

 University of Groningen

Evaluation of Software Visualization Tools
Sensalire, Mariam; Ogao, Patrick; Telea, Alexandru

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2009

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Sensalire, M., Ogao, P., & Telea, A. (2009). Evaluation of Software Visualization Tools: Lessons Learned.
In EPRINTS-BOOK-TITLE University of Groningen, Johann Bernoulli Institute for Mathematics and
Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 03-06-2022

https://research.rug.nl/en/publications/e7eb5b8d-c03d-4233-a276-07f5a328b9bf

Evaluation of Software Visualization Tools: Lessons Learned

Mariam Sensalire and Patrick Ogao Alexandru Telea

Faculty of Computing and IT Institute of Mathematics and Computing Science

Makerere University University of Groningen

Kampala, Uganda the Netherlands

Abstract

Many software visualization (SoftVis) tools are continuously be-
ing developed by both researchers as well as software development
companies. In order to determine if the developed tools are effec-
tive in helping their target users, it is desirable that they are exposed
to a proper evaluation.

Despite this, there is still lack of a general guideline on how these
evaluations should be carried out and many of the tool developers
perform very limited or no evaluation of their tools. Each person
that carries out one evaluation, however, has experiences which, if
shared, can guide future evaluators. This paper presents the lessons
learned from evaluating over 20 SoftVis tools with over 90 users
in five different studies spread on a period of over two years. The
lessons covered include the selection of the tools, tasks, as well as
evaluation participants. Other discussed points are related to the
duration of the evaluation experiment, its location, the procedure
followed when carrying out the experiment, as well as motivation
of the participants. Finally, an analysis of the lessons learned is
shown with the hope that these lessons will be of some assistance
to future SoftVis tool evaluators.

1 Introduction

Software comprehension is a necessary but difficult activity for
many people working with large amounts of source code [Rajlich
and Wilde 2002]. When trying to understand large programs, it is
not easy to get the complete picture just by browsing through the
code, as a lot of information can be easily missed [Keown 2000].
This includes a variety of information, such as object-oriented in-
heritance hierarchies, specific usage of class methods, and the pres-
ence (or absence) of certain design patterns. In order to ease this
process, many aiding tools have been suggested. Among these,
software visualization (SoftVis) tools occupy a prominent place.
In this context, we refer to a tool as being a SoftVis tool follow-
ing the definition of software visualization from [Price et al. 1993]:
Software visualization is the use of interactive computer graphics,
typography, graphic design, animation, and cinematography to en-
hance the interface between the software engineer or the computer
science student and their programs.

In order to determine how effective a SoftVis tool is, it is advis-
able for it to be evaluated [Di Lucca and Di Penta 2006; Knight
2001; Shneiderman and Plaisant 2006]. There is large consensus
in the software visualization and also in the broader information
visualization community that a lack of proper evaluation that can
demonstrate the effectiveness of tools is detrimental to the develop-
ment of the field [Koschke 2003; Reiss 2005; Lorensen 2004]. Re-
sults from the evaluation can be used to feed the iterative develop-
ment process [Di Lucca and Di Penta 2006] as shown by Figure 1,
thus increasing the chances of tools to be effective in practice. We
call here a SoftVis tool effective if it enables its users to achieve re-
sults in an easier and faster way compared to the traditional method
of doing the same task [Knight 2001; Hundhausen et al. 2002].

When carrying out SoftVis tool evaluations, a lot of information
in generated by the tool evaluators. This includes the task com-
pletion duration, the accuracy of the responses, the users’ views of
the tools, as well as tool aspects that may need improvements. De-

Figure 1: Software Visualization Tool Cycle

spite the availability of all this information, the experiences gained
throughout the evaluation process, as well as the lessons learned
during the execution of the evaluation process itself, are rarely re-
ported; emphasis is mainly being put on the results of the evalua-
tion, not the process itself [Murphy et al. 1999]. Sharing of such
process experiences can however be very helpful in improving fu-
ture studies [Pfleeger 1995; Storey 1998]. In this paper, the lessons
learned from evaluating over 20 SoftVis tools in five different stud-
ies with over 90 developers in total, are shared with the hope that
they can guide future tool evaluators. The focus here is on the im-
portant aspects that influence the quality (or lack thereof) of the
evaluation process itself, rather than on how to design a specific
evaluation for a specific tool or task (e.g. program comprehension
or maintenance).

The rest of this paper is organized as follows. Section 2 reviews
previous work in the area of SoftVis tool evaluation as well as ealier
advice on how the process should be carried out. This section also
shows how the previous work differs from what is presented in this
paper. Section 3 then details the lessons learned while evaluating
over 20 SoftVis tools with a large group of software developers.
Section 4 relates our learned lessons with the field of software com-
prehension, and Section 5 relates our results with the field of empir-
ical software engineering. Section 6 outlines the limitations of the
approach used in this paper. Finally, Section 7 concludes the paper
with directions for future research.

2 Previous Work

Several studies have described both SoftVis tool evaluations as well
as points on how to improve the evaluation process itself. Since it
is not possible to review all these studies, we focus here mainly
on those which detail the evaluation process itself (and the lessons
learned from this process). Indeed, we are not interested in evaluat-
ing a specific visualization tool or set of tools. Rather, our interest
here is to understand which are the factors that influence the evalu-
ation process itself.

Pacione [Pacione et al. 2003] evaluated five dynamic SoftVis

19978-1-4244-5026-8/09/$25.00 ©2009 IEEE

tools in relation to program comprehension questions. In that study,
a lot of emphasis was put on the tools as well as the results of the
evaluations, clearly showing how each tools preformed in relation
to the criteria used. Despite this, there was little information on the
evaluation procedure, the challenges faced, as well as recommenda-
tions on how to carry out a similar evaluation. Several such studies
exist, targeting specific tools. While valuable for those interested
in the effectiveness of the evaluated tools, they are less useful for
those interested in setting up new evaluations for a different set of
SoftVis tools. Using empirical studies to determine what program-
mers need from a tool, and thereby support tool design, is addressed
in detail in [Sillito 2006; Sillito et al. 2008]. Our work here differs
from such research in that we are mainly interested in aspects of
how to set up a good SoftVis tool evaluation in general rather than
how to set up an evaluation that determines which features make a
tool good.

