the interaction forces on every particle i
are communicated in the negative direction to H; where
they are summed to the net force on particle i. Finally, on
the home processor of each particle its new, unconstrained
velocity and position is calculated. Now SHAKE is in-
voked. Because between any two particles there may be
a constraint, in principle for every SHAKE iteration, as in
the force calculations, particle positions would have to be

40n the GROMACS ring architecture this communication, together
with the foregoing communication to distribute particle positions takes
about 5% to 10% of the total time.

SHAKE on a ring architecture

... 1..:...................~....

Figure 2: The lists NCCI, LCI and PCCI on processorp for the
part of some constraint graph mapped near processorp. NCCI=
(3,2); (4,2). LCI= (43); (5,6); (6,7). PCCI= (6,lO); (5,8). On
processorp constraint interactions in NCCI and LCI are evaluated.

distributed over half the ring. However, this would take far
too much time. In [4] we proposed a method, to minimize
communication during SHAKE calculations. It is based
on the bandwidth reduction algorithm of Gibbs, Poole and
Stockmeyer. The essence of the method is that particles
are numbered in such a way that particles between which a
length constraint exists, get close numbers, so, are mapped
on close processors. In fact, with this method, even for
rather complex molecules, particles between which a con-
straint exists, are mapped on the same or on directly adja-
cent processor^.^ So, during SHAKE only communication
between very near processors is required.

Most parallel implementations of the M.D. algorithm do
not include constraint dynamics. In those cases where it is
included [5,6] no use is made of accumulated displacements
to parallelize SHAKE, nor the bandwidth reduction method
to minimize communication during SHAKE iterations.

We are now almost ready to write down the SHAKE
algorithm as it runs on every processor of the ring, but
first we will explain how the global constraint list CL, as
introduced in section 1, is distributed over processors, and
how on every processor this partial list is partitioned into
even smaller parts.

The contents of CL do not change during a simulation, so
an almost perfect load balance for parallel SHAKE calcu-
lations can be accomplished by assigning the same number
of items of CL to every processor. On every processor
the constraint interactions assigned to that processor are
stored in LCL (Local Constraint List). The list LCL is
subdivided still further into three sublists (see figure 2):
NCCI, LCI, and PCCI (Negative-Crossing, Local-, and
Positive-Crossing Constraint Interactions). On processor
p , NCCI (PCCI) contains those constraint interactions of
which particle b is home on processor p - 1 (p + l), and
particle a is home on p . LCI contains interactions of which
both particles are home on p . So on p , the list PCCI con-
tains the same number-pairs, but in reverse order, as the
list NCCI on p + 1. The data structures NCCI, LCI and
PCCI can be used to define which constraint interactions
are evaluated by which processor: processor p evaluates
the constraints in its NCCI and LCI list. Then the SHAKE
algorithm as i t runs on every processor i s as follows:

51f this is not the case, the particles are still mapped on very close
processors. Such a case can be handled by a straightforward extension
of the method we propose, but we did not encounter molecules with
constraint structures of this complexity.

77

procedure SHAKE;
{ parallel SHAKE on a ring architecture,

type rvec= array[l..3] of real;
partId=l..N; { N is the number ofparticles }
var
r, displ: array [partId] of rvec;
NCCI: array [1 ..nrNCCI] of record a,b: partId end;

PCCI: array [1 ..nr-PCCI] of record a,b: partId end;

LCI: array [1 ..nr-LCI] of record a,b: partld end;

begin
send PCCI-b-positions to posdir;
receive NCCIb-positions from negdir;
repeat

see alsoJigure 2 }

{ home(a)= p, home(b)=p-1 }

{ home(a)=p, home(b)=p+l };

{ home(a)=p, home(b)=p };

clear(disp1);
calculate displacements;

{ due to constraints in NCCI and LCT}
send NCCI-bdisplacements to negdir;
receive PCCI-b-displacements from posdir;
sum displacements and add to r;

{for particles home on this processor}
send PCCI-b-positions to posdir;
receive NCCI-b-positions from negdir;
LCWT:=checklocal-constraints;

{ LocalConstraints-Within-Tolerance}
until ACWT;

{ All-Constraints-Within-Tolerance}
end;

With this, the parallel SHAKE algorithm is completely
specified, except for the last few statements with LCWT
and ACWT (Local- and All Constraints Within Tolerance),
which concern the evaluation of the global stop criterion of
SHAKE iterations during the current timestep. This will
be discussed in the next section.

4 The function ACWT implemented with the
open collector bus

SHAKE iterations should be stopped when on every pro-
cessor the constraints in the lists NCCI and LCI are within
tolerance, i.e. when on every processor the boolean vari-
able LCWT is true. Representing LCWT on processor
p by LCWT , the function ACWT can be specified as
A C W T = L C h 1 and LCWTz and . . . and LCWTp .

