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Abstract 

In this short paper we study the existence of positive 
and negative semidefinite solutions of the algebraic Ric- 
cati equation corresponding to linear quadratic prob- 
lems with an indefinite cost functional. An important 
role is played by certain two-variable polynomial matri- 
ces associated with the algebraic Riccati equation. We 
characterize a1 unmixed solutions in terms of the Pick 
matrices associated with these two-variable polynomial 
matrices. As a corollary it turns out that the signa- 
tures of the extrema1 solutions are determined by the 
signatures of particular Pick matrices. 

1 Introduction 

Let A E RnXn and B E RnXm be such that ( A ,  B )  
is a controllable pair. Let Q E Rnxn be symmetric and 
let R E EtmXm be nonsingular. Finally, let S E Etmxn. 
The quadratic equation 

A T K  + K A  + Q - ( K B  + ST)R-l(BTK + S )  
= o  (1) 

in the unknown n x n matrix K is called the 
(continuous-time) algebraic Riccati equation, in the fol- 
lowing called simply the ARE. Since its introduction in 
control theory at the beginning of the sixties, the ARE 
has been studied extensively because of its prominent 
role in linear quadratic optimal control and filtering, 
HA-optimal control, differential games, and stochastic 
filtering and control (see [?I for a discussion on the ARE 

and its applications and an overview of the existing lit- 
erature). 

In this communication we formulate reasonably sim- 
ple necessary and sufficient conditions for the existence 
of at least one real positive semidefinite solution, or of 
at least one real negative semidefinite solution to the 
ARE. Some partial results regarding the solution to 
such problem were obtained in [?, ?, ?, ?, ?]; for an 
overview of such results and of their relation with the 
classical problem of the existence of nonnegative stor- 
age functions for dissipative systems, we refer to [?I. 

The necessary and sufficient condition presented in 
this communication is based on the signs of certain con- 
stant n x n matrices which in the following will be called 
the Pick matrices associated with the ARE; such matri- 
ces are constructed in a straightforward way from the 
parameters appearing in the AFtE. It turns out that 
a real symmetric positive semidefinite solution of the 
ARE (1) exists if and only if (i) the ARE has at least 
one real symmetric solution; and (ii) a suitable Pick 
matrix is negative semidefinite (likewise, the existence 
of at least one negative semidefinite solution depends on 
the positive semidefiniteness of a suitable Pick matrix). 

In the process of establishing such conditions we ob- 
tain a numKer of intermediate results, among which a 
new characterization of all unmixed real symmetric so- 
lutions of the ARE, and a new characterization of its 
suprema1 and infimal real symmetric solutions. Such 
characterizations are all given in terms of the Pick ma- 
trices associated with the ARE. 

A few words on notation: in this communication we 
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adopt the usual symbols R and C in order to denote 
the set of real and complex numbers, respectively. The 
open and closed right half-planes of C are denoted re- 
spectively by Q+ and C+. Given X E C, its complex 
conjugate is denoted by x. The space of n dimensional 
real, respectively complex, vectors is denoted by Rn, 
respectively C?, and the space of m x n real, respec- 
tively complex, matrices, by Rmx", respectively U?'". 
If A E Rmxn,  then AT E RnXm denotes its transpose, 
and if A E CYxn, then A* E PXm denotes its conju- 
gate transpose AT. The ring of polynomials with real 
coefficients in the indeterminate 5 is denoted by R[[]; 
analogously, the ring of two-variable polynomials with 
real coefficients in the indeterminates 5 and q is denoted 
by R[C,q]. The space of all n x m polynomial matri- 
ces in the indeterminate 5 is denoted by Rnxm[<], and 
that consisting of all n x m polynomial matrices in the 
indeterminates 5 and q by RnXm [<, 171. Given a matrix 
R E Rnxm[5], RN(J)  is defined as I tN([) := R ( - o T .  
For a given finite-dimensional Euclidean space X ,  we 
denote by P ( R , X )  the set of all infinitely often dif- 
ferentiable functions from R to X,  and with D($X) 
the subset of C"(R, X )  consisting of those functions 
having compact support. Finally, if K is a symmet- 
ric n x n matrix, the quadratic form on Rn defined by 
3: e zTKz is denoted by 1 z 1:. 