Bassil and Keller [Bassil and Keller] also carried out an eval-
uation of seven commercial as well as academic tools using the
taxonomy of Price, in which the level to which the tools measured
against the taxonomy was shown. The authors were the main eval-
uators; information on the challenges faced during the evaluation
was not explicitly shared.

There are other researchers that made various suggestions related
to improving experiments. Ellis and Dix [Ellis and Dix 2006] sug-
gested many ways in which information visualization evaluations
can be improved. These included evaluating for the sake of discov-
ery as opposed to proving that one’s system is the best; measuring
variables that contribute to the aim of the evaluation; evaluating the
whole tool as opposed to only its best features; and balancing be-
tween qualitative and quantitative evaluations.

These recommendations were made after reviewing 65 papers
that described new visualization techniques and finding that less
than 20% of the authors had carried out evaluations. This trend was
also observed earlier by Tory and Möller [Tory and Moller 2004],
who noted that very few papers published in IEEE TVCG had a
‘human factor’ component, as shown by Figure 2, yet humans are
important both in the design as well as evaluation of visualization
tools.

Figure 2: Papers from the IEEE Transactions on Visualization and
Computer Graphics (TVCG) deemed to evaluate human factors

One of the reasons for this low percentage could be the lack of
guides on how these evaluations can be carried out effectively and
efficiently. As such, it is important for those that do evaluate their
tools to share their experiences. This is the main goal of this paper.

On the other hand, Kraemer et al [Kraemer 2008] mention sev-
eral lessons learned in carrying out various evaluations and empir-
ical studies. Some of these included encouraging the use of inter-
views and think-aloud studies to obtain feedback on site as opposed
to surveys; noting that observational studies are time consuming,

but are fruitful; and showing a set of advantages of think-out-loud
protocols, e.g. the variety of information that is generated from this
method, leading to many possible ways to analyze the data.

Along our interests, the main lessons learned from Kraemer et
al [Kraemer 2008] are considering surveys, interviews, observa-
tional studies and think-aloud studies. These lessons were gained
from carrying out studies in program visualization, algorithm ani-
mation, visualizing software engineering diagrams (with a focus on
concurrency), as well as various database web interfaces and tools.
In this paper, our emphasis is strictly on SoftVis tools.

Shneiderman [Shneiderman and Plaisant 2006] suggested multi-
dimensional, in-depth, long-term case studies as the way forward
when carrying out information visualization tool evaluations. This
procedure involves identifying 3..5 domain experts that can take
part in the evaluation which can run from several weeks to months.
In this period, the experts would use the tools under study. At the
end of the period, they would provide feedback. Next, the feedback
would be used to improve the tools. The work presented in this pa-
per builds on Shneiderman’s model, but restricts it to the narrower
context of SoftVis tools only.

O’Brien et al [O’Brien et al. 2005] take a broader perspective
and observe how to empirically study software practitioners. They
advise against certain negative trends that could take places within
the studies. Some of these include setting up experiments that were
not naturalistic in nature, as well as not combining qualitative as
well as quantitative evaluations. While the work in [O’Brien et al.
2005] targets program comprehension in general, we (again) restrict
ourselves to SoftVis tools in this paper.

2.1 Input studies

Three studies were carried out previously by the authors of this
paper over a period of two years. In the first study, expert pro-
grammers were exposed to three Softvis tools and asked to carry
out some comprehension and maintenance tasks related to object-
oriented software [Sensalire and Ogao 2007b]. Afterwards, their
feedback was collected on what could be improved in the tools;
the results categorized into a model of desirable requirements for
the evaluated tools. In the second evaluation, the model generated
from the first study was compared against ten SoftVis tools in order
to see the level to which they measured up to the model [Sensalire
and Ogao 2007a]. The participants were expert software develop-
ers. The results from the evaluation were recorded as well and used
to refine the model. The third evaluation study we performed was
specific to SoftVis tools that support corrective maintenance [Sen-
salire et al. 2008]. In this third study, fifteen Softvis tools, picked
to match the model from [Sensalire and Ogao 2007b; Sensalire and
Ogao 2007a], were evaluated by industrial experts in order to de-
termine which of the provided features were desirable for the users.
This third study also served as a validation of the predictive power
of the tool selection model. These three studies were guided by
the first two authors and involved software developers at their site
(Kampala, Uganda).

A second source of information are our studies carried out in the
area of visualizing software evolution. Here, we used the CVS-
grab [Voinea and Telea 2006] visualization tool and a number of
text-based tools such as TortoiseSVN [TortoiseSVN 2009], to ex-
amine the evolution of several large open-source repositories, the
most important being KDE Office and Mozilla. The users were
CVSgrab’s own developers, and over 45 students from two differ-
ent generations at the University of Groningen, the Netherlands,
who had no prior exposure to this visualization tool. A number of
specific tasks were given to the users (for details, see [Telea 2008].
The results, summarized as 20-page reports, were gathered and an-
alyzed. From the users’ feedback, lessons were distilled as to the
success of setting up this experiment. this fourth study was guided
by the last author and involved students at his site (Groningen, the

20

Netherlands).

A third source of information are our studies carried out in the
area of UML metric-and-diagram visualizations. Here, we used an
own UML viewer, modified to allow display of software metrics, to
accomplish a number of program understanding and design qual-
ity assessment tasks [Byelas and Telea 2009a; Byelas and Telea
2006; Byelas and Telea 2009b]. This fifth study involved around
35 participants from both the academia and the software industry,
and was spread, in its different phases, over a period of approx-
imately two years in the framework of an academic-industry re-
search project [Trust4All 2007]. The aim of the study was, first, to
assess the understandability of novel methods to visualize software
metrics combined with UML architecture diagrams, and secondly
to assess the effectiveness of the combined solution in performing
a number of program comprehension tasks supporting adaptive and
perfective maintenance. The study took place at the University of
Eindhoven, the Netherlands.