On a message passing ring architecture such as
GROMACS, the function ACWT can be implemented in
three ways.
(i) By sending a single message around the whole ring
twice. First the message accumulates the logical and of all
LCWT, and in a second round this result is passed to all
processors as ACWT.
(ii) As P messages, all moving around the whole ring once.
At every processor one message is released which returns
to that same processor. While moving around the ring,
the message evaluates the logical and of all LCWT. When
arriving at the processor from which it was released, this
processor inspects the contents of the message to see if an-

other iteration of SHAKE is required.
(iii) The third implementation uses the PC bus and the host
computer. Every processor sends its LCWT to the host.
There, the logical and is evaluated and transmitted back to
the individual processors.

As will be clear, each of these methods takes at least
P communications. On our GROMACS ring implementa-
tion, we measured that sending a minimal message (1 byte)
from a processor to an adjacent processor, or from a pro-
cessor to the host, takes -150psec, mainly due to startup
overhead. So, for P = 32, evaluating ACWT takes at least
32x 15x = 4 . 8 ~ 10-”ec. Wealsomeasuredthatthe
calculations of one SHAKE iteration take the same amount
of time. (20 SHAKE iterations, without communication
can take 10% of the total time. One timestep takes 0.1. . .1
sec, let us say 1 sec, then one SHAKE iteration takes about
5 x sec.) On the present architecture the one-to-
one ratio of the time spent in SHAKE calculations and its
synchronization is however no problem because SHAKE
typically takes only 10% of the total time, so spending an
additional 10% in ACWT is no major problem. However,
when the same type of simulation is done on a ring con-
sisting of twice as many processors, the total time spent
on calculations is halved while the time spent in ACWT
doubles. So, about 40% of the total time will be spent in
ACWT.

To solve this problem we will equip our next architec-
ture with an eight line 0.C.-bus as described in the intro-
duction. The function ACWT can be implemented using
four of these lines. We will call these four lines “valid”,
“accepted”, “next”, and “data”. We name the values writ-
ten on these lines: 1-valid, laccepted, lmext, ldata; and
the values read: g-valid, g-accepted, gmext, g-data. The
prefixes 1 and g stand for local and global. The local vari-
ables are write-only and the global variables are read-only.
The signals “valid”, “accepted” and “next” will serve as
global control signals. In [7] it is explained why at least
three control signals are required. A delay insensitive im-
plementation of ACWT which runs on each processor, is
straightforward:
function ACWT;
begin

]-data:= LCWT,
laccepted:=False; I-valid:=True;
repeat until g-valid;
ACWT:=gdata;

lmext:=False 1-accepted:=True;
repeat until gaccepted;
1-valid:=False; Imext:=True;
repeat until gnext;

{ACWT:= LCWTl and ... and LCWTp}

end; After the first repeat, “data” is valid. After the second
repeat, “data” has been accepted by all processors. The
third repeat is necessary to return to the neutral state. Ini-
tially, I-valid (g-valid) must be False. It can be seen that
after g-valid becomes true, i.e. after the slowest process has
evaluated its LCWT and assigned it to I-data, the evaluation
of the function ACWT proceeds without delay. On every
processor, immediately after finishing the function ACWT
the next SHAKE iteration is started, or SHAKE iterations
are stopped.

78

5 Discussion
In our particular case, that is, constraint molecular dy-

namics on a ring architecture, adding a small 0.C.-bus is
a sensible investment because the price of this feature is
low (a few hundred dollars) compared to the price of the
whole computer (M $lOO,OOO), while the speed increase is
much higher than this ratio. Moreover, the hardware risk
that goes with this feature, that is, the risk of destabilizing
an otherwise well functioning architecture, is very small.

In our opinion, there are many other useful applications
of an 0.C.-bus in a message passing computer. Especially
the combination of an 0.C.-bus with delay insensitive al-
gorithms looks promising. We will briefly mention two
other applications.

The first example we want to mention is process arbit-
ration. On every processor a number is generated. Pro-
cess arbitration means that on every processor it is decided
whether the highest number is on this processor. A delay
insensitive arbitration algorithm, using four wired or lines
has been designed (unpublished) by C.E. Molnar. This
way of process arbitration will be much faster than using
the message passing mechanism.

The second example is the TRIMOSBUS 171. The
TRIMOSBUS is a general purpose bus, operated with a
delay insensitive algorithm. It consists of at least four open
collector lines, three of which are used for sequencing, and
the other ones as data lines. It may be used for arbitrary
point to point communications, and for broadcasting. In
this way, on a parallel computer, small amounts of data
may be exchanged between processors much faster than
with the usual message passing mechanism.