2 Quadratic differential forms 

In this communication we use extensively the con- 
cepts and tools developed in the behavioral context; 
the reader is referred to the textbook [?] or the paper 
[?I for a thorough exposition. Among such concepts 
the most widely used in this communication is that of 
quadratic differential form introduced in [I], which we 
now review. 

In many modeling and control problems for lin- 
ear systems it is necessary to study quadratic func- 
tionals of the system variables and their derivatives. 
An efficient representation for such quadratic func- 
tionals is by means of two-variable polynomial ma- 
trices as follows. Let @ E Rq1 x 9 z [ ( ' , q ] ;  then @ can 
be written in the form @(<,q) = z & = o @ h , k C h q k ,  

where @h,k E RglXg2 and N is an integer. The two- 
variable polynomial matrix 9 induces a bilinear func- 
tional from Cw($RQ1) x Cw(R,RQ2) to Cw(($R) de- 

is a symmetric two-variable polynomial matrix, i.e. if 
q1 = 92 and @h,k = @& for all h, k ,  then it induces also 
a quadratic functional Q+ from P ( R ,  Rq) to C"($ R) 
defined by Q+(w) := La(w,w).  We will call Q+ the 
quadratic differential form (in the following abbrevi- 
ated with QDF) associated with a. We denote the set 
of all symmetric q x q two-variable polynomial matrices 
matrices by Rixq[C, q]. 

fined as L+(Wl,Wz) = c z k = , ( % ) T @ h , k + .  If @ 

The association of two-variable polynomial matri- 
ces with QDF's allows to develop a calculus that has 
applications in stability theory, optimal control, and 
H,-control (see [?I, [?I and [?I). We restrict at- 
tention to a couple of concepts that are used exten- 
sively in this communication. The first one is the map 
d :  Rzx9[C,q] + R9"9[[] defined by 

a@(<) := @(-5, 5). 
Observe that for every @ E Rix'J[[c,q], d@ is para- 
hermitian, i.e. d@ = (a+)-. Another notion used 
in this paper is that of derivative of a QDF. Given a 
QDF Q+ we define its derivative as the QDF %Q+ 
defined by ($Q+)(w) := $(Qa(w)). Q+ is called 
the derivative of QQ if $QQ = Qa. In terms of the 
two-variable polynomial matrices associated with the 
QDF's, this relationship is expressed equivalently as 

In this communication we also use integrals of 
QDF's. In order to make sure that the integrals ex- 
ist, we assume that the trajectories on which the QDF 
acts are of compact support, that is, they belong to 
D(R,Rq). Given a QDF &+, we define its integral as 
the functional from 9(R ,  Re) to R acting as s Q+(w) = 
S_+,"Q+(w)dt. We call a QDF Q+ average nonnega- 
tive, if J Q+ 2 0, i.e., JFm Q+(w) 2 0 for all w E 
D(R,Rq). A QDF can be tested for average nonnega- 
tivity by analyzing the behavior of the para-Hermitian 
matrix d@ on the imaginary axis. Indeed, it is proven 
in [?] that J Q a  2 0 

(C + q P ( 5 ,  11) = @(C, 7 ) .  

d@(iw) 2 0 V u  E R. 

3 Storage functions, polynomial spectral 
factorization, and Pick matrices 

In the context of dissipative systems, the concepts of 
storage function and of dissipation function emerge in 
the framework of QDF's as follows. Let @ E RzxQ[C, 171; 
the QDF QQ is said to be a storage function for Q+ 
(or: IE is a storage function for 9) if the dissipation in- 
equality $QQ < Q+ holds. A QDF QA is a dissipation 
function for Q+ (or: A is a dissipation function for @) 
if QA 2 0 and J Qa = J QA. There is a close relation- 
ship between storage functions, average nonnegativity, 
and dissipation functions (for a proof of the following 
result see [?I, Proposition 5.4.). 

Proposition 1 Let +,E RixQ[C, q]. The  following con- 
ditions are equivalent: 

1. JQ+ 2 0, 

2. @ admits a storage function, 

3. 9 admits a dissipation function. 
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Moreover, there exists a one-one relation between 
storage functions Q and dissipation functions A for  

Since storage functions measure the energy stored in- 
side a system, it is to be expected that they are related 
to the memory, to the state, of the system. Using the 
concept of state map introduced in [?I, one can formal- 
ize such intuition as follows (for a proof see [?]). 