The three studies outlined above had some overlap in the subjects
involved in them. There was no overlap with the subjects involved
in these first three studies and those of the latter two studies, and
no overlap between the subjects in study 4 and study 5. The only
overlap between the latter two was the participation of the evaluator
(the last author).

Interestingly, there were strong correlations from the lessons
learned from all above tool evaluation studies, even though there is
arguably a great difference between the culture of the programmers
involved (Uganda vs the Netherlands; and industry vs academia),
the types of visualization tools being evaluated (IDE-based tools
for corrective maintenance; UML architecture and metric tools;
and repository visualization tools), and the types of tasks aimed
at. These lessons learned are presented next in Section 3 with the
aim of helping future researchers who intend to carry out similar
studies.

3 Lessons Learned

After analyzing the results of the four studies outlined in Sec. 2.1,
gathered from user written and oral feedback, as well as the obser-
vations of the evaluators themselves (the authors), we structured the
lessons learned along ten dimensions. Each dimension is described
in one of the following sections. Below, we only outline points
which were strongly exhibited in all the four studies performed,
and which are relevant to the majority of the evaluated tools and
involved users.

3.1 Tool selection

When carrying out evaluations, the first step is usually deciding
which SoftVis tools to evaluate. It is important that the tool se-
lection is done with a clearly predefined motive, as it may not be
possible to evaluate all the SoftVis tools that exist. Different types
of motives will determine different styles, and set-ups, of the eval-
uation process, as follows.

If the motive is to evaluate techniques, like in [Telea 2008], then
tools that use each of the techniques under evaluation may need to
be chosen and later measured against each other. If the motive is
to evaluate the effectiveness of a software visualization tool for a
software engineering task, strictly looking at the visualization tool
is definitely not enough. The effectiveness of such a tool is strongly
influenced by the amount of integration thereof in an entire work-
flow, which implies evaluating the communication with other es-
tablished tools [Koschke 2003]. In this case, we noticed that it only
makes sense to evaluate tools that have comparable amounts of in-
tegration within the same workflow and toolset, as developers expe-
rience using weakly-integrated tools as highly disruptive [Sensalire
and Ogao 2007b; Sensalire and Ogao 2007a]. Finally, when com-
paring functionally identical tools, with the aim of selecting a ‘win-
ner’, the focus should be on the tool itself and less on the integration

aspects [Telea 2008]. While this is feasible, with some effort, the
insights gained from such an evaluation are naturally limited to the
set of tools being compared.

Finally, we noticed the important impact the tool audience has.
It is risky to compare tools whose target audience differs, e.g. tools
targeted towards novice users such as Jeliot [Kannusmaki et al.]
against tools aimed at professional developers such as CodeProAn-
alytix. From the reactions of the involved participants in our four
studies, we noticed that this, first and foremost, causes confusion
for the users themselves, as they have trouble positioning them-
selves in a clear way against the tool (as novices, or professionals,
respectively).

3.2 Participants

While many people may volunteer for the evaluation, it is essential
to get a pre-study screening procedure that is in line with the objec-
tives of the study. This ensures that participants that will be helpful
to the evaluation at hand are selected. For a counter-example, in a
related study on visualizing annotations on UML diagrams [Byelas
and Telea 2009a], we involved a wide range of users including fresh
graduates, PhD students, seasoned researchers, and professional de-
velopers with over 10 years of experience. After that study, we had
to post-filter results based on the developer experience, as several
of those delivered by the inexperienced developers were subopti-
mal and would have biased the study’s results. In [Sensalire and
Ogao 2007b], studying SoftVis tool integration with IDEs such as
Visual Studio was important, so accepting participants with lim-
ited knowledge of that IDE would greatly affect the results of the
study. Precious time will be spent trying to bring the participants
knowledge to an acceptable level instead of carrying out the core
experiment.

Pre-selection can be done with the aid of a questionnaire that
asks about the knowledge of the willing participants [Sensalire and
Ogao 2007b; Sensalire and Ogao 2007a]. We found this method
better than pre-selection based on the professional level (years of
experience in the field). People with identical amounts of experi-
ence years can have widely different skills, as it was evident in the
software evolution study [Telea 2008].

Finally, it is very important to use tool evaluators that are similar,
or identical, to the final target group of the tool. It may not be appro-
priate to use students for a tool that is targeting industrial practition-
ers [Ellis and Dix 2006; Byelas and Telea 2009a], as they may not
have the background to provide useful feedback. For this reason,
our evaluations described in [Sensalire and Ogao 2007b; Sensalire
and Ogao 2007a] involved only industrial participants. However, in
other cases, the tasks to be completed are more focused and easier
to understand even by users with limited experience, such as the
repository visualization study [Telea 2008]. If developers with a
wide experience-level spread are involved, a post-study classifica-
tion, or weighting, of the results based on the experience, is a good
correction factor [Byelas and Telea 2009a].

3.3 Tool exposure

To be able to get the most out of the experiment, the participants
should be allowed sufficient time to study and understand the Soft-
Vis tools that they are going to use. In one of our experiments, the
participants were given 15 minutes to study the tools before carry-
ing out their tasks [Sensalire et al. 2008]. More than half of the
evaluators later complained that the tool exposure duration was too
short and advised longer exposure durations days before the actual
evaluation, a point also noted by Plaisant et al. in a different con-
text [Plaisant 2004]. The learning phase does not need to be con-
tiguous, but has to be of sufficient duration. For the tools we eval-
uated in our four studies, a learning phase of at least a few hours,
spread over maximally a week, seems to be sufficient. Spreading
the learning phase is also helpful for highly experienced IT person-

21

nel that have very busy schedules. They require flexibility in order
to learn the tool at their own time without the perceived pressure.