The research field of “delay insensitive” algorithms and
hardware is thriving nowadays. Many delay insensitive
algorithms are conceived, and experimental, delay insens-
itive hardware is designed. Of both, the correctness can be
proved by delay insensitive algebra [8,9]. How delay in-
sensitive algorithms and hardware will develop is not clear
at this moment. We do feel however, that a simple 0.C.-bus
connecting the processors of a parallel message passing ar-
chitecture, combined with delay insensitive algorithms, is
a simple and fast general purpose feature, which may be
used to increase the performance of algorithms which can-
not be implemented efficiently or elegantly with the mes-
sage passing mechanism. Obviously, an 0.C.-bus cannot
replace the usual communication and routing hardware of
message passing systems, but for a number of applications
it can increase the performance in a straightforward way.
Because the price/performance ratio of the 0.C.-bus is low,
and because it is a simple and robust piece of hardware, it is
worth considering to add this hardware feature to sparsely
connected parallel computers.

A reviewer remarked that the synchronization mechan-
ism described in this article strongly resembles the barrier
synchronization mechanism of the CRAY T3D architec-
ture.

6 Conclusions
A small 0.C.-bus, operated by delay insensitive al-

gorithms, is a fast and simple mechanism, which on mes-
sage passing systems can be used to increase the perform-
ance of many applications.

An example of such an application is constraint M.D.
implemented with the SHAKE algorithm. A SHAKE itera-

tion can be parallelized by accumulating the displacements
of every particle and adding the total displacement to the
particle position at the end of the iteration.

Synchronizing iterations and the termination of SHAKE
on a message passing ring architecture, proves to be re-
IativeIy time-consuming due to the latency of message
passing. SHAKE becomes less time-consuming by extend-
ing the hardware with a small 0.C.-bus. Synchronization
can then be done by a simple delay insensitive algorithm.

Acknowledgments
We want to thank M.K.R. Renardus for carefully reading

and commenting this text, J.T. Udding for his expertise in
the field of delay insensitive algorithms, and the reviewer
for making useful remarks.

Literature
[l] J.P. Ryckaert, G. Ciccotti, H.J.C. Berendsen, Numer-
ical integration of the Cartesian equations of motion of a
system with constraints: molecular dynamics of n-alkanes.
Joumal of Comp. Phys. 23,327-341,1977.
[2]H. Bekker,H.J.C. Berendsen, E.J. Dijkstra, S. Achterop,
R. v. Drunen, D. v.d. Spoel, A. Sijbers, H. Keegstra,
B. Reitsma and M.K.R. Renardus, GROMACS: a paral-
lel computer for molecular dynamics simulation. Con.
Proc. Physics Computing ’92, pages 252-256, World Sci-
entific Publishing Co. Singapore, New York, London, 1993.
[3] H. Bekker, E.J. Dijkstra, H.J.C. Berendsen. Molecular
Dynamics simulation on an i860 based ring architecture.
Supercomputer 54, X-2,4-10, 1993.
[4] H. Bekker, E.J. Dijkstra, H.J.C. Berendsen. Mapping
molecular dynamics simulation calculations on a ring ar-
chitecture. In Parallel Computing: From Theory to Sound
Practice, ed. W. Joosen and E. Milgrom, pages 268-279,
10s Press, Amsterdam, 1992.
[5] A.R.C. Raine. Systolic loop methods for molecular dy-
namics simulation, generalized for macromolecules. Mo-
lecular Simulation, Vol. 7 , pages 59-69, 1991.
[6] S.E. DeBolt, P. Kollman. AMBERCUBE MD, Paral-
lelization of AMBER’S Molecular Dynamics Module for
Distributed-Memory Hypercube Computers. Journal of
Comp. Chem., Vol. 14, No. 3,312-329,1993.
[7] I.E. Sutherland, C.E. Molnar, C.E. Sproull, J.C. Mudge.
The TRIMOSBUS. Proc. of the Caltech Con. on VLSZ,
January 1979.
[SI L. Lavagro and A. Sargiovanni-Vincentelli. Algorithms
for Synthesis and Testing of Asynchronous circuits, Kluwer
Academic Publishers, 1993.
[9] M.B. Josephs, J.T. Udding. An overview of Delay
Insensitive Algebra. In Proc. of the 26th Annual
Hawaii Znt. Con. on System Sciences, ed. T.N. Mudge,
V. Milutinovic, L. Hunter, 329-338, IEEE Computer Soci-
ety Press, 1993.

79