Proposition 2 Let B be represented by  w = M ( $ ) l ,  
and let X E Rnxd[J]  induce a state map f o r  B. Let P be 
a symmetric q x q matrix, and define the two-variable 
polynomial matrix 9(C,q)  = MT(C)PM(q) .  Let Qq 
be a storage function for  Qe. Then Qq is a quadratic 
function of the state, i.e. there exists a symmetric n x n 
matrix K such that Qq(1.) = I X(d)Z 1% f o r  all 1 E 
P(R, ~ d ) ,  equivalently, Q(C, q) = ~ ? T ( c ) K x ( ~ ) .  

Given an average nonnegative QDF, in general there 
exist an infinite number of storage functions; however, 
they all lie between two extrema1 storage functions (see 
[?I, Theorem 5.7): 

Proposition 3 Let SQa 2 0. Then there exist stor- 
age functions Q- and Q+ such that any other storage 
funct ion Q f o r  9 satisfies Qq- 5 Qq 5 Qq+. 

In, the following we call Qs-  the smallest and Qq+ 
the largest storage function of Qa. Under additional 
assumptions on 6, Qw- and Qw+ can be computed as 
follows: 

Proposition 4 Let 9 ( < , q )  E R:'q[C,q]. Assume 
det(d9) # 0 and d@(iw) 2 0 for all w E R. Then 
the smallest and the largest storage functions Q- and 
Q+ of 9 can be constructed as follows: let H and A 
be semi-Hurwitz, respectively semi-anti-Hurwitz, poly- 
nomial spectral factors of 89 (i.e. dip = H"H = A N A  
with all the roots of det(H) in C? and all roots of 
det(A) in e+). Then 

It also turns out that if P is para-hermitian, and if 
P ( i w )  > 0 for all w E I& then for every factorization of 
the scalar polynomial det(P) as det(P) = f " f ,  where 
f and f" have no common roots, there exists a poly- 
nomial spectral factorization of P as P = F"F, with 
det(F) = f (see [?I): 
Proposition 5 Let P E RmXm[5] be para-hermitian. 
Assume that P( iw)  > 0 for all w E R. Then for every 

factorization det(P) = f - f ,  with f E R[<] such that 
f and f "  are coprime, there exists F E Iwmxm[J] .such 
that P = F"F and det(F) = f .  

We finally introduce the Pick; matrices associated 
with average nonnegative quadratic differential forms. 
We consider a two-variable symmetric polynomial ma- 
trix 9(C,q) E Rjxq[C, q], and we assume that d@((ic~) > 
0 for all w E R We introduce Pick matrices in the spe- 
cial case that the singularities of 6'9 are semi-siniple, 
i.e. every singularity X of 89 has the property that its 
multiplicity as a root of det(d9) is equal to the rank 
deficiency of d9(A) at A. (The definition of Pick matrix 
in the general case is notationally more involved and is 
not considered in this communication. However, the 
results presented here hold also in the general case.) 

Definition-6 Let f E R[5] be such that det(d9) = f"f 
and ( f ,  f") are coprime. Let AI, A 2 , .  . . , A, be the roots 
of f .  W e  adopt the convention that if the multiplic- 
i t y  of X i  as a root of det(d@) is mi, then X i  appears 
in this list mi times. (It is easy to  see that, 89 be- 
ing para-hermitian, all the other singularities of d@ are 
-XI, - A 2 , .  . . ,-A,, i.e. NOW for 
i = 1 , 2 , .  . . ,TI,  let vi E CGP be such that d@(Xi)vi = 0, 
and such that the vi's associated to  the same roots of 
d e t ( d 9 )  are linearly independent. The Pick matrix as- 
sociated with f is the matrix Tf whose (i, j ) - t h  element 

the roots of f".) 

is vfa ( i ; i ,X j )v i  
x;+xj . 

Note that T f  = T; E Pxn,  where 2n is the degree of 
det(b6). 