Novices may even need a longer tool learning phase. This was
also noted by Marcus et al. [Marcus et al. 2005] who had students
perform poorly during the evaluations due to their low tool expo-
sure duration. The advantage with students, however, is that they
are more willing to ask when they do not understand and are more
comfortable with slightly longer training durations. In [Telea 2008],
the learning phase for the involved over 45 students was of roughly
four full days, spread over a period of 6..8 working days.

Overall, it is not advisable to expect the participants to learn the
tool minutes before the experiment. This is very hard and does not
also reflect the real life scenarios. An exception to this would be
cases where the objectives of the evaluation require short durations
for learning the tools, like in [Byelas and Telea 2009a], where the
learning phase was approximately 20-30 minutes, due to the sim-
plicity of the demanded task. We also strongly encourage on re-
porting the learning phase duration in publications involving user
studies, as an added measure of the confidence in the evaluation’s
results.

3.4 Task selection

Tasks are an essential part of tool evaluations. There are many ways
in which these tasks can be selected. Regardless of the method
used, however, the tasks should be reflective of the scenario being
simulated in order for the evaluation to be helpful. An example
would be a case where a tool is being measured for its ability to
answer software maintenance questions. We see several axes along
which task selection can be carried out, thereby influencing the pur-
pose of evaluation, as follows.

Task author: users vs owners The tasks can be generated by
the tool user or tool owner. By the owner, we mean here the person
that is interested in the evaluation results, be it the tool builder or a
third party like a researcher interested in tools usability. If tasks are
generated by the users, e.g. software maintainers, then these will
naturally include questions that they are usually faced with during
their work. These tasks/questions can be given to additional tool
participants along with the tools and then observed to see if they
can indeed answer them, as long as the participants share the same
working environment and goals as the original task author. This was
the scenario taken in [Telea 2008], where we pre-selected the tasks
from earlier discussions with KDE developers [Voinea and Telea
2008]. The chief advantage of this method is that a positive eval-
uation is a very strong signal in terms of usability. Alternatively,
tasks can be generated by the tool owners. When this method is
used, it is advisable for either these tasks or their solutions to be
validated by the domain experts, as done e.g. in [Voinea and Telea
2008]. Failure to do this may pose the risk of generating tasks that
are either irrelevant, too simple or too difficult for the target partic-
ipants, or biased to reflect the tool under evaluation. This may in
turn affect the evaluation by reducing its ability to reflect the real-
life scenario. This type of task generation seems predominant in
research papers where authors aim to gather a-posteriori evidence
for the design choices of their proposed tools.

Task type: discovery vs maintenance There are numerous
types of tasks in software engineering where SoftVis tools can
help, and thereby many ways to classify SoftVis tools [Diehl 2006].
Within our tool evaluations, we have found a marked difference
between tasks involving program discovery and program mainte-
nance. By program discovery we denote the subset of comprehen-
sion activities that enable one to get familiar with an unknown code
base. We noticed that programmers that maintain their own code,
usually for long periods of time, have much less need for tools
that support generic discovery activities such as showing the overall
structure of the software or presenting evolution trends. The needs
here go towards detailed support for precise, fine-grained activities

like debugging, refactoring or optimization. In contrast, tools that
support discovery activities have a different aim: enable the user to
get familiar with a wide range of aspects of a given system. Setting
up evaluations for tools in the two classes (discovery and mainte-
nance) is also different. For discovery, it is harder to quantify the
effectiveness of a tool (how can one measure if a tool is effective in
discovering if it is not known what one is looking for?) For mainte-
nance, it is easier to measure a tool’s effectiveness, as the tasks are
more precise, so one can quantify e.g. the duration or precision of
a task’s completion using a given tool.

We also noticed that the above two task selection dimensions
correlate with the two types of participants (see Sec. 3.8 further):
professionals are interested in defining the tasks to be supported and
focus more on maintenance and less on discovery; tools supporting
discovery and tasks generated by tool owners are mostly evaluated
in academic and research environments.

We believe, although we do not have hard evidence, that there is
a direct correlation between the task selection (when defining tool
evaluations) and the perceived value of the tool evaluation. In terms
of the lean development philosophy [Poppendieck and Poppendieck
2006], the value of a SoftVis tool evaluation would be different for
industrial users and academic groups. For industrial users, the value
is in obtaining measurable improvement in supporting an ongoing
software engineering activity. For academic groups, the value is of-
ten in obtaining evidence supporting a novel tool design. The two
notions of value should meet (a tool is valuable when it measurably
supports a valuable task). However, many SoftVis tool evaluations,
including ours for a large extent, entirely cover the above implica-
tion.

3.5 Experiment duration

It has been advised in the past that tools be studied over long pe-
riods of time, e.g. months, in order to fully assess their capabili-
ties [Shneiderman and Plaisant 2006]. From our studies, however,
we have noticed that there are certain durations beyond which most
tool participants become reluctant to continue as the benefit of car-
rying on with the evaluation becomes less obvious for them. This is
manifested during the process of recruiting evaluators, with many
asking the duration of the experiment. We have noticed, for ex-
ample, that expert programmers or industrial participants are not
comfortable with very long durations [Sensalire and Ogao 2007b;
Sensalire and Ogao 2007a; Byelas and Telea 2009a]. For our stud-
ies, 2-3 hour experiments were generally encouraged by this group
excluding the time taken to learn the tool.

Researchers in the past who have worked with students have
managed to use longer experiment durations. Lattu et al. [Lattu and
Tarhio 2000] were able to train two sets of students for 52 hours and
a second group for 12 hours as part of the evaluation. This train-
ing was done in form of introductory programming courses both at
university and high school. In [Telea 2008], the total study duration
tool 2-3 weeks per participant. Similar results are shown by Haaster
et al. [Van Haaster and Hagan 2004]. Overall, experiments involv-
ing only students can be set up in line with the students’ course
contents, so longer durations are possible. This is harder, or even
unachievable, for industrial participants.

