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Robust Segmentation of Voxel Shapes using Medial Surfaces

Dennie Reniers*
Department of Mathematics and Computer Science
Eindhoven University of Technology, The Netherlands

ABSTRACT

We present a new patch-type segmentation method for 3D voxel
shapes based on the medial surface, also called surface skeleton.
The boundaries of the simplified fore- and background skeletons
map one-to-one to increasingly fuzzy, soft convex, respectively
concave, edges of the shape. Using this property, we build a method
for segmentation of 3D shapes which has several desirable proper-
ties. Our method robustly segments both noisy shapes and shapes
with soft edges which vanish over low-curvature regions. As the
segmentation is based on the skeleton, it reflects the symmetry of
the input shape. Finally, multiscale segmentations can be obtained
by varying the simplification level of the skeleton. We present a
voxel-based implementation of our approach and demonstrate it on
several examples.

Index Terms: 1.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modeling—Geometric algorithms, languages, and
systems;

1 INTRODUCTION

Shape segmentation is an important pre-processing step in many
applications ranging from shape analysis, computer vision, com-
pression, and collision detection. The type of segments produced
depend on the intended application, so a wealth of methods exist.
Segmentation methods can be categorized by the type of segmen-
tations they produce. Patch-type methods are geometry-oriented,
typically use local shape information such as surface curvature,
and produce segments that are quasi-flat and separated by high-
curvature edges. Part-type methods, on the other hand, are more
semantically-oriented, i.e. they try to find segments that a human
would intuitively perceive a distinct logical parts of the shape. Such
segments are not necessarily separated by high-curvature edges.

An issue with many patch-type methods is that they are ill-suited
to handle shapes with smooth, low-curvature edges. Such methods
distinguish the six faces of a box for example, but have problems
finding these faces when the edges are smoothed. Noisy shapes
might also be problematic and result in over-segmentation.

We propose a patch-type segmentation method that addresses
these problems by using the shape’s simplified surface-skeleton.
Our method produces segmentations of voxel shapes, in which the
shape is sampled on a regular grid: a representation often used in
the discrete-geometry and medical-imaging communities. Segmen-
tation of voxel data brings its own difficulties. In contrast with mesh
representations, the notion of an edge is implicit in the voxel repre-
sentation. Furthermore, the resolution of the data is typically low,
the data contains discretization artifacts and other noise, and bound-
ary normals are not readily available.
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Figure 1: Non-simplified skeleton (a). Simplified skeleton at scale t,
(b). Simplified skeleton at scale 7, + 7. (c). Large gap due to round
part (d). Thick lines represent feature collections V<.

2 METHOD

Each point p on the surface skeleton . of a shape Q has at least
two points on the shape’s boundary at minimum distance, called
its feature points. Following [2], we simplify the skeleton using
the medial geodesic function [1], which is defined as the shortest
geodesic length between feature-point pairs. This importance mea-
sure p is lowest near the periphery of the skeleton, and increases
toward its center. A simplified skeleton .7 is obtained by impos-
ing a threshold 7 on p. Let V** be the set of feature points due to the
simplified skeleton, called the feature collection of .77 (). Like-

wise, the feature collection V** of the background skeleton . ()
can also be computed.

The key idea of our approach is that, by increasing the threshold
7 on the importance measure p, gaps will appear in the feature col-
lection V on and near shape edges (Fig. 2e,f), which we can detect.
However, the parameter 7 is also used to prune spurious skeleton
parts that are due to boundary noise. Setting 7 to the noise level 7,
opens V on the edges, but also on noisy parts. Therefore, we further
increase 7 to T, + 7,: the feature collection V is opened further on
edges, but not on boundary noise. This is illustrated in Fig. 1 in
the 2D case (for the sake of clarity). In Fig. 1a, the non-simplified
skeleton .7 of a box with a noise bump is shown. The feature col-
lection (thick lines) covers the whole boundary. When 7 is set to the
noise level 7, (Fig. 1b), the openings in V* on the bump and near
the non-noisy convex corners have the same size, so that we cannot
differentiate between the two situations. By further increasing 7 to
T, + T, (Fig. 1c), V€ is further opened on the corners, but not on
the bump.

Hence, we can detect convex and concave edges by computing
for each boundary point the geodesic distance to the feature collec-
tion of the fore- and background skeleton respectively: points at a
distance of at least %Tn are detected as edge points. The setting of
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Figure 2: Overview. Fore- and background skeletons (a,b), color-map encodes importance measure. Simplified skeletons (c,d). Gaps in feature
points (e,f). Convex edges (g). Concave edges (h). Combined edges (i). Connected components (j). Final segmentation (k).

T, controls the minimum detected edge width. In our voxel-based
implementation, we verified that setting 7, > 4 gives good results.
All in all, the combined convex and concave edges (Fig. 2i) divide
the boundary into a set of connected components (Fig. 2j). The
edges are then eroded in a normal-sensitive manner to come to the
final segmentation (Fig. 2k).

The edge width parameter 7, controls the minimum width of the
detected edges, but not the maximum. In case of round parts of the
shape (Fig. 1d), the openings in V and thus the edges might become
thicker than 7,. Both thick and thin edges are handled by the edge
erosion step.

3 RESULTS

We tested our implementation on various voxel shapes with resolu-
tions ranging up to 3003 voxels. Our approach has several desirable
properties. First, we can detect soft and vanishing edges. For both
weak and strong edges, setting a threshold of 7 ensures gaps of at
least width 7, regardless of the edge strength. Figures 3b,c show the
segmentations of a smooth X- and H-shape. The vanishing edges
of the shapes are detected well, and sharp, straight, segment bor-
ders are produced for them by the edge erosion step. Second, our
method handles noisy shapes (e.g. Fig. 3d), as it uses the simpli-
fied surface-skeleton. For noisy shapes the scale parameter 7 is set
to at least 7,, such that the skeleton does not contain any spurious
parts due to noise. Noisy shapes are difficult to handle using tradi-
tional curvature-based segmentation approaches. Nevertheless, for
very noisy shapes the feature collections may become too sparse,
potentially resulting in over-segmentation. Third, multiscale seg-
mentations can be created by increasing 7, beyond the noise level.
Figs. 3e,f show two such coarse-scale segmentations. A feature of
our method is that the coarse segment borders do not necessarily
lie at curvature creases. Indeed, the simplified skeleton represents a
smoothed version of the shape.

A few limitations exist. We have defined segments as the con-
nected components in the non-edge voxels: a segment should be
completely bordered by convex and/or concave creases. Second,
for thin shape parts we might not detect weak edges.
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Figure 3: Segmentation results. Shape with high-curvature edges
(a). Shapes with soft edges (b,c). Noisy shape (d). Multiscale seg-
mentations (d,e,f).
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