4 The ARE and storage functions 

In this section we study the connection between the 
existence of real symmetric solutions of the ARE, and 
average nonnegativity of a given QDF associated with 
the ARE. 

We associate with the ARE (1) the system with 
manifest variable w = col(z,u) represented by $x = 
Ax + Bu (here c o l ( x , y )  = ( xT yT )). Such equa- 
tion constitutes a kernel representation of the behavior 

Aa: + Bu is satisfied}. Since by assumption the pair 
( A , B )  is controllable, B can also be represented in 
image form; one such representation can be computed 
as follows. Let X E Rnxm[<] and U E Rmxm[E] in- 
duce a right coprime factorization of the rational ma- 
trix ((I, -A)-IB.  Then !I3 is represented in observable 
image form as B = Im( ( X( $)" U( $)' ). Observe 
that any such X yields a minimal state map X ( & )  for 
B. 

Given the matrices Q = QT E RnXn, R = RT E 
EXmxm and S E RmXn appearing in the ARE, and the 

B = (COl(~,U) E P ( R , R n ) X  em(R,Rm) I $a: = 
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polynomial matrices X and U, we define the symmetric 
m x m twevariable polynomial matrix @ by 

Now assume R > 0. The next result connects the av- 
erage nonnegativity of the QDF associated with (??) 
with the existence of real symmetric solutions to the 
ARE (1) and with the existence of storage functions 
for Q+ (see also Ch. 8 of [?I, [?] and Ch. 5. of [?I). 
Theorem 7 Let 9(( ,q)  be defined by (??I, where X 
and U are such that X(<)V(<)-' is a right coprime 
factorization of ( (In - A)-lB. Assume R > 0. Then 
the following statements are equivalent: 

1- JQ+ L 0, 

8. There exasts a real symmetric solution to  the 
ARE. 

In fact, for  every K = KT E RnXn the following 
conditions are equivalent: 

(i) -K satisfies the ARE, 

(ii) I X ( 6 ) l  1; is  a storage function for Q+ with asso- 
ciated dissipation function A(<, q) = F(6)TF(q) 
where F ( t )  := R-i(-BTK + S)X(C) + RiU(t) .  

5 Pick matrices and the ARE 

In this section we present the main result of this 
communication, namely necessary and sufficient condi- 
tions for the existence of sign-definite solutions of the 
ARE; such conditions are given in terms of the Pick 
matrices associated with the Hurwitz and anti-Hurwitz 
factorizations of det(d@), with 9 given by (??). 

Since d@ is para-hermitian, det(d@) has even de- 
gree. Actually, it turns out that deg(det(d@)) = 272, 
with n the dimension of 23 defined in section 4 (for a 
proof, see [?I, Prop. 5.4.1). Assume now that QG 2 0, 
equivalently, d@( iw)  2 0 for all w E R. According 
to Theorem ?? this is equivalent to the existence of a 
real symmetric solution of the ARE. Observe that every 
polynomial spectral factorization of d@ as 89 = F-F 
with F E R m x m [ t ]  yields a factorization of det(d9) as 
det(d@) = f "  f ,  with f = det(F) and deg(f) = n. Let 
7 be the set of all polynomials of degree n, with pos- 
itive highest degree coefficient, that can occur as the 
determinant of a polynomial spectral factor of 89: 

7 := {f E R[t] I f ( O  = f o  + fit + . . . + fnSn 

f n  > 0 , and there exists F E RmXm[c] 
such that a@ = F"F and det(F) = f } .  (3) 

Also, let S be the set of all real symmetric solutions of 
the ARE: 

S := {K E RnXn 1 K = KT and K 
satisfies the ARE}. 

For any K E S, denote AK := A - BR-l(BTK + S) 
and let X A ~  be the characteristic polynomial of A K .  
The following result states that there is a one-one cor- 
respondence between 7 and S.  