3.6 Experiment location

One of the factors that can affect a tool evaluation is the location
of the experiment. In our previous studies, we have had both lab-
based experiments as well as ”mobile” evaluations that could be
taken to the evaluators location [Sensalire and Ogao 2007b; Sen-
salire and Ogao 2007a]. We have observed that when working with
experts, preference is given to their workplace. The inconvenience
on the participant is reduced as they can continue with their usual
work immediately after the experiment. In order to entice industrial
users to participate in rigid experiment set-ups located in labs, the

22

incentives given to them may need to be higher than for the in-place
set-ups.

Previous researchers who have worked with students have used
university premises [Lattu and Tarhio 2000; Lawrence et al. 1994;
Van Haaster and Hagan 2004; Telea 2008]. This is mainly due
to the nature of the experiment setups as explained in Section 3.5.
Finally, in mixed academic-research studies such as [Byelas and
Telea 2009a], using the project meetings to schedule the experi-
ments proved very convenient. All in all, we hypothesize that loca-
tions that provide the least bother, and least time consumption, for
the participants are the ideal ones for such tool evaluations.

3.7 Experiment input

Depending on the motive of the evaluation (Sec. 3.1), there are
many ways in which the actual experiment can be carried out.
These may include measuring a tool’s ability to solve a program
comprehension task or comparing several SoftVis tools. In all our
experiments, the input was a given system’s source code, except
for [Byelas and Telea 2009a], where the input was a set of UML di-
agrams. When source code is analyzed, this code should be reflec-
tive of the tool’s target in order for realistic results to be achieved.
As Hundhausen [Hundhausen et al. 2002] noted, however, there are
tools developed whose authors are not sure of the targeted group, a
phenomenon termed as system roulette. When evaluating such sys-
tems, it can be challenging to decide the type of code to be used for
the input. Regardless of this, care should be taken to ensure that the
code selected does not bias the experiment in any way. Examples
of this bias include using code that some participants have prior
knowledge of, experimenting with very simple code for a tool that
should be targeting large scale code, or conversely.

For example, our studies described in [Voinea and Telea 2008;
Sensalire and Ogao 2007b; Sensalire and Ogao 2007a] all targeted
small-to-middle size code bases (under 10 KLOC), while the repos-
itory evolution study in [Voinea and Telea 2008] targeted large
repositories of millions of LOC. As such, issues such as optimiza-
tion, speed of processing, and stability were mentioned as essential
by the subjects involved in the repository study, whereas none of
these were mentioned by the users involved in the other studies we
performed, given the much smaller size of the input datasets.

3.8 Participants motivation

Motivation is an important element of SoftVis tools evaluations and
should thus be planned and taken into account for when organizing
such a study. Depending on the group that one is working with,
different forms of motivation may be used.

When working with professionals, one should keep in mind that
this group already holds jobs that are paying them on an hourly or
monthly basis. As such, motivation may need to be equated to tan-
gible benefits at the study’s outcome. These may be in terms of
learning to use a tool that will provide measurable benefits in the
regular work activities after the study is completed, or possibly also
financial incentives. In our studies, we tried both types of motiva-
tion [Voinea and Telea 2008; Sensalire and Ogao 2007a], and we
cannot say that one motivation type is definitely more successful
than the other one.

There is, however, another group of professionals who have
some experience in academia. These include PhD holders who are
in industry, as well as academic staff that also double as consultants
or developers. Some of our industrial participants in [Byelas and
Telea 2009a] were in this category. This group is at times willing
to take part in studies for the sake of gaining knowledge and may
require less or no additional motivation. However, for all industrial
users, we noticed that a clear added value for the participants must
be present in the study set-up to motivate them to take part.

Motivation for students differs considerably. In previous exper-
iments [Marcus et al. 2005], students were motivated using extra

credits for their course project. Experiments which were struc-
tured in form of course work did not have major motivation hur-
dles, as the students had to complete the course as part of their
programs [Telea 2008]. However, from our experience, we noticed
that this ‘implicit’ motivation of students does also usually imply a
less critical attitude towards the tools involved in the study, as they
do not identify themselves strongly with future tool users.

Regarding motivation, an essential point in doing evaluations of
software visualization tools, or other software engineering tools for
that matter, regards correlating the tool’s provisions with the users’
needs. It may sound obvious that any tool evaluation will be val-
idated in measuring how well a tool actually satisfied a concrete
need of a concrete user. However, to be able to quantify that, the
users should have some concrete stakeholding in the analyzed soft-
ware. This correlates with the above user categories: Profession-
als would rarely give a truly positive evaluation of a tool unless
that solves problems on their own software. One may think that
to be less true for students. In our experiments, we had both cate-
gories: professionals used the evaluated visualization tools on soft-
ware they were actively working on, and expressed clearly that tool
usability has to be proved on that software, not a third-party one.
For the students, we used a mixed population: some of our par-
ticipants were active KDE developers (so knew the software under
study), whereas the others were not familiar with the visualized sys-
tems. As a global comment, we noticed clearly that users familiar
with a code base will be significantly more strict when evaluating a
visualization tool (as they have very specific questions and wishes)
than users unfamiliar with the code.

This opens the question: is it, then, meaningful to let users eval-
uate a SoftVis tool on input code in which they have no explicit
interest? From our experience, the answer is that this is possible,
but only when the SoftVis tool addresses general program compre-
hension tasks. In that case, it makes sense to evaluate the tool on
’unknown’ code bases. However, if the tool’s claims are of differ-
ent nature, e.g. support maintenance, refactoring, or assessing code
quality, for example, then it is necessary for the tool to be evaluated
by users holding a stake in, thus familiar with, the tool’s input.

3.9 Evaluators relationship with the tools

In many cases, the tool developers are in a better position to eval-
uate their tools since they are very familiar with it, as it was the
case in e.g. [Voinea and Telea 2008]. The learning curve is practi-
cally zero in such cases, and there is high confidence in the quality
of the results obtained. However, there are some dangers with this
route. Apart from the problem of bias from the evaluators side, if
participants know that the evaluator developed the tool, they will
be generous with compliments while minimizing criticism. We no-
ticed this effect relatively strongly in [Telea 2008]. This, in turn,
can create false positives about either the technique or the tool be-
ing looked at thus reducing its chances of being improved.

In order to get the most objective results, its advisable for the
evaluator to be as detached as possible from the tool being evalu-
ated. This can be done by letting a different person supervise the
evaluation of the tool or not informing the participants who devel-
oped the technique or tool under evaluation. This was the route
taken in [Byelas and Telea 2009a]. In that study, we noticed no
difference in the qualitative output of the participants between par-
ticipants who knew the (non-disclosed) developers of the studied
technique and those who had no relation whatsoever with the de-
velopers.

In our other studies involving student populations [Telea 2008],
the tool under evaluation was originally developed by the main
course lecturer, also one of the authors of this paper. To eliminate
bias, we used a slightly different version of the tool, and presented it
under a different name and provided it from a third party. Although
it was relatively easy for the participants to determine the connec-

23

tion of the tool with the course lecturer, and thus generate positive
bias, this was apparently not the case. All 45 student reports, with
no single exception, contained clearly critical observations on the
ineffectiveness of the evaluated tool with respect to certain tasks.
However, we found an important element in student evaluations to
be the decoupling of the evaluation itself from the success of com-
pleting the task. From previous tool evaluations done with student
populations, we found that students are either positively or nega-
tively biased when the assignment’s goal is the completion of the
task, depending on the student’s success in completing, or failing
to complete, that task. In [Telea 2008], we found that this bias can
be eliminated by structuring the assignment in terms of describing
the results of a number of actions done with the tool, and asking
the users to comment on their findings (whatever those are), rather
than stressing on obtaining some results with the tool, and asking
the students to describe those results.

3.10 Analysis of results

As a final point learned during the five tool evaluation studies we
performed, there is a lot of data that a study can generate, and the
evaluator has to interpret. In order for this evaluation to be benefi-
cial to a potential adopter of the evaluated tools, or to the developers
of the tools, the results should be analyzed in direct relation to the
objective of the study (the task). If visualization techniques are the
ones being analyzed, the results should clearly indicate which of
the analyzed techniques is better than the other and also offer po-
tential reasons why. This is very important as many practitioners
are only concerned about the results as opposed to the procedure
itself. Here, tool integration is less crucial than when one evaluates
a tool’s effectiveness for solving a given task, which is discussed
below.

However, the relation of a visualization tool and software engi-
neering task is rarely a direct one, the tool being effective for that
task only as part of a tightly integrated toolset and workflow, as
outlined already in Sec. 3.1. In that case, we see no other reli-
able and generic solution than to spend the added effort to achieve
this integration prior to the evaluation. This is the road we have
taken, for example, in [Telea 2008], where the repository visualiza-
tion tool is tightly integrated with the software configuration man-
agement (SCM) system used (CVS or Subversion) and also with
several software quality metric tools. A similar route was taken
in [Byelas and Telea 2009a; Byelas and Telea 2006], where the tar-
geted UML visualization tool can be used as a drop-in replacement
for other similar UML tools such as Poseidon.

4 Comparison of lessons learned with soft-

ware comprehension studies

Software visualization is a supplementary method in the field of
software comprehension. This section compares work in the area
of evaluating software comprehension tools in order to see how it
relates with what has been presented for software visualization.

The need for tool evaluation was noted to be important for soft-
ware comprehension with a call on tool evaluators to share their best
practices in order to aid other research groups carrying out similar
studies [Di Penta et al. 2007]. Our best practices for SoftVis tool
evaluation presented here are in line with the recommendation made
by Di Penta [Di Penta et al. 2007]. In a related study, Di Lucca et
al. [Di Lucca and Di Penta 2006] identified the factors that affect the
settings of software comprehension experiments. These included
the variables measured for the experiment, the subjects used, the
experimental design, the instrumentation as well as the packaging
of the experiment. These factors were identified in an effort to have
a working session where best practices would be identified in re-
lation to each area identified. While Di Lucca’s proposal was in
software comprehension, we see most of the factors named there
appearing in the evaluation of SoftVis tools too, as detailed earlier

in Sec. 3.

5 Comparison of lessons learned with empir-

ical software engineering research

In a comprehensive review of software engineering research by
Sjoberg et al., a vision was presented on what empirical studies in
this field should cater for in the future period of 2020-2025 [Sjøberg
et al. 2007]. In Table 5, we outline the main elements of this review
and how they compare to our own lessons learned from evaluating
SoftVis tools. We see a strong coherence between the proposal of
Sjoberg et al. and our own conclusions.

Zannier et al. [Zannier et al. 2006] noted that, while the quantity
of evaluations in software engineering had increased throughout the
years, there was still need to improve on their quality. Among the
issues noted was the lack of a study hypothesis, which is in line
with our focus on study motive from Sec. 3.1; the low levels of
replication presented by studies; and a lack of information pertain-
ing to the study process itself. By detailing several dimensions on
the lessons learned from several SoftVis tool evaluations, we hope
to enhance the chances for a tool evaluation methodology that in-
creases the chance of result comparison and result replication.

6 Limitations

We do not, in any way, suggest that the evaluations carried out by
the authors were perfect. As outlined at several instances in Sec. 3,
our evaluations have meaningful, extrapolable, results only within
specific conditions, were carried out on just 20 SoftVis tools, and
involved only around 90 users. The lengthiest evaluations, around
2-3 weeks, involved chiefly student participants. However, in pre-
senting the lessons learned in Sec. 3, we limited ourselves to the
common denominator over which strong consensus from nearly all
participants existed. As such, we believe these points to be impor-
tant, and valid, for a wide range of evaluations of SoftVis tools in
general.