Theorem 8 S # 0 i f  and only i f  d@((iw) 2 0 for all 
w E R. In that case there exists a bijection between 
3 and S. Such bijection Ric : F + S is defined as 
follows. For any f E 7, let F E RmXm [t] be such that 
f = det(F) and 89 = F-F. Then define Ric(f) = K, 
where K = KT E Rnxn is  the unique solution of 

For any K E S we have d@ = (FK)-FK,  where 
FK(() := R-1/2(BTK + S ) X ( t )  + R'/'U(J). Fur- 
thermore, f o r  any K E S we have det(FK) = 
d m  X A ~ ,  whence det(d@) = d e t ( R ) ' ( x ~ ~ ) ~ x A ~ ,  
and K = R i c ( d m  X A ~ ) .  

If we strengthen the assumptions of Theorem ?? to 
include d@(iw) > 0 for all w E E3, then the one-to-one 
correspondence between polynomials and the set of real 
symmetric solutions of the ARE can be made even more 
explicit. In order to illustrate such result we introduce 
Fcop, the set of all real polynomials f such that the 
determinant of 89 admits a factorization f - f with f 
and f - coprime: 

It is easily seen that if d 9 ( i w )  2 0 for all w E R then 
Fcop # 8 if and only if d 9 ( i w )  > 0 for all w E R. Hence 
it follows from Proposition 5 ,  that .Eop c F. In the 
remainder of this section we assume that d+(iw) > 0 
for all w E R. 

Note that i f f  E Fcop and K = Ric(f) then accord- 
ing to Theorem ??, f = J ~ X A ~ ,  so X A ~  and 
( 7 ~ ~ ) -  are coprime, equivalently, ~ ( A K )  n ~ ( - A K )  = 
8. If a solution K of the ARE satisfies this property, 
we call it unmixed. The set of all unmixed solutions of 
the ARE is denoted by Sun,. It follows immediately 
from Theorem ?? that Ric defines a bijection between 
Fcop and S,,,, and we now show how to use the Pick 
matrix Tf in order to compute, given an f E FcOp, the 
unmixed solution K = Ric(f). 
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Theorem 9 Assume a@(iw) 2 0 for all w E R. Then 
b@(iw) > 0 for all w E R if and only if Fcop # 0. 
Assume that this holds. Then Ric : Fcop + Sun, is a 
bijection. Now define the n x n zero state matrix Sf as- 
sociated with f as Sf := ( X(Xl)vl . . . X(X,)v, ), 
where the X i  's are the roots of det(d@) and the vi 's are 
the associated directions, see section 3. Then for all 
f E Fcop the zero state matrix Sf is non-singular. f i r -  
thermore, for any f E Fcop, the corresponding solution 
Ric(f) E Sun, is given by  Ric(f) = -(Sj)-'TfSy'. 

We now turn to the problem of establishing neces- 
sary and sufficient conditions for the existence of sign- 
definite solutions to the ARE. Our main result in this 
direction is an immediate consequence of Theorem ??, 
and is based on the result of Theorem 3, namely that 
the largest (smallest) storage function for @ is associ- 
ated with an anti-Hurwitz (Hurwitz) factorization of 
89. Let K- and K+ be the smallest, respectively 
largest real symmetric solution of the ARE. 

Corollary 10 (Main result) Let @ ( c , q )  be defined 
as an (??). Assume that d@(iw) > 0 for all w E R. 
Factor det(b@) = (fA)" fA = (fH)" fH, where fA and 
fH have their roots in c+ and C-, respectively. Then 
K- = -(SjA)-lTfASyi and K+ = -(SjH)-lTfHS;:. 
Consequently, the ARE (1) has a negative semidefinate 
(negative definite) solution i f  and only i f  the Pick ma- 
trix TfA is positive semidefinite (respectively positive 
definite). It has a positive semidefinite (positive def- 
inite) solution if and only if the Pick matrix TfH is 
negative semidefinite (respectively negative definite). 

6 Conclusions 

In this communication we applied concepts and tools 
coming from the calculus of QDF's to the problem of 
formulating necessary and sufficient conditions for the 
existence of (semi-) definite solutions. The authors 
believe that such conditions are more easily verified 
than those already (see [?I). Indeed, the known con- 
ditions require to check an infinite number of matrices 
for positive semidefiniteness; moreover, the dimensions 
of the matrices involved in such check are not upper 
bounded. The condition illustrated in this communica- 
tion requires instead to check the positive semidefinite- 
ness of only one n x n Hermitian matrix which is easily 
constructed from the parameters of the ARE. 
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