In this work, the only tool evaluations that we could study in de-
tail, were the ones in which we were involved as evaluators. This is,
on the one hand, hard to avoid, as it is very difficult to be aware of
all the preconditions and details of a tool evaluation process done
by a third party, if these are not all explicitly reported in the re-
spective publications. Also, the number of SoftVis tool evaluations
which are comparable in the sense mentioned in Sec. 3, i.e. share
comparable aims, tasks, types of users, learning curves, and ex-
periment durations, is relatively small. To strengthen the lessons
learned mentioned in this paper, we plan to further search for such
studies in the literature and enhance (or possibly invalidate) the con-
clusions drawn here based on such additional evidence.

7 Conclusions

In this paper, we presented a number of lessons learned that tar-
get the context of organizing evaluations of software visualization
(SoftVis) tools. Based on our previous experience from five studies
that covered over 20 tools, over 90 participants from both indus-
try and academia, and were spread over a period of two years, we
distilled several dimensions which are important to consider both
when organizing a tool evaluation, and also when interpreting the
results of such a study. These dimensions cover areas ranging from
tool and task selection, choosing and training of participants, and
analyzing the results from the evaluation. Although the five stud-
ies involved in this paper targeted different types of users, tools,
and tasks, we saw several strongly correlated points concerning the
evaluation organization, which suggest their wider validity for Soft-
Vis tools evaluations in general.

Future research may include showing a different perspective of
the evaluations in order to present the respective lessons learnt. This
can include areas such as lessons learned in evaluating SoftVis tools

24

Software engineering study targets (Sjoberg et al.) Relation to lessons learned in SoftVis

There is a strong emphasis on building on previous research Comparisons made with similar fields of software
results, including those from other disciplines (comprehension and engineering).

Sec. 4 and Sec. 5 relate to this target
Research method and design elements are carefully selected In Sec. 3.3, tool exposure is promoted
and combined, based on an in-depth understanding of their supplemented by Sec. 3.7

strengths and weaknesses. Researchers are trained in using a where the evaluation procedure
large set of research methods and techniques. is well elaborated

Replications and triangulation of research designs are Follows the need for sharing evaluation experiences
frequently used means for achieving robust results. as was done in this paper in order to aid replication

Empirical evaluation is mainly based on high quality studies Sec. 3.9 encourages and shows
conducted by researchers with no vested interest in the study how tool detachment can be achieved

outcome. by tool evaluators
New technology is compared with relevant alternative tech- Comparison of SoftVis tools

nology used in the software industry. was advocated for in Sec. 3.7
The scope is systematically and explicitly defined and re Sec. 3.10 raises a case for systematic reporting

ported; it is relatively narrow to begin with and then of the results in relation to the
gradually extended through replications. scope of the study

Table 1: Future of empirical studies in software engineering (adapted from Table 3 (Quality of empirical studies) from Sjoberg et al) vs
lessons presented in this paper. The wording in the left column follows Sjoberg et al. The right column has been modified to show how the
material from Sjoberg et al. relates to the work presented in this paper

for software evolution, software maintenance as well as education
in software engineering. By analyzing tool evaluations for more
specific, narrower, areas, more specific criteria that influence such
evaluations can be elicited, thereby helping the organization and
comparison of such tool evaluations in the future.

References

BASSIL, S., AND KELLER, R. A Qualitative and Quantitative Eval-
uation of Software Visualization Tools. In Proceedings of the
Workshop on Software Visualization, 33–37.

BYELAS, H., AND TELEA, A. 2006. Visualization of areas of in-
terest in software architecture diagrams. In Proc. SoftVis, ACM,
105–114.

BYELAS, H., AND TELEA, A. 2009. Towards visual realism in
drawing areas of interest on software architecture diagrams. J.

Visual Languages and Computing 20, 2, 110–128.

BYELAS, H., AND TELEA, A. 2009. Visualizing metrics on areas
of interest in software architecture diagrams. In Proc. PacificVis,
IEEE, 201–209.

DI LUCCA, G., AND DI PENTA, M. 2006. Experimental set-
tings in program comprehension: Challenges and open issues.
In 14th IEEE International Conference on Program Comprehen-
sion, 2006. ICPC 2006, 229–234.

DI PENTA, M., STIREWALT, R., AND KRAEMER, E. 2007. De-
signing your next empirical study on program comprehension.
In Proceedings of the 15th IEEE International Conference on
Program Comprehension, IEEE Computer Society Washington,
DC, USA, 281–285.

DIEHL, S. 2006. Software Visualization: Visualizing The Structure,
Behaviour, And Evolution Of Software. Springer.

ELLIS, G., AND DIX, A. 2006. An explorative analysis of user
evaluation studies in information visualisation. In Proceedings of
the 2006 AVI workshop on BEyond time and errors: novel eval-
uation methods for information visualization, ACM New York,
NY, USA, 1–7.

HUNDHAUSEN, C., DOUGLAS, S., AND STASKO, J. 2002. A
meta-study of software visualization effectiveness. Journal of
Visual Languages and Computing 13, 3, 259–290.

KANNUSMAKI, O., MORENO, A., MYLLER, N., AND SUTINEN,
E. What a novice wants: students using program visualization in
distance programming course. In Program Visualization Work-
shop, 126.

KEOWN, L. 2000. Virtual 3d worlds for enhanced software visu-
alisation. Master’s thesis, University of Canterbury, Department
of Computer Science.

KNIGHT, C. 2001. Visualisation effectiveness. In 2001 Interna-
tional Conference on Imaging Science, Systems, and Technology
(CISST 2001), 249–254.

KOSCHKE, R. 2003. Software visualization in software mainte-
nance, reverse engineering, and re-engineering: a research sur-
vey. Journal of Software Maintenance: Research and Practice
15, 2, 87–109.

KRAEMER, E. 2008. Designing, conducting, and analyzing empir-
ical studies. Electronic Communications of the EASST 13.

LATTU, M., AND TARHIO, J. 2000. How a visualization tool can
be used: Evaluating a tool in a research and development project.
In 12th workshop of Psychology of Programming Interest Group.

LAWRENCE, A., BADRE, A., AND STASKO, J. 1994. Empirically
evaluating the use of animations to teach algorithms. In IEEE
Symposium on Visual Languages, 1994. Proceedings., 48–54.

LORENSEN, B. 2004. On the death of visualization: Can it survive
without customers? In Proc. NIH/NSF Fall 2004 Workshop on
Visualization Research Challenges, NIH/NSF Press.

MARCUS, A., COMORSKI, D., AND A SERGEYEV, A. 2005. Sup-
porting the evolution of a software visualization tool through us-
ability studies. Proceedings of 13th International Workshop on
Program Comprehension, 307– 316.

MURPHY, G., WALKER, R., AND BANLASSAD, E. 1999. Eval-
uating emerging software development technologies: lessons

25

learned from assessing aspect-oriented programming. IEEE
Transactions on Software Engineering 25, 4, 438–455.

O’BRIEN, M., BUCKLEY, J., AND EXTON, C. 2005. Empiri-
cally studying software practitioners-bridging the gap between
theory and practice. In Software Maintenance, 2005. ICSM’05.
Proceedings of the 21st IEEE International Conference on, 433–
442.

PACIONE, M., ROPER, M., AND WOOD, M. 2003. A com-
parative evaluation of dynamic visualization tools. Proceed-
ings of the 10th Working Conference on Reverse Engineering
(WCRE),Victoria, BC,Los Alamitos, pp. 80-89, CA: IEEE CS
Press,, 80–89.

PFLEEGER, S. 1995. Experimental design and analysis in software
engineering. Annals of Software Engineering 1, 1, 219–253.

PLAISANT, C. 2004. The challenge of information visualization
evaluation. Proceedings of the working conference on Advanced
visual interfaces, 109–116.

POPPENDIECK, M., AND POPPENDIECK, T. 2006. Implementing
Lean Software Development: From Concept to Cash. Addison-
Wesley.

PRICE, A., BAECKER, R., AND SMALL, I. 1993. A principled tax-
onomy of software visualization. Journal of Visual Languages
and Computing 4(3):211-266.

RAJLICH, V., AND WILDE, N. 2002. The role of concepts in pro-
gram comprehension. The InternationalWireless Industry Con-
sortium, 271–278.

REISS, S. P. 2005. The paradox of software visualization. In Proc.
VISSOFT, IEEE, 59–63.

SENSALIRE, M., AND OGAO, P. 2007. Tool users requirements
classification: how software visualization tools measure up. In
Proceedings of the 5th international conference on Computer
graphics, virtual reality, visualisation and interaction in Africa,
ACM New York, NY, USA, 119–124.

SENSALIRE, M., AND OGAO, P. 2007. Visualizing object oriented
software: towards a point of reference for developing tools for
industry. In 4th IEEE International Workshop on Visualizing
Software for Understanding and Analysis, 2007. VISSOFT 2007,
26–29.

SENSALIRE, M., OGAO, P., AND TELEA, A. 2008. Classify-
ing desirable features of software visualization tools for correc-
tive maintenance. In Proceedings of the 4th ACM symposium on
Software visuallization, ACM New York, NY, USA, 87–90.

SHNEIDERMAN, B., AND PLAISANT, C. 2006. Strategies for
evaluating information visualization tools: multi-dimensional in-
depth long-term case studies. In Proceedings of the 2006 AVI
workshop on BEyond time and errors: novel evaluation methods
for information visualization, ACM New York, NY, USA, 1–7.

SILLITO, J., MURPHY, G., AND DE VOLDER, K. 2008. Ask-
ing and answering questions during a programming change task.
IEEE Trans. Soft. Eng. 34, 4, 434–451.

SILLITO, J. 2006. Asking and Answering Questions During a Pro-
gramming Change Task. PhD thesis.

SJØBERG, D., DYBÅ, T., AND JØRGENSEN, M. 2007. The future
of empirical methods in software engineering research. In Proc.
Intl. Conf. on Software Engineering (ICSE), IEEE, 358–378.

STOREY, M. 1998. A cognitive framework for describing and eval-
uating software exploration tools. PhD thesis, Simon Fraser Uni-
versity.

TELEA, A. 2008. Software evolution assessment study. In www.
cs.rug.nl/\˜alext/Assignment, Univ. of Groningen,
the Netherlands.

TORTOISESVN. 2009. The TortoiseSVN repository browser. In
tortoisesvn.tigtis.org.

TORY, M., AND MOLLER, T. 2004. Human factors in visualiza-
tion research. IEEE Transactions on Visualization and Computer
Graphics Vol 10, No.1.

TRUST4ALL. 2007. The Trust4All ITEA research project. In
www.win.tue.nl/trust4all.

VAN HAASTER, K., AND HAGAN, D. 2004. Teaching and learning
with BlueJ: an Evaluation of a Pedagogical Tool. In Information
Science+ Information Technology Education Joint Conference,
Rockhampton, QLD, Australia.

VOINEA, L., AND TELEA, A. 2006. CVSgrab: Mining the history
of large software projects. IEEE, 197–205.

VOINEA, L., AND TELEA, A. 2008. Visual querying and analysis
of large software repositories. Empirical Software Engineering.

ZANNIER, C., MELNIK, G., AND MAURER, F. 2006. On the
success of empirical studies in the international conference on
software engineering. In Proceedings of the 28th international
conference on Software engineering, ACM New York, NY, USA,
341–350.

26

